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Symmetric powers of elliptic curve L-functions

Phil Martin and Mark Watkins⋆

University of Bristol
phil martin uk@hotmail.com watkins@maths.usyd.edu.au

Abstract. The conjectures of Deligne, Bĕılinson, and Bloch-Kato as-
sert that there should be relations between the arithmetic of algebro-
geometric objects and the special values of their L-functions. We make a
numerical study for symmetric power L-functions of elliptic curves, ob-
taining data about the validity of their functional equations, frequency
of vanishing of central values, and divisibility of Bloch-Kato quotients.

1 Introduction and Motivation

There are many conjectures that relate special values of L-functions to the
arithmetic of algebro-geometric objects. The celebrated result ζ(2) = π2/6 of
Euler [20, §XV] can be reinterpreted as such, but Dirichlet’s class number for-
mula [15, §5] is better seen to be the primordial example. Modern examples run
the gamut, from conjectures of Stark [40] on Artin L-functions and class field
theory, to that of Birch and Swinnerton-Dyer [2] for elliptic curves, to those of
Bĕılinson [1,32] related to K-theory, with a passel of others we do not mention.
For maximal generality the language of motives is usually used (see [21, §1-4]).

One key consideration is where the special value is taken. The L-function
can only vanish inside the critical strip or at trivial zeros; indeed, central values
(at the center of symmetry of the functional equation) are the most interesting
ones that can vanish, and the order of vanishing is likely related to the rank of a
geometric object (note that orders of trivial zeros can be similarly interpreted).

We have chosen to explore a specific family of examples, namely symmetric
power L-functions for rational elliptic curves. The impetus for this work was
largely a theoretical result [19] of the first author, whose computation of Euler
factors in the difficult case of additive primes greatly reduced the amount of
hassle needed to do large-scale computations. Previous theoretical work includes
that of Coates and Schmidt [7] on the symmetric square and Buhler, Schoen, and
Top on the symmetric cube [6]; this second paper also contains a lot of compu-
tational evidence, while Watkins has provided much data [44] in the symmetric
square case. In some cases the L-functions we use are not known to possess the
properties that would be required to justify that our computations produce num-
bers of any validity whatsoever — in these cases, the “numerical coincidence”
in our computations can be seen as evidence for the relevant conjectures.
⋆ Supported during parts of this research by EPSRC grants GR/N09176/01 and

GR/T00658/01, the Isaac Newton Institute, the CNRS and the Institut Henri
Poincaré, and the MAGMA Computer Algebra Group at the University of Sydney.
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2 L-functions

We define the symmetric power L-functions of an elliptic curve E/Q via comput-
ing an Euler factor at every prime p. This Euler factor is computed by a process
that essentially just takes the symmetric power representation of the standard
2-dimensional Galois representation associated to E, and thus our method is a
generalisation of that used by Coates and Schmidt [7] for the symmetric square,1

following the original description of Serre [36]. We briefly review the theoretical
framework, and give explicit formulae for the Euler factors in a later section.

For every prime p choose an auxiliary prime l 6= 2, p and fix an embedding
of Ql into C. Let Et denote the t-torsion of E, and Tl(E) = lim

←
Eln be the

l-adic Tate module of E (we fix a basis). The module Vl(E) = Tl(E) ⊗Zl
Ql

has dimension 2 over Ql and has a natural action of Gal(Qp/Qp) [indeed one of

of Gal(Q/Q)], and from this we get a representation ρl : Gal(Qp/Qp) → Aut(Vl).
We write H1

l (E) = HomQl
(Vl(E),Ql), and take the mth symmetric power of

the contragredient of ρl, getting

ρm
l : Gal(Qp/Qp) → Aut

(

Symm
(

H1
l (E)

))

⊂ GLm+1(C).

We write Dp = Gal(Qp/Qp), let Ip be the inertia group of this extension, and
let Frobp be the element of Dp/Ip ∼= Gal(Fp/Fp) given by x → xp. With all of
this, we have

L(SymmE, s) =
∏

p

det
[

Idm+1 − ρm
l (Frob−1

p )p−s
∣

∣

∣

(

Symm
(

H1
l (E)

))Ip

]−1

.

For brevity, we write Lm(E, s) = L(SymmE, s), and denote the factors on the
right side by Um(p; s). As mentioned by Coates and Schmidt [7, p. 106], it
can be shown that Um(p; s) is independent of our choices. The analytic theory
and conjectures concerning these symmetric power L-functions are described
in [39]. In particular, the above Euler product converges in a half-plane, and is
conjectured to have a meromorphic continuation to the whole complex plane.

We also need the conductor Nm of this symmetric power representation.
We have Nm =

∏

p p
fm(p) where fm(p) = ǫm(Ip) + δm(p). Here ǫm(Ip) is the

codimension of
(

Symm
(

H1
l (E)

))Ip
in Symm

(

H1
l (E)

)

; we shall see that it can
be computed via a character-theoretic argument. The wild conductor δm(p) is 0
unless p = 2, 3, when it can be computed as in [36, §2.1] or the appendix of [7].
1 Note that Buhler, Schoen, and Top [6] phrase their definition of Euler factors differ-

ently, as they emphasise that conjecturally the L-function is related to a motive or
higher-dimensional variety; however, their definition is really the same as ours.



2.1 Critical values

The work of Deligne [14, Prop. 7.7ff] tells us when and where to expect critical
values; these are a subset of the more-general special values, and are the easiest
to consider.2 When m = 2v with v odd there is a critical value Lm(E, v + 1)
at the edge of the critical strip, and when m = 2u − 1 is odd there is a critical
central value Lm(E, u). We let Ω+, Ω− be the real/imaginary periods of E for
m ≡ 1, 2 (mod 4), and vice-versa for m ≡ 3 (mod 4). In the respective cases of
m even/odd we expect rationality (likely with small denominator) of either

Lm(E, v + 1)

(2π)v+1

(

2πN

Ω+Ω−

)v(v+1)/2

or
Lm(E, u)(2πN)u(u−1)/2

Ω
u(u+1)/2
+ Ω

u(u−1)/2
−

. (1)

Whenm is odd, the order of Lm(E, s) at s = u should equal the rank of an associ-
ated geometric object. The Bloch-Kato conjecture [4] relates the quotients in (1)
to H0-groups, Tamagawa numbers, and generalised Shafarevich-Tate groups.3

3 Computation of Euler factors and local conductors

We first consider multiplicative and potentially multiplicative reduction for a
given prime p; these cases can easily be detected since vp(jE), the valuation of
the j-invariant, is negative, with the reduction being potentially multiplicative
when p|c4. When E has multiplicative reduction, the filtration of [6, §8] implies
the local tame conductor ǫm is m and δm(2) = δm(3) = 0 for all m. The Euler
factor is Um(p; s) = (1 − am

p /p
s)−1, where ap = ±1 is the trace of Frobenius. In

the case of potentially multiplicative reduction, for m odd we have ǫm = m+ 1,
and so Um(p; s) ≡ 1, while with m even, we have that ǫm = m and compute that
Um(p; s) = (1 − 1/ps)−1. The wild conductor at p = 2 is δm(2) = m+1

2 δ1(2) for
odd m and is zero for even m, while δm(3) = 0 for all m.

3.1 Good and additive reduction — tame conductors

Let E have good or potentially good reduction at a prime p, and choose an
auxiliary prime l 6= 2, p. The inertia group Ip acts on Vl(E) by a finite quotient
in this case. Let Gp = Gal

(

Qp(El)/Qp) and Φp be the inertia group of this
extension.4 The work of Serre [37] lists the possibilities for Φp. It can be a cyclic
group Cd with d = 1, 2, 3, 4, 6; additionally, when p = 2 it can be Q8 or SL2(F3),
and when p = 3 it can be C3 ⋊ C4. For each group there is a unique faithful
2-dimensional representation ΨΦ of determinant 1 over C, which determines ρl.
2 Critical values conjecturally only depend on periods (which are local objects), while

the more-general special values can also depend on (global) regulators fromK-theory.
3 See [18, §7] for an explicit example; note his imaginary period is twice that of our

normalisation (and the formula is out by a power-of-2 in any case), and the conductor
enters the formula in a different place (this doesn’t matter for semistable curves).

4 The group Φp is independent of the choice of l (see [37, p. 312]), while only whether
Gp is abelian matters, and this independence follows as in [7, Lemmata 1.4 & 1.5].



Our result now only depends on Φ; for a representation Ψ we have the trace
relation (which is related to Chebyshev polynomials of the second kind)

tr(SymmΨ) =

m/2
∑

k=0

(

m− k

k

)

tr(Ψ)m−2k(−detΨ)k, (2)

and from taking the inner product of tr(SymmΨΦ) with the trivial character we
find the dimension of the Φ-fixed subspace of Symm

(

H1
l (E)

)

, which we denote
by βm(Φ). Upon carrying out this calculation, we obtain Table 1, which lists
values for βm(Φ), from which we get the tame conductor ǫm(Φ) = m+1−βm(Φ).
The wild conductors δm(p) are 0 for p ≥ 5, and for p = 2, 3 are described below.

Table 1. Values of βm(Φ) for various inertia groups; here m̃ is m modulo 12.

m̃ C2 C3 C4 C6 Q8 C3 ⋊ C4 SL2(F3)

0 m+ 1 (m+ 3)/3 (m+ 2)/2 (m+ 3)/3 (m+ 4)/4 (m+ 6)/6 (m+ 12)/12
1 0 (m− 1)/3 0 0 0 0 0
2 m+ 1 (m+ 1)/3 m/2 (m+ 1)/3 (m− 2)/4 (m− 2)/6 (m− 2)/12
3 0 (m+ 3)/3 0 0 0 0 0
4 m+ 1 (m− 1)/3 (m+ 2)/2 (m− 1)/3 (m+ 4)/4 (m+ 2)/6 (m− 4)/12
5 0 (m+ 1)/3 0 0 0 0 0
6 m+ 1 (m+ 3)/3 m/2 (m+ 3)/3 (m− 2)/4 m/6 (m+ 6)/12
7 0 (m− 1)/3 0 0 0 0 0
8 m+ 1 (m+ 1)/3 (m+ 2)/2 (m+ 1)/3 (m+ 4)/4 (m+ 4)/6 (m+ 4)/12
9 0 (m+ 3)/3 0 0 0 0 0
10 m+ 1 (m− 1)/3 m/2 (m− 1)/3 (m− 2)/4 (m− 4)/6 (m− 10)/12
11 0 (m+ 1)/3 0 0 0 0 0

3.2 Good and additive reduction — Euler factors for p ≥ 5

When p ≥ 5, a result of Serre [37] tells us that the inertia group is Φ = Cd where
d = 12/ gcd

(

12, vp(∆E)
)

. Note that this gives d = 1 when p is a prime of good
reduction, which we naturally include in the results of this part. We summarise
the results of Martin’s work [19] concerning the Euler factors. Note that the
result of Da̧browski [10, Lemma 1.2.3] appears to be erroneous.

There are two different cases for the behaviour of the Euler factor, depend-
ing on whether the decomposition group Gp = Gal

(

Qp(El)/Qp

)

is abelian.
From [33, Prop. 2.2] or [44, Th. 2.1], we get that this decomposition group is
abelian precisely when p ≡ 1 (mod d). When Gp is nonabelian we have

Um(p; s) = (1 − (−p)m/2/ps)−Am(1 + (−p)m/2/ps)−Bm , (3)

where Am + Bm = βm and Am is the dimension of
(

Symm
(

H1
l (E)

))Gp
. Using

Gp/Φp
∼= C2 and det

(

ΨΦ(x)
)

= −1 for x ∈ Gp\Φp, more character calculations
tell us this dimension is (βm+1)/2 when βm is odd and is βm/2 when βm is even.
This also holds for the non-cyclic Φ when p = 2, 3, for which Gp is automatically
nonabelian. When Φ = C3 and m is odd, we have Um(p; s) = (1+pm/p2s)−βm/2.



When Gp is abelian, we need to compute a Frobenius eigenvalue αp (whose
existence follows from [38, p. 499]). In the case of good reduction, this comes from

counting points mod p on the elliptic curve; we have αp = (ap/2)± i
√

p− a2
p/4

where p + 1 − ap is the number of (projective) points on E modulo p. And
when Φ = C2 we count points on the pth quadratic twist of E. In general, we
need to re-scale the coefficients of our curve by some power of p that depends
on the valuations vp of the coefficients. Since p ≥ 5, we can write our curve
as y2 = x3 +Ax +B, and then re-scale by a factor t = pmin(vp(A)/2,vp(B)/3) to
get a new curve Et : y2 = x3 +Ax/t2 +B/t3, possibly defined over some larger
field. Because of our choice of t, at least one of A/t2 and B/t3 will have vp equal

to 0. The reduction Ẽt modulo some (fractional) power of p is then well-defined
and non-singular, and we get αp from counting points on Ẽt; it turns out that
choices of roots of unity will not matter when we take various symmetric powers.
Returning back to Um(p; s), we get that when Qp(El)/Qp is abelian this Euler
factor is

Um(p; s) =
∏

0≤i≤m

d|(2i−m)

(1 − αm−i
p ᾱi

p/p
s)−1. (4)

3.3 Considerations when p = 3

Next we consider good and additive reduction for p = 3. We first determine the
inertia group, using the 3-valuation of the conductor as our main guide. In the
case that v3(N) = 0 we have good reduction, while when v3(N) = 2 and v3(∆) is
even we have Φ = C2. Since G3 is abelian here, the Euler factor is given by (4),
while the wild conductor is 0 and tame conductor is obtained from Table 1.
When v3(N) = 2 and v3(∆) is odd we have that Φ = C4 and G3 is nonabelian.
The wild conductor δm(3) is 0, and the Euler factor is given by (3).

When v3(N) = 4 we get Φ = C3 or C6, the former case when 4|v3(∆). For
these inertia groups, the question of whether G3 is abelian can be resolved as
follows (see [44, Th. 2.4]). Let ĉ4 and ĉ6 be the invariants of the minimal twist
of E at 3. In the case that ĉ4 ≡ 9 (mod 27), we have that G3 is abelian when
ĉ6 ≡ ±108 (mod 243) while if 33|ĉ4 then G3 is abelian when ĉ4 ≡ 27 (mod 81).
In the abelian case we have α3 = ζ12

√
3 up to sixth roots, which is sufficient.

The Euler factor is then given by either (3) or (4), the tame conductor can be
obtained from Table 1, and the wild conductor (computed as in the appendix
of [7]) from Table 3. When v3(N) = 3, 5 we have that Φ = C3 ⋊ C4. The Euler
factor is given by (3) and the wild conductor can be obtained from Table 3, with
the first C3 ⋊ C4 corresponding to v3(N) = 3, and the second to v3(N) = 5.

3.4 Considerations when p = 2

Finally we consider p = 2, where first we determine the inertia group. Let M
be the conductor of the minimal twist F of E at 2, recalling [44, § 2.1] that in
general we need to check four curves to determine this twist. Table 4 then gives
the inertia group. The appendix of [7] omits a few of these cases; see [44]. When



Φ = C1, C2 we can always determine αp via counting points modulo p on E or a
quadratic twist, and G2 is always abelian. The Euler factor is then as in (4). For
Φ = C3, C6 the group G2 is always nonabelian, and the Euler factor is as in (3).
For the case of Φ = C4 and p = 2, the question of whether G2 is abelian comes
down [44, Th. 2.3] to whether the c4 invariant of F is 32 or 96 modulo 128, it
being abelian in the latter case, where we have α2 = ζ8

√
2 up to fourth roots.

The Euler factors for this and the two cases of noncyclic Φ are obtained from (3)
or (4), while the wild conductors δm(2) are given in Table 2, with the appropriate
line being determinable from the conductor of the first symmetric power.

Table 2. Values for δm(2).

Φ2 m = 1 formula

C2, C6 2 ǫm(C2)

C2, C6 4 2ǫm(C2)

C4 6 2ǫm(C4) + ǫm(C2)

Q8 3 ǫm(Q8) + 1
2
ǫm(C2)

Q8 4 ǫm(Q8) + ǫm(C2)

Q8 6 ǫm(Q8)+ǫm(C4)+ǫm(C2)

SL2(F3) 1 1
3
ǫm(Q8) + 1

6
ǫm(C2)

SL2(F3) 2 1
3
ǫm(Q8) + 2

3
ǫm(C2)

SL2(F3) 4 1
3
ǫm(Q8) + 5

3
ǫm(C2)

SL2(F3) 5 5
3
ǫm(Q8) + 5

6
ǫm(C2)

Table 3. Values for δm(3).

Φ3 m = 1 formula

C3, C6 2 ǫm(C3)

C3 ⋊ C4 1 1
2
ǫm(C3)

C3 ⋊ C4 3 3
2
ǫm(C3)

Table 4. Values of Φ2.

v2(M) Φ2

0 C1 if v2(N) = 0 else C2

2 C3 if v2(N) = 2 else C6

3,7 SL2(F3)
5 Q8

8 Q8 if 29|c6(F ) else C4

3.5 The case of complex multiplication

When E has complex multiplication by an order of some imaginary quadratic
field K, the situation simplifies since we have L(E, s) = L(ψ, s− 1/2) for some5

Hecke Grössencharacter ψ. For the symmetric powers we have the factorisation

L(SymmE, s) =

m/2
∏

i=0

L(ψm−2i, s−m/2), (5)

where ψ0 is the ζ-function when 4|m, and when 2‖m it is L(θK , s) for the
quadratic character θK of the field K. Note that the local conductors and Euler
factors for each L(ψj , s) can be computed iteratively from (5) since this informa-
tion is known for the left side from the previous subsections. This factorisation
reduces the computational complexity significantly, as the individual conductors
will be smaller than their product; however, since there are more theoretical re-
sults in this case, the data obtained will often lack novelty. The factorisation (5)
also implies that L2u−1(E, s) should vanish to high degree at s = u, since each
term has about a 50% chance of having odd functional equation. We found some
examples where L(ψ3, s), L(ψ5, s), or L(ψ7, s) has a double zero at the central
point, but we know of no such triple zeros.
5 This is defined on ideals coprime to the conductor by ψ(z) = χ(|z|)(z/|z|) where z is

the primary generator of the ideal and χ is generally a quadratic Dirichlet character,
but possibly cubic or sextic if K = Q

(√
−3

)

, or quartic if K = Q
(√

−1
)

. When
taking powers, we take χj to be the primitive Dirichlet character which induces χj .



4 Global considerations and computational techniques

We now give our method for computing special values of the symmetric power
L-functions defined above. To do this, we complete the L-function with a Γ -factor
corresponding to the prime at infinity, and then use the (conjectural) functional
equation in conjunction with the method of Lavrik [29] to write the special
value as a “rapidly-converging” series whose summands involve inverse Mellin
transforms related to the Γ -factor. First we digress on poles of our L-functions.

4.1 Poles of L-functions

It is conjectured that Lm(E, s) has an entire continuation, except when 4|m and
E has complex multiplication (CM) there is a pole at s = 1 +m/2, which is the
edge of the critical strip.6 We give an explanation of this expectation from the
standpoint of analytic number theory; it is likely that a different argument could
be given via representation theory. We write each Euler factor as Um(p; s) =
(

1 − bm(p)/ps + · · ·
)−1

and as s→ 1 +m/2 we have logLm(s) ∼ ∑

p bm(p)/ps.
We will now compute that the conjectural Sato-Tate distribution [41] implies that
the average value of bm(p) is 0, while for CM curves the Hecke distribution [24]
will yield an average value for bm(p) of pm/2 when 4|m.

Similar to (2), for a good prime p we have bm(p) =
∑m/2

i=0

(

m−i
i

)

am−2i
p (−p)i.

The Sato-Tate and Hecke distributions imply that the average values of the kth
power of ap are given by

〈ak
p〉 = (2

√
p)k

∫ π

0 (cos θ)k (sin θ)2 dθ
∫ π

0 (sin θ)2 dθ
and 〈ak

p〉CM = (2
√
p)k

∫ π

0 (cos θ)k dθ

2
∫ π

0 dθ
.

We have 〈ak
p〉 = 0 for k odd; for even k the Wallis formula [43] implies

∫ π

0

(cos θ)k(sin θ)2 dθ =
π(k − 1)!!

k!!
− π(k + 1)!!

(k + 2)!!
=
π(k − 1)!!

(k + 2)!!
,

so that 〈ak
p〉 is (2

√
p)k 2(k−1)!!

(k+2)!! . An induction exercise shows that this implies

〈bm(p)〉 = 0 when E does not have CM. We also have 〈ak
p〉CM = (2

√
p)k (k−1)!!

2·k!!

for even k, and again an inductive calculation shows that 〈bm(p)〉CM = pm/2

when 4|m and is zero otherwise. This behaviour immediately implies the afore-
mentioned conjecture about the poles of Lm(E, s) at s = 1 +m/2.

4.2 Global considerations

Let Λm(E, s) = Cs
mγm(s)Lm(E, s), where C2

m = Nm/(2π)m+1 for m odd and is
twice this for m even. For m odd we write m = 2u− 1 and for m even we write
m = 2v; then from [14, §5.3] we have respectively either

γm(s) =

u−1
∏

i=0

Γ (s− i) or γm(s) = Γ
(

s/2 − ⌊v/2⌋
)

v−1
∏

i=0

Γ (s− i).

6 The case of m = 4 follows as a corollary of work of Kim [26, Corollary 7.3.4].



When 4|m and E has CM, we multiply γm(s) by (s − v)(s − v − 1). We ex-
pect Λm(E, s) to have an entire continuation and satisfy a functional equation
Λm(E, s) = wmΛm(E,m + 1 − s) for some wm = ±1. The works of Kim and
Shahidi [27] establish parts of this conjecture.7 We can find wm via experiment
as described in Section 4.4, but we can also try to determine wm theoretically.

4.3 Digression on local root numbers

The sign wm can theoretically be determined via local computations as in [12],
but this is non-trivial to implement algorithmically, especially when p = 2, 3. We
expect to have a factorisation wm =

∏

pwm(p) where the product is over bad
primes p including infinity. For m even, the very general work of Saito [35] can
then be used to show9 that wm = +1, so we assume thatm is odd. From [14, §5.3]
we have wm(∞) = −

(

−2
m

)

; combined with the relation wm(p) = w1(p)
m for

primes p of multiplicative reduction, this gives the right sign for semistable
curves. The potentially multiplicative case has wm(p) = w1(p)

(m+1)/2.
In the additive cases, the first author [19] has used the work of Rohrlich [33]

to compute the sign for p ≥ 5. We get that10 wm(p) = w1(p)
ǫm(Φp)/2, and w1(p)

is listed in [33]. For p = 2, 3 the value of w1(p) is given11 by Halberstadt [23], and
our experiments for higher (odd) powers indicate that wm(2) = η2w1(2)ǫm(Φp)/2

where η2 = −1 if v2(N) is odd and m ≡ 3 (mod 8) and else η2 = +1, while the
expected values of wm(3) are given in Table 5.

Table 5. Experimental values for wm(3) (periodic mod 12 in m.)

Φ3 1 3 5 7 9 11 Φ3 1 3 5 7 9 11 Φ3 1 3 5 7 9 11

C3, C4 + + + + + + C6 + − − − + + C3 ⋊ C4 + + − + + +
C2 − + − + − + C6 − + − + − + C3 ⋊ C4 − − − − − +

4.4 Computations

From [29], [8, Appendix B], or [16], the assumption of the functional equation
Λm(E, s) = wmΛm(E,m+1−s) allows us to compute (to a given precision) any

value/derivative Λ
(d)
m (E, s) in time proportional to Cm ≈

√
Nm. Additionally,

numerical tests on the functional equation arise naturally from the method.
We follow [6, § 7, p. 119ff]. Suppose we have Λm(s) = wmΛ(m+ 1 − s), and

the dth derivative is the first one that is nonzero at s = κ. Our main interest is
in κ = u for m = 2u − 1 and κ = v + 1 for m = 2v, and we note that d = 0 for
even m. Via Cauchy’s residue theorem, for every real A > 0 we have

Λ
(d)
m (κ)

d!
=

1

2πi

(
∫

(δ)

−
∫

(−δ)

)

Λm(z + κ)

zd+1

dz

Az
,

7 The full conjecture8follows from Langlands functoriality [28]. In the CM case, the
functional equation follows from the factorisation (5) and the work of Hecke [24].

8 Added in proof: A recent preprint [42] on Taylor’s webpage shows the meromorphic
continuation and functional equation for all symmetric powers for curves with j 6∈ Z.

9 The work of Fröhlich and Queyrut [22] and Deligne [13] might give a direct argument.
10 Since we are assuming that m is odd, the exponent is just (m+1)/2 unless Φp = C3.
11 Note the third case in Table 1 of [23] needs a Condition spéciale of c′4 ≡ 3 (mod 4).



where δ is small and positive and
∫

(σ)
is the integral along ℜz = σ. In the second

integral we change variables z → −z and apply the functional equation. Then we
write κ+ λ = m+ 1, move both contours sufficiently far to right (say ℜz = 2m)
and expand Λm in terms of the L-function to get

Λ
(d)
m (κ)

d!
=

∫

(2m)

Cz+κ
m γm(z + κ)

∞
∑

n=1

bm(n)

nz+κ

1

zd+1

dz

2πiAz

+ (−1)dwm

∫

(2m)

Cz+λ
m γm(z + λ)

∞
∑

n=1

bm(n)

nz+λ

1

zd+1

Az dz

2πi
.

Thus we get that

Λ
(d)
m (κ)

d!
= Cκ

m

∞
∑

n=1

bm(n)

nκ
F d

m

(

κ; n
ACm

)

+ (−1)dwmC
λ
m

∞
∑

n=1

bm(n)

nλ
F d

m

(

λ; nA
Cm

)

,

where

F d
m(µ;x) =

∫

(2m)

γm(z + µ)

zd+1xz

dz

2πi
.

The F d
m(µ;x)-functions are “rapidly decreasing” inverse Mellin transforms. Note

that we have L
(d)
m (κ) = Λ

(d)
m (κ)/γm(κ)Cκ

m, and so can recover the L-value as
desired. The parameter A allows us to test the functional equation; if we compute

Λ
(d)
m (κ) to a given precision for A = 1 and A = 9/8, we expect disparate answers

if we have the wrong Euler factors or sign wm.
We compute F d

m(µ;x) as a sum of residues at poles in the left half-plane,
the first pole being at z = 0, following [11]. We need to calculate Laurent series
expansions of the Γ -factors about the poles.12 We let ζ(1) denote Euler’s con-

stant γ ≈ 0.577, and define H1(n) = 1 for all n, and Hk(1) =
∑k

i=1 1/i for all k,
and recursively define Hk(n) = Hk−1(n) +Hk(n − 1)/k for n, k ≥ 2. At a pole
z = −k for k a nonnegative integer, we have the Laurent expansion

Γ (z) =
(−1)k

k!(z + k)

(

1 +

∞
∑

n=1

Hk(n)(z + k)n

)

exp

( ∞
∑

n=1

(−1)nζ(n)

n
(z + k)n

)

,

and for k a negative integer (these only occur for a few cases) we can use the rela-
tion zΓ (z) = Γ (z+1) to shift. To expand Γ (z/2) around an odd integer z = −k,
we use the duplication formula Γ (z) = Γ (z/2)Γ

(

z+1
2

)

√
π

2z−1 to replace Γ (z/2) by
a quotient of Γ -factors that can each be expanded as above. The trick works in
reverse to expand Γ

(

z+1
2

)

about an even integer z = −k. We also have the series
expansions for 2z and 1/z about z = −k given by

2z = 2−k
∞
∑

n=0

(log 2)n

n!
(z + k)n and

1

z
= −1

k
−
∞
∑

n=1

(z + k)n

kn+1
(for k 6= 0).

12 When Λm(E, s) has a pole the factor γm(s) has two additional linear factors (which
are easily handled). But in this case it is better to use the factorisation (5).



Since these F d
m(µ;x) functions are (except for CM) independent of the curve,

we pre-computed a large mesh of values and derivatives of these functions, and
then in our programme we compute via local power series. Thus, unlike the set-
ting of Dokchitser [16], we are not worried too much about the cost of computing
F d

m(µ;x) for large x via a massively-cancelling series expansion, since we only do
this in our pre-computations. For each implemented function we have its value
and first 35 derivatives for all x = i2k/32 for 32 ≤ i ≤ 63 for k in some range,
such as −3 ≤ k ≤ 19. For sufficiently small x we just use the log-power-series ex-
pansion. The choice of 35 derivatives combined with the maximal radius of x/64
for expansions about x implies that our maximal precision is around 35×6 = 210
bits. When working to a lower precision, we need not sum so many terms in the
local power series. Note that F d

m(µ;x) dies off roughly like exp(−x2/(m+1)), and
thus it is difficult to do high precision calculations for m large.

To compute the meshes of inverse Mellin transforms described above, we used
PARI/GP [31], which can compute to arbitrary precision. However, PARI/GP
was too slow to use when actually computing the L-values; instead we used a
C-based adaption of Bailey’s quad-double package [25], which provides up to
212 bits of precision while remaining fairly fast.13

5 Results

We tested the functional equation (via the above method of comparing the com-
puted values for A = 1 and A = 9/8) for odd symmetric powers m = 2u− 1 at
the central point κ = u, and for even symmetric powers m = 2v at the edge of
the critical strip κ = v + 1. We did this for all non-CM isogeny classes in Cre-
mona’s database [9] with conductor less than 130000; this took about 3 months
on a cluster of 48 computers (each running at about 1 Ghz).

We computed as many as 108 terms of the various L-series for each curve,
which was always sufficient to check the functional equation of the third sym-
metric power to about six decimal digits.14 In all cases, we found the expected
functional equation to hold to the precision of our calculation. The results for the
order of vanishing (at the central point) for odd powers appear in the left half
of Table 6. The right half lists how many tests15 we did for other16 symmetric
powers (again to six digits of precision). There are less data for higher symmetric
powers due to our imposed limit of 108 terms in the L-series computations, but
since the symmetric power conductors for curves with exotic inertia groups often
do not grow so rapidly, we can still test quite high powers in some cases.
13 The SYMPOW package can be obtained from www.maths.bris.ac.uk/~mamjw
14 In about 0.3% of the cases, the computations for both the zeroth and first derivatives

showed no discrepancy with A = 1 and A = 9/8; this coincidence is to be expected
on probabilistic grounds, and for these cases we computed to higher precision to get
an experimental confirmation of the sign of the functional equation.

15 We need not compute even powers when there is a lack of quadratic-twist-minimality.
16 We did not test the fourth symmetric power, as the work of Kim [26] proves the

validity of the functional equation in this case. Since there is no critical value, a
calculation would do little more than verify that our claimed Euler factors are correct.



Table 6. Test-counts (right) and data for order of vanishing (non-CM isogeny classes)

m Tested Order 0 Order 1 2 3 4

1 567735 216912 288128 61787 908 0
3 567735 262751 287281 16782 905 16
5 46105 22448 23076 569 12 0
7 3573 1931 1616 25 1 0
9 947 542 400 5 0 0
11 134 51 82 1 0 0

m # tests

6 4953
8 1259
10 190
12 142
13 5 even
13 30 odd

m # tests

14 26
15 1 even
15 16 odd
16 8
17 3 odd
18 2

Buhler, Schoen, and Top [6] already listed 2379b1 and 31605ba1 as 2 examples
of (suspected) 4th order zeros for the symmetric cube. We found 14 more, but
no examples of 5th order zeros. For higher powers, we found examples of 3rd
order zeros for the 5th and 7th powers, and 2nd order zeros for the 9th, 11th,
and 13th powers, though as noted above, we cannot obtain as much data for
higher powers.17 We list the Cremona labels for the isogeny classes in Table 7.

Table 7. Experimentally observed high order vanishings (non-CM isogeny classes)

ord format is power:label(s)

4th 3:2379b 5423a 10336d 29862s 31605ba 37352d 46035a 48807b 55053a
3:59885g 64728a 82215d 91827a 97448a 104160bm 115830a

3rd 5:816b 2340i 2432d 3776h 5248a 6480t 7950w 8640bl 16698s 16848r
5:18816n 57024du 7:176a

2nd 7:128b 160a 192a 198b 200e 320b 360b 425a 576b 726g 756b 1440a
7:1568i 1600b 2304g 3267f 3600h 3600j 3600n 3888e 4225m 6272d
7:11552r 15876f 21168g 9:40a 96a 162b 324d 338b 11:162b 13:324c

We also looked at extra vanishings of the 3rd symmetric power in a quadratic
twist family. We took E as 11a3:[0,−1, 1, 0, 0] and computed the twisted cen-
tral value L3(Ed, 2) or central derivative L′3(Ed, 2) for fundamental discrimi-
nants |d| < 5000. We found 58 double zeros (to 9 digits) and one triple zero
(d = 3720). A larger experiment (for |d| < 105) for 10 different CM curves found
(proportionately) fewer double zeros and no triple zeros.

Finally, we used higher-precision calculations to obtain the Bloch-Kato num-
bers of equation (1) for various symmetric powers of some non-CM curves of
small conductor (see Table 8). More on the arithmetic significance of these quo-
tients will appear elsewhere. In some cases, we were able to lessen the precision
because it was known that a large power of a small prime divided the numerator.

5.1 Other directions

In this work, we looked at symmetric powers for weight 2 modular forms. De-
launay has done some computations [11] for modular forms of higher weight;
in that case, the work of Deligne again tells us where to expect critical values,
and the experiments confirm that we do indeed get small-denominator rationals
after proper normalisation. We looked at critical values at the edge and center of

17 Given that we only computed the L-value of the 13th symmetric power for five curves
of even sign, to find one that has a double-order zero is rather surprising. Higher-
order zeros were checked to 12 digits; the smallest “nonzero” value was ≈ 2.9 · 10−8.



Table 8. Selected Bloch-Kato numbers for various powers and curves

5th powers
20a2 29

37a1 29

43a1 275
44a1 217

6th powers
11a3 245
14a4 293
15a8 210

17a4 212

19a3 243352

20a2 217/3
24a4 217/3
26a3 273 · 5 · 23
26b1 273 · 73 · 23
30a1 215337
33a2 2173 · 5 · 7
34a1 2133359
35a3 283 · 7231
37a1 29347
37b3 2734467
38a3 27345 · 11 · 137
38b1 27325213 · 31
39a1 220327
40a3 2207/3
42a1 219327 · 19
43a1 26321697
44a1 2215 · 31/3
46a1 295 · 23 · 30661
50a1 23511/3
51a1 29334517

7th powers
24a4 2237/3
37a1 2133 · 5
43a1 2173 · 5

9th powers
11a3 212

14a4 214345
15a8 216

17a4 216365
19a3 219325
21a4 2205 · 592

24a4 238/9
26a3 211345 · 74

26b1 211325 · 7319332

30a1 2163555372

33a2 2245 · 10721672

34a1 223355 · 72532

35a3 225345
37b3 220325 · 72532

38a3 2113145 · 192

38b1 211581092

39a1 24032574

40a3 0
42a1 2255 · 22322412

44a1 2473
45a1 216319527 · 132

46a1 21431053140712

48a4 2435
50a1 253 · 522

54a3 29324

54b1 273255

10th powers
11a3 2145 · 22453/3
14a4 216335 · 6691
15a8 2265 · 541
17a4 223327 · 11 · 227
19a3 2143247 · 179 · 5023
20a2 24453/3
21a4 228375229
24a4 24913/9
26a3 219357 · 47 · 1787
26b1 219335273127 · 2102831
40a3 2545 · 683
44a1 2565 · 11 · 215447/3
50a1 2115287/3
52a2 244335 · 7 · 19 · 279751
54b1 2143357
56a1 266325 · 11 · 71
75c1 214528 · 31 · 41 · 61/9
96b1 284197/3
99a1 218331537 · 1367

11th powers
11a3 22654/3
14a4 223355272112

15a8 229112232/3
17a4 226311

21a4 2361122112/3
24a4 257132/45
48a4 270112/3
54b1 220341

56a1 274112/5
72a1 258328592/5

the critical strip, whereas we expect L-functions evaluated at other integers to
take special values related to K-theory; see [3,30,17,45] for examples. The pro-
grammes written for this paper are readily modifiable to compute other special
values. The main advantage that our methods have over those of Dokchitser [16]
is that we fixed the Γ -factors and the L-values of interest, which then allowed
a large pre-computation for the inverse Mellin transforms; if we wanted (say) to
compute zeros of L-functions (as with [34]), our method would not be as useful.

Finally, the thesis of Booker [5] takes another approach to some of the ques-
tions we considered. The scope is much more broad, as it considers not only
numerical tests of modularity, but also tests of GRH (§3.4), recovery of unknown
Euler factors possibly using twists (§5.1), and also high symmetric powers (§7.2).
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functional equations.] Séminaire Delange-Pisot-Poitou: 1969/70, Théorie des Nom-
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