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Hydrodynamics of liquids of arbitrarily curved flux-lines and vortex loops

Panayotis Benetatos∗ and M. Cristina Marchetti
Physics Department, Syracuse University, Syracuse, NY 13244

(February 1, 2008)

We derive a hydrodynamic model for a liquid of arbitrarily curved flux-lines and vortex loops
using the mapping of the vortex liquid onto a liquid of relativistic charged quantum bosons in 2+1
dimensions recently suggested by Tešanović and by Sudbø and collaborators. The loops in the flux-
line system correspond to particle-antiparticle fluctuations in the bosons. We explicitly incorporate
the externally applied magnetic field which in the boson model corresponds to a chemical potential
associated with the conserved charge density of the bosons. We propose this model as a convenient
and physically appealing starting point for studying the properties of the vortex liquid.

I. INTRODUCTION

The physics of vortex matter has been a very active
field of research since the discovery of high-temperature
superconductivity [1,2]. The melting of the Abrikosov
vortex lattice at a field well below the mean field upper
critical line, Hc2(T ), is now well established both theo-
retically and experimentally. The nature of the resulting
vortex liquid phase remains, however, unclear. Various
approaches have been used to study the properties of
the liquid, ranging from the mapping of the statistical
mechanics of vortex lines onto that of (nonrelativistic)
two-dimensional quantum bosons [3–6], to continuum hy-
drodynamic models [7–9]. Recently, it has been proposed
that the vortex liquid phase should be viewed not as a
collection of well-defined directed vortex lines induced by
the externally applied field, but rather as a system where
closed vortex loops proliferate, with components in all di-
rections [10,11]. This picture has been substantiated by
numerical work by Sudbø and collaborators [12–18]. Such
a vortex liquid has been described by Kiometzis et al. [19]
and by Tešanović [10,11] by mapping it onto a system of
relativistic two-dimensional quantum bosons, where the
proliferation of vortex loops and overhangs in the flux-
line system corresponds to particle-antiparticle creation
and annihilation events in the bosons. This mapping has
been developed in some detail for the case of zero external
field.

In this paper we consider a vortex-line liquid in an ar-
bitrary homogeneous external field, H. The only restric-
tion is that H be well below the mean field upper criti-
cal line, Hc2, so that the London approximation applies.
The liquid in general consists of both field-induced vor-
tices (on the average aligned with the external field, but
where large fluctuations leading to overhangs are not ex-
cluded) and closed vortex loops generated spontaneously
by thermal fluctuations. On the basis of general consid-
erations, the statistical mechanics of such a vortex liquid

maps onto that of relativistic charged quantum bosons in
2 + 1 dimensions coupled to a screened electromagnetic
field. Our model generalizes that of Tešanović [11] in
that it explicitly incorporates the external field H which
in the boson model corresponds to a chemical potential,
µr, associated with the conserved charge density of the
bosons. By manipulating the relativistic boson action,
we then derive a hydrodynamic model for a liquid of ar-
bitrarily curved flux-lines and closed vortex loops. We
propose this model as a convenient and physically ap-
pealing starting point for studying the properties of the
vortex liquid.

We consider for simplicity a clean, isotropic type-II
superconductor in the mixed state. The anisotropic case
is discussed in the Appendix. In the London limit, the
familiar Ginzburg-Landau free energy functional can be
rewritten in terms of discrete vortex degrees of freedom
by parametrizing the i-th line by its position ri(si), with
si the arclength along its curve, as [20–22]

G
[

{ri(si)},H
]

= Uself + Uint

−
φ0

4π

N
∑

i=1

∫

dri ·H , (1.1)

where

Uself ≈ ǫ1

N
∑

i=1

∫

dsi (1.2)

is an approximate form for the self-energy of a single vor-
tex line, and

Uint =
1

2

∑

i6=j

∫

dri ·

∫ ′

drjV (|ri − rj |) , (1.3)

with V (r) = (ǫ0/r)e−r/λ̃, describes the screened inter-
action between vortex segments on different lines. Here
ǫ0 = φ2

0/(4πλ̃)2 and ǫ1 = ǫ0 lnκ. Also, λ̃ is the effec-
tive London penetration depth and κ ≡ λ̃/ξ, with ξ the
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coherence length. The prime on the integral sign indi-
cates that the interaction must be cutoff at intervortex
separations of the order of ξ. The last term in Eq. (1.1)
represents the interaction with the homogeneous external
field, H. A short distance cutoff ≈ ξ has been assumed
to regularize the integrals at short scales. The canonical
partition function of the system is

Z(H, T ) =

∫ ′

D{ri(si)}e
−G/kBT . (1.4)

The prime over the integral sign indicates that the func-
tional integration must be performed over all flux-line
configurations {ri(si)} subject to the constraint ∇ ·B =
0 (i.e. no flux-line can start or stop within the sam-
ple). The expression for the vortex energy given in Eqs.
(1.1–1.3) is the starting point of much theoretical work
on vortex arrays. As required, the free energy is a scalar
and it is therefore rotationally invariant.

A familiar approximation to the general free energy
given in Eq. (1.1) can be obtained at low fields and
temperatures, where field-induced vortex lines interact
weakly and fluctuations away from the external field
direction are small. In this case it is convenient to
choose the z axis in the direction of the applied field,
H = ẑH0 and to parametrize the vortex positions as
ri =

[

r⊥i(z), z
]

. Asuming small transverse fluctuations
of the vortices and retaining only the interaction among
vortex segments at the same “height” z (to be referred
to as the local approximation), one obtains

G
[

{ri(si)}, H0

]

≈

N
∑

i=1

∫

dz

{

ǫ1
2

[dr⊥i(z)

dz

]2

− µ

}

+
1

2

∑

i6=j

∫

dzV (|r⊥i(z) − r⊥j(z)|) . (1.5)

with µ = H0φ0/(4π) − ǫ1 [3,5]. Eq. (1.5) is clearly only
appropriate to describe field-induced directed lines and it
neglects the possibility of thermally-induced closed vor-
tex loops. It is well known that the partition function of
the array of directed vortex lines described by Eq. (1.5)
maps onto the quantum mechanical partition function in
the path integral formulation for a gas of two-dimensional
bosons [3,5,23–25]. In this mapping, the vortex lines cor-
respond to the boson world lines, ǫ1 is the boson mass,
and z represents the imaginary time. This boson map-
ping has been exploited by Nelson and collaborators to
study the properties of vortex liquids and is particularly
useful for the description of vortex arrays pinned by cor-
related disorder [6]. The approximate vortex free energy
given in Eq. (1.5) is invariant under a uniform tilt of the
external field away from the z direction. In the boson
analogy, this translates into invariance with respect to
Galileian boosts [26].

One of the limitations of this boson model is that it ne-
glects the nonlocality of the intervortex interaction in the

external field direction. Feigel’man and collaborators ar-
gued that this nonlocality can be incorporated in the bo-
son formalism by mapping the vortex partition function
onto the path integral of two-dimensional charged bosons
[27] coupled to a screened gauge field that mediates the
non-instantaneous interaction among the bosons [28,29].
The boson action proposed by these authors suffers, how-
ever, from one crucial problem — it does not incorporate
the symmetry of the original vortex free energy given in
Eq. (1.1). More precisely, the boson analogue of a ro-
tation of the three-dimensional space where the vortices
are embedded is a Lorentz transformation of the 2 + 1-
dimensional space-time where the bosons are embedded.
Since the original vortex energy is rotationally invariant,
its dual boson action should be Lorentz invariant. But
the model implemented by Feigel’man and collaborators
lacks a definite symmetry as the field and the interaction
part of the Lagrangian density are Lorentz invariant, but
the approximate form used for the free-particle part is
only Galileian invariant. We note that the non-Gaussian
hydrodynamic model proposed recently by us [8] suffers
from the same problem, as it was actually derived from
the nonrelativistic charged boson model. This problem
is in retrospect immediately apparent in the hydrody-
namic formulation, where the free energy can be written
in terms of the coarse-grained fields

[

n̂H(r), t̂H(r)
]

as the
sum of three terms, as in Eq. (1.1),

GH
[

n̂H , t̂H , H0

]

= UH
self + UH

int − NLH0
φ0

4π
, (1.6)

with

UH
self = NLǫ1 +

1

2

∫

r

ǫ1
|t̂H(r)|2

n̂H(r)
(1.7)

and

UH
int =

1

2n2
0

∫

r

∫

r′

[

Kt(r − r′)t̂H(r) · t̂H(r′)

+ Kc(r − r′)n̂H(r)n̂H(r′)
]

. (1.8)

Here Kc(r) is the real space compressional modulus and
Kt(r) is the compressional part of the real space tilt mod-
ulus. For an isotropic superconductor, Kc(r) = Kt(r).
Since [n̂H(r), t̂H(r)] is a vector under rotations (pro-
portial to the local induction B in the superconduc-
tor, with n̂H(r) ∼ Bz(r) and t̂H(r) ∼ B⊥(r)), we see
that, for L → ∞, UH

int is a scalar and therefore rota-
tionally invariant, while UH

self is not a scalar and there-
fore is not rotationally invariant. Note that, in con-
trast, both the uncharged boson model à la Nelson [25]
and conventional Gaussian hydrodynamics [30,7] (where
the field n̂H(r) in the denominator of Eq. (1.7) is re-
placed by its equilibrium value) are consistent approxi-
mations to the free energy of directed vortex lines and
respect the restricted symmetry under global rotations
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about the z axis. These observations indicate that, as
recently pointed out in Refs. [19,10–15,18], the proper
two-dimensional boson model dual to the original three-
dimensional vortex problem is a gas of relativistic charged
bosons in 2 + 1-dimensional space-time, interacting via a
screened electromagnetic field.

In this paper, starting from the action of relativistic
charged quantum bosons, we derive a nonlocal, nonlin-
ear hydrodynamic model of liquids of arbitrarly curved
vortex lines that properly incorporates the full rotational
symmetry of the vortex energy. As discussed in Refs.
[19,10–18], this leads to some interesting new concepts,
namely, the appearence of thermally excited antivortex

lines and vortex loops. It is well known that a loop gas
is dual to a gas of relativistic bosons in 2 + 1 space-time
dimensions. This duality has been exploited recently by
a few authors to study the properties of vortex liquids
in type-II superconductors. Kleinert and collaborators
[19,31] have developed a field theory of a gas of fluc-
tuating closed vortex loops and have applied renormal-
ization group ideas to study its phases. Tešanović has
proposed a theory [11] which separates “field-induced”
from “thermally-generated” degrees of freedom. The for-
mer correspond to directed flux-lines, while the latter
correspond to closed vortex loops. A prediction of this
work is the existence of a phase transition, dubbed the
Φ-transition, within the flux liquid phase from a low
temperature liquid of lines with finite tension to a liq-
uid phase that lacks superconducting coherence in all di-
rections and where vortex loops proliferate yielding the
vanishing of the flux-line tension. Numerical evidence for
this Φ-transition has recently come from the numerical
simulations of Sudbø and collaborators [18].

In this paper, we propose a long wavelength descrip-
tion of a liquid of interacting field-induced vortex lines
and vortex loops which treats both on equal footing. The
external magnetic field is incorporated explicitly and con-
trols the density of field-induced lines. In the dual de-
scription it enters as the chemical potential of the bosons,
in analogy to the nonrelativistic boson model. The im-
portant difference here is that the chemical potential cou-
ples to the local charge density of bosons, which is the
relevant conserved variable as contrasted to the parti-
cle number density. The hydrodynamic model proposed
here is physically appealing model and naturally gener-
alizes the familiar Gaussian hydrodynamics. Its ramifi-
cations and particularly its standing with respect to the
aforementioned Φ-transition are interesting directions for
future work.

II. DERIVATION OF THE HYDRODYNAMICS
OF FLUX-LINES AND FLUX-LOOPS FROM A

RELATIVISTIC BOSON ANALOGY

In this section, we use the methods discussed in Ref.
[8] to derive the hydrodynamic free energy of arbitrarly
curved vortex lines. As usual, the vortex lines are viewed
as imaginary-time world lines of 2D bosons. The need for
a relativistic description is immediately apparent by con-
sidering the self-energy part of the vortex energy, given
in Eq. (1.2), where the arclength of a curve segment can
be parametrized as ds =

√

(dz)2 + (dr⊥)2. Eq. (1.2)
is formally identical to the imaginary-time action of a
relativistic free particle of rest mass m ↔ ǫ1 [32],

S = −mc

∫ s2

s1

ds = −mc

∫ s2

s1

√

c2(dt)2 − (dr⊥)2 , (2.1)

where s1 and s2 are two space-time events and cτ ↔ z,
with τ ≡ it the imaginary time. The speed of light c does
not have a counterpart in the flux-line free energy, but is
explicitly kept in this section to enable us to obtain the
nonrelativistic limit. The correspondence between boson
and vortex variables is summarized in Table 1. One im-
portant diference between our mapping and the mapping
to 2D nonrelativistic bosons discussed extensively in the
literature is that here the boson mass, mb, corresponds
to the vortex line energy rather than to the titl energy
per unit length. This distinction becomes important in
the case of anisotropic materials, as discussed in the Ap-
pendix.

TABLE I. Correspondence between boson and vortex vari-
ables.

bosons vortices

cτ z

βh̄c L

S/h̄ F/kBT

mbc
2/h̄c ǫ1/kBT

e2

b/h̄c 4πǫ0/kBT

µ/h̄c H0φ0/(4πkBT )

λb λ̃

tb/c t ≈ B/φ0

3



As shown below, the vortex lines can be interpreted as
the world lines of relativistic spin-0, charged bosons in
2 + 1 space-time dimensions, interacting via a screened
electromagnetic interaction [33]. By applying standard
methods [34,35] of rewriting the boson Hamiltonian in
the language of second quantization and transforming to
coherent states, the imaginary-time path integral repre-
sentation for the grand-canonical partition function of

the bosons is written as

Zbos
G =

∫

Φ∗(r
⊥

,βh̄)=Φ∗(r
⊥

,0)

Φ(r
⊥

,βh̄)=Φ(r
⊥

,0)

DΦDΦ∗DaDAe−Sr [Φ,Φ∗,a,A]/h̄,

(2.2)

with the action

Sr[Φ, Φ∗,a,A] =

∫ βh̄

0

dτ

∫

d2r⊥

{

mbc
2

2
ΦΦ∗ +

1

2mbc2

[

(−ih̄∂τ + eba0 + iµr)Φ
][

(ih̄∂τ + eba0 + iµr)Φ
∗
]

+
1

2mb
|(−ih̄∇⊥ +

eb

c
a⊥)Φ|2 + LF [a,A]

}

, (2.3)

where

LF [a,A] =
1

8π

{

(∇× a)2 +
2i

λb
(∇× a) ·A + (∇× A)2

}

(2.4)

is the free field Lagrangian density and ∇ ≡
(

1
c ∂τ ,∇⊥

)

.
Here, Φ(r⊥, t) is a complex scalar matter field that de-
scribes bosons with positive and negative charge, with eb

the boson charge. The world lines of bosons of opposite
charge, which are antiparticles to each other, correspond
to flux-lines with opposite vorticity. The constraint on
the fields Φ and Φ∗ comes from the permutation sym-
metry requirement and reflects boson statistics. The bo-
son field Φ is coupled to a massive electromagnetic field
a =

(

a0,a⊥

)

and the gauge field A =
(

A0,A⊥

)

provides
the screening. Integrating out the field A in Eqs. (2.3)
and (2.4) under the gauge ∇ · a = 0 gives a mass term
|a|2/(8πλ2

b). Under Lorentz transformations, the field Φ
is a scalar and the boson action has full Lorentz invari-
ance. The action also respects a global U(1) symmetry,
Φ → Φ′ = Φeiα, which leads to the conserved current,
j = (j0, j⊥), given by

j =
eb

2mb

[

Φ∗
(

− ih̄∇ +
eb

c
a
)

Φ + Φ
(

ih̄∇ +
eb

c
a
)

Φ∗
]

, (2.5)

with ∇ · j = 0. The temporal component j0/c of the
2+1-current is the charge density, which is the appro-
priate conserved quantity in a relativistic theory. Fi-
nally, we have introduced a chemical potential, µr, which
couples to the conserved charge density. This should
be contrasted to the nonrelativistic boson model which
maps onto a liquid of directed vortex lines and where
the relevant conserved quantity is particle number. The
quantum relativistic model naturally incorporates spon-
taneous creation and annihilation of particle-antiparticle
pairs. The flux-line analogue of this is the creation of ori-
ented vortex loops. It will become apparent below that
the chemical potential corresponds to the external field
H.

In order to highlight the connection with the nonrel-
ativistic boson model used by Nelson and collaborators,
we rewrite the boson field in terms of an amplitude and
a phase, Φ(r⊥, τ) =

√

ρ(r⊥, τ) exp [iθ(r⊥, τ)] , with the
result

Sr[ρ, θ, a,A] =

∫ βh̄

0

dτ

∫

d2r⊥

{

mbc
2

2
ρ +

h̄2

8mbρ
(∇ρ)2 +

ρ

2mb
(h̄∇⊥θ +

eb

c
a⊥)2 +

ρ

2mbc2
(h̄∂τθ + eba0 + iµr)

2

+LF [a,A]

}

. (2.6)

A boson condensate phase is signalled by a macroscopic
occupation ρc of the p = 0 momentum state, defined in
terms of the average order parameter as

ρc = |〈Φ(r⊥, τ)〉|2 . (2.7)

Notice that in general ρc 6= ρ0 ≡ 〈ρ(r⊥, τ)〉 =
〈|Φ(r⊥, τ)|2〉, although the two quantities are equal
within the mean field approximation described below.

In the spirit of Landau-Ginzburg mean field theory, we
evaluate the partition function by the method of steepest

descent. The stationarity condition gives nonlinear dif-
ferential equations for the various fields. Restricting our-
selves to solutions which are stationary and spatially ho-
mogeneous, the extrema conditions yield the equations,

δSr

δρ
=

mbc
2

2
+

e2
b |a⊥|

2

2mbc2
+

1

2mc2
(eba0 + iµr)

2 = 0 , (2.8)

δSr

δa⊥

=
e2

b

mbc2
ρa⊥ +

a⊥

4πλ2
b

= 0 , (2.9)
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δSr

δa0
=

eb

mbc2
ρ(eba0 + iµr) +

a0

4πλ2
b

= 0. (2.10)

One finds of course a⊥ = 0, corresponding to the absence
of charge current in the homogeneous state. A spatially
homogeneous saddle point solution with |〈Φ〉|2 = ρ0 6= 0
exists only for |µr| > mbc

2 [36]. The solution is given by

ρ0 =
|µr| − mbc

2

4πλ2
be

2
b

, for |µr| > mbc
2 ,

ρ0 = 0 , for |µr| ≤ mbc
2 . (2.11)

Within this mean field approximation, the occupation of
the zero momentum state is ρc = ρ0. The free energy in
the condensate phase of bosons is given by

F c
G(T, Ω, µr) = −kBT lnZc

G = −h̄Ω
(mbc

2 − µr)
2

8πλ2
be

2
b

,

(2.12)

where Ω is the area of the 2D boson gas. The mean
charge density, 〈j0/c〉, in this mean-field approximation
is

〈j0/c〉 = −
1

Ω

(∂F c
G

∂µr

)

T,Ω
= ±iebρ0 , (2.13)

where the positive (negative) sign should be chosen for
µr > 0 (µr < 0). For charged bosons the chemical poten-
tial is associated with the electric charge and allows for
a positive (or negative) average charge density. Antipar-
ticles have a charge and a chemical potential opposite to
that of particles.

Within mean field theory, all the charge is in the con-
densate phase. When fluctuations are incorporated in
the theory, the mean charge density, 〈ρ〉, differs from the
condensate fraction, ρc, even at zero temperature.

The nonrelativistic limit for the action can be obtained
by shifting the the chemical potential by mbc

2 ,

µr = µ + mbc
2 , (2.14)

where µ is the nonrelativistic chemical potential [36]. The
action becomes

Sr[ρ, θ, a,A] =

∫ βh̄

0

dτ

∫

d2r⊥

{

h̄2

8mbc2ρ
(∂τρ)2 +

h̄2

8mbρ
(∇⊥ρ)2 + iρ(h̄∂τθ + eba0 + iµ)

+
ρ

2mb
(h̄∇⊥θ +

eb

c
a⊥)2 +

ρ

2mbc2
(h̄∂τθ + eba0 + iµ)2 + LF [a,A]

}

. (2.15)

The nonrelativistic boson model of Täuber and Nelson
[25] is then recoverd by letting c → ∞. In this limit

the 2D bosons only interact with the scalar field a0, and
there is no magnetic interaction,

Snr[ρ, θ] =

∫ βh̄

0

dτ

∫

d2r⊥

{

ih̄ρ∂τθ + iρeba0 − ρµ +
h̄2

8mbρ
(∇⊥ρ)2 +

ρ

2mb
(h̄∇⊥θ)2

+
1

8π

[

(ẑ ×∇⊥)a0

]2
+

a2
0

8πλ2
b

}

. (2.16)

The scalar potential a0 mediates the instantaneous
screened Coulomb interaction. By integrating it out we
recover the familiar instantaneous interaction term with
Fourier components |ρ(q)|24πλ2

be
2
b/2(1 + q2

⊥λ2
b).

In order to obtain the hydrodynamic free energy,

we proceed as in Ref. [8] and perform a Hubbard-
Stratonovich transformation to eliminate the boson am-
plitude and phase fields in favor of familiar hydrodynamic
fields. First we eliminate the phase θ in Eq. (2.6) in favor
of a new vector field P, with the result

S′
r[ρ,P,a,A] =

∫ βh̄

0

dτ

∫

d2r⊥

{

mbc
2

2
ρ +

h̄2

8mbc2ρ
(∂τρ)2 +

h̄2

8mbρ
(∇⊥ρ)2 +

ρ

2mb

[P 2
z

c2
+ P2

⊥

]

+i
ρPz

mbc2

(

eba0 + iµr

)

+
iebρ

mbc
P⊥ · a⊥ + LF [a,A] +

ρ0h̄
2

mb
ln (

ρ

ρ0
)

}

(2.17)

with the constraint

1

c2
∂τ (ρPz) + ∇⊥ · (ρP⊥) = 0 . (2.18)

Notice that the field P has three components. The tem-
poral component Pz is related to the conserved charge

density of the theory, which in turn is related to the tem-
poral variations of the phase. The last term in Eq. (2.17)
arises from the Jacobian of the functional integration and
represents the nonlinear “ideal gas” part of the free en-
ergy. Finally, to make contact with the hydrodynamic
fields used in our earlier work, we let

5



tbz =
ρPz

mbc
, (2.19)

tb⊥ =
ρP⊥

mb
, (2.20)

and integrate out the fields a and A to obtain an effective
action

S′
r[ρ, tb] =

∫ βh̄

0

dτ

∫

d2r⊥

{

mbc
2

2
ρ +

h̄2

8mbc2ρ
(∂τρ)2 +

h̄2

8mbρ
(∇⊥ρ)2 +

mb

2ρ
t2
b −

1

c
µrtbz

}

+
1

2Ωβh̄

∑

q

4πλ2
be

2
b/c2

1 + q2λ2
b

|t(q)|2 (2.21)

with the constraint

∇ · tb = 0 , (2.22)

where q = (qz/c,q⊥) .
Since we are interested in the fluctuating vortices

rather than in the relativistic bosons, we shall rewrite

Eq. (2.21) in the vortex language using the “transla-
tion” Table 1. We are interested in the thermodynamic
limit where periodic or free boundary conditions give the

same result and
∫ βh̄

0 cdτ
∫

d2r⊥ →
∫

r
=
∫ L

0

∫

dr⊥, where
L is the thickness of the sample. The resulting vortex
free energy is given by

Fr[t, ρ] =

∫

r

{

ǫ1
2

ρ +
(kBT )2

8ǫ1ρ
(∇ρ)2 +

ǫ1
2ρ

t2 −
H0φ0

4π
tz

}

+
1

2ΩL

∑

q

4πǫ0λ̃
2

1 + q2λ̃2
|t(q)|2 (2.23)

with the constraint given by Eq. (2.22) above. The fluc-
tuating field t corresponds to the coarse-grained vortex
density which determines the magnetic induction B in
the material. The chemical potential, µr, of the rela-
tivistic bosons corresponds to the external applied field
which gives rise to a net density of field-induced lines.
The physical interpretation becomes clear by discussing
the mean-field saddle point solution, obtained by apply-
ing the stationarity condition to the free energy, with the
result
(

δFr

δt⊥

)

t=t0,ρ=ρ0

= 0 =⇒ t⊥0 = 0 , (2.24)

(

δFr

δρ

)

t=t0,ρ=ρ0

= 0 =⇒ tz0 = ±cρ0 , (2.25)

(

δFr

δtz

)

t=t0,ρ=ρ0

= 0 =⇒ H0 = ±
(

Hc1 + φ0ρ0

)

. (2.26)

Conversely, the equilibrium solution is given by

ρ0 =
|H0| − Hc1

φ0
, for |H0| > Hc1,

ρ0 = 0 , for |H0| ≤ Hc1, (2.27)

where Hc1ǫ14π/φ0 ↔ mc2. In other words, ρ0 is a mea-
sure of the number density of directed field-induced vor-
tices. The field ρ is a scalar and it is defined to be always
positive (for simplicity, in the following we will consider
the case of H0 > 0, corresponding to the + signs in
Eqs. (2.25) and (2.26). The field tz is proportional to
the z component of the magnetic induction. Its equilib-
rium value in a spatially homogeneous system is simply

proportional to ρ0 because on large scales the contribu-
tion from vortices precisely cancels that of antivortices,
and tz0 = cρ0 = cBz0/φ0 . Locally, the fields tz and ρ
can, however, fluctuate independently, allowing for spon-
taneous vortex loop fluctuations, independent of the ex-
ternally applied field. As will be seen more explicitely
in the next section, the field ρ mediates the renormaliza-
tion of the single-vortex stiffness due to such spontaneous
loop fluctuations.

The hydrodynamic free energy given in Eq. (2.23)
provides a starting point for describing the long wave-
length properties of a liquid of interacting (directed) field-
induced vortex lines and oriented vortex loops. It should
be stressed that the distinction between directed lines
and loops, while physically appealing, is strictly a single-
line notion and loses much of its meaning in a contin-
uum theory. At the level of hydrodynamics, spontaneous
vortex loop fluctuations are incorporated via the field
tLz = tz − ρ. As we will see below, one can construct
an effective theory where loops are integrated out. Their
role then enters as a renormalization of the vortex-line
tension.

III. CORRELATIONS

It is useful to evaluate the two-point correlation func-
tion of the hydrodynamic fields appearing in the free en-
ergy of Eq. (2.23). This is easily done within a Gaussian
approximation for the free energy, obtained by introduc-
ing fluctuations of the fields about their equilibrium val-
ues, δt = t − t0 and δρ = ρ − ρ0, and expanding the

6



free energy to quadratic order in these fluctuations. For ρ0 > 0, the Gaussian free energy is given by

FG
r [δt, δρ] = F0 +

1

2ΩL

∑

q

{

[ ǫ1
ρ0

+
(kBT )2

4ǫ1ρ0
q2
]

|δρ(q)|2 +
[ ǫ1
ρ0

+ V (q)
]

|δt(q)|2

−
ǫ1
ρ0

[

δtz(q)δρ(−q) + δtz(−q)δρ(q)
]

}

, (3.1)

where averages over the free energy FG
r are to be evalu-

ated with the constraint

iq · δt(q) = 0 . (3.2)

In Eq. (3.1), F0 is the equilibrium value, V (q) =
4πǫ0λ̃

2/(1 + q2λ̃2), and q2 = q2
⊥ + q2

z . It is instructive
to integrate out δρ to obtain the effective free energy,

Feff
r [δtz, t⊥] =

1

2ΩL

∑

q

{[

(kBT )2q2/4ρ0

ǫ1 + (kBT )2q2/4ǫ1
+ V (q)

]

|δtz(q)|2 +
[ ǫ1
ρ0

+ V (q)
]

|t⊥(q)|2
}

, (3.3)

which is written entirely in terms of fluctuations in the
local induction, as at long wavelengths,

δB ≈ φ0

(

t⊥, δtz

)

. (3.4)

Finally, by separating t⊥ in its components longitudinal

and transverse to q̂⊥ = q⊥/q⊥ according to

t⊥(q) = q̂⊥tL⊥(q) + (ẑ × q̂⊥)tT⊥(q) , (3.5)

and using the constraint (3.2) to eliminate tL⊥ in favor of
δtz we obtain,

Feff
r [δtz, t⊥] =

1

2ΩL

∑

q

{[

ǫ1q
2
z

ρ0q2
⊥

+
ǫ1
ρ0

(kBT )2q2/4ǫ21
1 + (kBT )2q2/4ǫ21

+ V (q)
q2
z

q2
⊥

]

|δtz(q)|2 +
[ ǫ1
ρ0

+ V (q)
]

|tT⊥(q)|2
}

. (3.6)

Comparing the effective free energy of Eq. (3.6) to the
conventional Gaussian hydrodynamic free energy [30,7]

obtained neglecting relativistic effects and given by

FG[δtz, t⊥] =
1

2ΩL

∑

q

{[

ǫ1q
2
z

ρ0q2
⊥

+ V (q)
q2
z

q2
⊥

]

|δtz(q)|2 +
[ ǫ1
ρ0

+ V (q)
]

|tT⊥(q)|2
}

, (3.7)

it is evident that “relativistic” effects yield short wave-
length corrections to the single-vortex effective tension.
Similarly, in the boson system they are responsible for
corrections to the quasi-particle spectrum due to spon-

taneous particle-antiparticle pair creation, Again, these
effects are important only at finite wavevector.

It is now straightforward to evaluate the Gaussian two-
point correlation functions, with the result

〈δtz(q)δtz(−q)〉G =
ρ0kBTq2

⊥

ρ0V (q)q2 + ǫ1q2
z + ǫ1q2

⊥

(kBT )2q2/4ǫ21
1+(kBT )2q2/4ǫ21

, (3.8)

〈δρ(q)δρ(−q)〉G =
ρ0kBTq2

ρ0V (q)q2 + ǫ1q2
z + ǫ1q2

⊥

(kBT )2q2/4ǫ21
1+(kBT )2q2/4ǫ21

1 + ρ0V (q)/ǫ1
1 + (kBT )2q2/4ǫ21

, (3.9)

〈δtz(q)δρ(−q)〉G =
ρ0kBTq2

⊥

ρ0V (q)q2 + ǫ1q2
z + ǫ1q2

⊥

(kBT )2q2/4ǫ21
1+(kBT )2q2/4ǫ21

1

1 + (kBT )2q2/4ǫ21
. (3.10)
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The correlations of the in-plane part t⊥ of the tilt field
are given by

〈ti(−q)tj(q)〉G = T 0
T (q)PT

ij (q⊥) + T 0
L(q)PL

ij (q⊥) ,

(3.11)

with

T 0
T (q) =

ρ0kBT

ǫ1 + ρ0V (q)
, (3.12)

and

T 0
L(q) =

q2
z

q2
⊥

〈tz(−q)tz(q)〉G . (3.13)

PL
ij (q⊥) = q̂⊥iq̂⊥j and PT

ij (q⊥) = δij − PL
ij (q⊥) are the

in-plane longitudinal and transverse projection operators
respectively. To Gaussian order, the transverse part of
the tilt field autocorrelator is the same as that obtained
from the familiar hydrodynamics of directed lines.

The structure function, given by the autocorrelator of
fluctuations in the vortex line density, δtz, differs from its
“non-relativistic” counterpart only at finite wave-vectors.
In the hydrodynamic limit it simply reduces to the famil-
iar result obtained using the (“non-relativistic”) hydro-
dynamics of directed lines,

〈δtz(q)δtz(−q)〉G ≈
ρ0kBTq2

⊥

ρ0V (q)q2 + ǫ1q2
z

. (3.14)

When “relativistic effects” are included the two fields
ρ and tz are no longer independent. It is then instruc-
tive to also consider fluctuations in a new field defined
as their difference as tLz = tz − ρ. This field fluctuates
about a zero equilibrium value and vanishes identically
when relativistic effects are neglected. Fluctuations in tLz
may be interpreted as a measure of fluctuations due to
the spontaneous excitation of vortex loops. Its correla-
tion function is given by

〈δtLz (q)δtLz (−q)〉G =
ρ0kBT

ρ0V (q)q2 + ǫ1q2
z + ǫ1q2

⊥

(kBT )2q2/4ǫ21
1+(kBT )2q2/4ǫ21

q2
z + ρ0V (q)q2/ǫ1

1 + (kBT )2q2/4ǫ21
. (3.15)

The long wavelength limit of this correlation function
is given by

lim
qz→0

lim
q⊥→0

〈δtLz (−q)δtLz (q)〉G =
kBT

ǫ1
, (3.16)

irrespective of the order of the limits (qz → 0 first or
q⊥ → 0 first). In other words we have identified a corre-
lation function that at long wavelengths yields the inverse
single-line tension, ǫ1. Calculating perturbative correc-
tions to this Gaussian correlator will be a way to probe
the renormalization of the single-line tension.

IV. DISCUSSION

We have presented a long wavelength (hydrodynamic)
description of a liquid of arbitrarly curved vortex line
and loops that describes on the same footing both field-
induced and spontaneously generated vortices. The long-
wavelength model was obtained by exploiting the map-
ping of such a vortex liquid onto a gas of relativis-
tic charged bosons in 2D that was recently discussed
by Tešanović [10,11] and by Sudbø and collaborators
[18,16,17]. Although our model and that of Tešanović
[11] yield free energies that are formally very similar, the
two models differ in one important respect. In Ref. [11],
the matter field Φ that describes the relativistic quan-
tum bosons corresponds to a fictitious vortex system of
zero total vorticity. The field-induced vortices are sep-
arated out of the field Φ. In our model, in contrast,

the boson field Φ corresponds to the actual flux-line sys-
tem, including both field-induced and spontaneously gen-
erated vortices. The externally applied magnetic field H

which yields a non-zero vorticity enters explicitely in the
free energy and controls the net mean flux threading the
superconductor. It corresponds to a chemical potential
for the bosons which yields a non-zero average charge.
Furthermore, Tešanović’s fictitious vortex loops have a
short-range scalar steric repulsion which enters as a Φ4

coupling in the action. This is in addition to the usual
screened magnetic interaction and results from the sin-
gular gauge transformation which gives rise to the ficti-
tious vortex loops. Such a steric repulsion does not exist
among the actual vortex loops [1,22] and therefore it is
absent in our model. In our action, vortices only interact
through the long range magnetic interaction (screened
by the Chern-Simons term) which is cutoff at distances
≤ ξ to ensure a finite repulsive energy barrier at short
distances.

An important property of the flux-line array which pro-
vides a direct measure of vortex correlations along the
direction of the applied external field is the tilt modulus.
A drawback of the hydrodynamics of directed flux-lines
familiar from the literature [8] is that it has been impos-
sible to separate the renormalization of the single-vortex
part of the tilt modulus (related to the single-line tension)
from that of the compressional part. The hydrodynamic
model that we present here allows us to probe the renor-
malization of the single-line tension through the autocor-
relator of the tLz field. This is an interesting direction for
future work as the vanishing of the effective line tension
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is considered to be a signature of the Φ-transition sug-
gested by Tešanović [11] and by Sudbø and collaborators
[18,16,17].

Finally, the hydrodynamic model of directed flux-line
liquids has successfully been used to evaluate the renor-
malization of the tilt modulus from columnar defects par-
allel to the external magnetic field [37]. This type of
quenched disorder suppresses the wandering of the flux-
lines away from their average direction and it renders
the directed line approximation appropriate. In contrast,
other types of quenched disorder, namely point defects or
splayed columnar defects with large splay, enhance vor-
tex wandering, so that the resulting vortex liquid can no
longer be described as a liquid of directed lines. The
hydrodynamic model introduced here is particularly ap-
propriate for studying the effect of this kind of disorder,
which can be modelled by a random potential coupled
to the field ρ. This is another interesting direction for
future work.

This work was supported by the National Science
Foundation through Grant No. DMR97-30678. It is a
great pleasure to acknowledge valuable discussions with
Steve Teitel. PB acknowledges the hospitality of the
Physics Department of the Technical University of Mu-
nich where part of this work was completed.

APPENDIX: ANISOTROPIC

SUPERCONDUCTORS

Our discussion has so far been limited to isotropic ma-
terials. High-Tc superconductors are, however, layered
materials where the anisotropy can play an important
role and change substantially vortex behavior. For this
reason in this section we generalize our model to include
finite anisotropy. As usual, anisotropy is incorporated in
the Ginzburg-Landau free energy via an anisotropic ef-
fective mass tensor which leads to different values for the
penetration and coherence lengths in the ab plane and in
the c direction [1].

We first consider a uniaxial superconductor in an ex-
ternal field H applied along the c axis chosen as the z

direction. The energy of a single vortex line with po-
sition parametrized as r =

[

r⊥(z), z
]

(r⊥(z) can be a
multivalued function of z to allow for the possibility of
overhangs) wandering between points a and b is given by

Ũself ≈ ǫ1

∫ b

a

√

(dz)2 +
1

p2
(dr⊥)2 , (4.1)

where p = λc/λab is the familiar anisotropy parameter.
In copper-oxide high-Tc materials, p >> 1. By compar-
ing Eq. (4.1) to the action of a free relativistic particle
given in Eq. (2.1), we see that a vortex line in a uniaxial
material can be interpreted as the world line of a relativis-
tic particle which moves in an “anisotropic space-time”
with rescaled spatial coordinates, r⊥ → r⊥/p . At the
single-vortex level, anisotropy effectively enhances the
“relativistic” behavior, as it reduces the energy per unit
length associated with transverse vortex fluctuations, as
expected for a layered material. In this context, it may
be tempting to interpret anisotropy as responsible for an
effective reduction of the speed of light in the relativis-
tic 2D boson problem with c → c/p. This interpreta-
tion is, however, misleading as it does not carry through
when interactions are included. In the interaction part
of the vortex-line free energy, anisotropy does not simply
lead to a rescaling of the transverse coordinates. This
is apparent from the fact that the collective part of the
wavevector-dependent elastic constants of a vortex lat-
tice in a uniaxial material is not simply obtained from
the corresponding elastic constants of an isotropic mate-
rial with the replacement q⊥ → q⊥p .

In the interaction and the free field part of the boson
model, the role of anisotropy is simply that of allowing
for different scalar and transverse interactions among the
bosons, precisely as originally proposed by Feigel’man
and collaborators [29]. Note that the aforementioned
parts in our relativistic boson action are formally the
same as the corresponding parts in Feigel’man’s boson
action - our model differs in the free particle part only.
The relativistic boson action that maps onto the free en-
ergy of interacting vortex lines and loops in a uniaxial
superconductor with an external field applied along the
c axis is given by

S̃r[Φ, Φ∗,a,A] =

∫ βh̄

0

dτ

∫

d2r⊥

{

mc2

2
ΦΦ∗ +

1

2mbc2

[

(−ih̄∂τ + eba0 + iµr)Φ
][

(ih̄∂τ + eba0 + iµr)Φ
∗
]

+
p2

2mb
|(−ih̄∇⊥ +

eb

c
a⊥)Φ|2 + L̃F [a,A]

}

, (4.2)

where

L̃F [a,A] =
1

8π

{

p2(∇⊥ × a⊥)2 +
[

ẑ × (
1

c
∂τa⊥ −∇a0)

]2
+

2i

λb
(∇× a) ·A + (∇× A)2

}

. (4.3)
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We stress that in this mapping the boson mass, mb, corre-
sponds to the vortex line energy, ǫ1, precisely as indicated
in Table 1. This is indeed the appropriate interpretation
as it is made apparent by comparing the single-vortex
energy given in Eq. (4.1) to the action of a relativistic
boson, given in Eq. (2.1). In contrast, in all the previ-
ous literature, and particularly in the work by Nelson and

coworkers, it is the tilt energy per unit length, ǫ̃1 = ǫ1/p2,
that is interpreted as the boson mass.

Finally, by using the methods described in Section III
and the translation Table 1, one can immediately obtain
the hydrodynamic free energy of a liquid of arbitrarly
fluctuating vortex lines and loops in a uniaxial supercon-
ductor with H ‖ c. It is given by

F̃r[t, ρ] =

∫

r

{

(kBT )2

8ǫ̃1ρ
(∇⊥ρ)2 +

(kBT )2

8ǫ1ρ
(∂zρ)2 +

ǫ̃1
2ρ

(t⊥)2 +
ǫ1
2ρ

(tz)
2 +

ǫ1
2

ρ − µrtz

}

+
1

2Ω

∑

q

{

4πǫ0λ̃
2
⊥

1 + q2
z λ̃2

⊥ + q2
⊥p2λ̃2

⊥

|t⊥(q)|2 +
4πǫ0λ̃

2
⊥(1 + q2p2λ̃2

⊥)

(1 + q2λ̃2
⊥)(1 + q2

z λ̃2
⊥ + q2

⊥p2λ̃2
⊥)

|tz(q)|2
}

(4.4)

with ǫ̃1 = ǫ1/p2 and the familiar constraint ∇ · t = 0 .
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