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1 Introduction 

This paper is a technical investigation of issues in computational complexity 
theory relative to a random oracle. We introduce "average dependence," an 
alternative method to Bennett and Gill's "measure preserving map" technique 
and illustrate our technique by the following results. 

1. We give a new and simpler proof that, relative to a random oracle R, 
NPR"fi coNPR; 

2. We show that relative to a random oracle R, NPR is not contained in 
coNPR even if coNPR is allowed subexponentially much advice. That is, 
NPR <!, ( coNP I A. )R, where A. is the class of relativized advice functions 
f such that, for all n, IJR(n)l ~ s(n) and s is any function such that 
lim.. ..... 00 (logs(n))ln = 0. 

3. We show that, relative to a random oracle R, NPR is not contained in 
coNTIME(nk)R even if coNTIME(nk)R is allowed an exponential amount 
of advice. That is, for each k > 0, there is a "Yk > 0 such that, relative to 
a random oracle R, NPR <!, (coNTIME(nk)IA,)R, where A, is as above, 
and s = An.P"n. 

4. We prove that, relative to a random oracle R, there is a NPR set XR 

whose only coNPR-subsets must be "thin" in the sense that, if AR is a 
coNPR-subset of xR, then census(AR,n) E O(census(XR,n).8) for each 

PE(~,1). 

Results 2 and 3 are improvements on work of Lutz and Schmidt [LS90] who 
have analogous results for PI A classes in place of coNP I A classes. Result 4 
complements an earlier result of ours that, relative to a random oracle R, there 
are NPR sets whose only pR subsets are sparse [KMR89]. Also result 1 is 
an improvement of sorts on Bennett and Gill's original proof that, relative to 
a random oracle R, NPR op coNPR [BG81]. In that proof Bennett and Gill 
introduce their measure preserving map technique which has since become one 
of the stock methods in random oracle work. Their technique, however, is 
nonintuitive and difficult to use. Our average dependence technique addresses 
the same sorts of problems as Bennett and Gill's, but from a rather different 
point of view which we feel is both simpler and more intuitive. 

Complexity Relative to a Random Oracle. A relativized statement S 
holds relative to a random oracle if and only if the set { R I sR is true } has 
measure 1 in the standard Lebesgue measure on 'P(N).1 Intuitively, if R is a 

1 See §2 for the formal definition of this measure. 
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"randomly" chosen oracle, sR will be true with probability 1. Unlike complexity 
theory relative to unrestricted oracles, complexity theory relative to a random 
oracle is consistent and has an a priori character as the oracles involved are 
not constructed. Moreover, it follows from Kolmogorov's 0-1 law that if an 
arithmetic relativized statement 8 has the property that the truth value of SA 
is unchanged by finite variations made to A, then the measure of { R I SR } is 
either 0 or 1. Since most relativizable statements of complexity theory have this 
property, complexity theory relative to a random oracle is thus a "complete" 
theory. 

The study of complexity theory relative to random oracles was begun by 
Bennett and Gill in [BG81]. In that paper Bennett and Gill established a 
number of hard, interesting results. For example, they showed that relative to 
a random oracle, 

LOGSPACE C { p = :pp } c { ~ } . 
RP = BPP coNP 

Note that, other than the collapse of the probabilistic classes into P, the rela­
tionships of the above classes match the conventional wisdom as to what the 
relationships of the unrelativized classes are. Since Bennett and Gill's original 
paper, random oracle work has become an active subarea of complexity theory 
with a number of people contributing some very fine results. In this paper we 
will not attempt to discuss these results except for those directly related to our 
work. 

Why Study Random Oracles? Bennett and Gill provided a bold, contro­
versial motivation for studying complexity theory relative to a random oracle­
their Random Oracle Hypothesis. Informally stated, this hypothesis is: If a 
"structural fact" about complexity classes containing P holds relative to a ran­
dom oracle, then that fact also holds in the unrelativized world. The prime in­
tuition behind the hypothesis was (i) very high quality polynomial-time pseudo­
random generators exist, and (ii) when a structural relationship between com­
plexity classes holds relative to a random oracle, then it ought to hold when the 
random oracle is replaced by one of these pseudo-random generators. 

Due to the counterexamples of [Kur83] and [CGH90] the Random Oracle Hy­
pothesis is essentially dead. However, the intuition behind it remains appealing. 
Complexity theory relative to a random oracle provides a model of a computa­
tional world in which extremely strong polynomial-time "pseudo-random func­
tions" exist and their presence implies lots of interesting structural facts. It 
seems plausible that some sort of polynomial-time pseudo-random functions do 
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exist, but their power is likely nowhere near that of those existing relative to a 
random oracle. We believe, however, that in working to understand complexity 
theory relative to a random oracle, we will develop tools and ideas that will 
be useful in the unrelativized case. Towards this end, our very general aims in 
this work are (i) to develop as complete a picture as possible of what is true 
relative to a random oracle and (ii) to put these results on as clear and as simple 
mathematical basis as possible. The results of this paper are intended as a step 
towards these goals. 

2 Background 

General. We shall assume the reader is familiar with the basics of machine 
based computational complexity as discussed in [HU79]. 

N denotes the set of natural numbers { 0, 1, 2, ... } . We identify each z E N 
with the z-th string over the symbols 0 and 1 in the lexicographic ordering 
on { 0,1 }*. We use natural numbers and strings over { 0,1} interchangeably. 
Unless specified otherwise, functions are over Nand total and sets are subsets of 
N. The length of zEN (i.e., the length of its string representation) is denoted 
lz j. Let ( ·, ·) denote a polynomial-time computable pairing function, see [Rog67] 
for an example. 

Suppose A ~ N. A denotes the complement of A, i.e., N - A. II All denotes 
the cardinality of A. P(A) denotes the power set of A, i.e., { B : B ~ A}. AD.B 
denotes the symmetric difference of A and B, i.e., (A- B) U (B- A). For each 
n EN, Aln denotes { z E A: lzl = n} and census(A, n) = IIAinll· 

Suppose f is a mapping from some set into N. Then, corange(/) denotes 
range(!). 

A fragment is a function u: N -+ { 0, 1} with finite domain. For a fragment 
u and an A ~ N, we say u is eztended by A (written: u !;;;;; A) if and only 
if the characteristic function of A extends u, i.e., for all z, u(z) = 0 ==> 
z ¢. A and u(z) = 1 ==> z E A. For each fragment u, we define (u) to be 
{A : u !;;;;; A}. The (u) sets form a basis for the standard topology on P(N) 
used in computability theory, see [Rog67]. 

Measure Theory. Below we briefly discuss some results from measure theory 
used in subsequent sections. For a general introduction to measure theory see 
any of [Dud89], [Oxt80], [Roy68], and [Rud66]. 

A measure space is a triple (X, M, m) where X is a set, M is a collection 
of measurable subsets of X and m is the measure for the space which assigns to 
each A E M a nonnegative real, the measure of A. As an example of a measure 
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space, we sketch how to define the standard Lebesgue measure JJ on 'P{N). In 
the following let A range over subsets of'P{N) and let A denote the complement 
of A in 'P(N), i.e., ('P(N) -A). One can think of JJ as a probability measure 
on 'P(N) such that, for each fixed x E N we have that "Prob[A : x E A]" 
= p({A: x E A}) = p({A: x ft A}) = "Prob[A: x ft A]" = i· Moreover, 
for distinct x's, we require that the sets {A : x E A} be independent (in the 
probabilistic sense). These requirements dictate that, for each fragment u, we 
have p((u)) =2-m, where m = lldomain(u)ll. Now, to extend JJ to A~ 'P(N) 
beyond the (a)'s the idea is roughly to define p(A) as the limit of measures of 
approximations to A. Toward this end, define the outer measure of A (written 
p*(A)) to be the greatest lower bound of CE:.o JJ( (ui)) :A ~ U~0(ui) }. We 
would like to define p(A) = p*(A) for arbitrary A, but there is a problem. 
Another property we want JJ to have is: p(A) = a <=:::> p(A) = 1-a. However, 
using the axiom of choice one can construct an A such that p*(A) + p* (A) > 1. 
On the other hand, all of the sets A one typically cares about have the property 
that p*(A) + p*(A) = 1. So we define A to be measurable if and only if 
p*(A) + p*(A) = 1 and then define p(A) = p*(A) for measurable A and leave 
p(A) undefined for nonmeasurable A. All of the A we consider below will be first 
order definable and the first order definable A can be shown to be p-measurable. 

Countable subadditivity refers to the property of JJ that, if (Ai}ieN is a 
sequence of measurable sets, then 

IJ( U A> :5 :L JJ(A). 
iEN iEN 

It follows from this that the union of countably many sets of measure 0 is itself 
a set of measure 0. 

Sets A and B are finite variants if and only if A /),. B is finite. A collection 
of sets A is closed under finite variants if and only if for each A E A, every 
finite variant of A is also in A. Kolmogoroff's 0-1 law [Oxt80] states that if A 
is measurable and closed under finite variants, then p(A) is either 0 or 1. 

Very roughly, the product oftwomeasurespaces, (Xt,Mt,JJt) and (X2,M2, 
1'2) is a measure space (X1 x X2,M',JJ1 x 1'2) in which for each A1 E M 1 and 
A2 E M2 we have {JJl x JJ2){Al x A2) = JJ1{Al) ·JJ2(A2). (Note: M' contains 
more sets than just those of the form A1 x A2.) The product of three or more 
measure spaces is defined analogously. Fubini's Theorem is a general measure 
theoretic result about integrating functions over product spaces which, roughly 
speaking, gives sufficient conditions for when one can "change the order of in­
tegration." Below we shall be concerned with integrating 0-1 valued functions 
over product spaces and for such functions, /, the sufficient conditions for Fu­
bini's Theorem reduce to: both /-1(0) and f-1(1) are measurable subsets of 
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the product space. 

3 The Basic Argument 

In this section we introduce our average dependence technique by giving a new 
proof of 

Theorem 1 (Bennett and Gill [BG81]). Relative to a random oracle R, 
NPR =/: coNPR. 

To state the technical result that implies Theorem 1, we first define the following 
relativized function. For each R ~ N and each z E N, let 

(1) {R(z) ~ R(d)R(ztO) ... R(zto31o:l). 

We prove the following about eR. 
Theorem 2. Relative to a random oracle R, range({R) ft coNPR. 

Since range({R) E NPR, Theorem 1 follows immediately. Using a slightly 
different {R, Bennett and Gill prove the analog of Theorem 2. 

To prove Theorem 2, our first task is to reduce the theorem to something a 
bit more manageable. Let M range over polynomially clocked, nondeterministic 
TMs. For each M, let 

BM ~ { R: L(MR) = corange({R)} , 

and let B ~r UMBM. It is clear that B = { R: range({R) E coNPR }. So, The­
orem 2 is equivalent to the assertion that p(B) = 0 which in turn, by countable 
subadditivity, is equivalent to the assertion that, for each M, p(BM) = 0. 
Therefore, to show Theorem 2, we fix an arbitrary M and establish p(BM) = 0. 
Let p be a polynomial that bounds M's run time (on all oracles). 

Now let's reduce the problem still further. For each n, let 

that is, M,. is the set of all oracles R such that, on strings of length 3n + 1, the 
set accepted by MR agrees with corange({R). Note that BM ~ nneN M,. and 
so, for each n, p(M,.) ~ p(BM)· Thus, to establish p(BM) = 0 (and thereby 
Theorem 2), it suffices to prove 

Proposition 3. For any t: > 0, for all but finitely many n, p(M,.) < t:. 

Our goal in what follows it to establish this proposition. 
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3.1 Preliminaries 

Before we get on with the proof proper, we introduce three important notions 
for what follows. 

X-Variants 

Definition 4. Suppose R and S ~ N and :t: E N. We say that R and S are 
:~:-variants (written R "'~~: S) if and only if R /j. S ~ { dOk: k ~ 31:~:1 }, i.e., R 
and s are identical except perhaps on the strings that determine the value of e 
on argument :t:. 

For each z, the relation"'~~: partitions 'P(N) into uncountably many equiv­
alence classes each of cardinality 231~~:1+1. The next lemma follows easily from 
Definition 4; its main purpose is to show what is happening in each of these 
equivalence classes. 

Lemma 5. Suppose :t: E Nand R ~ N. For each y E Nl3iii:I+I• let R, be 
the (unique) :~:-variant of R such that eR•(:t:) = y. Then, y ...,.. R, is a 1-1 
correspondence between the elements of N31~~:1+1 and the :~:-variants of R. 

The following lemma is a crucial point in a number of our measure estima­
tion arguments. We omit its proof which essentially consists of factoring 'P(N) 
into the product of two appropriate measure spaces and then applying Fubini's 
Theorem. This lemma, by the way, was the key observation that lead to the 
formalization of our proof that the isomorphism conjecture fails relative to a 
random oracle. 

Lemma 6. Suppose A is a measurable subset of 'P(N), E ;::: 0, and :t:o E N. 
Moreover, suppose that for every R E 'P(N), 

Then, p(A) ~ E. 

II {S: s "'~~:oR} nAil 
II { S : S "'~~:0 R} II 

Examination and Dependence 

Definition 7. (a.) For each R ~ N and each :t: and y E N, we say that a. 
particular computation of MR on argument y examines :t: if and only if in the 
course of the computation the oracle R is queried about some string of the form 
:t:lOk for k ~ 31:~:1-intuitively, the computation learns some information about 
the value of eR(:t:). 

(b) For each R ~Nand each x andy EN, we say that the value of MR(y) 
depends on :t: if and only if there is an S "'~~: R such that MR(y) f; M 5 (y). 
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The notion of "examines" is a direct lift from Bennett and Gill. We note 
the following without proof. 

Lemma 8. Suppose MR on input y accepts. 
(a) If the value of MR(y) depends on z, then every accepting computation 

of MR on input y must examine z. 
(b) There are no more than p(lyl) many z 's on which the value of MR(y) 

can depend. 

3.2 The Main Argument 

To motivate what comes next, let's anthropomorphize M and consider the trou­
bles M would have in trying, with oracle R, to accept precisely corange(e8 ) on 
inputs of length 3n + 1. Among poor M's worries are the following two which 
will tum out to be in conflict. 

• Since (NI3n+l- range(eR)) has at least 23"+1- 2" elements, M 8 must 
accept that many y E Nlan+l" 

• At the same time, on inputs y E Nl3n+l, MR (intuitively) must examine 
essentially every z E Nl" so that it doesn't erroneously accept y when 
there is an z E Nln such that e8 (z) = y. 

Now there is a difficulty with second item above-mere "examination" isn't good 
enough. As Lemma 8(a) points out, if M 8 accepts ayE Nl3n+l• then in order 
to be sure of a particular z that eR(z) I: y, the value of MR(y) must depend 

on z, i.e., every accepting computation of MR on argument y must examine z. 
Moreover, Lemma 8(b) shows that for each y E L(M8 )1an+l• MR on input y 
can be sure of at most p(3n + 1) many :1: that e8 (z) I: y. Since M 8 has to 
accept at least 23"+1- 2" many y E Nl3n+l• one can see that MR is stretched 
very thin in its attempts to accept precisely corange(eR)Ian+l· 

We take advantage of M's difficulties to show Mn has small measure. We 
proceed roughly as follows. 

1. We choose an Zn E Nln such that for "most" of theRE Mn, the number 
of y E Nl3n+l such that the value of MR(y) depends on Zn is small. 

2. Then, for each such R E Mn with "low dependence" on Zn, we show 
that among R's Zn-variants, the number of Zn-variants in Mn is far out­
numbered by the Zn-variants of R, S, such that M 5 erroneously accepts 
e5 (zn)· Thus, using Lemma6, we obtain an upper bound on the measure 
of the set of R E Mn with "low dependence" on Zn. 
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There are a number of difficulties with this sketch. Among them is that it 
isn't clear that there is any Xn with the properties required by 1. An arbitrary 
member of Nln will not do for Xn because there may be certain x E Nln on 
which M has "high dependence." To help make this precise, for each R and 
each x E N, define 

(2) D(R,x) { y E L(MR)i :the value of MR(y) } . 
31xl+l depends on x 

For each Rand x, we clearly have IID(R, x)ll ~ 231xl+l. It is easy to construct 
an M for which there are infinitely many x such that for every R, IID(R, x)ll = 
IIL(MR)Ialxi+III· One can think of such x's as "hot spots" of M and if one 
wants to find an Xn as required above, one cannot look among the hot spots. 
Therefore, we look for "cold spots." For each c E (0, 1] and each x, define 

(3) 

That is, C( c, x) is the set of oracles R such that 

• on strings oflength 3n+1, the set accepted by MR agrees with corange(eR) 
and 

• there are fewer than c · 231xl+1 many yin L(MR)Ialxl+l such that MR(y) 
depends on x, i.e., relative toR, xis no more than c "hot." 

We establish the following two lemmas about the C(c, x)'s. 

Lemma 9. Suppose c and n are such that 2-2n-l ~c. Then, for each x E Nln, 
we have J.t(C(c, x)) ~ 2c. 

Lemma 10 (The cold spot lemma). Suppose c and n are such that p(3n + 
1) · 2-n+l <c. Then, there is an Xn E Nln such that J.t(C(c, xn)) ~ J.t(Mn)/2. 

Lemmas 9 and 10 respectively correspond to items 2 and 1 in our sketch 
above. These two lemmas together imply Proposition 3 (and thereby Theorem 
2) as follows. 

Proof of Proposition 3. Fix an c E (0, 1] and let c0 = c/4. For all but 
finitely many n we have that 2-2n-l ~ c0 and p(3n + 1) · 2-n+l < c0 . Pick ann 
satisfying these two inequalities. Then, by Lemma 10 there is an Xn E Nln such 
that J.t(C(co,xn)) ~ J.t(Mn)/2. By Lemma 9 we have that J.t(C(co,xn)) ~ 2co. 
Hence, 

J.t(Mn)/2 ~ J.t(C(co, xn)) ~ 2co. 

Therefore, J.t(Mn) ~ 4co =cas required. D 
Now we establish the two lemmas. 
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Proof of Lemma 9. Fix an x E Nln· Fix an arbitrary oracle R E C(t,x). 
This R has exactly 23n+l x-variants. By Lemma 6, to show the present lemma 
it suffices to show that at least (1- 2t) · 23n+l many of these x-variants are 
outsideC(t,x). Let 

(4) I ~ Nl3n+l- (D(R, x) U range(eR)). 

("r' for independent.) SinceRE C(t,x) ~ Mn, we have that L(MR)Isn+l = 
corange(eR)Isn+I• and, hence, I ~ L(MR)I3n+t· Also, by the definitions of I 
and D(R,x), 

I = { y E L(MR)I :the value of MR(y) } . 
3n+t does not depend on x 

Hence, 
(5) for every S "'z R, I~ L~lsn+l' 
because if there is an accepting computation of MR(y) that does not examine 
x, then, for every S "'z R, the same accepting computation works for M 5 (y). 

Suppose Sis an x-variant of R such that es(x) E J. Then by (5), es(x) E 
L~lsn+I· Hence, L~lsn+I f. corange(e5 )13n+t· So, S r/. Mn, and, hence, 
S r/. C(t,x) (since C(t,x) ~ Mn)· By Lemma 5, for each y E J, there is a 
distinct x-variant of R, Sy, such that e5•(x) = y E J. Therefore, there are at 
least IIlii many x-variants of R which are not in C(£,x). Thus, to establish the 
lemma it suffices to show that IIlii 2:: (1- 2t)23n+l. 

By (4) we have 

(6) IIlii 2:: IINisn+tii-IID(R, x)ll-llrange(eR)Isn+tll· 

SinceRE C(t, x), by (3) we have IID(R, x)ll ~ t·23n+l. Since (eR)- 1 (NI3n+l) = 
Nln, we have llrange(eRisn+I)II ~ 2n. By assumption 2-2n-t ~ t, and so, 
2n = 2-2n-l.2Sn+l ~ t·23n+l. Hence, by (6) itfollows that 111112:: (1-2t)23n+l 
as required. 0 Lemma 9 

Proof of Le:m:ma 10. We want to show that there is an Xn E Nln such that 
p(C(t,xn)) > p(Mn)/2. For each x E Nln' let 

(7) 1l(t, x) ~r { R E Mrzr : IID(R, x)ll2:: t. 231zl+1} 

= (Mn-C(t,x)). 

To establish the lemma, then, it suffices to show the existence of an Xn E Nln 
such that p(1l(t, xn)) < p(Mn)/2. We do this by proving 

(8) avg p(1l(t, x)) < p(Mn)/2. 
zeNI., 
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The existence of such an Zn then falls out immediately. 
So, we now estimate some averages. 
For each m, we view Nlm as a measure space under the uniform, normalized 

counting measure--in plain language, each :e E Nlm has weight 2-m. Thus, 
P(N) x Nln x Nlan+l is a measure space under the product of Lebesgue measure 
on P(N) and the normalized counting measures on Nln and Nlan+I· For each 
R ~Nand each z andy EN, define 

depM(R, :e, y) = of MR(y) depends on z; { 
1, if y E L(MR) and the value 

0, otherwise. 

Consider the integral J.M xN( xN( depM. It is the average, over R E Mn 
" • an.+l 

and z E Nln andy E Nlan+I• of depM and, roughly, describes the amount of 
information flow in ~R E Mn, y E L(MR)lan+I'MR(y) about the behavior of 
eR on Nln· It is easily seen-honest, it is-that depM satisfies the sufficient 
conditions of Fubini's Theorem. So, we can integrate depM over Mn x Nln X 

Nl3n+l as follows. 

1 depM 
.M,. xN(,. xNia.+1 

~ 1 I p(3n+1)·2-ndydR 
.M,. JN(,.,,.+l 

(since, by Lemma 8(b), for each R and y E 
L(MR), the value of MR(y) depends on no 
more that p(!yl) = p(3n + 1) many z's) 

= p(3n + 1) · 2-n I I 1 dydR 
J.M,. JNlaa+l 

= p(3n+ 1) ·2-n I 1dR 
J.M .. 

= p(3n + 1) · 2-n · Jl(Mn)· 

By changing the order of integration we obtain 

1 depM 
.M,. xN(,. xN( 3 ,.+1 

= 1 1 1 depM(R,:e,y)dydRdx 
N(,. .M,. N13n+t 

> I I I depM(R,:e,y)dydRdx 
}N(,. j1t(f,x) JNI 3 ,.+1 
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(since, for each x, 1l(£,x) ~ M,.) 

(by the definition of the 1l( £, x )'s) 

= £ f f 1dRdx 
}NI,. j'H(e,a:) 

= £1 JJ(1l(£,x))dx 
Nl,. 

= £ · avg JJ(1l(£,x)). 
a:ENI,. 

Therefore, we have 

£ • avg JJ(1l(£, x)) < p(3n + 1) · Tn ·JJ(Mn)· 
a:ENI,. 

Thus, 

avg JJ(1l(£,x)) < 
a:ENI,. 

.!_. p(3n + 1) ·JJ(Mn) 
£ 2n 

< 
2n-l . p(3n + 1) . (M ) 

p(3n + 1) 2n I' n 

( . b . p(3n + 1) ) 
smce y assumption 2n-l < £ 

! ·JJ(Mn)· 

Therefore, we've shown (8) as required. 0 Lemma 10 

Scbolium 11. For each R ~ N and each x andy E N, define 

{
1, ifthevalueofMR(y) 

depA,(R,x,y) = dependsonx; 

0, otherwise. 

The function depj, is the characteristic function of the dependence relation. It is clear that 

{ depM = { dep 1 

JM,.>CNI,.>CNI8 ,.+1 J.M,.>CNI,.>CL(MR)Is,.+t M 
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The function depj, is a more natural to consider than dep M and the integral 

1 dep 1 

M,. xNI,. xNiaa+l M 

is the average of the dependence relation (over Mn, Nln, and Nl3n+l ). The apparent problem 
with this integral is that whenMRrejectsll, the value of MR(II) can depend on everp :c E Nlni 
hence, the upper bound on this integral has to be larger than the one we derived for the dep M 

integral. However, if R E Mn, then MR rejects at most 2n of the 23n+l many 11 E Nlan+l" 
A few calculations show 

( p(3n+ 1) 1 ) M 
2R + 22n+l 1-'( n)• 

We could have used depj, and the above upper bound in Lemma 10 at the price of a few 
complications in the lemma's statement and proof. We chose to use dep M to keep Lemma 10 
as simple as possible. 

The key property of M used in proofs of this section is that for each 11 that M R accepts, 
the value of MR(II) depends on at most JICIIII) many z's. So long as M satisfies this property, 
it does not have to be polynomial-time bounded, it doesn't even have to be computable! 

Another key element of the above arguments is that 

(9) liminf1 depM = 0. 
n-oo M,. xNI,. xNiaa+l 

Our technique of finding cold spots is a method of taking advantage of (9), but if (9) did not 
hold, we could not do much of anything. Roushly speaking, we can modify the hypotheses 
on M and the definition of dep M and so long as (9) holds, we can expect some version of 
Proposition 3 to go through. 

4 Advice and Circuit Classes 

We've shown that relative to a random oracle R, range(eR) isn't contained in 
coNPR. In this section we'll do a bit better and show that range(eR) isn't 
contained in nonuniform, superpolynomial-time versions coNPR. To make this 
precise we introduce some terminology. 

Let A be a collection of functions from N to N which we shall call advice 
functions and let C be a collection of sets. Informally, C /A is the collection 
of sets B which are decided using (i) some machine M for deciding a C set 
together with (ii) "advice" from some I E A, so that to decide whether an z of 
length nisin Bone presents M with input (z, l(n)) and accepts z if and only 
if M accepts {z, I( n )) ; I( n) is the advice offered by I for inputs of length n. 
Formally, C/A is the collection of sets B such that for some C E C and f E A, 
B = { z : {z, /(lzl)) E C }. A is typically taken to be a class of all functions 
that grow no faster than a certain rate. For example, let 

Poly~ { f: (3 polynomial p)(Vn)[ 1/(n)l ~ p(n)]}. 
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P /Poly is then the class of sets decidable using polynomial-time and polyno­
mial advice and NP /Poly is the class of sets accepted by nondeterministic, 
polynomial-time machines using polynomial advice. To relativized an advice 
class C/A one merely uses relativized versions of C and A. Advice classes were 
introduced by Karp and Lipton [KL82] although similar formalisms were intro­
duced earlier by Plaisted [Pla77] and Pippenger [Pip79]. 

Now, supposes: N-+ Nand define 

A _ {f. f:'P(N) x N-+ Nand, for all R} 
' - · and z, lf(R, x)l:::; s(jxl) · 

That is, A, is the class of relativized advice functions "of size s." Below we 
show 

Theorem 12. Suppose s: N -+ N is such that 

(10) 1. logs(n) 
1m 

n-oo n 
= 0, 

i.e., sis ''subexponential." Then, relative to a random oracle R, range(eR) ft 
(coNP fA,)R. 

So, for example, it follows from this that relative to a random oracle R, 
range(eR) <t ( coNP fPoly)R. 

Theorem 12 concerns subexponential advice. We can also deal with expo­
nential advice. For each 1 E (0, 1), define s-, = An.2-r·n. It is easily shown 
that for each R ~Nand each;> 0, DTIME(~(n))R ~ (coNP/A, . .)R, and 
hence, range(eR) e (coNP/A."Y)R. However, it is "almost" the case that, rel­
ative to a random oracle R, range(eR) ft (coNP/A,"Y)R as shown by the next 
theorem. For each k, define NP1- to be the class of languages accepted by 
O(n")-nondeterministic time TMs. 

Theorem 13. Suppose k > 0 and-y E (0, 3,.~6 ). Then, relative to a random 
oracle R, range(eR) <t (coNP,.fA,"Y)R. 

Advice classes are closely related to families of Boolean circuits. 2 For ex­
ample, Pippenger [Pip79] essentially showed that P /Poly is the class of sets 
accepted by families of polynomial-sized Boolean circuits. His argument can 
easily be extended to show that NP /Poly is the class of sets accepted by fam­
ilies of polynomial-sized, nondeterministic Boolean circuits and also that there 

2In the interests of space we are omitting a background discussion of Boolean circuits. 
For a good basic discussion see [BDG88]. Wilson {Wil85] introduced the standard model of 
relativized Boolean circuits. 
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is a constant c0 such that for all/ > 0, if A is accepted by a family of 2-rn-sized 
Boolean circuits, then A E NP2IA, where A = { f: for all n, 1/(n)l $ 2eo-rn }. 
All of this relativizes using Wilson's [Wil85] model ofrelativized circuits. Hence, 
we can obtain as a corollary of Theorem 13 that there is a 1 > 0 such that, 
relative to a random oracle R, corange(eR) is not accepted by any family of 
2-rn-sized, nondeterministic Boolean circuits. However, if we look more closely 
at the proof of Theorem 13 below we can obtain the following stronger result. 
{Recall that for all R, range({R) ~ UneNNian+t·) 

Theorem 14. There exist 1 > 0 such relative to a random oracle R, for each 
family (Ci)ieN of2"Yn-sized, relativized, nondeterministic, Boolean circuits, for 
all but finitely many n, C3n+l fails to accept corange({R)l3n+t· 

As we mentioned in §1, Lutz and Schmidt [LS90] have have results analogous 
to Theorem 14 for PI A classes in place of coNP I A classes. 

4.1 Analysis of the Problem 

In this subsection we reduce the problem of showing that 

(11) JJ( { R: range(eR) E (coNP IA,)R}) = 0, 

for some fixed s: N - N, to something more directly amenable to our tech­
niques. Let M range over polynomially-clocked, nondeterministic TMs. For 
each M define 8M = 

{ 
(Vn) (3a E Nl,(3n+l)) } 

R: R R . 
[L(M (·,a))l3n+t = corange(e )l3n+tl 

In words, 8M is the set of oracles R such that, for each length 3n + 1, there is 
some advice string, a, of length s(3n + 1) for which, on strings of length 3n + 1, 
MR(·, a) accepts precisely corange(eR). Note that a depends on n and R. Let 
8 = UM8M. Clearly, 8 2 { R: range(eR) E (coNPIA 8 )R }. So, to show (11), 
it suffices to show JJ(8) = 0. It is easy to see that 8 is closed under finite 
variations, hence, by Kolmogoro:ff's 0-llaw, p(B) is either 0 or 1. We note the 
following. 

Lemma 15. If p(B) = 1, then for each e > 0, there is an M* such that 
p(8M.,.) > 1- E. 

Proof Sketch. Fix an E > 0. Suppose that p(8) = 1. Then, by countable 
subadditivity it follows that there exist M0 , ... , M,.,_ 1 such that p(Ui<k BM.) > 
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1- ~· Now, some elementary measure theory shows that for each i < k, there 
is a fragment Ui such that JJ(((ui)) n BM;) > tt(BM.)- 2fk. Let M* be a TM 
that on input (x, a} and oracle R, M* first searches for the least i < k (if any) 
such that ui ~ R; if the search succeeds, then M* behaves like MiR( ( x, a)); 
otherwise, M* rejects. It is straightforward to argue that for all oracles R, M* 's 
run time is bounded by some polynomial. Therefore, without loss of generality 
we may assume M* is polynomially-clocked. It is also straightforward to argue 
that tt(BM*) > 1- f. So, we are done. 0 

By the lemma, to show (11) it suffices to prove that, for each M, tt(BM) ~ ~· 
Arbitrarily fix M for the rest of this subsection and let p be a polynomial that 
bounds M's run time. Now, for each n, let gn = 

{ 
(3a E Nl•(3n+l)) } 

R: R R . 
[L(M (·, a))l3n+l = corange(e )lan+l] 

Clearly, BM = nneN gn· Thus, if, for some n, JJ(gn) ~ ~' then p(BM) ~ ~' 
and, hence, (11) follows. To show the existence of ann such that p(gn) ~ ~'it 
suffices to prove: 

(12) There is an n such that for all a E Nl.(n)' 

1 . 2-•(n) 
2 . 

Suppose, without loss of generality, that, for each n, s( n) ~ n and p( n) > 0. 
Then, by an appropriate version of the s-m-n theorem, there is a constant c0 

(independent of p and s) such that for each nand each a E Nl•(n)' MR(·, a) on 
inputs of length n corresponds to a c0 • p(s(n)) time bounded nondeterministic 
TM. Thus, to show (12) it suffices to prove: 

(13) Suppose M is relativized, nondeterministic TM with co· p(s(n)) 
as its time bound for all oracles. Then, there exists an n such that 

In Theorem 16 we'll obtain a measure bound which will imply (13) (and, 
hence, (11)) for the s functions of Theorems 12 and 13. 

4.2 The Key Bound 

Here is the key technical result of §4-homely though it may be. 
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Theorem. 16. Suppose M is a relativized, nondeterministic TM such that, for 
all oracles X and all inputs z, M runs in t(lzl) time. For each n, let 

Mn ~ { R: L::,lan+I = corange(eR)Ian+l}. 

Finally, suppose ex E {0, 1) and n EN are such that n-2exn-4-logt(3n+1) ~ 0. 
( ) 2""' Then, I' Mn ~ 2- . 

We prove this theorem in §4.3. Here we show how use it to obtain Theorems 
12 and 13. 

Proof of Theorem. 12. Let c0 be the "s-m-n constant" from §4.1. Let p be 
a polynomial and let be M be a relativized, c0 • p( s( n) )-nondeterministic-time 
TM. Define 

- { ~ R } Mn = R: L(M )lan+l = corange(e )lan+l . 

By the analysis of §4.1, to establish the theorem it suffices to show that there 
is ann such that, 

(14) 

It follows from (10) that 

lim log( co · p(s(3n + 1))) = 0. 
n-+oo n 

Hence, for any ex E {0, l), we have, for all but finitely many n, that n-2exn-4-
log{ co ·p( s(3n+ 1))) ~ 0. Fix such an ex. Then by Theorem 16, for all sufficiently 
large n, p(Mn) < 2-2""'. It also follows from (10) that for all sufficiently large 
n, 2-2'"" < 2-•{an+1)-l. Thus, (14) and the theorem follow. 0 Theorem. 12 

Proof of Theorem. 13. Let c0 be the "s-m-n constant" from §4.1. Let p 

be a degree k polynomial and let M be an arbitrary relativized, co · p(s7 (n)) 
nondeterministic-time TM. Define 

As before, our goal is to establish that there is an n such that 

(15) 

A bit of messy algebra shows that if 0 < ex < l(1- 3k-y), then for all but finitely 
many n, n- 2exn- 4 -log( co · p(s7 (3n + 1))) ;::: 0, and hence by Theorem 16, 
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p(Mn) < 2-2""'. Now, if a > 3;, it follows that, for all but finitely many n, 
a'"" a"'·<h+t> 1 ( ) ~ II 'd · h h 2- < 2- - . Therefore, 15 10 ows, prova ed there ts an a sue t at 

3; <a < !(1-3k;). Well, a bit more algebra shows that 0 <; < Slr~6 implies 
3; < H1 - 3k;). So, we are done. 0 Theorem 13 

Scholium 17. Since in this draft we are omitting details about Boolean circuits, we also 
have to omit the proof of Theorem 14. However, the key point in the proof of Theorem 14 is 
simply to note that in the proof of Theorem 13 we obtain an "almost all n" bound on 1-'(M,.) 
and from this we can obtain the "almost everywhere" result of Theorem 14. The fact that the 
proofs of Theorems 12 and 13 establish "almost all n" bounds on their respective 1-'(Mn)'s 
can also be used to strengthen these results. For example, in Theorem 12 we can replace (10) 
with liminfn-oo(logs(n))/n = 0. We hope to provide more details on this in later drafts of 
this paper. 

4.3 Proof of the Key Bound: Cold Fronts 

The proof of Theorem 2 introduced the notion of a cold spot. The proof of 
Theorem 16 extends this device to (big) collections of "simultaneously cold" 
spots, which we'll call cold fronts. 

Notation. 'P~e(A) ~ { B ~A : liB II = k }, i.e., the collection of all cardinality 
k subsets of A. 

Definition 18. Suppose R, S, and X ~ N. We say that R and S are X. 
variants (written R ,.._X S) if and only if R b. S ~ { x101r : x EX & k ~ 3lxl }. 

For each e > 0, R ~ N, and x EN, define D(R, x) and C(e, x) as in (2) and 
(3) respectively, Also, for each e E (0, 1] and X~ N, define 

C(e,X) = n C(e, x), 
~~:ex 

that is, C( e, X) is the set of oracles R such that: 

• on strings oflength 3n+1, the set accepted by MR agrees with corange(eR), 
and 

• for every x E X, there are no more than e · 23n+l many y in L~ such that 
MR(y) depends on x. 

We establish the following two lemmas about the Cn(e, X)'s. 

Lemma 19. Suppose e E (0, 1] and n E N are such that 2-2n-l ~ c Suppose 
X E 'P~r(NI .. ). Then, p(Cn(e, X)) ~ (k + 1)" · e". 
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Lemma 20 (The cold front lemma). Suppose£ E (0, 1) and k and n EN 
are such that k $ 2" and k·t(3n+1)·2-n+l $ £. Then, there is an X E 'P~;(Nin) 
such that p(Cn(£, X))~ p(Mn)/2. 

Before proving these lemmas, we show how to establish Theorem 16. 

Proof of Theorem 16. For the moment we leave n E N and k $ 2" as 

unspecified. Let 

fo = k · t(3n + 1) · 2-n+l. 

Then by Lemma 20 there is a set Xo of cardinality k such that p(Mn)/2 $ 
p(Cn(e0 ,Xo)). Clearly, 2-2n-l $ to. Hence, by Lemma 19, p(Cn(to,Xo)) $ 
(k + 1)1: · f~. Combining the two inequalities, we obtain 

Getting rid of J.&( Cn (Eo, X o)) and filling in the definition of Eo results in the 
following messy thing. 

2 · ((k + 1) · k · t(3n + 1))1: 
2A:(n-l) 

< 2-J:(n-l-log(A:+t)-logJ:-logt(3n+t))+l 

< 2-k(n-2-2log lr-log1(3n+l))+l_ 

Replacing k in the above with 2an, we have 

p(Mn) < 2-2""'(n-2-2an-logt(3n+l))+l_ 

It is easy to verify that if n- 2an- 2 -logt(3n + 1) ~ 2, then 

Therefore, the theorem follows. D Theorem 16 

We now prove the two lemmas. 

Proof of Lemma 19. Fix an arbitrary oracle R E C(E, X). This R has exactly 
2k·(an+t) X-variants. To prove the lemma it suffices, by Lemma 6, to show that 
at most (k + 1)1: ·fA:· 2k·(an+t) many of these X-variants can be in Cn(f, X). Let 

I del N13n+l- (range({R) U U D(R, z)) . 
.,EX 

(16) 
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SinceRE C(e,X) ~ Mn, we have L~lsn+l = corange(eR)I3n+l' and, hence, 
that I ~ L~ lsn+t· Also, by the definitions of I and D( R, z), we have 

Hence, 
(17) 

{ 
the value of MR(y)} 

I = Y E L ~ lsn+l : does not depend on . 
any x EX 

Suppose Sis an X-variant of R such that, for some z E X, e(z) E I. 
Then, by (17), e(z) E L:t-13n+l' Hence, LL13n+l ::/; eorange(e8 )13n+l' So, 
S fl. Mn, and, hence, S fl. C(e,X) (since C(e,X) ~ Mn)· Therefore, in order 
for S to be an element of C(e,X), it must be the case that for every z EX, 
e8 (z) E ll3n+l· The number of X-variants of R for which this is the case is 
easily seen to be (111'13n+lll)•. Thus, to establish the lemma it suffices to show 
that llll3n+lll ~ (k + 1) · e · 23n+l. 

By (16), 

(18) llllsn+lll ~ II U D(R, z)ll + llrange(eRisn+l)ll· 
sEX 

Since R E Cn ( e, X), we have by the definition of Cn ( e, X) that, for every z E X, 
IID(R, z)ll < e · 23n+l. Therefore, 

II U D{R, z)ll < IIXII· f · 23n+l = k ·e. 23n+l. 
xeX 

Since (eR)- 1(NI3n+l) = Nln, we have that llrange(eR)13n+lll ~ 2n. By assump­
tion 2-2n-l ~ e, hence, 2n = 2- 2n-l · 23n+l ~ e · 23n+l. Thus, by (18) it follows 
that 111'13n+lll ~ (k + 1) · e · 23n+l as required. 0 Lemma 19 

Proof of Lemma 20. We have to show that there is an X E 'P•(Nin) such 
that p(C(e,X)) > ~p(Mn)· As in the proof of Lemma 10, for each x EN, let 

?t(e, z) ~ Mn- Cn(e, z). Also, for each X~ N, let 

(19) 1i(e, X) d~f U 1i(e, x) 
:rEX 

(Mn -Cn(e,X)) 

So, to establish the lemma, it suffices to show, 

(20) there exists an X E P~:(Nin) such that p(1i(e, X)) < ~p(Mn), 
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which is what we do in the following. 

Let x0 , ••• , X2"-l be an indexing of Nl,. such that 

Consider X = { xo, ... , X~-1 }. We have, 

(by (19)) p(1t(t:,X)) = JJ(U<~ 1-t(t:,x,)) 

< L:i<k J.t(1l(f, x;)) (by subadditivity). 

Now, it is a trivial fact about averages that if vo $ v1 $ · · · $ Vn-1 1 then, for 
each j $ n, aVSi<j v; $ avgi<n v;, and, hence, Ei<j v; $ j · av&<n v;. Thus, we 
have 

(22) p(1t(t:,X)) $ k · avg p(1t(t:,x)). 
~eNI. 

By a simple modification of the proof of Lemma 10 we can show 

1 t(3n + 1) 
avg p(1l( f, x)) < - · 2,. · J.t(M,.). 

zeNI,. t: 

Since, by hypothesis, k · t(3n + 1) · 2-n+l $ t:, the above inequality implies that 

(23) avg p(1l(t:, x)) < 
zENI,. 

Together (22) and (23) imply (20). 

5 Immunity Properties 

JJ(Mn) 
2·k . 

0 Lemma20 

In [KMR89] we showed that, relative to a random oracle R, the only pR subsets 
of range(~R) are sparse. Using this result we were able to show that, relative 
to a random oracle, the Berman-Hartmanis isomorphism conjecture fails. It's a 
natural question to ask how big the coNPR subsets ofrange({R) can be, relative 
to a random oracle R. Here is our current best answer. 

Theorem 21. Suppose{J E (~, 1). Then, relative toarandomoracleR, ifAR is 
a coNPR subset ofrange(~R), then, for all but finitely manyn, census(AR, 3n + 
1) < 2.B·n. 
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It follows from the proof ofLemma3.1 in [KMR89] that, relative to a random 
oracle R, for all but finitely many n, census(range(eR), 3n+1) = 2n, and, hence, 
if AR is as in the theorem, we have that 

census(AR,n) E O(census(range(eR),n).B), 

for each fJ > ~-
We care about this result for a couple different reasons. The first is purely 

technical. As we shall see below, the proof of Theorem 21 develops the technique 
of §3 in a rather different direction from that of §4. Our second reason is more 
strategic in character. Both Theorem 21 and our result on the pR subsets of 
range(eR) establish (complexity theoretic) immunity properties and immunity 
properties are often key in showing interesting structural properties of classes, 
e.g., strong separations. Theorem 21 is not strong enough to imply anything 
too exciting. But, as we discuss in Scholium 25, certain strengthenings of this 
theorem would have some interesting consequences. 

5.1 Preliminaries 
00 

N oto.tion. ( 3 x )Q( x, ii) means there are infinitely many x E N such that Q( x, ii) 
holds. 

Let M be an arbitrary relativized, polynomially-clocked, nondeterministic 
TM and let p be a polynomial that bounds M's run time. By an analysis similar 
to that carried out in §3 and §4, it follows that to show Theorem 21 it suffices 
to prove: 

for each fJ E (~, 1). It is useful re-express this. For each 17: N- (0, 1], define 

M(17) = 

Therefore, to show the theorem, it suffices to show 

(24) for each a E (0, ~), ~t(M(An.2-an)) = 0. 

Let's further reduce the problem. Define, for each 'Y E (0, 1] and each n eN, 

Mn,-y = L(MR~ ~ range(eR) & } . 

!IL(M )13n+111 ~ "Y • 2n 
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Note that, M(77) = n~=o Ui~n Mn,,(n)· Hence, for all n, 

(25) M{71) ~ U Mn,'l(n)· 
i~n 

Our goal in what follows is to show 

Proposition 22. Suppose a E (0, i>· Then, for all sufficiently large n, 

p(Mn,2-.... ) ~ 1/n2. 

It follows from the proposition that, for each a E (0, ~)and for all sufficiently 
large n, 

p(M(~n.2-a·n)) ~ p(Ui~nMn,2-'"") (by (25)) 

~ Ei~n p(Mn,2-a•) (by subadditivity) 

~ Ei~n~ (by Proposition 22) 

~ 
1 

n::T· 

Therefore, by the proposition, we have that (24) (and, hence, Theorem 21) 
follows. 

5.2 The Main Argument 

For each Rand each zEN, define D(R,z) as in (2) and, for each f and; E (0, 1] 
and each z E N, define 

C { R M eR(z) E L(MR) & } 
(t:,-y,z) = E I~~:I,"Y: IID(R,x)ll<£·281~~:1+1 . 

Note that this is definition of the C classes differs from than in the proofs 
Theorems 2 and 16. The introduction of the the "eR(z) E L(MR)" conjunct 
is necessary since, unlike the NPR =fi coNPR argument, we are allowing L(MR) 
to be a strict subset of range( en) when R E Mn. AB one might expect this 
conjunct is the source of the difficulties in the argument below. 

We show the following two lemmas about the C(£,;, z)'s. 

Lemma 23. Suppose£ E (0,1] and n EN are such that 2-2n-l ~ f. Then, for 

all z E Nln and all 'Y E (0, 1], p(C(t:, -y, z)) ~ 2£. 

Lemma 24 (The cold spot lemma). Suppose£ and-y E (0, 1) and n EN 
are such that t: = P~~2'!.~!). Then, there exists an Xn E Nln such that 

'Y p(C(£,-y,x)) > 2'~t(Mn,-y). 

Before proving these two lemmas, we attend to the proof of the main propo­
sition. 
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Proof of Proposition 22. Suppose n EN and 1 and£ E (0, 1) are such that 
e = P~~2'!.~!>. Then, by Lemma 24 there is an Xn E Nln such that 

I 
p(C(e,1,x)) > 2·p(Mn,-y)· 

Clearly, 2- 2n-l ::; e, so by Lemma23 we have that p(C(e, 1, x)) < 2c Combining 
the two inequalities and filling in our choice definition of£, we have that 

4 · p(3n + 1) (M ) 
2 2n >I' n,-y . I . 

So, to guarantee that p(Mn,-y) ::; 1/n2 , it suffices to make 4·p(3n+ 1)/(12 ·2n) ::; 
1/n2 • Solving for 1 we find that we need 

. /4 · n 2 · p(3n + 1) 
1?.y 2n · 

If 1 = 2-an for a E (0, !), this last inequality holds for sufficiently large n. So, 
we're done. 0 Proposition 22 

The proof of Lemma 23 is essentially the same as the proof of Lemma 9. It 
is the proof of Lemma 24 where things get interesting. 

Proof of Lemma 24. 

X E Nln' let 

Suppose n, 1, and£ are as in the hypothesis. For each 

1l(c,1,x) def {REM . ~R(x) E L(MR) or } 
n,-y . IID(R, x)ll > £. 23n+l 

= ( Mn,-y- C(e, 1, x) ). 

To show the existence of an Xn E Nln such that p(C(e, 1, xn)) ?. ! · p(Mn,-y), 
it suffices to find an Xn E Nln such that p('H(c,l, xn))::; (1- !) · p(Mn,-y)· As 
in the proof of Lemma 10, we show that 

avg p(1l(e,l,x)) ::; (1-~)·J.L(Mn,-y), 
xeNI,. 

and, hence, the existence of Xn is immediate. 
Let J.l• the product measure on P(N) x Nln· Let: 

v def 
{ (R, x): R E Mn,-y & ~R(x) E L(MR)}. 

t ~ { (R,x): 
R E Mn,-r & }· IID(R, x)ll > € • 23n+l 

:F def { (R, x): x E 'H(c, 1, x)} 

= VUe. 
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Clearly, 

avg.,ENI,. J.&(1l(l,'Y,Z)) = J.&•(:F) 
(26) = J.&•(V) + J.&•(£)- J.&.(v n £) 

:5 J.&•(V) + J.&.,(£). 

Thus, in order to obtain an upper bound on avg.,ENI,.I-'('H.(e, 1, z), we find upper 
bounds on J.&•('D) and J.& .. (£). 

First consider J.l .. ('D). Notation. If R(i) is a relation, then [R(i)] is the 
"characteristic function" of the relation. E.g., [z < y](a, b) is 1 if a< b and 0 
otherwise. (This notation is due to Iverson.) Now, 

J.l.,(V) = 1 (eR(z) E L(MR)) 
M,.,"xNI,. 

= 1 ( (eR(z) E L(MR))dzdR 
M,.,"JNI,. 

:5 1 (1- 'Y)dR 
M,.," 

(by .~e definition of Mn ,-,) 

= (1- 'Y) · J.l(Mn,-y)· 

Next consider J.l .. (£). By our choice off we have e ~ p(3n + 1) · 2-n+t. So, 
by a direct lift of the proof of Lemma 10 it follows that 

p(3n+ 1) 
J.l•(£) < 2n ·J.l(Mn,-,). 

l· 

Therefore, by (26) and the bounds on J.l .. ('D) and J.l•(£) we have 

avg J.l(7i(f,'Y,~) < (1-l+p(3n~1))·J.l(Mn,-y). 
:r:ENI,. f · 

Since e = P~~-~!), the above inequality becomes 

as required. 0 Lemma 24 

Scholium 25. We doubt the upper bound of Theorem 21 is tight. Let's briefly consider how 
one might improve this bound. An analysis of the proof shows that the key bound is 

(27) avg p(7t(~:,-y,x)) 
seN I,. 

25 



Our bounds on I£•('P) and 1£•(£) are tight, but in the proof we use the trivial lower bound of 
0 on 1£• (V n £) and it is here that there is room for improvement. 

We do not yet have a good lower bound on 1£•(V n £).In the best of all pOBBible worlds, 
V and e would be independent and then we would have 

avg ~£(7-l(t!,-y,a:)) = I£•(V) + P•(£)- 1£•(V) · 1£•(£). 
seN I,. 

Now, if 0 ~ 11, b ~ 1, then in the region [0, 11) X [0, b) the function ~a:, y. (a:+ y- a:· y) achieves 
is maximal value at the point (r~,b). Hence, from our upper bounds on 1£•(V) and 1£•(£) and 
some algebra it follows that 

p(3n + 1) 
~£•(V)+~£•(e)-~£•(vne) ~ -y(1- (· 2" ), 

provided, I!~ p(3n+1) ·2-"+1 • Well, choosing!!= p(3n+1) ·2-"+1 and going through some 
more calculations, the lower bound on "Y becomes "Y ~ 4 ·n2 • p(Sn + 1) • 2-n. Hence, we could 
conclude from this that, relative to a random oracle R, the only coNPR subsets of range((R) 
are sparse. We doubt that V and e are really independent, but their covariance may well be 
low. 

We mention another pOBBible improvement of Theorem 21. It follows from our work in 
[KMR89) that if, relative to a random oracle, AR is apR set with census(AR, 3n + 1) ~ 2" 
(for all but finitely many n), thenARnrange((R) is sparse. If in Theorem 21 we could replace 
the hypothesis that "AR is a coNPR subset ofrange((R)" with "census(AR,sn + 1) ~ 2"," 
then we believe we could use this result to obtain strong separation results about the extended 
Boolean Hierarchy (see the survey [Wag88]) relative to a random oracle. We do not have the 
space here to go into the details of this. 

6 Conclusions and Directions 

We believe the above results have shown that our average dependence tech­
nique to be a powerful and simple method for addressing certain random oracle 
questions. But it is clear that there is still much room for improvement. We 
mentioned a number of specific technical open problems in prior sections. Here 
we briefly discuss some broader (and wilder) open questions that interest us. 

1. By Cai's [Cai89] and Babai's [Bab87] we know that, relative to a random 
oracle, PH C PSPACE. Both [Cai89] and [Bab87] depend heavily on the 
Furst, Saxe, and Sisper analysis [FSS84] and Yao's circuit size bounds 
[Yao85]. Is there a proof which by-passes [FSS84] and [Yao85] and shows 
PH C PSPACE relative to a random oracle? The motivation here is to find 
an alternative analysis of this problem that may develop some interesting 
new insights. 

2. Is PH strict relative to a random oracle? This is one of the best known 
open problems on random oracles. If one can answer the previous question, 
then this might fall. 
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3. Can one rid random oracle results of random oracles? By this we mean the 
following. We claimed in the introduction that random oracles modeled 
very strong polynomial-time, pseudo-random functions. Can one formalize 
these functions so that from their existence one can deduce most of the 
structural facts known to be true relative to a random oracle. Our work on 
annihilating and the isomorphism conjecture is a small example of what 
we have in mind. 

We have no idea if average dependence will be useful in solving any of the above. 
But, we feel strongly that the general methodology of striving for simplicity and 
clarity of underlying ideas will be important in obtaining any solution of these 
very hard problems. 
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ments on an earlier version of this paper. The third author's research was 
supported in part by NSF grant number CCR-89011154. 
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