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       ABSTRACT 

 In this dissertation, the dyadic Green‟s functions (DGFs) for unbounded and layered 

anisotropic media, with no restriction imposed on the medium property, are derived. Utilizing the 

obtained DGFs, the radiation problems of a Hertzian dipole and a microstrip antenna in the 

presence of an anisotropic substrate are solved.  

 After a brief introduction,  the eigenvector dyadic Green‟s functions (E-DGFs) for an 

unbounded general anisotropic medium through the eigen-decomposition method are derived. 

The E-DGFs of a layered anisotropic geometry are then constructed based on the derivation of 

the unbounded E-DGFs using two different approaches. One is through the symmetrical property 

of the DGFs and the other is through the direct construction method. Rigorous proof and detailed 

derivation of the formulation for the E-DGFs are presented. The usage and limitation of each 

approach as well as the relationships between the corresponding E-DGFs are discussed.  

 Applying the method of stationary phase to the associated E-DGFs, we formulate the 

radiation fields of an arbitrarily oriented Hertzian dipole located either above or inside the 

layered anisotropic medium. The important new findings include the analysis of the radiation 

field in terms of the reflection coefficients as a function of incidence angle, and the use of the 

biasing magnetic field to improve the broadside directivity for a z-directed source when a 

gyroelectric medium is involved.  

 In addition to solving the radiation of a Hertzian dipole in the presence of a layered 

anisotropic medium, the layered E-DGFs derived here are also utilized to solve the more 

practical problem of a microstrip dipole printed on an anisotropic substrate. A method of 



 

 

moment solution is formulated with the E-DGF in the spectral domain. To demonstrate the 

feasibility of this method applicable to a general anisotropic medium, the current distribution, 

input impedances, and radiation patterns are numerically calculated for a microstrip dipole 

printed on various anisotropic substrates. Furthermore, a detailed parametric study of the effect 

of frequency, and direction and magnitude of the biasing magnetic field is provided for a dipole 

printed on a gyroelectric substrate. The parametric analysis in this dissertation may lead to a 

method whereby the additional freedom introduced by the gyroelectric medium can be utilized 

effectively to adjust the resonant length and radiation pattern of a printed dipole antenna.   
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1 INTRODUCTION 

1.1 Anisotropic Materials and Applications 

 Dielectric and magnetic anisotropic effects often exist within many materials that are used 

as the substrate for integrated microwave circuits and printed-circuit antennas [1]. Two different 

types of anisotropic effects are usually observed: reciprocal and non-reciprocal anisotropies. 

Sapphire and boron nitride [2-4] are uniaxially anisotropic, while PTFE cloth and glass cloth [5-

7] are biaxially anisotropic. Both uniaxial and biaxial properties belong to reciprocal 

anisotropies. Some of these reciprocal anisotropic effects are unintentional and occur naturally in 

the material, while others are introduced during the manufacturing process. Non-reciprocal 

anisotropic effects (magnetic or dielectric) are usually introduced by applying the external 

magnetic field to the ferrite, plasma or semiconductors. 

 The frequency-dependent permeability of ferrite reveals interesting applications in 

antennas, including the adjustment of radiation patterns and the reduction of radar cross-sections 

[8-10]. The freedom of controlling the non-reciprocal behavior of the ferrite, by applying the 

external magnetic field, uncovers wide applications for microwave devices such as isolators, 

circulators and phase shifters [11-14]. However, there are some limitations for the ferrite 

material. 

  First, relative bandwidth decreases in the operating frequency beyond 40 GHz due to 

material limitations. Secondly, it is difficult to achieve the full integration for the microwave 

integrated circuits (MIC) due to the incompatibility of the ferrite and semiconductor processing 

technology [15-16]. To overcome these drawbacks of ferrite, semiconductor devices based on the 
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gyroelectric property described by the tensor permittivity have been extensively researched in the 

last decade.  

 Under the influence of a constant magnetic field applied to the semiconductors, the 

gyroelectric effect arises from the cyclotron motion of nearly free electrons, in accordance with 

the Drude model. The behavior of magnetized semiconductors can then be characterized by a 

frequency-dependent permittivity tensor [17], as illustrated in the equation below. 
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c is the gyrofrequency (or cyclotron frequency) calculated using 0 /eB m , where m  represents 

the mass of each electron with charge e (a negative number) and 0B  is the constant magnetic 

field applied to the medium. 
 0

 is the static dielectric constant of the material. Collision 

frequency 1/  is included in the expression of the dielectric tensor, which models the losses 

in the semiconducting material.  is the momentum relaxation time, which is equivalent to the 

mobility of the semiconductor. p  is the plasma frequency decided by carrier concentration as 

 
1/2

2

0 0N e m , where 0N  is the number of free electrons per unit volume.  

 Common semiconductor materials associated with magnetoplasma devices are InSb, Te, 

GaAs, Si, and Hg1-xMnxTe. The properties of these materials are provided in Table 1 of [18]. 
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For example, a high-quality, moderately-doped GaAs with a carrier concentration of 

15 32.1 10n cm   is equivalent to a gyroelectric medium with plasma frequency
1310 rad/s.p   

With a magnetic field of 3810 G, the cyclotron frequency is given as 
1210 rad/s.c   

 Due to the non-reciprocal gyroelectric characteristics of the semiconductor, wide 

application of the semiconductors to circulators [19-24] and resonators [25] are developed. 

Propagation for semiconductor waveguides has also been of interest for researchers. A multilayer 

gyrotropic thin-film semiconductor waveguide comprising S-I GaAs/AlAs/n–GaAs/AlGaAs in a 

static magnetic field of 0.15 T has been analyzed over the frequency range of 0–200 GHz [26]. 

Surprisingly, while extensive research is performed on the microwave devices, very few works is 

found for the application of the gyroelectric medium (especially magnetized semiconductors) to 

the printed dipole antenna.  

  In addition to the anisotropic materials presented above, recent advances in material 

technology allow the production and control of material with the anisotropic property that does 

not naturally occur. The so-called metamaterial is gaining more and more attention due to its 

novel characteristics. A significant amount of research has been done for applications to 

antennas, waveguide miniaturization [27-28], and transmission lines [29]. Especially, the strong 

gyrotropy [30-33], introduced by the artificial materials, has started to attract attention as a 

potential candidate for applications in microwave and optoelectronic devices. 

 As presented above, an anisotropic effect either occurs naturally or is intentionally 

introduced for specific applications. In both cases, accurate analysis of different types of 

anisotropic effects is required for the full understanding of the electromagnetic wave‟s 

interaction with the anisotropic medium. For the planar layered geometry commonly used in 
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today‟s transmission and radiation applications, one of the well-established tools for the analysis 

of electromagnetic propagation, radiation and scattering problems is the method of Green‟s 

function [34]. In this dissertation, the approach of the Green‟s function is utilized to analyze the 

radiation properties of a Hertzian dipole and printed dipole on top of an anisotropic substrate. In 

particular, the research objectives primarily include the following: 

1) To formulate Green‟s function solutions with the source placed inside an unbounded 

general anisotropic medium with no restriction imposed on the property of the medium. 

2) To formulate Green‟s function solutions for the cases with the source placed either above 

or below the interface of a single-layer or two-layer geometry filled with a general 

anisotropic medium. 

3) To develop numerically efficient asymptotic techniques for the analysis of the radiated 

fields of a Hertzian dipole placed above and below the interface of a single-layer or two-

layer geometry filled with a general anisotropic medium. Especially, detailed numerical 

analysis is focused on the layered geometry filled with a gyroelectric medium. 

4) To apply Green‟s function solving for the properties of microstrip dipole antennas printed 

at the interface of a conductor-backed, general anisotropic slab. Especially, detailed 

numerical analysis here is focused on the layered geometry filled with a gyroelectric 

medium. 

 

1.2  Previous Work  

 In this section, we will briefly review the previous work on the Green‟s function involved 

with the anisotropic medium and the radiation of a Hertzian dipole in the presence of an 
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anisotropic medium. Also, previous work is summarized here on the application of the Green‟s 

function to solve the radiation of a printed dipole on top of an anisotropic substrate. Finally, 

through the complete literature survey on the previous work, it is demonstrated how the major 

contributions are made by achieving our research objectives. 

1.2.1 Dyadic Green’s Functions and Radiation of a Hertzian Dipole 

 Several different approaches have been proposed to obtain the Green‟s function of layered 

structure, including Fourier transform method, which is equivalent to the eigen-decomposition 

method [35-40]; the transition matrix method proposed by Krowne [41]; the equivalent boundary 

method by Mesa et al. [42]; and the cylindrical vector wave function method by Li et al. [43-44]. 

The transmission line method, proposed in [45], obtains the Green‟s function of an isotropic 

medium based upon the decomposition of fields into TE and TM modes. This method can 

actually be treated as a special case of the eigen-decomposition method. 

  The eigen-decomposition method was first introduced by Lee and Kong [35] to obtain the 

Green‟s function of layered geometry filled with a uniaixal medium with an arbitrarily oriented 

optic axis. The same method was then extended to obtain the dyadic Green‟s function of a 

layered biaxial anisotropic medium [36-37], an unbounded gyroelectric medium [38-39], and a 

gyromagnetic medium [40]. The basic feature of the eigen-decomposition method is based on the 

calculation of the corresponding eigenvectors of the electric field from the adjoint matrix of the 

electric wave matrix. This matrix is derived from the second-order differential equation of the 

electric field in the spectral-domain by applying a 3D Fourier transform. The eigenvectors can be 

calculated either analytically [35-40] or numerically. Different from the eigen-decomposition 

method, the transition matrix method applies 2D Fourier transform and utilizes a matrix 
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exponential approach method.  It reduces the 6 Maxwell‟s equations in the Cartesian coordinate 

to four equations in which tangential electric and magnetic fields are expressed in terms of the 

normal electric field and magnetic field components. For the sake of brevity, the E-DGFs 

correspond to the DGFs obtained using the eigen-decomposition method, while the T-DGFs refer 

to the DGFs obtained using the transition matrix method through the dissertation.  

 The third method employed for the multi-layer structure is the equivalent boundary method 

(EBM) [42]. One of the main features of the EBM is its objective to obtain not the bi-

dimensional spectral DGF, but its inverse.  It is claimed that the EBM method leads to a compact 

and stable algorithm. The EBM method is suitable for the calculation of the propagation 

characteristics of the slot line, parallel plate waveguide, and the coplanar waveguide since this 

method is constructed for a geometry with upper-electric and lower-electric walls.   

 Another method to construct the DGF is the cylindrical vector wave function method. The 

scattering dyadic Green‟s function for each layer is constructed in terms of the cylindrical vector 

wave functions by applying the method of scattering superposition. This method has been 

applied to find the DGF of the layered isotropic medium [43] and the unbounded gyrotropic [44] 

medium.  

 Out of so many different methods, the E-DGFs and the T-DGFs are the two most 

commonly used techniques to construct the dyadic Green's function for the planar stratified 

anisotropic geometry. Both of the DGFs are suitable for the propagation and radiation problems. 

Comparing the E-DGFs with the T-DGFs, each has its merits. Derivation of the T-DGFs are 

more complex in mathematics, and  only the elements of the DGFs relating the tangential 

currents and tangential sources can be obtained directly from the solution to a 4 by 4 linear 

equation. However, the E-DGFs are expressed in terms of coordinate tensors and therefore make 
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the integral of the electromagnetic field straightforward and succinct. In addition, all the nine 

elements of the E-DGFs which correlate the electromagnetic fields with an arbitrary current 

distribution are obtained one time with no further work required. The T-DGFs are suitable for the 

problem with tangential current at the interface and are widely applied for the numerical analysis 

of transmission lines and patch antenna problems. The E-DGFs are suitable for problems with 

arbitrary current distribution. 

 With the DGFs obtained, the radiated fields of a Hertzian dipole can then be formulated. In 

the last few decades, researchers have extensively studied the radiation of a Hertzian dipole in 

the presence of an unbounded and layered anisotropic substrate.  

 With the assumption of the biasing magnetic field along the z direction, the radiation of a 

dipole in unbounded and layered gyroelectric media is treated in [46-47]. The radiation of a 

Hertzian dipole involved with a gyromagnetic medium is considered in [48-49].  Extensive work 

for the radiation of the dipole over and inside the layered uniaxial slab can be found in [50-54] 

due to the simple tensor form of the uniaxial medium.  For the more complicated case of biaxial 

slab, formulation and analysis are available in [37]. It is noted here that radiated fields available 

in [37, 54] are derived from the E-DGFs for the corresponding geometry and medium. The 

radiated fields of a dipole for the general anisotropic layers characterized by arbitrarily oriented 

axes of anisotropy are considered in [55-57], which is closely related to the derivation of the T-

DGFs. 

 Unlike the expressions of a radiated field derived from the T-DGF (as in [55-57]), which  

apply to general anisotropic geometry, formulations for the radiated field derived from the E-

DGFs in previous work are usually solved for only one specific type of an anisotropic medium. 

The radiated field for the general anisotropic geometry is not currently available. According to 
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the literature survey above, the reason for this is due to the lack of the E-DGFs for a layered 

geometry filled with a general anisotropic medium. To overcome this limitation of former E-

DGFs and also to fill the gap, it is essential to develop the E-DGFs for a layered general 

anisotropic geometry, which requires the availability of the E-DGFs for an unbounded general 

anisotropic medium. This directly corresponds to the first and second research objectives of the 

current study, as proposed in Section 1.1.  

 The third research objective is to formulate the radiated fields of a Hertzian dipole in the 

presence of a general anisotropic medium with no restrictions imposed on the permittivity or 

permeability. This goal can be achieved using the E-DGFs available after the first research 

objective is accomplished. It is also indicated in the current literature survey that numerical 

results for the radiated field of a Hertzian dipole above or inside the gyroelectric slab with an 

arbitrary biasing magnetic field are not available. One special case investigated in [46-47] is 

about the radiation of a Hertzian dipole in the presence of a gyroelectric medium with the biasing 

magnetic field along the z-direction. However, the effect of the biasing magnetic field on the 

radiation is not taken into account. Thus, in addition to developing the general formulation, 

studying the radiation behavior of the dipole in the presence of a gyroelectric medium with 

arbitrarily directed biasing magnetic field becomes the second part of the third research 

objective.  

1.2.2 A Printed Dipole in the Presence of an Anisotropic Substrate 

 Currently, there is an increasing interest in complete monolithic systems which combine 

antenna elements or antenna arrays on the same substrate as the integrated RF/IF front end 

network. One of the most popular antenna elements is the printed antenna due to its 
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characteristics of low-cost, low-profile, conformability, and ease of manufacturing. Typical 

methods used to analyze the printed circuits include the method of moments (MoM), the finite 

difference time domain method (FDTD), and the finite element method (FEM).  

The initial research employing the method of moments (MoM) utilized a combination of 

spatial and spectral techniques in order to analyze microstrip dipole and microstrip patch 

antennas on a single layer grounded isotropic medium [58] ‒ [64]. In [58-60], the Green‟s 

functions are formulated in the spectral domain and the reaction formulation is applied in the 

spatial domain. Soon after, authors such as Deshpande and Bailey [61] following Itoh and 

Menzel‟s analysis technique [62] applied the reaction formulation entirely in the spectral 

domain. Many authors, including Pozar [63-64], followed this approach. Later on, this approach 

was extended to solve the radiation problem of the microstrip dipole on the grounded anisotropic 

substrate, which included uniaxial [4], biaxial [37] and ferrite [8-9] substrates.  

It is worth noting here that most current numerical analyses of transmission lines and patch 

antenna problems on anisotropic substrates [4, 8-9, 37] are involving the application of the T-

DGFs, while very little research has been performed on the numerical application of the E-DGF. 

One relevant and available study is [65], which applies the E-DGFs to solve the microstrip 

antenna on an arbitrarily oriented biaxially anisotropic medium. However, it is again noted here 

that the E-DGF used in [65] restricts its application to a layered biaxial medium only.  

 The survey of microstrip antennas above naturally leads to the fourth research objective 

proposed in Section 1.1, that is, to apply the E-DGFs solving for the properties of microstrip 

dipole antennas printed at the interface of a conductor-backed, general anisotropic slab. Since the 

E-DGFs are developed in the spectral domain, this dissertation will follow Itoh and Menzel‟s 

analysis technique [62] – applying the reaction formulation entirely in the spectral domain to 
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determine the current distribution of microstrip antennas on a single layer, arbitrarily oriented 

general anisotropic medium. The singularity analysis of the E-DGF is also performed to 

accurately calculate the numerical integral for the printed dipole on a layered biaxial slab. With 

the current distribution obtained, all other antenna parameters (including resonant length, input 

impedance, and radiation patterns) can be obtained. In particular, detailed numerical analyses 

will be focused on the printed dipole on a layered gyroelectric medium since there is very little 

such work found from literature survey.    

 

1.3 Chapter Outlines 

 The major contributions of this dissertation include the development of the E-DGFs for a 

layered general anisotropic medium and the numerical applications of the corresponding E-DGFs 

to the radiation of a Hertzian dipole and a printed dipole on a layered geometry. With extensive 

numerical results and detailed analyses, it demonstrates the feasibility and validity of applying 

the E-DGFs to a general layered anisotropic medium with no restriction imposed on the property 

of the medium. This dissertation is organized as follows according to the research objective 

outlined in Section 1.1. 

 In Chapter 2, the eigenvector dyadic Green‟s functions (E-DGFs) for an unbounded 

general anisotropic medium including both reciprocal and non-reciprocal media are derived 

using the eigen-decomposition method. The E-DGFs for the unbounded uniaxial and gyrotropic 

media are presented in Section 2.2 and Section 2.3, respectively. It is discovered that 

modification to the initial E-DGF of an unbounded gyroelectric medium derived in [38] is 

required to fully represent the non-reciprocal behavior of the medium.  
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 Chapter 3 presents the complete formulations of the E-DGF of each region for the half-

space and two-layer anisotropic problems. The E-DGFs with a source inside the isotropic region 

is presented in Section 3.1. In Section 3.2, the modified symmetrical property is derived to obtain 

the DGFs above the source point when the source is inside the isotropic region. Particularly, it is 

pointed out that original symmetrical property, from which the E-DGFs above the source point 

can be obtained from E-DGFs below the source point, needs modifications when the anisotropic 

region is filled with a non-reciprocal medium. In Section 3.3, the modified symmetrical property 

for the DGFs with source and field points in two different regions is derived for a layered non-

reciprocal medium. The usage and limitation of this modified symmetrical property is discussed. 

In Section 3.4, the direct construction method is proposed to obtain the complete E-DGFs with a 

source located in the anisotropic region. A comparison of the E-DGFs obtained through these 

two different approaches (modified symmetrical property and direct construction method) is 

presented and interesting relationship is discovered. 

  In Chapter 4, the E-DGF constructed in Chapter 3 is applied to solve the problem of 

radiation of a Hertzian dipole located above and inside the anisotropic region using the method 

of steepest descent. Compared with the results obtained in [55-57], the concise expressions for 

the radiated fields consisting of the reflection and transmission coefficients provide a 

straightforward physical insight to the radiated field when the dipole is located either above or 

inside the anisotropic layer. In Section 4.1, the focus is on the half-space geometry with a source 

located either in an isotropic or an anisotropic region. In Section 4.2 the formulation of the 

radiated field is presented for a Hertzian dipole embedded either inside an isotropic or an 

anisotropic region of two-layer geometry. In Section 4.3, the explicit formulas obtained in 

previous sections are validated numerically with the available results from current literature. In 
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Section 4.4, numerical analysis is presented in detail for the radiation of a Hertzian dipole placed 

both above and inside the layered gyroelectric slab, and a potential application for the enhanced 

radiation of a dipole using the grounded gyroelectric slab is proposed. 

 In Chapter 5, the problems of the microstrip dipole on a grounded substrate filled with 

various anisotropic media are solved using the Fourier transform domain method of moment 

employing Galerkin‟s method. Section 5.1 presents the formulation of method of moment. In 

Section 5.2, the properties of E-DGFs are studied in detail to facilitate the numerical integration 

obtained from Section 5.1. The current distributions of a printed dipole over the different 

grounded substrates, including uniaxial, biaxial, ferrite (gyromagnetic) and gyroelectric media, 

are presented in Section 5.3. The input impedance, resonant length, and radiation patterns of the 

microstrip dipole over a grounded isotropic slab, a grounded biaxial slab, and a grounded ferrite 

slab are calculated and compared with the previous results in Section 5.4. Also, in this section, 

numerical discussions will be presented in detail to illustrate the effect of the magnitude and 

direction of the biasing magnetic field to the input impedance, resonant length, and radiation 

pattern of the microstrip dipole on a gyroelectric medium.  

 Finally, conclusions are drawn and discussed in Chapter 6. As demonstrated in the 

previous chapters, since the E-DGF developed in this dissertation is for the general anisotropic 

medium with no restrictions imposed on the type of the medium, it has wide applications for a 

Hertzian dipole or a printed dipole on general anisotropic substrates. Future works are also 

briefly discussed. 
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2 DYADIC GREEN’S FUNCTIONS FOR AN UNBOUNDED 

GENERAL ANISOTROPIC MEDIUM 

 In this chapter, the approach in [35] is extended so it can be applied to obtain the 

eigenvector dyadic Green‟s functions (E-DGFs) of an unbounded general anisotropic medium 

with no restriction imposed on the property of the medium. This approach will be called the 

eigen-decomposition method. The basic feature of the eigen-decomposition method is based on 

the calculation of the corresponding eigenvectors from the specific adjoint wave matrix, which is 

obtained from the second-order differential equation in the spectral domain.  

 This chapter is organized as follows. In Section 2.1, the eigen-decomposition method is 

applied to obtain the electric type E-DGF of a general anisotropic medium due to an electric 

current source. In Section 2.2, the eigen-decomposition method is applied to obtain the analytic 

formula of the E-DGF for a uniaxial medium and an isotropic medium. Exact agreement is 

obtained with the previous results. In Section 2.3, E-DGFs of the gyrotropic media are derived 

using the same method. Particularly, it is discovered that the formulations of the E-DGFs for the 

unbounded non-reciprocal medium and reciprocal medium are different and modifications to the 

formulas proposed in [38] are required.  

 

2.1 Eigen-decomposition of DGF for a General Anisotropic Medium 

 A medium is considered anisotropic when its electrical and/or magnetic properties depend 

upon the directions of field vectors. The relations between fields can be written in the following 

form. 
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0 0r rD E B H       
(2.1-1) 

 

 In the equation above, 
0  and 

0  are the free space permittivity and permeability, while

and r r   are the relative permittivity and permeability tensors. For a general anisotropic 

medium, the permittivity and permeability tensors are of the following form.   

xx xy xz

r yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

     

xx xy xz

r yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

 
(2.1-2) 

 

 For reciprocal media such as uniaxial and biaxial media, r  and r  are symmetric 

matrices. In the principal coordinate system (where the coordinate axes are aligned with the 

principal axes of the permittivity tensor), only the diagonal elements of r are non-zero.  

 For non-reciprocal media, such as gyroelectric and gyromagnetic media, the matrices for 

r  and r  are antisymmetric. Even in the principal coordinate system (where the coordinate 

axis is aligned along the direction of the biasing magnetic field), the off-diagonal elements of the 

permittivity and permeability matrices are non-zero and are complex conjugate to each other for 

the lossless media.  

 The complete set of DGFs for a general anisotropic medium with the electric and magnetic 

current sources ( J  and M ) located at 'z z  in the unbounded region has been derived in [39]. 

In this dissertation, the electric type E-DGF which correlates the electric current source and 

electric field as in Eq. (2.1-3) is only utilized.  

'

' ' '3( , ) ( )

v

E G r r J r d r  
 

(2.1-3) 
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 Thus, this section will present the eigen-decomposition method only for the electric type 

E-DGF. Through the analysis, time variation of i te   is assumed. Eq. (2.1-4) shows the electric 

type DGF for an unbounded anisotropic medium derived in [39], which is expressed as a 3D 

Fourier transform of 
EadjW  (adjoint of the electric wave matrix 

EW ). 

   

' '1' '( ) 3 ( ) 30 0

3 3
( , )   or   ( , )

2 2

ik r r ik r rE
E

E

i i adjW
G r r W e d k G r r e d k

W

 

 

 
 

 

 
  

 

 

 

(2.1-4) 

 
1

2

0

0

, 0 ,

0

z y

rrE z x x y z

y x

k k

W k k k k k k k xk yk zk

k k

 


 
 

       
  

  

 

(2.1-5) 

xk , yk  and 
zk are the x, y, z components of the wave vector in the Cartesian coordinate system. 

 The application of the eigen-decomposition method starts with reducing the 3D integration 

of Eq. (2.1-4) to a 2D integration over xk  and yk  by integrating the integrand of 
'( , )G r r  over 

.zk  To address how this is performed, the analysis of the determinant of electric wave matrix 

EW  is required. It is easy to derive that EW  can be expanded as a forth order polynomial in 

terms of zk  with the coefficients of the polynomial as the functions of xk  and yk . Generally, 

with given xk  and yk , there exist four different values of zk  to let the determinant of wave 

matrix (e.g., EW ) to be zero, which appear as four poles of the integrand of DGF 
'( , )G r r . 

Denoting the four solutions for zk
 
to the equation of 0EW   as 

q

zpk ( , ; ,p I II q d u  ), the 

determinant EW  can be written as Booker quartic equation below. 
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4 ( )( )( )( )u d u d

E z zI z zI z zII z zIIW a k k k k k k k k      (2.1-6) 

where 
4a  is a constant dependent on the permittivity and permeability matrix. For a gyroelectric 

medium with z-directed biasing magnetic field, 
4a  is derived in [38]. The notations of q

zpk
 

( , ; ,p I II q d u  ) are explained here. According to the location of q

zpk  on the wave vector 

surface, the subscript p  indicates the type of the characteristic wave for a general anisotropic 

medium with p I  and p II  corresponding to the Type I and Type II waves, respectively. The 

superscript q  indicates the direction of power flow. For propagating waves, the superscripts „u‟ 

and „d‟ indicate the waves carrying power away from the interface in the upward and the 

downward directions, respectively. For evanescent waves (where there exists no power flow 

away from the interface in either upward or downward directions or where the z-component of 

time average Poynting vector is zero), the superscripts of „u‟ and „d‟ indicate the wave 

amplitudes decaying away from the interface along the upward and downward directions, 

respectively. 

 For a lossless medium (for which permittivity and permeability matrices are hermitian 

matrices), the four distinct solutions of zk  can be categorized into the following three cases: two 

pairs of complex conjugate solutions, two real and two complex conjugate solutions or four real 

solutions. The propagating waves are characterized with zk  being the real solutions and 

evanescent waves are characterized with zk  being complex or pure imaginary solutions. It needs 

to be noted here that the wave with a positive real number of 
q

zpk  usually indicates an upward 

propagating wave. However, this is not always the case. Due to the existence of the backward 

wave, the direction of power flow and phase advance can be opposite to each other.   
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 As discussed earlier, solutions of , , ,u d u d

zI zI zII zIIk k k k  pose singularity to the integrand of 

'( , )G r r  shown in Eq. (2.1-4). These singularity poles can be extracted from the integration by 

integrating over 
zk  using residue theorem and the radiation boundary condition at infinity. With 

the assumption of the medium to be slightly lossy, i.e., Im Re ,u u

zI zIk k Im 0,u

zIk   

Im Re ,u u

zII zIIk k Im 0,u

zIIk   the following DGF in the 2D integral form is obtained by 

performing the contour integration over 
zk . 

For 'z z  

 

'

'

( )

' 40

2

( )

4

( )

( )( )( )
( , )

2 ( )

( )( )( )

u
I

u
II

u
ik r rE zI

u d u u u d

zI zI zI zII zI zII

x y
u

ik r rE zII

u d u u u d

zII zI zII zI zII zII

adjW k
e

a k k k k k k
G r r dk dk

adjW k
e

a k k k k k k







 

  

 
 

   
  

     

 





 

 

 

(2.1-7) 

For 'z z  

 

'

'

( )

' 40

2

( )

4

( ) ( ) ( )

( )( )( )
( , )

2 ( ) ( ) ( )

( )( )( )

d
I

d
II

d d d
ik r rzI zI zI

d u d u d d

zI zI zI zII zI zII

x y
d d d

ik r rzII zII zII

d d d u d u

zII zI zII zI zII zII

k e k e k
e

a k k k k k k
G r r dk dk

k e k e k
e

a k k k k k k





 



 

  

 
 

   
 

 
     

 





 

 
 

 

 

(2.1-8) 

where the wave vectors are defined as  

              ;u u d d u u u d

I x x zI I x x zI II x x zI II x x zIIk xk yk zk k xk yk zk k xk yk zk k xk yk zk                

   Applying the eigen-decomposition technique, the adjoint electric wave matrix 

( )q

E zpadjW k  ( , ; ,p I II q d u  ) in the integrand of 
'

( , )G r r shown in Eq. (2.1-7) and Eq. 

(2.1-8)  can be decomposed into a single dyad. Details will be presented below. 
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  It is shown by H. Chen [66, p. 29] that if the determinant of a matrix is zero and the 

adjoint matrix is a non-zero matrix, this matrix may be expressed as a sum of two dyads and the 

adjoint matrix as a single dyad. Thus, for an electric wave matrix, if 
zk  is taken as the value such 

that the determinant of electric wave matrix 
EW  is 0, then the adjoint electric wave matrix 

EadjW  can always be decomposed into the form of a single dyad as follows.   

EadjW uv  
(2.1-9) 

 For now,   is chosen as the eigenvalue of EadjW  and no constraint has been put on the 

vectors of u  and v   in the above dyadic form. It will be shown below that the matrix of EadjW  

has only one non-zero eigenvalue as long as 0EW  . As for the choice of vectors of  u  and v , it 

is dependent on the property of the adjoint electric wave matrix EadjW . The property is affected 

by the solutions for zk of the Booker quartic equation for specific xk  and yk , since zk  can be 

taken as any value due to the integration over the infinite range of xk  and yk .  

 For a non-magnetic general anisotropic medium ( r I  ) with the permittivity matrix 

shown in Eq. (2.1-2), the electric wave matrix is expressed as follows.  

2 2 2 2 2

0 0 0

2 2 2 2 2 2

0 0 0 0

2 2 2 2 2

0 0 0

xx z y xy x y xz x z

rE yx x y yy z x yz y z

zx x z zy y z zz x y

k k k k k k k k k

W kk k k k k k k k k k k

k k k k k k k k k

  

   

  

    
 

       
     

 (2.1-10) 

 With the anisotropic medium being either reciprocal or non-reciprocal, the property of the 

electric wave matrix is different. Thus, to demonstrate the difference in the formulation of DGF 

using the eigen-decomposition method, these two cases are considered here.   
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A. Reciprocal Medium 

 For a lossless reciprocal medium, the permittivity tensor r  is a symmetric matrix. It is 

straightforward to derive from Eq. (2.1-10) that 
EW  is always a symmetric matrix. Thus, the 

adjoint matrix of 
EW  (

EadjW ) is also a symmetric matrix. If zk  is real, then 
EadjW  is a real 

symmetric matrix, and if zk is not real, then 
EadjW  will be a complex symmetric matrix. zk is the 

solution to the Booker quartic equation for given xk  and yk . The following analysis will show 

that ( )E zadjW k  has only one non-zero eigenvalue when , , ,u u d d

z zI zII zI zIIk k k k k . To obtain the 

eigenvalues, the characteristic equation for ( )E zadjW k  is first derived. 

3 2

( ) ( )

( ( )) ( ( ( )) ( ) 0

E z

E z E z E z

f I adjW k

tr adjW k tr adjadj W k adjW k

 

  

 

    

 

 

(2.1-11) 

where tr stands for the trace of a matrix. 

Applying the following identities, [65, p. 13] 

2

E EadjW W  (2.1-12) 

( )E E Eadj adjW W W  (2.1-13) 

when , , ,u u d d

z zI zII zI zIIk k k k k , 0EW  , the characteristic equation of Eq. (2.1-11) reduces to the 

following form.  

3 2( ) ( ( ))E zf tr adjW k   
 

(2.1-14) 

Thus, the eigenvalues for ( )E zadjW k  are 
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1 2 3( ( )), 0E ztr adjW k      (2.1-15) 

 It is known that the unitary diagonalization exists for a real symmetric matrix 
EadjW  and 

dyadic decomposition takes the form as [67]. 

1 1 2 2 3 31 2 3EadjW u u u u u u      (2.1-16) 

Since only one non-zero eigenvalue exists, then  

                                 


( ) , , ; ,q q q q

E zp p p padjW k e e p I II q d u     (2.1-17) 

where 
q

p  is the non-zero eigenvalue of the matrix ( )q

E zpadjW k and 
q

pe  is the corresponding 

eigenvector. 

 A comparison of Eq. (2.1-17) with Eq. (2.1-9) reveals that if the matrix 
EadjW  is real and 

symmetric, then both of the vectors ,u v  will be taken as the eigenvectors corresponding to the 

only one non-zero eigenvalue.  

 However, if , , ,u u d d

z zI zII zI zIIk k k k k  is complex (including the case of being pure imaginary), 

then EadjW  is a complex symmetric matrix. It will be shown below a complex symmetric matrix 

can still be decomposed into a dyad composed of two identical vectors.  

 A non-defective matrix is a matrix which has a full linearly independent set of 

eigenvectors. Since EadjW  is a non-defective matrix [67, p. 186], which can be proved by 

showing that EW has three distinct eigenvalues, EadjW  can be factorized in the following 

diagonal form.  
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1

1
1

1

1 2 3 22

3 3

( )

0 0

, 0 0 ,

0 0

E zadjW k X X

v

X u u u X v

v











 



 

 
   
            
    

 

 (2.1-18) 

ju  is the j th column of X , which corresponds to an eigenvector of 
EadjW  and j  is the j th 

diagonal entry of  , which is the associated eigenvalue. jv


 is the j th row of 
1

X


. 

It is proved earlier that 
EadjW  has only one non-zero eigenvalue when q

z zpk k ; thus, 

  ( )q q q q

E zp p p padjW k e v


  
(2.1-19) 

 

where q

pv  satisfies  

   1, , ; ,
q

q
p pv e p I II q d u



    
(2.1-20) 

 

 An inspection of Eq. (2.1-19) with Eq. (2.1-9) reveals that vector u  is actually the 

eigenvector of ( )q

E zpadjW k  which corresponds to the non-zero eigenvalue, and the vector v  has 

to satisfy the condition 1v u


 . Combining Eq. (2.1-17) and Eq. (2.1-19) shows the complete 

eigen-decomposition for the matrix ( )q

E zpadjW k  according to the different ranges of 
q

zpk . 

            

  

     

If    is real, is a real symmetric matrix.  

( ) , , ; ,

If    is complex,  is a complex symmetric matrix.

 ( ) , 1, , ; ,

q

zp E

q q q q

E zp p p p

q

zp E

q q
q q q q

p pE zp p p p

k adjW

adjW k e e p I II q d u

k adjW

adjW k e v v e p I II q d u




 

  

    

   

 

(2.1-21) 
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 Especially if the eigenvector is taken such that      
2 2 2

1q q q

px py pze e e   , then it is seen 

that 
q q

p pv e  . Thus, for a reciprocal medium (both for lossless and lossy cases), the adjoint 

electric wave matrix can always be decomposed into the form of a single dyad which is 

composed of the eigenvector corresponding to the only one non-zero eigenvalue. However, this 

is not the case if the medium is non-reciprocal.  

B. Non-reciprocal Medium 

 If the medium is lossless and non-reciprocal, which indicates that the dielectric permittivity 

tensor is a hermitian matrix, then it is seen from Eq. (2.1-10) that, if 
q

zpk  is real, the matrix 
EW

and its adjoint matrix ( )E zadjW k  are hermitian matrices, and if 
q

zpk  is complex, the matrix 
EW  

and its adjoint matrix ( )E zadjW k  are non-hermitian matrices. It is known that the unitary 

diagonalization can be applied to a hermitian matrix. For a non-hermitian matrix, similar 

diagonalization can be applied if the matrix is non-defective.  With ( )E zadjW k being a hermitian 

matrix or a non-hermitian and non-defective matrix under the different conditions of 
q

zpk , the 

corresponding eigen-decomposition for a non-reciprocal medium is shown as follows. 

 

  

  

*

If    is real,  is a hermitian matrix.

            ( ) , , ; ,

If   is complex,  is a non-hermitian and non-defective matrix. 

            ( ) ,

q

zp E

q q q q

E zp p p p

q

zp E

q
q q q

pE zp p p

k adjW

adjW k e e p I II q d u

k adjW

adjW k e v






  

    
1, , ; ,

q
q

p pv e p I II q d u


  

 

 

(2.1-22) 
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 If the medium is lossy and non-reciprocal, which indicates that the matrix 
EW  is not a 

hermitian matrix even if 
q

zpk  is real, and then the eigenvalue decomposition for a lossy medium 

always takes the form of 

     ( ) , 1, , ; ,q q q q q q

E zp p p p p padjW k e v v e p I II q d u
 

     (2.1-23) 

 Discussion above shows that Eq. (2.1-24) or the statement in [68] by A. Eroglu – “that for 

unbounded gyroelectric medium the adjoint electric wave matrix in the dyadic Green’s function 

of 2D integration form ( ( )q

E zpadjW k  ( , ; ,p I II q d u  )) can always be decomposed into a 

single dyad form as follows by assuming
EadjW  is a hermitian matrix” – is not correct. 

  
*

( ) , , ; ,q q q q

E zp p p padjW k e e p I II q d u    (2.1-24) 

where  is the non-zero egienvalue of ( ).q q

p E zpadjW k    

 It has been shown that that EadjW  is always a linear matrix and can be decomposed into a 

single dyad form. A careful treatment is required to obtain the dyadic form of DGFs when the 

eigen-decomposition method is used if the medium is gyrotropic or a lossy anisotropic medium. 

Detailed discussions about using the eigen-decomposition method to obtain the DGFs of uniaxial 

and gyrotropic media will be presented in the following sections. 

 

2.2 DGFs of an Unbounded Uniaxial Medium 

 DGFs of uniaxial and isotropic media are considered in this section. To simplify the 

analysis, we consider the electric type Green‟s function for a uniaxial medium with the optic axis 
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aligned along the z–axis, which is characterized by the relative permittivity and permeability 

tensors of the following form. 

1

1

1

0 0

, 0 0

0 0

rr

z

I



  



 
 

 
 
  

 (2.2-1) 

 As shown in previous section, to obtain the electric type DGF, it requires solving the 

inverse of electric wave matrix, which can be obtained using 
1

E
E

E

adjW
W

W



 . Substituting Eq. 

(2.2-1) into Eq. (2.1-5), the determinant of EW  can be expressed in terms of , ,x y zk k k  as follows.  

2 2 2 2 2 2

0 0 1 ( )( )E z z zI z zIIW kk k k k k k k       (2.2-2) 

2 2 2 2 1
0 1 0 1

1

zI zII

z

k k k k k k 


 


     (2.2-3) 

where 
2 2 2.x yk k k    We note that  

,

,

u d

zI zI zI zI

u d

zII zII zII zII

k k k k

k k k k

  

  
    (2.2-4) 

The adjoint electric wave matrix is given as 

11 12 13

21 22 23

31 32 33

E

A A A

adjW A A A

A A A

 
 


 
    

(2.2-5) 

The elements of the matrix in Eq. (2.2-5) are listed as follows. 



25 

 

2 2 2 2 2 2 2 4

11 0 1 1 0 1 1

2 2 2

12 0 1

2 2 2

13 0 1

2 2 2

21 12 0 1

2 2 2 2 2 2 2 4

22 0 1 1 0 1 1

2 2 2

23 0 1

( ) ( )

( )

( )

( )

( ) ( )

( )

z x z x z z

z z x y

z x z

z z x y

z y z y z z

z y z

A k k k k k k k k

A k k k k k

A k k k k k

A A k k k k k

A k k k k k k k k

A k k k k k

 







 



   







   



       

  

  

   

       

  

2 2 2

31 13 0 1

2 2 2

32 23 0 1

2 2 2 2 2 2 4 2

33 0 1 0 1
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 (2.2-6) 

 Applying Eq. (2.2-2) to Eq. (2.1-4) and then Eq. (2.1-4) can be written as follows. 
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 It is seen from Eq. (2.2-2) that for each specific , ,x yk k  four poles of the integrand exist 

when ,z zI zIIk k k   , which are given in Eq. (2.2-3) and Eq. (2.2-4). If the optic axis of the 

medium is not aligned along the z-axis, all the nine elements of the permittivity matrix are non-

zero. In this case, four distinct poles will exist, and Eq. (2.2-7) can be written in a more general 

form as follows. 
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  (2.2-8) 

 Assuming the medium to be slightly lossy, (i.e., Im Re ,Im 0,u u u

zI zI zIk k k   

Im Re ,Im 0u u u

zII zII zIIk k k  ), when performing the contour integration over zk  using the residue 

theorem and the radiation boundary condition at infinity, the DGFs for the regions above and 

below the source point can be written as follows. 
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(2.2-9) 

 For a uniaxial medium with the optic axis aligned along the z-direction, applying Eq. 

(2.2-3) and Eq. (2.2-4) into Eq. (2.2-9), then it can be simplified as follows. 
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(2.2-10) 

 The DGFs given by Eq. (2.2-10) can also be represented in a dyadic form by finding the 

eigenvalues and eigenvectors of the adjoint matrix EadjW . For the uniaxial medium with the 

optic axis aligned along the z-axis, the eigenvalues are obtained as follows. 
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2 2

0 1 1( )u d

I I zk k       (2.2-11) 

2 2 4 2

0 1 1 1 1( ) (1 )u d

II II z zk k k            (2.2-12) 

We also note that  

2 2 2 2 2 2 2 2

1 1 0 1 1(( ) ( ) ) (( ) ( ) ) ( )u u d d

o z zI zII o z zI zII zk k k k k k k k         (2.2-13) 

 It is seen from Eq. (2.2-11) and Eq. (2.2-12) that for both Type I and Type II waves, the 

eigenvalues of upward and downward waves are the same. It will be shown below that 

eigenvectors are the same for Type I upward and downward waves. However, for Type II waves, 

eigenvectors are different for upward and downward waves. When substituting Eq. (2.2-11) and 

Eq. (2.2-12) into Eq. (2.2-10), the DGFs are obtained as follows. 

For 'z z  

'

'
( )2 2 1 1

0 2( )
' 10

2 2

0

( )
( , )

8

II

I

u u
ik r rz

II IIu u
ik r r

I I z

x y u u

zI zII

k k e e e
e e e

G r r dk dk
k k k



 







  

 

  
  

    
 
  
 

 




 

 
 

For 
'z z  

           

'

'
( )2 2 1 1

0 2( )
' 10

2 2

0

( )
( , )

8

II

I

d d
i r rz

II IId d
i r r

I I z

x y u u

zI zII

k k e e e
e e e

G r r dk dk
k k k





 







  

 

  
  

    
 
  
 

 




 

 
 

(2.2-14) 

 The eigenvectors can then be obtained from the characteristic equation with the 

corresponding eigenvalues substituted into the equation. The detailed derivation is given below. 

First, it is shown that the adjoint matrices for Type I upward and downward waves are the same 

and take the following form.  
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(2.2-15) 

where 

 2 2 2 2 2

11 0 1 1 12 21 0 1 1 22 0 1 1( ) , ( ) , ( )z y z x y z xA k k A A k k k A k k               

The adjoint matrix can be simplified by extracting 
2

0 1 1( )zk    as follows. 
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 Also, it is known from Eq. (2.2-11) that the eigenvalues are the same for both the upward 

and downward adjoint wave matrices. The eigenvectors 
u d

I Ie e   can be solved from the 

following equation and it is easily seen that the eigenvectors for upward and downward 

propagating waves are the same. 
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(2.2-17) 

 When denoting  u u
I x y zIk xk yk zk    ,  d d

I x y zIk xk yk zk    , it is easily verified that the 

vectors of Type I waves agree with the formulations of vectors shown in [35]. 
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 It‟s easy to observe from Eq. (2.2-18) that the Type I wave is polarized along the direction 

that is perpendicular to the optic axis and the wave vector, which is denoted as an ordinary wave.  

 Now, let‟s consider the Type II wave. Different from the Type I wave, the adjoint matrices 

for the upward and downward Type II waves exhibit two different forms, though the eigenvalues 

for both waves are the same as seen from Eq. (2.2-12). The adjoint matrices are first derived here 

for both of the Type II upward and downward waves.   
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 (2.2-19) 

 Then the eigenvectors for the upward and downward Type II waves derived from the 

adjoint matrix are shown below. 
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 It is easily observed from Eq. (2.2-20) that the eigenvectors for the upward and the 

downward propagating waves satisfy the following relations when the optic axis of the uniaxial 

medium is along the z-axis.  

, ,d u d u d u

IIx IIx IIy IIy IIz IIze e e e e e      (2.2-21) 

Eq. (2.2-21) agrees with the result obtained in [35]. Also, when denoting wave vectors 

 u u
II x y zIIk xk yk zk     and  d d

II x y zIIk xk yk zk    , multiplying the wave vectors 
u

IIk  and 
d

IIk  for the 

upward and downward waves with the corresponding electric field vectors of  Eq. (2.2-20) shows 

that,  
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 (2.2-22) 

 As shown in Eq. (2.2-22) that the displacement vector D  instead of the electric field is 

perpendicular to the wave vector for Type II wave, which is denoted as an extraordinary wave. 

The polarizations of both ordinary (Type I) and extraordinary (Type II) waves are shown in Fig. 

2-1. For Type I wave (ordinary wave), the E  field is polarized perpendicular to the plane formed 

by the optic axis and the wave vector as shown in Fig. 2-1(a). For Type II wave (extraordinary 
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wave), the E  field is polarized in the plane formed by the optic axis and the wave vector as 

shown in Fig. 2-1(b). 

         

Fig. 2-1: Two different polarizations of plane waves in uniaxial medium: (a) Type I 

(ordinary wave) and (b) Type II (extraordinary wave).  

Limiting Case of Isotropic Medium: 

 If 1 1 1z   , then the uniaxial medium reduces to an isotropic medium. From the 

dispersion relation of the isotropic medium, it is easily seen that the z component of the wave 

vector will satisfy the following equation. 

0 0,d d u u

zI zII z zI zII zk k k k k k      
(2.2-23) 

When                            
0 00 0,
u d

x y z x y zk xk yk zk k xk yk zk        (2.2-24) 

the adjoint matrix for an isotropic medium becomes zero: 

 0EadjW   (2.2-25) 

 Thus, the dyadic Green‟s function can no longer be obtained from the adjoint matrix 

directly. However, it can be obtained by letting 1 1 1z    into the dyadic Green‟s function of 

Eq. (2.2-14) for the uniaxial medium. They can be rewritten for the isotropic case as follows. 

Optic axis 
s
 

k  ( )k s  

Ordinary wave Extraordinary wave 

D E  
D  

E  

 H B   H B  

Optic axis 

(a) (b) 
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(2.2-27) 

In the equations above, the eigenvectors , , ,
d u d u

I I II IIe e e e     are defined below. 
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(2.2-29) 

it is easily verified that  
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 (2.2-30) 

 As shown in the equation above, the E  field of Type I wave is perpendicular to the plane 

of incidence indicating horizontally polarized wave in an isotropic medium, and the E  field of 
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Type II wave is parallel to the plane of incidence and perpendicular to the wave vector, 

indicating vertically polarized wave in an isotropic medium. It is noted here that in this case D  

and E  are in the same direction. The dyadic Green‟s function for an isotropic medium can be 

obtained as follows with h  and v  defined in Eq. (2.2-29). This result is consistent with the result 

shown in [69], which is repeated in Eq. (2.2-31). 
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0

1
( , )
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d d
ik r r ik r r

x y

z

G r r dk dk h h e v v e
k





 
   

 

 

   
     

For 
'z z  

                  
' '

0 0
'

( ) ( )0
0 0 0 0

2

0

1
( , )

8

u u
ik r r ik r r

x y

z

G r r dk dk h h e v v e
k





 
   

 

 

   
    

 

 

(2.2-31) 

 The derivation in this section analytically shows that the eigen-decomposition of EadjW  

into a single dyad holds for the uniaxial medium. The dyads in the DGFs are composed of two 

eigenvectors corresponding to the ordinary and extraordinary waves, respectively.  

 As stated in Section 2.1, EadjW  can always be decomposed into a single dyad composed 

of the eigenvector corresponding to the non-zero eigenvalue of EadjW  since the adjoint electric 

wave matrix is always symmetric for an unbounded uniaxial medium or biaxial medium with an 

arbitrarily rotated optic axis. Thus, the DGFs are expressed in Eq. (2.2-32).  In Eq. (2.2-32) , 

( )q

zpk and ( )q

zpe k  stand for the eigenvalue and eigenvectors of the adjoint matrix ( )q

E zpadjW k , 

where , , p ,q u d I II  . 4a  stands for the coefficient of the fourth order polynomial of zk in 

the expansion of EW . It is expected that for a biaxial medium  ( )u

zIe k  and ( )d

zIe k  correspond to 
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the upward and downward „a‟ waves, and  ( )u

zIIe k  and ( )d

zIIe k  correspond to the upward and 

downward „b‟ waves in [36-37]. 

For 'z z  
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 
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 

 
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'z z  

 

'

'

( )

' 40

2

( )

4

( ) ( ) ( )

( )( )( )
( , )

2 ( ) ( ) ( )

( )( )( )

u
I

u
II

u u u
ik r rzI zI zI
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 



 

  

 
 
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

 
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

 

 

 

 

(2.2-32) 

  

2.3 DGFs of an Unbounded Gyrotropic Medium 

2.3.1 DGFs of a Gyroelectric Medium  

 If the medium is characterized by the relative permittivity tensor in the following form, it 

is called a gyroelectric medium. 

  
0 0 0 // 0 0( ) ( )gI b b i b I b b         


0where shows the direction of the applied constant (dc) magnetic fieldb  

(2.3-1) 

 When the biasing magnetic field direction is along z  direction, i.e., 0b z  , the above 

tensor form can be written in the following matrix form. 
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/ /

0

0

0 0

g

p g

i

i

 

  







 
 


 
    

(2.3-2) 

 For example, if the medium is cold plasma which is a gyroelectric medium, then the 

relative permittivity tensor parameters are given as 

2 2 2

/ /2 2 2 2 2

2

0 0

0

1 , , 1
( )

,

p b p p

g

b b

b p

eB N e

m m

   
  

     

 


      
 

  

  

 

(2.3-3) 

b  is called the gyrofrequency or cyclotron frequency and p  is called the plasma frequency. 

0N  shows the number of free electrons per unit volume, and m  represents the mass of each 

electron with charge e (a negative number). 

                  

Fig. 2-2: Arbitrary biasing magnetic field in the xyz coordinate 

 However, if the biasing magnetic field is rotated by B  with respect to the z-axis and B

with respect to the x-axis in the Cartesian coordinate system as shown in Fig. 2-2, the 

permittivity tensor will have nine non-zero elements. The matrix elements ( , , , )mn m n x y z   are 

derived according to the transformation matrix as follows. 

z 

x 

y 

B  

B  

Biasing magnetic field 
0b  
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1

sin cos 0

, cos cos cos sin sin

sin cos sin sin cos

xx xy xz B B

pc yx yy yz B B B B B

zx zy zz B B B B B

T T T

    

         

       



   
   

      
     

 (2.3-4) 

 The DGFs for the two different cases – one with the biasing magnetic field along the z-

direction and one with an arbitrary direction of B   and B  are derived in this section.  

A. Z-oriented Biasing Magnetic Field  

 First, we consider the case when the biasing magnetic field is along the z-axis. Then, the 

relative permittivity takes the form of Eq. (2.3-3). The determinant of the electric wave matrix is 

written as follows. 

2 2 2 2

2 2 2 2

2 2 2

/ /

0

o y z x y g o x z

E x y g o o x z y z

x z y z o x y

k k k k k i k k k

W k k i k k k k k k

k k k k k k k

 

 







  

    

 

 (2.3-5) 

Expansion of EW  leads to the fourth order equation in zk as follows. 

4 2

2

/ /

2 2 2 4

/ / / /

6 2 2 4 2 2 2 2 2 2 2 2

/ / / /

( )( ) 2

( ) ( )( ) ( )

E z z

o

o x y o

o g o x y g o x y

W ak bk c

a k

b k k k k

c k k k k k k k



   

       

 

   

  



   

       

 (2.3-6) 

 When the biasing magnetic field is along the z-axis, two distinct sets of zk  exist to make 

the determinant of the electric wave matrix to be zero as shown in Eq. (2.3-7).  

2 24 4
,

2 2
zI zII

b b ac b b ac
k k

a a

     
     

(2.3-7) 

Then the determinant of the electric wave matrix can be written as follows. 
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2 2 2 2 2 2 2 2 2

0 //( )( ) ( )( )E z zI z zII z zI z zIIW a k k k k k k k k k       (2.3-8) 

 Following the same procedure as described in Section1.2, the DGF for the unbounded 

gyroelectric medium can be expressed as the dyad form which is obtained from the eigenvalue 

and eigenvectors of the adjoint matrix ( )Eadj W  as follows. 

 
11 12 13

21 22 23

31 32 33

,E zI

A A A

adjW k A A A

A A A

 
 

 
 
  

 (2.3-9) 

2 2 2 2 2 2 2 4

11 0 / / 0 / /

2 2 2 2 4

12 0 / / 0 / /

2 2

13 0

2 2 2 2 4

21 0 / / 0 / /

2 2 2

22 0

( ) ( )
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      

    
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I z x y z g
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





 

     

    

    

    

           

 

 In Eq. (2.3-9), 
2 2 2

I zIk k k   and it represents the wave number of the Type I wave. 

Substituting 
2

Ik  with 
2

IIk   will give the adjoint wave matrix for Type II wave. It needs to be noted 

here that 
*

21 12A A  always holds as long as xk  and yk  are real. However, relation of 

* *

31 13 32 23,A A A A   does not necessary hold and it depends on the choice of zk . According to 

Section 1.2, the adjoint wave matrix can be decomposed into the following dyad form if the 

matrix is a hermitian matrix.  
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       

   

/ / )

 

 

(2.3-10) 

Derivation of the eigenvector is shown below. 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

A A A e e

A A A e e

A A A e e


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     
          

          

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

( ) 0 ( )

( ) 0 ( )

( ) 0 ( )

A e A e A e a

A e A e A e b

A e A e A e c







    

    

    

 (2.3-11) 

Eliminating 3e  from (a) and (b) in Eq. (2.3-11), we obtain 

1 1 2 2 1 11 23 21 13 2 11 23 22 130, ( ) , ( ) ,p e p e p A A A A p A A A A          (2.3-12) 

Eliminating 1e  from (b) and (c) in Eq. (2.3-11), we obtain 

1 2 2 3 1 22 31 32 21 2 31 23 33 210, ( ) , ( )q e q e q A A A A q A A A A          (2.3-13) 

Eliminating 2e  from (a) and (c) in Eq. (2.3-11), we obtain 

1 1 2 3 1 11 32 31 12 2 13 32 33 120, ( ) , ( )s e s e s A A A A s A A A A          (2.3-14) 

Four different cases should be considered here in calculating 1 2 3, , .e e e  

                                Case I: 

1 2

1 2
2

3 1

0 & 0

0,

p p

e s
e

e s

  
 
 

   
 

 (2.3-15) 

                                  Case II: 

1 2

2 2
1

3 1

0 & 0

0,

p p

e q
e

e q

  
 
 
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 

 (2.3-16) 
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Case III: 

1 2 1 2
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2 1
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p p q q
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e p
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 (2.3-17) 

Case IV: 

1 2 1 2

1 1
1 2 3

2 2

0 & 0 & 0 & 0

1, , ,

p p q q

p s
e e e

p s

    
 
 

     
 

 (2.3-18) 

Substituting 1 2 1 2, , ,p p s s  in Eqs. (2.3-12) and (2.3-14) gives the normalized ( )nI zIe k  for case 

IV below. 

13 21 23 23 11

23 12 13 13 22

13 21 23 23 1112 11

13 23 12 13 13 22 13

1

( )
( ) , ( )
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I IzI
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   
 

          

  

 

(2.3-19) 

 ( ( )) ( ) ( )I I IzI zI zInorm e k conj e k e k


      is the square root of the inner product of the vector 

( )I zIe k and itself. 

Then the adjoint electric wave matrix can be expressed in terms of single dyad below. 

, ,np pE padjW e v p I II    (2.3-20) 

If zpk  is real, then EadjW is a hermitian matrix. 

 
*

p npv e   (2.3-21) 

 It is noted here that Eq. (2.3-19) and Eq. (2.3-21) agree with the results obtained in Eroglu 

and Lee [38]. However, the results obtained in [38] state that the DGF for a gyroelectric medium 

http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Inner_product
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always take the form of Eq. (2.3-21), which is not true. As discussed in detail in Section 2.1, if 

zpk  is real, then EadjW is no longer a hermitian matrix, and the vector pv  in Eq. (2.3-20) takes 

the following form. 

1311 12
1 2 3 1 2 3

1 1 1

[ ], , ,p p p p p p p

p p p p p p

AA A
v v v v v v v

e e e  
     

(2.3-22) 

Substituting Eq. (2.3-8) into Eq. (2.1-4) gives 
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(2.3-23) 

 Applying the residue theorem and the radiation boundary condition at infinity, the 3D 

integration can be reduced to 2D integration by integrating over zk . Thus in each region, the 

DGF is obtained as follows. 
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(2.3-24) 

In the above formulas, the wave propagation vectors are defined as follows. 
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   

   
I x x zI I x x zI

II x x zII II x x zII

k xk yk zk xk yk zk

k xk yk zk xk yk zk





     

     

 

 
 (2.3-25) 

 It is seen from above formula that if the biasing magnetic field is along the z-axis, the Type 

I upward and downward waves will have z component of wave vectors of the same magnitude 

and opposite sign. If the biasing magnetic field is oriented along an arbitrary direction, then this 

will be no longer the case.  

B. Arbitrarily Directed Biasing Magnetic Field   

 Assuming the biasing magnetic field is along an arbitrary direction of  B   and B , the 

permittivity takes the form of Eq. (2.3-4). EW  can then be expanded in terms of zk as follows.  

4 3 2

4 3 2 1 0 ,E z z z zW a k a k a k a k a      

2 2 2

4 0 / /

2

3 0 / /

2 2 2 2 2

2 0

2 2

/ /

2 2 2 2 2 2 2 2

/ / / /

( sin cos )

2 ( )( cos sin )sin cos

( [ cos ( sin cos ) sin ]

[( cos sin ) sin ]

[ ( ) ]sin ( 2 )]cos )

B B

x B y B b B

B x B y B B

x B y B B

g o B o B

a k

a k k k

a k k k k

k k

k k k k



 

   

     

    

   

        







   

 

  

  

 

     

2 2 2 2 2

1 0 / / / /

2 2 2 2 2 2 2

0 0 / / / /

2 2 2 2 2 2

/ /

2 [( ) ( ) ]( cos sin )sin cos

([( ) ( ) ]( cos sin ) sin

( )[ ( ) ])

g o x B y B B B

g o x B y B B

o x o

a k k k k k

a k k k k k

k k k k





 

         

        

   

  

  

 

     

     

   

 

(2.3-26) 

 Four distinct solutions of , , ,
zI zII zI zII

u u d dk k k k  exist for a given set of xk and yk . The wave 

vectors with ,
zI zII

u uk k  correspond to upward Type I and Type II waves, while ,
zI zII

d dk k  correspond 

to downward Type I and Type II waves. Then the determinant of the electric wave matrix is 

written as 
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2 2 2

//( sin cos )( )( )( )( )
zI zII zI zII

u u d d

E o B B z z z zW k k k k k k k k k          (2.3-27) 

With zk obtained, the electric wave matrix is given below. 

2 2 2 2 2

2 * 2 2 2 2

2 * 2 * 2 2 2

xy

xz yz

o xx y z x y o xy x z o xz

E x y o o yy x z y z o yz

x z o y z o o zz x y

k k k k k k k k k

W k k k k k k k k k

k k k k k k k k k

  

  

  

    
 
     
 

     

 (2.3-28) 

The adjoint matrix of the electric wave matrix takes the following form. 

11 12 13

21 22 23

31 32 33

E

A A A

adjW A A A

A A A

 
 


 
  

 (2.3-29) 

where 

2 2 2 2 2 2 2 2 4 * 2 *

11 0 0 0( ) ( ) ( ) ( ) ( )z x zz x z yy x y yy zz yz yz y z yz yzA k k k k k k k k k k k k                   
2 2 2 2 2 2 * 2 * 4

12 0 0 0 0( ) ( ) ( )
yz yzz x y xy x y zz x y x z y z xz xz xy zzA k k k k k k k k k k k k k k k k                  

2 2 2 2 2 2 2 2 2

13 0 0 0 0 0( ) ( ) ( )z x z xy y z yy x z yz x y xy xz x z yyA k k k k k k k k k k k k k k k k k                
2 2 2 * 2 2 2 * 2 * 4 *

21 0 0 0 0( ) ( ) ( )z x y xy x y zz x y x z yz y z xz xz yz xy zzA k k k k k k k k k k k k k k k k                  
2 2 2 2 2 2 2 2 4 * 2 *

22 0 0 0( ) ( ) ( ) ( ) ( )z y zz y z xx x y xx zz xz xz x z xz xzA k k k k k k k k k k k k                   
2 2 2 * 2 2 2 4 * *

23 0 0 0( ) ( ( )) ( )z y z xx y z xy x z xz x y yz y z xz xy xx yzA k k k k k k k k k k k k k k k                  
2 2 2 * 2 * * 2 2 * 2 2 2

31 0 0 0 0 0( ) ( ) ( )z x z xy y z yy x z yz x y xy xz x z yyA k k k k k k k k k k k k k k k k k                
2 2 2 2 * * 2 2 4 *

32 0 0 0( ) ( ( )) ( )z y z xx y z xy x z xz x y yz y z xz xy xx yzA k k k k k k k k k k k k k k k                  
2 2 2 2 2 2 2 4 * 2 *

33 0 0 0( ) ( ) ) ( ) ( )z z xx yy z xx x yy y xx yy xy xy x y xy xyA k k k k k k k k k k k                        

Applying Eq. (2.3-27) to the DGF of Eq. (2.1-4) gives the 3D integration form of the DGF.  

''
( )0

3

2 2 2

/ /

( )
( , )

(2 ) ( )( )( )( )

( sin cos )

zI zII zI zII

ik r rE
x y zu u d d

z z z z

o B B

i adj W
G r r e dk dk dk

c k k k k k k k k

c k





   

  



  






   

 

  


 (2.3-30) 

Integrating Eq. (2.3-30) over zk  and applying residue theorem gives the DGF. 
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'For z z
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 


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(2.3-31) 

'For z z
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(2.3-32) 

   
       ;u d u d

I x x zI I x x zI II x x zI II x x zIIk xk yk zk xk yk zk k xk yk zk xk yk zk                 

 Again the adjoint matrix can be represented in the following dyadic form if 
q

zpk is real. 

   

   

* *

* *

2 2 2 2

( ) ( ) , ( ) ( )

( ) ( ) , ( ) ( )

( ( ) ) ( ( )
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d d d d d d d d
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

    
      

    
      

   

   

   

2 2 2 2 4 2 2

0 / / 3 0 / / 0 / /

3

) (3 ) ( ) ( ) ( 2 )
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q
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q q

p x B B y B B zp B

k k k k

k k k k

       

    

        

  

    (2.3-33) 

The eigenvectors are shown below. 

13 21 23 23 11

23 12 13 13 22

13 21 23 23 11 1112

13 23 12 13 13 22 13

1

( )
( ) , ( )

( ( ))

, , , ,

q q

zp pq q
n zp zp qq

pzp

q q
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p

e k A A A A A
e k e k

A A A A Anorm e k

A A A A A AA

A A A A A A A

p I II q u d





 



 
 
 
 

  
 

  
 
    
   

     

 


 (2.3-34) 

 It is noted here that the above eigenvectors are valid only for the case IV discussed previously. 



44 

 

2.3.2 DGFs of a Gyromagnetic Medium 

 A gyromagnetic medium is the medium characterized by the relative permittivity of r  and 

the relative permeability tensor 
r  in the following form. 

   
0 0 0 // 0 0( )r gI b b i b I b b         (2.3-35) 

 When the biasing magnetic field direction is along z  direction, i.e., 0b z   the above tensor 

form can be written in the following matrix form of p , which indicates the relative 

permeability in the principal coordinate system. 

/ /

0
/ / 0 0 02 2 2 2

0 0

0

0

0 0

1 , , 1, ,

g

r p g

m m
g m

i

i

M H

 

   



  
      

   







 
 

  
 
  

      
 

 (2.3-36) 

 m is defined as the Larmor precession frequency of the electron in the applied magnetic 

field 0H and 0  is defined as the resonant frequency. 0M  is the saturated magnetization vector 

and is in the same direction as the applied magnetic field 0H .  is the gyromagnetic ratio and its  

value is given as 
52.21*10

rad m

s A turns


  
   

  
. If the biasing magnetic field is along an 

arbitrary direction, the permeability matrix will take the following form.  

1

sin cos 0

, cos cos cos sin sin

sin cos sin sin cos

xx xy xz B B

pr yx yy yz B B B B B

zx zy zz B B B B B

T T T

    

         

       



   
   

      
     

 (2.3-37) 

With the permeability matrix of Eq. (2.3-37), the electric wave matrix is derived below. 
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1
2

0 1

1

11 12 13

2

21 22 23 0 1

31 32 33

0 0

0 0

0 0

rE r

z y xx xy xz z y

z x yx yy yz z x r

y x zx zy zz y x

W k k k I

a a a k k k k

a a a k k k k k I

a a a k k k k

 

  

   

  





  

      
     

        
             

 (2.3-38) 

The determinant of the electric wave matrix EW  can then be expanded in terms of zk . 

 4 3 2

4 3 2 1 0

1
E z z z z

r

W a k a k a k a k a


      (2.3-39) 

        

2 2 2
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3 0 / /
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

 

    

      

         

         







   

 

  

    

      2

2 2 2 2 2

1 0 / / / /

2 2 2 2 2 2 2

0 0 / / / /

2 2 2 2 2 2

/ /

)]cos }

2 [( ) ( ) ]( cos sin )sin cos

{[( ) ( ) ]( cos sin ) sin

( )[ ( ) ]}

r B

r g o r x B y B B B

r z o r x B y B B

o r g o

a k k k k k

a k k k k k

k k k k





 



           

          

    

  

  

 

     

     

   

 

It is easily seen that Eq. (2.3-39) has four distinct solutions of , , ,
zI zII zI zII

u u d dk k k k .   

2 2 2

/ /

1
( sin cos )( )( )( )( )

zI zII zI zII

u u d d

E o r B B

r

W k k k k k k k k k    


       (2.3-40) 

 Comparison of the coefficients of the dispersion equation [Eq. (2.3-39)] for gyromagnetic 

medium with the coefficients of the dispersion equation for a gyroelectric medium [Eq. (2.3-26)] 

shows that except the factor 
1

r
 (determinant of the relative permeability matrix) being added 

to each term, duality relation exists between Eq. (2.3-39) and Eq. (2.3-26). Substituting each 

term of r  in Eq. (2.3-26) with the corresponding matrix elements of 
r  gives Eq. (2.3-39). 
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Then following the same procedure used to obtain the DGF for the gyroelectric medium, the 

electric type dyadic Green‟s function for a gyromagnetic medium is obtained as follows.  

'For z z
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(2.3-41) 

'For z z
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(2.3-42) 

Again the adjoint matrix can be represented in the following dyadic form if 
q

zpk is real. 

   

   
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d d d d d d d d
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where 

              3 sin cos sin sin cosq q

p x B B y B B zp Bk k k k        

(2.3-43) 

 The eigenvectors can be obtained using Eq. (2.3-34) with an appropriate substitution. The 

DGF of Eq. (2.3-43) agrees with what‟s obtained in Park [40]. However, it is noted here that the 

DGF of the unbounded gyromagnetic medium obtained in [40] is only valid for the case when 
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the adjoint wave matrix is a hermitian matrix with q

zpk being a real number. Combining all the 

special cases considered in this chapter, the DGFs of an unbounded general anisotropic medium 

can be summarized in the following form. 

'For z z
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3 DYADIC GREEN’S FUNCTIONS FOR HALF-SPACE AND 

TWO-LAYER GEOMETRIES 

 In this chapter, the electric type eigenvector dyadic Green‟s functions (E-DGFs) for the 

half-space and two-layer problems with a source located either in the isotropic or anisotropic 

region are obtained. In Section 3.1, the DGFs for the regions below the source point when it is 

located in the isotropic region are derived. In Section 3.2, the modified symmetrical property 

applicable to the DGFs with source and field points in the same region (Region 0) is derived to 

obtain the DGFs above the source point when the anisotropic region is non-reciprocal. In Section 

3.3, the modified symmetrical property for the DGFs with source and field points in two 

different regions is derived for a layered geometry with a non-reciprocal medium. The usage and 

limitation of the modified symmetrical property is discussed. To overcome the limitation of the 

modified symmetrical property in Section 3.3, the direct construction method is proposed to 

obtain the complete DGFs with a source located in the anisotropic region in Section 3.4. A 

comparison of the DGF for the isotropic region with a source located in the anisotropic region 

derived using two different approaches is presented and interesting relationship is discovered.  

 

3.1 Dyadic Green’s Functions with Source inside the Isotropic Region 

 In this section, the DGFs of half-space and two-layer problems are given for each region 

below the source point when a source is located in the isotropic region. The half-space and two-

layer geometries are shown in Fig. 3-1(a) and (b), respectively. For both half-space and two-

layer geometries, Region 0 is an isotropic region with relative permittivity and permeability 
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denoted as 0r  and 0r , while Region 1 is an electrically anisotropic region with relative 

permittivity tensor 1r
 
and relative permeability 

1r . For a two-layer geometry, the thickness of 

the anisotropic region is denoted as „d‟, and Region 2 is an isotropic region with relative 

permittivity and permeability of 2r  and 2r . For both problems, the source is located at 'z z  

in Region 0.  

 

Fig. 3-1: Geometry of (a) half-space and (b) two-layer problem.  

3.1.1 DGF for the Region of 
'z z  

 For the half-space problem shown in Fig. 3-1(a), the DGFs of interest are 
(0,0) '

( , )G r r  and 

(1,0) '

( , )G r r . The first and second indices of superscript of the DGFs are used to indicate the 

region of the field and source points, respectively, while r  and 
'

r  indicate the field and the 

source points. 
(0,0) '

( , )G r r  refers to the DGF of Region 0 with source in Region 1, and 

(1,0) '

( , )G r r corresponds to the DGF of Region 1 with source in Region 0. When considering the 

two-layer geometry shown in Fig. 3-1(b), the DGF for Region 2 is denoted as 
(2,0) '

( , )G r r  in 

addition to the DGFs of  
(0,0) '

( , )G r r  and 
(1,0) '

( , )G r r . With DGFs for each region of a two-layer 

z=0 
z=0 

z=−d 

z 
z 

'z z  
'z z  
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problem assigned, the Maxwell‟s equations for the DGFs of the two-layer geometry are written 

below.  

(0,0) ' '
2

0 0 0

(1,0) '2
10 1

(2,0) '
2

20 2

( , ) ( )

( , ) 0

( , ) 0

r r

r r

r r

I k G r r I r r

I k G r r

I k G r r

  
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 

    
  

   
  
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





 

(3.1-1) 

 

 The continuity conditions of the tangential electric and magnetic fields require the two-

layer DGFs to satisfy the following boundary conditions. 

At 0z   
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0 1

( , ) ( , )

1 1
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(3.1-2) 

 

At z d   

(1,0) (2,0)' '
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1 2
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1 1
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 
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(3.1-3) 

 

It is noted here that for a half-space problem, the DGFs have to satisfy Eq. (3.1-2) only.   

 By applying the same matrix method used in [35] to the DGFs of the unbounded 

anisotropic region obtained in Chapter 1, the DGFs for each region of a half-space problem can 

be expressed in the dyadic form below.  

 

 

 



51 

 

'For 0 z z 
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(3.1-5) 

 

 It is noted here to be consistent with the notations of DGFs derived in [37]; the constant 

coefficient 0i  is extracted out from Green‟s function of Eq. (3.1-4) and Eq. (3.1-5). Through 

all the following discussions, 0i  is not included in the DGFs. 

In Eq. (3.1-4) and Eq. (3.1-5), 0k and 0  denote the wave vectors of upward and downward 

propagating (or decaying) waves along the z-direction in Region 0, respectively.  

   
0 0 0 0,x y z x y zk xk yk zk xk yk zk        

(3.1-6) 

 

The components of the wave vector in Eq. (3.1-6) have to satisfy the dispersion relation of 

the Region 0 filled with the isotropic medium as follows. 

2 2 2 2 2 2

0 0 0 0 0 0 0,x y z r rk k k k k         
(3.1-7) 
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
0 0( )zh k  and 

0 0( )zv k  correspond to the two different polarized electric fields in Region 0 with 

the propagating direction being either upward or downward indicated by the sign of 0zk . It has 

been discussed in Chapter 2 that 0 0( )zh k denotes the wave polarized perpendicular to the 

incidence plane, while 0 0( )zv k   denotes the wave polarized parallel to the incidence plane and 

perpendicular to the wave vector. For convenience, the four different polarized electric fields in 

the isotropic regions for a two-layer geometry are simplified as  ,n nh h
 

,n nv v
    with the subscript n 

= 0 corresponding to Region 0 and n = 2 corresponding to Region 2. The expressions of the 

electric fields are given below. 
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(3.1-10) 

 

 mk and m  denote the wave vectors of Region 1 for upward and downward propagating 

characteristic waves of Type m ( ,m I II ), respectively.  
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(3.1-11) 

 

 As shown in Chapter 2, the four different values n

zmk ( , and  n= ,m I II u d ), indicating the 

z component of wave vector for Region 1, can be obtained by setting the determinant of electric 

wave matrix to be zero with given tangential components of wave vector.   
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 The normalized electric field vectors for the upward and downward characteristic waves of 

Type m are denoted as ( )
u

u
m zme k  and ( )

d
d

m zme k  ( ,m I II ), respectively. As described in Chapter 

2, these vectors can be obtained using the eigen-decomposition method.    

  The terms of 
01R and 

01X indicate the half-space reflection and transmission coefficients 

when the wave is incident from Region 0 to Region 1. The first and second indices of the 

subscript indicate the polarizations of the incident wave and transmitted wave, respectively.  

 For a two-layer problem, the dyadic Green‟s functions in each region can be expressed in 

dyadic forms as follows. 
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For z d 

 






2

2
'

0

2

2

2 2

0 0

(2,0) ' 2 2

2

0
2 2

0 0

2 2

( )
( )

( )1
( , )

8 ( )
( )

( )

i r

hh z

z
i r

hv z i r

x y
i r

z
vh z

z
i r

vv z

X h k e
h k

X v k ei
G r r dk dk e

k X h k e
v k

X v k e



















  
  
     

  
  

   
     


















 

 

 

(3.1-14) 

 

In Eq. (3.1-12), R  stands for the two-layer reflection coefficients of the reflected wave with   

polarization from the incident   polarized wave. In Eq. (3.1-13), A and B  stand for the 

coefficients of the downward and upward waves with   polarization converted from incident 

wave with  polarization inside the anisotropic medium. In Eq. (3.1-14), X  
stands for the 

two-layer transmission coefficients of the transmitted wave with   polarization from the 

incident  polarized wave. 

       

Fig. 3-2: Amplitude vectors of waves in the two-layered geometry. 

 The total 16 reflection and transmission coefficients for the two-layer problem can be 

calculated applying the boundary conditions at z=0 and z=−d. The procedure of obtaining the 

coefficients can be significantly simplified by decomposing the two-layer problem into two half-
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space problems as shown in [35]. This approach is briefly reviewed here since the similar 

approached will be utilized to obtain complete DGFs of all the regions when the source is located 

in the anisotropic region in Section 3.4.1. As shown in Fig. 3-2, “a” stands for the amplitude 

vectors of the downward waves generated by the source in Region 0. “b” stands for the 

amplitude vectors of the total reflected waves along the upward direction due to the boundary at 

z=0 in Region 0. “A” stands for the amplitude vectors of the total downward waves in Region 1 

and “B” stands for the amplitude vectors of the total upward waves in Region 1. “c” stands for 

the amplitude vectors of the total transmitted downward waves in Region 2.   

 From the discussion in Chapter 2, it is known that in an anisotropic medium, two different 

polarized characteristic waves exist along a specific direction described by , ,x y zk k k . The two 

polarizations in Region 1 are assigned as the Type I and Type II polarized waves, which can be 

obtained using the eigen-decomposition method described in Chapter 2. For an isotropic medium 

as in Region 0 and Region 2, the two polarizations correspond to the h- and v- polarized waves 

as shown in Eq.(3.1-8) - Eq. (3.1-10). Thus, all the waves (including the incidence wave “a” and 

reflected wave “b” in Region 0, the downward and upward propagating waves (“A” and “B”) in 

Region 1, and the transmitted wave “c” in Region 2) can all be expressed as a 2 by 1 vectors, 

which corresponds to the coefficients for the normalized electric field vectors of two different 

polarizations in the given region. Then, all the waves in each region can be related through the 

half-space reflection and transmission matrices as follows. 

01 10 12

01 10 12
,

b R X a B R
A

A B c
X R X

   
                      

   

 
(3.1-15) 
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In Eq. (3.1-15), 
pq

R  (p, q=0, 1, 2) is a 2 by 2 matrix which gives the half-space reflection 

coefficients of waves incident from Region p to Region q. 
pq

X is a 2 by 2 matrix which gives the 

half-space transmission coefficients of waves incident from Region p to Region q. The half-

space reflection and transmission matrices are expressed in the form below.  

01 01 01 0101 01

01 01 01 01
,hh vh hh vh

hv vv hv vv

R R X X
R X

R R X X

   
    
   

 
(3.1-16) 
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d u d u

eIeII zI zII eIIeII zII zII

I I II I

I II II II

R
R i k k d R i k k d

R i k k d R i k k d

e e

e e

  
       
   

 
       

    

  
 
 
 

   
(3.1-17) 
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12 12

2 2

12 12

2 2
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d d

eIv zI z eIIv zII z

I h II h

I v II v

X
X i k k d R i k k d

R i k k d R i k k d

X X

X X

  
       
   

 
       

    

  
 
 
 

    
(3.1-18) 

 

 It is noted here that 
12

eIeIR  is reflection coefficient with reference plane at z=0, the phase 

shift at z=−d is taken into account by the multiplication of the exponential terms as shown in Eq. 

(3.1-17). Rearranging Eq. (3.1-14) gives the following matrix relationships. 

01 10 12 10 12 01
1

10 12 01
1

12 10 12 01
1

12 10 12 01
1

,  ( )

,  ( )

,   ( )

,   ( )

b Ra R R X R I R R X

A Da D I R R X

B Ua U R I R R X

c Xa X X I R R X









   

  

  

  

 

(3.1-19) 
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Substituting the half-space reflection and transmission coefficients into Eq. (3.1-19) gives all the 

coefficients of the DGFs shown in Eq. (3.1-12) –Eq. (3.1-14) as follows. 
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(3.1-20) 

 

1
10 12

1 2

2 1

L L
I R R

M M


  

    
   

 

(3.1-21) 

 

where , , ,I II  stand for the polarizations of the wave. 

 The procedure described in this section provides the DGFs for all the regions below the 

source point when the source is located in Region 0 regardless of Region 1 being either a 

reciprocal or non-reciprocal medium. The DGF above the source point can be directly obtained 

from the transpose of the DGF below the source point if Region 1 is filled with a reciprocal 

medium as shown in [37].  However, existing symmetrical property does not work for the case 

with Region 1 being a non-reciprocal medium, which is of the main interest in the next section. 

 

3.2 Modified Symmetrical Property for 
(0,0) '

( , )G r r of the Region 'z z  and 0 'z z   

 In this section, a modified symmetrical property is proposed to correlate the DGFs for the 

regions above and below the source point when Region 1 is filled with a non-reciprocal medium. 
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Applying the modified symmetrical property, the DGF above the source point is further obtained 

to facilitate the formulation of the radiated filed which will be demonstrated in Chapter 4.   

3.2.1 Proof of Modified Symmetrical Property of 
(0,0) '

( , )G r r  

 In this section, it is proven that when the source point and field point are both located in 

Region 0, the symmetrical property of the dyadic Green‟s function in Eq. (3.2-1) is always valid, 

even for the anisotropic region filled with a non-reciprocal medium. 

1 1

(0,0) (0,0)' '

( , ) ( , )
r r

G r r G r r
 







 

  

 
(3.2-1) 

 

   

Fig. 3-3: Two different geometries for the proof of modified symmetrical property. 

 Two different geometries as shown in Fig. 3-3 are considered here to facilitate the proof of 

the modified symmetrical property. In both Fig. 3-3(a) and (b), Region 0 and Region 2 are 

denoted as the isotropic regions. The relative permeability and permittivity for Region 0 and 

Region 2 are denoted as 0 0,r r   and 2 2,r r  . However, the media in Region 1 are different for 

Fig. 3-3(a) and (b). Region 1 is denoted as the anisotropic medium with relative permeability and 

permittivity of 11 ,
T

rr   for the geometry shown in Fig. 3-3(a), while in Fig. 3-3(b), Region 1 is 

denoted as the anisotropic medium with relative permeability and permittivity of 11 , rr  . In 

2r
 1r

 

z=0 

z=−d z=−d 

z=0 
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addition to the different media assigned for Region 1, the source locations are also different for 

Fig. 3-3(a) and (b). In Fig. 3-3(a), the source is located at 2r  and in Fig. 3-3(b), the source is 

located at 1r  in Region 0. 

 In order to prove Eq. (3.2-1), the dyadic-dyadic Green‟s theorem of the second kind given 

by Tai [34] is used, which is shown below. 

    
V

S

T

Q P Q P dv

n Q P Q n P ds

 



              

                 





 

 
  

(3.2-2) 

 

Step 1: Let 
(0,0) (0,0)

1 2( , ), ( , )P G r r Q G r r 
 

 It is noted here Q  and P represent the DGFs of Region 0 for the geometries shown in Fig. 

3-3(a) and (b), respectively. Thus, for the region of 0z  , Q  and P satisfy the following wave 

equations. 

2 2

0 0 0 2 0 0 0 2

2 2

0 0 0 1 0 0 0 1

( ) ( )

( ) ( )

r r r r

r r r r

Q k Q I r r Q k Q I r r

P k P I r r P k P I r r

     

     

       

       
 

(3.2-3) 

 

Substituting Eq. (3.2-3) into Eq. (3.2-2) gives 

  
 

2

0 0 0 2

2V S
0 0 0 1

( )

( )

r r

T

r r

n Q Pk Q I r r P

dv ds

Q k P I r r Q n P

  

  





                   
   

                       

 


 


 

(3.2-4) 

 

The volume integral is for Region 0 and the closed surface integral is for the surface bounding 

the volume of Region 0. With Q  and P  substituted, Eq. (3.2-4) is equivalent to  
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



(0,0) (0,0)
2

0 0 0 2 2 1
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2V

2 0 0 0 1 1
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2 1

( , ) ( ) ( , )
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

 

(3.2-5) 

 

Simplifying Eq.  (3.2-5) gives 
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12 1 2
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




 

(3.2-6) 

 

The closed surface integral can be reduced to a surface integral about the z=0 plane by 

employing the radiation boundary condition as z  . In this case, Eq. (3.2-6) reduces to 

(0,0) (0,0)

2 1(0,0) (0,0)

2 1 1 2
(0,0) (0,0)

0

2 1

( , ) ( , )

( , ) ( , )

( , ) ( , )

T
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z G r r G r r

G r r G r r ds

G r r z G r r







    
        

    
    

         



 


 

(3.2-7) 

 

It is noted that the negative sign is due to the fact that n z  . 

 The continuity conditions of the electric field and magnetic field at 0z   for the geometry 

shown in Fig. 3-3(a) require the DGFs to satisfy the following boundary conditions.  

(0,0) (1,0)

1 1

(0,0) (1,0)

1 1

0 1

( , ) ( , ),

1 1
( , ) ( , )

r r

z G r r z G r r

z G r r z G r r
 

  

  

 

 

 

(3.2-8) 
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  The continuity conditions of the electric field and magnetic field at 0z   for geometry 

shown in Fig. 3-3(b) require the DGFs to satisfy the following equations. 

(0,0) (1,0)

2 2

(0,0) (1,0)

2 2

0 1

( , ) ( , ),

1 1
( , ) ( , )

r r

z G r r z G r r

z G r r z G r r
 

  

  

 

 

 

(3.2-9) 

 

The following identity is also useful. 

 z I z I


    
 

(3.2-10) 

 

 Applying the boundary conditions of Eq. (3.2-8) and Eq. (3.2-9) together with the identity 

of Eq. (3.2-10) to Eq.(3.2-7), it reduces to 
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(3.2-11) 
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Step 2: Let 
(1,0) (1,0)

1 2( , ), ( , )P G r r Q G r r 
 

 It is noted here Q  and P represent the DGFs of Region 1 for the geometries shown in Fig. 

3-3(a) and (b), respectively. With Q  and P substituted in Eq. (3.2-2),  the volume integral in Eq. 

(3.2-2) is for Region 1 and the closed surface integral is for the surface bounding the volume of 

Region 1. Thus for Region 1, Q  and P satisfy the following wave equations.  

2 2
1 10 1 0 1

2 2
1 10 1 0 1

0

0

T T

r rr r

r rr r

Q k Q Q k Q

P k P P k P

   
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    

 (3.2-12) 

 

 Substituting Eq. (3.2-12) together with defined Q  and P  into Eq. (3.2-2) and replacing 

the closed surface integral with a surface integral about the z=0 plane gives  
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It should be noted that n z   for the 0z   plane and n z   for the z d   plane. Applying the 

identity of Eq. (3.2-10), Eq. (3.2-13) can be written as 
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 (3.2-14) 

 

Step 3: Let 
(2,0) (2,0)

1 2( , ), ( , )P G r r Q G r r 
 

It is noted here Q  and P represent the DGFs of Region 2 for the geometries shown in Fig. 

3-3(a) and (b), respectively. Thus, for the region of z d  , Q  and P satisfy the following wave 

equations. 

2 2

0 2 2 0 2 2
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    
  

(3.2-15) 

 

Substituting Eq. (3.2-15) into Eq. (3.2-2) gives 
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(3.2-16) 
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The volume integral is for Region 2 and the closed surface integral is for the surface bounding 

the volume of Region 2. With Q  and P  substituted, Eq. (3.2-26) is equivalent to  
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(3.2-17) 

 

Simplifying Eq.  (3.2-17) gives 


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(3.2-18) 

 

The closed surface integral can be reduced to a surface integral about the z d   plane by 

employing the radiation boundary condition as z  . In this case, Eq. (3.2-6) reduces to 
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(3.2-19) 

 

 The continuity of the electric field and magnetic field at z d   for the geometry shown in 

Fig. 3-3(a) requires the DGFs to satisfy the following boundary conditions.  
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(3.2-20) 

 

  The continuity of the electric field and magnetic field at z d   for geometry shown in 

Fig. 3-3(b) requires the DGFs to satisfy the following boundary conditions. 
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(3.2-21) 

 

 Applying the boundary conditions of Eq. (3.2-20) and Eq. (3.2-21) together with the 

identity of Eq. (3.2-10) to Eq. (3.2-19), it reduces to 
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(3.2-22) 

 

Eq. (3.2-22) is equivalent to 
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(3.2-23) 

 

Substituting Eq. (3.2-33) into Eq. (3.2-14) leads to  
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With Eq. (3.2-24) substituted into Eq. (3.2-11), the following symmetry property is obtained.  
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 

 

(3.2-25) 

 

3.2.2 DGF for the Region of 'z z  

The DGFs for the region of '0 z z   in Region 0 of the half-space problem is already 

obtained in Section 3.1.1, which is repeated below.  
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(3.2-26) 

 

Using the symmetrical property derived in Eq. (3.2-25), the DGF for the region of 'z z  is 

obtained as follows. 
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(3.2-27) 

 

 In order to make the above equation have more clearly physical meaning, the following 

substitution is applied to the above equation, 

,x x y yk k k k 
 

(3.2-28) 

 

Under this transformation, the field vectors in the isotropic Region 0 become as follows. 

 
0 00 0 0 0( , ) ( , , ), ( , ) ( , )x y z x y z x y x yh k k k h k k k v k k v k k
 

        
 

(3.2-29) 

 

Substituting Eq. (3.2-29) into Eq. (3.2-27), the DGF for the region above the source point (
'z z ) 

is written as follows. 
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(3.2-30) 

 

It can be shown numerically that the following relation holds for a biaxial medium. 
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(3.2-31) 

 

For the two-layer geometry, the dyadic Green‟s function for the region above the source 

point ( 'z z ) can also be obtained using the symmetrical property of Eq. (3.2-25). 
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(3.2-32) 

 

Same as the half-space reflection coefficients, it can also be shown numerically that the two-

layer reflection coefficients satisfy the following relation for a two-layer problem with the 

anisotropic region being a biaxial medium. 

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

hh x y hh x y

hv x y vh x y

vh x y hv x y

vv x y vv x y

R k k R k k

R k k R k k

R k k R k k

R k k R k k

  

   

   

  
 

(3.2-33) 

 

It needs to be noted here no such kind of relationship holds for both the half-space problem 

and two-layer geometry filled with a non-reciprocal medium. The DGF of 
(0,0) '

( , )G r r  for the 

region 
'z z  obtained here has no restriction to the property of the medium. The anisotropic 
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medium could be either reciprocal or non-reciprocal medium. It is crucial to obtain the DGF of 

(0,0) '

( , )G r r  for the region of 'z z  to calculate the radiated field due to a current source in the 

presence of a layered geometry with arbitrary anisotropic medium involved, which will be shown 

in detail in Chapter 4.   

 

3.3 Modified Symmetrical Property for 
(1,0) '

( , )G r r  and 
(0,1) '

( , )G r r   

 In order to obtain the far field in Region 0 when the source is located in Region 1 

(anisotropic region), the DGF for region z>0 is usually needed. It is known from [37] that if the 

source is located in Region 1 (anisotropic medium) instead of Region 0 (isotropic medium), the 

DGF for the region above the source point can be obtained from the DGF for the anisotropic 

region below the source point using symmetrical property if the medium is reciprocal. What if 

the anisotropic region containing the source is non-reciprocal with the permittivity or 

permeability as a hermitian matrix instead of a symmetric matrix, can the symmetrical property 

still be applied? The reciprocity relationships for the unbounded gyrotropic media is considered 

in [70]. However, symmetrical property for a layered geometry with a non-reciprocal medium 

involved is not investigated previously, which is of primary interest in this section.  

3.3.1 Proof of the Modified Symmetrical Property 

  It will be shown in this section that 
(0,1) '

( , )G r r  can be obtained from 
(1,0) '

( , )G r r which 

corresponds to the DGF of Region 1 with the source located in Region 0 for a layered geometry 

as derived from Section 3.1. In particular, the following relationships hold for a layered 

geometry with the anisotropic region filled with a reciprocal medium. 
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(0,1) (1,0)
0

2 1 1 2

1

Region 1 is reciprocal: 

( , ) ( , )r

r

G r r G r r





 (3.3-1) 

 

 Eq. (3.3-1) states that for the half-space problem or two-layer geometry filled with a 

reciprocal medium, the DGF in Region 0 (isotropic region) when source is located inside the 

anisotropic region can be obtained from the transpose of the DGF of Region 1 with source in 

Region 0. If the source is embedded inside the anisotropic region of a non-reciprocal medium, 

the modified symmetrical property is given in Eq. (3.3-2).  

1 1

(0,1) (1,0)
0

2 1 1 2( 1) ( 1)
1

Region 1 is non-reciprocal:

( , ) | ( , ) |
r r

r

region region
r

G r r G r r
   








 


 (3.3-2) 

 

 Eq. (3.3-2) states that the DGFs of Region 0 for the both the half-space and two-layer 

problems can still be obtained from the DGFs of Region 1 with source located in Region 0 under 

the condition that Region 1 is filled with the medium whose permittivity tensor is the transpose 

of that of the original medium of Region 1. For the gyrotropic medium, this condition is 

equivalent to reversing the direction of the biasing magnetic field of Region 1.  

 Observing Eq. (3.3-1) and Eq. (3.3-2) reveals that Eq. (3.3-1) is actually a special case of 

Eq. (3.3-2) as the relationship of 1 1r r 


  holds for a reciprocal medium. Thus, the proof of Eq. 

(3.3-2) is only presented. Dyadic-dyadic Green‟s theorem of the second kind (Eq. (3.2-2)), given 

by Tai [34] is again essential in this proof of the modified symmetrical property. 

 To facilitate the proof of the modified symmetrical property, two different geometries are 

considered as shown in Fig. 3-4. 
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Fig. 3-4: Two different geometries constructed here for the proof of symmetrical property 

when the source are in different regions. 

 In both Fig. 3-4(a) and Fig. 3-4(b), Region 0 is denoted as the isotropic region with the 

relative permittivity and permeability of 0 0,r r  , and Region 2 is denoted as the isotropic region 

with the relative permittivity and permeability of 2 2,r r  . However, the source locations and the 

media for Region 1 are different for the two geometries. In Fig. 3-4(a), Region 1 is filled with the 

medium characterized by 1 1,
T

r r   and the source is located at 2r  in Region 0, while in Fig. 

3-4(b), the source is located at 1r  in Region 1 with Region 1 filled with the medium of 1 1, .r r    

Step 1: Q  and P  are assigned as follows. 

(0,0) (0,1)

2 1( , ), ( , )Q G r r P G r r   
(3.3-3) 

 

  In Eq. (3.3-3), Q  represents the dyadic Green‟s function of Region 0 when the source is 

Region 0 for the geometry shown in Fig. 3-4(a), and P  represents the dyadic Green‟s function 

of Region 0 when the source is in Region 1 for the geometry shown in Fig. 3-4(b). Thus, for 

Region 0 the DGFs of Q  and P satisfy the wave equations shown below.  

(0,0) (0,0)
2

2 0 0 0 2 2

(0,1) (0,1)
2

1 0 0 0 1

( , ) ( , ) ( )

( , ) ( , ) 0

r r

r r

G r r k G r r I r r

G r r k G r r

  

 

   

  

 (3.3-4) 

 

2r  

1r  z=0 

z=−d z=−d 

z=0 

(a) (b) Region 2 
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Substituting Eq. (3.3-3) into Eq. (3.2-2) yields 





(0,0) (0,1)

2 1

(0,0) (0,1)
V

2 1

(0,0) (0,1)

2 1

(0,0) (0,1)
S

2 1

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

T

G r r G r r

dv

G r r G r r

n G r r G r r

ds

G r r n G r r







  
    

 
   
    

    
        

  
    

         














 (3.3-5) 

 

 In the above equation, the volume integration is over Region 0 and the closed surface 

integration is for the surface bounding the volume of Region 0 as shown in Fig. 3-4. Substituting 

Eq. (3.3-4) into Eq. (3.3-5) results in 





(0,0) (0,1)
2

0 0 0 2 2 1

(0,0) (0,1)
2V

2 0 0 0 1

(0,0) (0,1)

2 1

(0,0) (0,1)

2 1

( , ) ( ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

r r

r r

T

k G r r I r r G r r

dv

G r r k G r r

n G r r G r r

G r r n G r r

  

 







  
     

 
  
    

   
      

 
   

       








S

ds


 
 


 
  



 

(3.3-6) 

 

The closed surface integral in Eq. (3.3-6) can be reduced to a surface integral at z=0 plane 

using the radiation condition at infinity, which is shown below. 

(0,0) (0,1)

2 1(0,1)

2 1
(0,0) (0,1)

0

2 1

( , ) ( , )

( , )

( , ) ( , )

T
z plane

z G r r G r r

G r r ds

G r r z G r r





    
        

   
    

         



 



 (3.3-7) 

 

Step 2:  Q  and P  are assigned as follows.  
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(1,0) (1,1)

2 1( , ), ( , )Q G r r P G r r   (3.3-8) 

 

In Eq. (3.3-8), Q  represents the dyadic Green‟s function of Region 1 when the source is in 

Region 0 for the geometry as shown in Fig. 3-4(a), and P  represents the dyadic Green‟s 

function of Region 1 when the source is in Region 1 for the geometry as shown in Fig. 3-4(b). 

Thus, for Region 1 the dyadic Green‟s functions satisfy the wave equations shown below. 

(1,0) (1,0)
2

12 1 0 2

(1,1) (1,1)
2

11 1 0 1 1

( , ) ( , ) 0

( , ) ( , ) ( )

r r

r r

G r r k G r r

G r r k G r r I r r

 

  



  

   

 

(3.3-9) 

 

Substituting Eq. (3.3-8) into Eq. (3.2-2) yields  

 

(1,0) (1,1) (1,0) (1,1)

2 1 2 1

V

(1,0) (1,1) (1,0) (1,1)

2 1 2 1

S

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

T

G r r G r r G r r G r r dv

n G r r G r r G r r n G r r ds







     
           

         
                     





 

 

 

(3.3-10) 

 

Substituting Eq. (3.3-9) into Eq. (3.3-10) gives 





(1,0) (1,1)
2

10 1 2 1

(1,0) (1,1)
2V

12 0 1 1 1

(1,0) (1,1)

2 1

(1,0) (1,1)

2 1

( , ) ( , )

( , ) ( , ) ( )

( , ) ( , )

( , ) ( , )

r r

r r

T

k G r r G r r

dv

G r r k G r r I r r

n G r r G r r

G r r n G r r

 

  








  
    
 

    
    

   
      


   

       








S

ds


 
 
 
 
  



 

(3.3-11) 

 

In Eq. (3.3-11), the volume integral is for Region 1 and the closed surface integral is for the 

surface bounding the volume of Region 1. Simplifying Eq. (3.3-11) gives 
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



(1,0) (1,1)
2

1 10 1 2 1

(1,0)V

2 1

(1,0) (1,1)

2 1

(1,0) (1,1)
S

2 1

( , ) ( ) ( , )

( , ) ( )

( , ) ( , )

( , ) ( , )

r rr

T

k G r r G r r
dv

G r r I r r

n G r r G r r

ds

G r r n G r r

  









  
    

 
  

    
        

  
    

         














 

(3.3-12) 

 

This directly leads to  





(1,0) (1,1)

12(1,0)

1 2
(1,0) (1,1)

S

2 1

( , ) ( , )

( , )

( , ) ( , )

T

n G r r G r r

G r r ds

G r r n G r r





    
        

   
    

         








 

(3.3-13) 

 

Again the closed surface integral consists of the planes located at z=0 and z=−d plane, 

therefore, Eq. (3.3-13) can be expanded as  

(1,0)

1 2

(1,0) (1,1)

2 1

(1,0) (1,1)
0

2 1

(1,0) (1,1)

2 1

(1,0)

2

( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( ,

T
z plane

z d plane

G r r

z G r r G r r

ds

G r r z G r r

z G r r G r r

ds

G r r













    
        

  
    

         

   
      



 





 



 

(1,1)

1) ( , )

T

z G r r

 
 
 
 

    
       


 

(3.3-14) 

 

 It is noted that the normal to the surface at z=0 is in the positive z direction and the normal 

to the surface at z=−d is in the negative z direction. 

Step 3: Q  and P  are assigned as follows.  
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(2,0) (2,1)

2 1( , ), ( , )Q G r r P G r r   (3.3-15) 

 

In Eq. (3.3-15), Q  represents the dyadic Green‟s function of Region 2 when the source is in 

Region 0 for the geometry as shown in Fig. 3-4(a), and P  represents the dyadic Green‟s 

function of Region 2 when the source is in Region 1 for the geometry as shown in Fig. 3-4(b). 

Thus, for Region 2 the dyadic Green‟s functions satisfy the wave equations shown below. 

(2,0) (2,0)
2

2 2 2 0 2

(2,1) (2,1)
2

1 2 2 0 1

( , ) ( , ) 0

( , ) ( , ) 0

r r

r r

G r r k G r r

G r r k G r r

 

 

  

  

 (3.3-16) 

 

Substituting Eq. (3.3-15) into Eq. (3.2-2) leads to  

 

(2,0) (2,1) (2,0) (2,1)

2 1 2 1

V

(2,0) (2,1) (2,0) (2,1)

2 1 2 1

S

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

T

G r r G r r G r r G r r dv

n G r r G r r G r r n G r r ds







     
           

         
                     





 

 

 (3.3-17) 

 

Substituting Eq. (3.3-17) into Eq. (3.3-17) yields 





(2,0) (2,1)
2

0 2 2 2 1

(2,0) (2,1)
2V

2 0 2 2 1

(2,0) (2,1)

2 1

(2,0) (2,1)

2 1

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

r r

r r

T

k G r r G r r

dv

G r r k G r r

n G r r G r r

G r r n G r r

 

 







  
    
 

  
    

    
        

  
   

        








S

ds





 

(3.3-18) 

 

Inspecting Eq.(3.3-18) shows that  
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



(2,0) (2,1)

2 1

(2,0) (2,1)
S

2 1

( , ) ( , )

0

( , ) ( , )

T

n G r r G r r

ds

G r r n G r r

    
        

 
    

         








 

(3.3-19) 

 

The closed surface integration is for the surface bounding the volume of Region 2 and the 

closed surface integral can be reduced to a surface integral at z=−d plane using the radiation 

condition at negative infinity, which is as follows, 

(2,0) (2,1)

2 1

(2,0) (2,1)

2 1

( , ) ( , )

0

( , ) ( , )

T
z d plane
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  
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

 


 

(3.3-20) 

 

At z = ‒d plane, the continuity of the tangential electrical field and tangential magnetic field 

requires the DGFs to satisfy the following boundary conditions given in Eq. (3.3-21) and Eq. 

(3.3-22), corresponding to the geometries shown in Fig. 3-4 (a) and Fig. 3-4 (b), respectively. 

(2,0) (1,0)

2 2

(2,0) (1,0)

2 2

2 1

( , ) ( , )

1 1
( , ) ( , )

r r

z G r r z G r r

z G r r z G r r
 

  

    

 

 
 

(3.3-21) 
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1 1

(2,1) (1,1)

1 1

2 1

( , ) ( , )

1 1
( , ) ( , )

r r

z G r r z G r r

z G r r z G r r
 

  

    

 

 
 (3.3-22) 

 

Substituting the boundary conditions of Eq.(3.3-21) and Eq. (3.3-22) into Eq. (3.3-20) gives  

(1,0) (2,1) (2,0) (1,1)

2 1 2 10 ( , ) ( , ) ( , ) ( , )

T

z d plane

z G r r G r r G r r z G r r ds





         
                     


    

which can be written in the form below.  
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Applying the identity of  z I z I


     , we obtain       
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
    

Again substituting the boundary conditions of Eq.(3.3-21) and Eq. (3.3-22), it is obtained  
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2
2 1 2 1
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which is equivalent to 
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z G r r G r r

ds

G r r z G r r
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  
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
 

(3.3-23) 

 

Comparing the second integral in Eq. (3.3-14) and Eq. (3.3-23), it is seen that this second term is 

0 and Eq. (3.3-14) can be rewritten as follows. 

(1,0) (1,1)

2 1(1,0)

1 2
(1,0) (1,1)

0

2 1

( , ) ( , )

( , )

( , ) ( , )

T
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z G r r G r r

G r r ds

G r r z G r r







    
        

   
    

         



 


 

(3.3-24) 

 

At z=0 plane, the continuity of the tangential electrical field and tangential magnetic field 

requires the DGFs to satisfy the following boundary conditions given in Eq. (3.3-25) and Eq. 

(3.3-26), corresponding to the geometries shown in Fig. 3-4(a) and Fig. 3-4(b), respectively. 
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(3.3-25) 
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 

  

    

 

 
 (3.3-26) 

 

Making use of  Eq.(3.3-25) and Eq. (3.3-26) in Eq. (3.3-24) and following a similar procedure, it 

is obtained  
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1
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
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





    
        

   
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 (3.3-27) 

 

Comparing Eq. (3.3-27) with Eq.(3.3-7) reveals the following relation. 

1 1

(0,1) (1,0)
0

2 1 1 2( 1) ( 1)
1

( , ) | ( , ) |
r r

r

region region
r

G r r G r r
   








 
  (3.3-28) 

 

 If the anisotropic region is filled with a reciprocal medium with the permittivity satisfying

1 1r r 


 , then the above symmetrical property reduces to the following form. 

(0,1) (1,0)
0

2 1 1 2

1

( , ) ( , )r

r

G r r G r r




  (3.3-29) 

 

 It is noted here that the symmetrical property is derived based on the two-layer geometry, 

however it also applies to the half-space anisotropic geometry, which is treated as one special 

case of the layered geometry.  
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3.3.2 Usage and Limitation of the Modified Symmetrical Property 

 According to the discussion presented in Section 3.3.1, to obtain the DGF of Region 0 

(isotropic region) above the source point with source located inside Region 1 (anisotropic 

region), the modified symmetrical property of Eq. (3.3-28) can be used for a layered geometry 

with the anisotropic region being non-reciprocal media as a gyrotropic media, and symmetrical 

property of Eq.(3.3-29) can be used for a layered geometry with the anisotropic region filled with 

reciprocal media such as uniaxial and biaxial media.  In this section, the symmetrical property of 

Eq. (3.3-28) is applied to obtain the DGFs of Region 0 with source located in Region 1 for both 

the half-space and two-layer problems with the anisotropic Region 1 filled with either the 

reciprocal or non-reciprocal medium. In addition to the usage of the symmetrical property, the 

limitation of the modified symmetrical property is also briefly reviewed in this section. 

 First, the modified symmetrical property of Eq. (3.3-28) is applied to the half-space DGF 

of 
(1,0)

'( , )G r r  obtained in Eq. (3.1-5), and the dyadic Green‟s function for the region of 'z z  

with source in Region 1 is obtained as follows (assuming non-magnetic medium). 


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z d
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




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

 (3.3-30) 

 

In order to have the DGF shown in Eq. (3.3-30) above give more straightforward physical 

meaning, the transformation shown in Eq.(3.3-31) is applied to the above formula. 

,x x y yk k k k 
 

(3.3-31) 
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Then, it‟s straightforward to get 

For 0z   


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 (3.3-32) 

 

It can be shown that the propagation vector and field vector of the isotropic region (Region 0) 

satisfy the following relation.  

 

0 0 0

0 00 0 0 0
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(3.3-33) 

 

Then Eq. (3.3-32) reduces to the following form. 

For 0z   
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(3.3-34) 
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 It is noted here that for half-space reciprocal medium, the coefficients, wave vectors and 

eigenvectors shown in Eq. (3.3-34) are calculated for the anisotropic medium of 1r , while for 

the half-space non-reciprocal medium, they are calculated for the anisotropic medium of 1

T

r .   

 If Region 1 is filled with a biaxial medium, the propagation vectors and field vectors of 

Region 1 satisfy the following relation, which is proved in Appendix M of  [37].  

( , , ) ( , ), ( , , ) ( , )

( , ) ( , ), ( , ) ( , )

d d

I x y zI I x y II x y zII II x y

d u d u

I I II IIx y x y x y x y

k k k k k k k k k k k k

e k k e k k e k k e k k

        

         
 

(3.3-35) 

 

It needs to be noted here that the relationship between the eigenvectors of Region 1 are chosen 

such that it is consistent with the notation used by Pettis [37]. Substituting Eq. (3.3-35) into 

Eq.(3.3-34) gives 
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
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(3.3-36) 

 

It was given in Eq. 5.2.26 of [37] that the following relationships hold for a layered biaxial 

medium. 
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(3.3-37) 

 

 It is claimed in [37] that the exact functional relationship of ( , , ), ( , , )x y x yk k k k   
 
is 

unknown. Here we show that ( , , ), ( , , )x y x yk k k k   
 
are related with the amplitude 

coefficients of the dyad in Green‟s function of the unbounded medium filled in Region 1. This 

will be shown in Section 3.4.2, where the direct construction method of dyadic Green‟s function 

is discussed when the source is located in Region 1. 

Symmetrical property is also applied to the dyadic Green‟s function of the two-layer 

problem in Eq. (3.1-13) as follows. 
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(3.3-38) 

 

Applying the transformation as shown in Eq. (3.3-31) and Eq.(3.3-33), Eq. (3.3-38) can be 

written as follows.  
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(3.3-39) 

 

 Eq. (3.3-39) can be applied for a two-layer problem filled with either a reciprocal or a non-

reciprocal medium. It is noted here that for a two-layer reciprocal medium, the coefficients, wave 

vectors and eigenvectors shown in Eq. (3.3-39) are calculated for the anisotropic medium of 1r , 

while for a two-layer non-reciprocal medium, they are calculated for the anisotropic medium of 

1

T

r .   

 As was shown in the half-space case, if Region 1 is filled with a reciprocal medium, the 

propagation vectors and field vectors satisfy the relation shown in Eq. (3.3-35). Then, the above 

formula of Eq. (3.3-39) for the DGF reduces to a simplified form shown below. 
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 (3.3-40) 

 

 Eq. (3.3-40) can only be applied to the geometry filled with a reciprocal medium, and the 

amplitude coefficients of the formula will have the same relationship of Eq. (3.3-37) as for the 

half-space problem if the reciprocal medium is a biaxial medium, which will be discussed in 

detail in Section 3.4.2. In the integrand of Eq. (3.3-40), the wave vectors 
,

,

u d

I IIk , the Region 0 field 

vectors 
0h , 

0v  and the characteristic field vectors for the anisotropic region 
,

,

d u

I IIe  are obtained for 

a specific set of 
  
(k

x
,k

y
) . However, the amplitude coefficients   A, B  are calculated from the half-

space reflection and transmission coefficients that are calculated for the incidence wave with 

tangential wave vector 
  
(k

x
,k

y
)  at the interface. This is different from Eq. (3.3-39), which 

shows that except the field vectors  0h , and 0v  for the isotropic Region 0, all other field vectors, 

wave vectors and amplitude coefficients are calculated for given 
  
(k

x
,k

y
)  with the permittivity 

of the matrix of anisotropic medium as the transpose of the permittivity matrix of the original 

medium. 
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As shown in this section, applying the modified symmetrical property can give the DGF 

(0,1) '

( , )G r r  directly from a known DGF of 
(1,0) '

( , )G r r . Similarly, the DGF of 
(0,2) '

( , )G r r  can 

also be obtained by applying the modified symmetrical property to the DGF of  
(2,0) '

( , )G r r . This 

property is extremely useful if the medium is reciprocal as it does not require any additional 

calculations, as long as the DGFs of a layered anisotropic geometry with the anisotropic medium 

characterized by 1r  are already solved.  

However, if the medium is non-reciprocal, even if the DGFs of a layered anisotropic 

geometry with the anisotropic medium characterized by 1r  is already provided, to apply the 

modified symmetrical property, additional calculations of the DGFs of a layered anisotropic 

geometry with the anisotropic medium characterized by 1

T

r  is unavoidable. In addition, if the 

DGF of  
(1,1) '

( , )G r r  is of interest, then this symmetrical property will not help. In this case, to 

get the complete set of DGFs for the layered geometry with the source located in the anisotropic 

region, the direct construction method needs to be used. It will be shown in Section 3.4 that in 

addition to providing the complete set of DGFs of all the regions including the anisotropic region 

where the source is located, a straightforward physical insight can be obtained from the DGFs 

derived using the direct construction method. 

 

3.4 DGFs of a Two-Layer Geometry with a Source inside the Anisotropic Region 

 As demonstrated in the previous section, applying the modified symmetrical property to 

the DGF of
(1,0) '

( , )G r r with the source inside Region 0 is only to provide the DGF of 
(0,1) '

( , )G r r . 
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To obtain the DGFs of all the regions for a layered geometry with a source inside the anisotropic 

region, the direction construction method is discussed in detail in this section.  

3.4.1 Direct Construction Method to Obtain the DGFs for All the Regions 

 The first step to utilize the direct construction method is to obtain the DGFs for the 

unbounded anisotropic medium. As presented in Section 2.2, the dyadic Green‟s functions for an 

unbounded anisotropic medium are given in Eq. (2.2-32), which are repeated here again with 

0i
 
extracted out. 
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(3.4-2) 

 

In Eq. (3.4-1) and Eq. (3.4-2), 4a  indicates the coefficient for the fourth order term of zk
 
in 

the expansion of the polynomial in terms of zk for the electric wave matrix EW . For example, if 

the anisotropic medium is a gyroelectric medium with the biasing magnetic field along an 

arbitrary direction of B  
and B , then 2 2 2

4 1 3( sin cos )o B Ba k       . The eigenvalue ( )u

zIk  

and eigenvectors ( )u

zIe k  and ( )u

zIv k  are defined in Section 2.3.1.  
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 For the comparison of dyadic Green‟s function obtained using the direct construction 

method and the dyadic Green‟s function obtained using the modified symmetrical property as 

presented in the previous section, the common term 
2

08 z

i

k
is extracted purposely from the 

dyadic Green‟s function, and Eq. (3.4-1) and Eq. (3.4-2) are rewritten as follows. 
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 The second step of the direct construction method is to apply the matrix method to the 

unbounded DGFs obtained from the eigen-decomposition method. The matrix method has 

already been used in Section 3.1 to obtain the DGFs of a two-layer problem with a source in the 

isotropic medium. In that case, the direct wave was the downward incident wave in the isotropic 

medium. However, in this section, the direct upward and downward waves from the source in 

Region 1 as shown in Fig. 3-5 are used to construct the DGF.  
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Fig. 3-5: Geometry of the two-layer problem with source inside the anisotropic region. 

 In Fig. 3-5, the „a‟ and „b‟ stand for the amplitude coefficient matrices of the unit vectors 

corresponding to the upward and downward waves generated by the source located inside the 

anisotropic region (Region 1) bounded by z=0 and z=−d. „A‟ and „B‟ represent the amplitude 

coefficient matrices for the unit vectors of the total upward and downward waves existing in 

Region 1 due to the multiple reflections of the „a‟ and the „b‟ waves at both the boundaries of 

z=0 and z=−d. „C‟ and „D‟ represent the amplitude coefficient matrix for the unit vectors of the 

transmitted waves in Region 0 and Region 2, respectively. As indicated in Fig. 3-5, all the waves 

in each region include two different polarizations. Inside the anisotropic region, the waves „A‟ 

and „B‟ include Type I and Type II polarizations, while the transmitted waves „C‟ and „D‟ inside 

the isotropic regions include the h and v-polarizations as described in Section 2.3.  

 The two-layer geometry under consideration can be decomposed into two half-space 

problems with one corresponding to the reflection and transmission at the boundary z = 0 

(separating Region 0 and Region 1) and the other one corresponding to the reflection and 

transmission at the boundary z=−d (separating Region 1 and Region 2). The waves in each 

z=0 

z=−d 
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region can then be related through the half-space reflection and transmission coefficient matrices 

below. 

12 10 10 12

( ), ( ), ( ), ( )A R b B B R a A C X a A D X b B         (3.4-5) 

where 
pq

R and 
pq

X are the half-space reflection and transmission coefficient matrices with wave 

incident from Region p to Region q defined in Eq. (3.1-16) - Eq. (3.1-18). Rewriting Eq. (3.4-5) 

such that A, B, C, and D are expressed in terms of the direct waves generated by the source in 

Region 1, we obtain  
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(3.4-6) 

 

 Using the coefficients above, the dyadic Green‟s functions in each region when a source is 

located in the anisotropic region can be constructed. The construction of the DGF in Region 1 is 

first considered and it needs special attention. The anisotropic medium is separated into two 

regions with one corresponding to the space above the source point (z‟) and the other 

corresponding to the space below the source point. For region above the source point, the direct 

wave includes the upward wave only, and for the region below source point, the direct wave 
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includes downward wave only. With the DGFs for the unbounded anisotropic region (Eq. (3.4-3) 

and Eq. (3.4-4)) and coefficients obtained from Eq. (3.4-6 ), we have for ' 0z z  , 
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(3.4-7) 

 

Similarly, for the region below the source point, we have for 'd z z   ,  
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For 'd z z  
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(3.4-8) 

 

 Observation of Eq. (3.4-7) and Eq. (3.4-8) indicates that the first two terms inside the 

integral represent the direct waves due to the sources, which are obtained from the DGFs of the 

unbounded anisotropic region as shown in Section 2.2. All the other terms represent the upward 

(„A‟) and downward („B‟) propagating waves reflected at the two boundaries. The tangential 

electric field and magnetic field must satisfy boundary condition at z=0. The Green‟s function 

for Region 0 ( 0z  ) when a source is located in the anisotropic region can be expressed in terms 

of coefficients from Eq. (3.4-6), which are obtained for the transmitted wave „C‟ as 
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For 0z    
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(3.4-9) 

 

Similarly, the DGF for Region 2 (isotropic region) below the anisotropic slab can be derived 

from the coefficients corresponding to the transmitted wave „D‟. Thus we have  
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(3.4-10) 

 

 It is noted here that, the vectors of Iv  and IIv  as the latter parts of the dyads in Eq. (3.4-7) - 

Eq. (3.4-10) are taken from the results of Eq. (3.4-3) - Eq. (3.4-4) for the DGFs of the unbounded 

anisotropic medium. 
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3.4.2 Discussion of DGF 
(0,1) '

( , )G r r  Obtained Using Two Approaches   

 In this section, the dyadic Green‟s functions of Region 0 with source located in Region 1 

(0,1) '

( , )G r r  derived using the symmetrical property and the direct construction method are 

compared. It shows numerically that both of the two formulations give the consistent results of 

DGF for 
(0,1) '

( , )G r r  with anisotropic region filled with either reciprocal or non-reciprocal 

medium.  

  For a reciprocal medium, Eq. (3.3-38) gives the coefficients of the dyad in the DGF of 

(0,1) '

( , )G r r  computed via the modified symmetrical property.  The coefficients in Eq. (3.3-38) 

are obtained from Eq. (3.1-20) with the tangential wave vector ( , )x yk k   substituted. The 

coefficients of the DGFs using the direct construction method are given in Eq. (3.4-9) and 

obtained directly from Eq. (3.4-6) with the tangential wave vector of ( , )x yk k . The coefficients of 

the DGF obtained using the two different approaches are repeated here in Eq. (3.4-11) and Eq. 

(3.4-12) for convenience. 
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 The coefficients of the DGF obtained using the modified symmetrical property as in Eq. 

(3.4-11) are composed of the half-space transmission matrix 
01

X for the waves incident from 

Region 0 to Region 1. However, it does not represent the actual physical scenario of the problem 

of interest since the source is located inside Region 1.  On the other hand, the complete 

coefficients of the dyad obtained via the direct construction method, given by the RHS of Eq. 

(3.4-12), provide more physical insight to the problem. 

 It is verified numerically that the following relationship holds for Eq. (3.4-11), 
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 For a half-space problem, only the upward direct wave will be transmitted through the 

boundary of Region 0 and Region 1, thus, the 
(0,1) '

( , )G r r  of a half-space problem are only 

associated with the terms of upward direct waves with the coefficients satisfying Eq. (3.4-13). 

Comparing Eq. (3.4-13) with Eq. (3.3-37) leads directly to the following relation. 

( ) ( )u u u u

I zI II zIIc k c k  
 

(3.4-15) 

 

 The relation given by equation (3.4-15) reveals that unknown constants of   and   (as 

indicated in [37]) actually has their own physical meanings. These constants represent the 
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amplitude of the upward direct waves generated by the source in Region 1. This is a new and 

interesting discovery. 

 In the case of a layered geometry, both the upward and downward direct waves generated 

by the source will contribute to the DGF of  
(0,1) '

( , )G r r . As seen in Eq. (3.4-13) and Eq. 

(3.4-14), each term in the LHS matrix is a product of the coefficients „c‟ and „X‟. The 

coefficients of „c‟ represent the amplitudes for the direct waves generated by the source in the 

unbounded anisotropic medium. The vectors of ,u u

I IIc c , ,d d

I IIc c  correspond to the Type I upward 

wave, Type II upward wave, Type I downward wave and Type II downward wave. The 

coefficients „X‟ of Eq. (3.4-12) correspond to the two-layer transmission coefficients in Eq. 

(3.4-6) for waves incident from Region 1 (where the source is) to Region 0. Each term of Eq. 

(3.4-6) has its own physical interpretation. Since the source is located inside the bounded 

anisotropic slab, the direct wave generated by the source will experience multiple reflections at 

both boundaries. The total upward wave from the accumulation of all the reflections is indicated 

by
12 10

1( )I R R  . The transmission of the total upward wave from Region 1 to Region 0 is 

characterized by the half-space transmission matrix 
10

X . 

  Applying the concept of the eigen-decomposition and the matrix method to obtain the 

coefficients for the layered geometry, the DGF for the layered problem with a general 

anisotropic medium when the source is located inside the isotropic region can be obtained. If the 

source is located inside the anisotropic region and the anisotropic region is a reciprocal medium, 

the DGF of Region 0 above the source point can be obtained by applying the symmetrical 

property. If Region 1 is a non-reciprocal medium, then the conventional symmetrical property 

needs to be modified. It is stated that for a non-reciprocal medium such as a gyrotropic medium, 
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an interchange of the source and the observation points in the two regions necessitates a reversal 

of the dc biasing magnetic field to calculate the corresponding DGF. 

 The modified symmetrical property of DGF simplifies the construction of the DGF. 

However, applying the modified symmetrical property cannot provide the complete set of DGFs 

for all the regions when the source is located inside the anisotropic slab. Also, the available 

symmetrical property doesn‟t apply to the medium with magnetic anisotropy. A new method to 

construct the DGFs of layered medium with arbitrary anisotropy directly from the characteristic 

waves in each region using the eigen-decomposition and matrix method proposed here. This 

method can easily be extended to calculate the DGFs for a multilayered geometry filled with 

general anisotropic (electric or magnetic) medium with a source located in any region. 

 Further, the DGF obtained via direct construction method is compared with the DGF 

obtained using the symmetrical property for the reciprocal medium case. An interesting 

relationship for the coefficients of the dyad in the DGFs obtained through two different methods 

is observed and discussed. Thus, a straightforward physical insight to the DGFs is revealed from 

the direct construction method when the source is located inside the anisotropic region as 

compared to the results obtained using the symmetrical property. The DGFs obtained here have 

wide applications in the scattering and radiation problems with arbitrarily shaped 3D objects 

located inside the anisotropic region. 
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4 RADIATION OF A HERTZIAN DIPOLE IN THE PRESENCE 

OF A LAYERED ANISOTROPIC MEDIUM 

In the last few decades, the radiation of a Hertzian dipole in the presence of a layered 

anisotropic substrate has been extensively studied by the researchers. According to the literature 

survey in Chapter 1, no numerical results have been given for the radiated field of a Hertzian 

dipole in the presence of a half-space gyroelectric medium. Also, the radiated field of a Hertzian 

dipole above or inside the gyroelectric slab with an arbitrary biasing magnetic field is not found 

from the current literature. To fill this gap, the radiated fields of a Hertzian dipole for the above 

cases are solved and discussed in this chapter.  

This chapter is organized as follows. In Section 4.1, the formulation for the radiated field of 

a Hertzian dipole is presented for half-space geometry with a source located in both the isotropic 

and anisotropic regions using the method of stationary phase. In Section 4.2, the analysis of the 

radiated field of a Hertzian dipole embedded inside either the isotropic or the anisotropic region 

of two-layer geometry is presented. In Section 4.3, the explicit formulations from previous 

sections are numerically validated with the available results from current literature. In Section 

4.4, detailed discussions are presented on the radiated field of a dipole on top of the half-space 

gyroelectric medium and inside the layered gyroelectric slab.  

 

4.1  Radiation of a Hertzian Dipole for a Half-Space Problem 

 As shown in Fig. 4-1, Region 0 of the half-space geometry is denoted as the isotropic 

region and Region 1 is denoted as the anisotropic region. 0 0 0 0and r r     are the permittivity 
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and permeability for the isotropic region. 1 10 0and r r     are the permittivity and permeability 

tensors for the anisotropic region. 0  and 0  are the free space permittivity and permeability. It‟s 

noted here that in the following discussion, 0 1r   and 0 1r  , while 1 1and r r   for  Region 1 

take the following form for a general anisotropic medium.  

1
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  
 
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(4.1-1) 

 

An arbitrarily oriented Hertzian dipole is located at a distance  hd away from the interface 

separating the isotropic and anisotropic regions. The dipole can be located either in Region 0 as 

shown in Fig. 4-1(a) or Region 1 as shown in Fig. 4-1(b).  

         

Fig. 4-1: Geometry for the half-space problem with a Hertzian dipole placed at a certain 

distance away from the boundary separating the isotropic and anisotropic regions. (a) Dipole in 

Region 0 (isotropic region) and (b) dipole in Region 1 (anisotropic region). 

The Hertzian dipole source is given by 

( ) ( ( ) ( ) ( ))dJ r Il x y z h u   
 

(4.1-2) 

hd 
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The negative sign shows that the dipole is located in Region 0 above the interface, while the 

positive sign indicates that the dipole is located in Region 1 below the interface. The direction of 

the Hertzian dipole is indicated by the normalized unit vector u . 

4.1.1 The Source Embedded in the Isotropic Region 

 To obtain the radiated field in Region 0 for the geometry shown in Fig. 4-1(a), the dyadic 

Green‟s function for the region of 'z z  when the source is located in Region 0 is required. The 

DGF of 
(0,0) '

( , )G r r  has been derived in Chapter 3, which is repeated here for convenience.  
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(4.1-3) 

The terms of ( , 0,1, and , , )ij

pqR i j p q h v 
 
in Eq. (4.1-3) indicate the half-space 

reflection coefficients. The first index of the superscript i indicates the region of incident wave, 

and the first index of the subscript indicates the polarization of the incidence wave. The second 

index of the superscript indicates the region of transmission, and the second index of the 

subscript indicates the polarization of the reflected wave. For example, 
01

hhR
 
indicates the half-

space reflection coefficient of the wave incident from Region 0 to Region 1 with both the 

incident and reflected waves being h-polarized waves. 
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It may be shown numerically that the half-space reflection coefficients at the interface of the 

isotropic and anisotropic regions satisfy the relation in Eq. (4.1-4), when the anisotropic region 

(Region 1) is filled with a uniaxial or biaxial medium. 

01 01 01 01

01 01 01 01

( , ) ( , ), ( , ) ( , )

( , ) ( , ), ( , ) ( , )

hh x y hh x y hv x y vh x y

vh x y hv x y vv x y vv x y

R k k R k k R k k R k k

R k k R k k R k k R k k

      

      
 (4.1-4) 

If Region 1 is filled with a non-reciprocal medium, the above relation is not valid between 

the reflection coefficients for incident wave with ( , )x yk k   and the reflection coefficients for 

incident wave with ( , ).x yk k  However, the above relationship is still valid if the LHS and RHS of 

the above formulas are calculated for the half-space problem with the anisotropic region of   and 




, respectively.  

If Region 1 is filled with a uniaxial or biaxial medium, using Eq. (4.1-4), the DGF of region 

'z z  in Eq. (4.1-3) reduces to the following form.  
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(4.1-5) 

It is known that the radiated field is related with the current source and the dyadic Green‟s 

function in the following form.  
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'

(0,0) ' '

0 0( ) ( , ) ( )

V

E r i dvG r r J r    (4.1-6) 

Thus, substituting Eq. (4.1-2) and Eq. (4.1-5) into Eq. (4.1-6) gives the electric field in terms 

of half-space reflection coefficients and eigenvectors in free space in Eq. (4.1-7).  
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(4.1-7) 

In general, the integral in Eq. (4.1-7) cannot be obtained analytically. However, the far field 

radiation pattern can be approximately obtained using the method of stationary phase [71]. This 

technique assumes that the phase term 0ik r
e


 is oscillating so rapidly that on average the 

contributions to the integral are mostly from the point which corresponds to the minima of the 

phase function 0k r , and it is assumed that the dyad and 0zk is almost constant around this 

stationary point. Extracting all the dyadic elements and the slowly varying scalar function from 

the integrand gives 
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(4.1-8) 
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The stationary phase point can be obtained by taking the partial derivatives of the phase term 

0k r  with respect to ,x yk k  and setting the derivatives equal to zero. The stationary phase point 

occurs when the propagation vector is aligned with the field point vector [71, p.143]. The final 

expressions of the radiated field for a Hertzian dipole over the half-space geometry filled with 

reciprocal and non-reciprocal media are given in Eq. (4.1-9) and Eq. (4.1-10), respectively. 

For a half-space reciprocal medium, the radiated field in the region of 'z z  is 
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 (4.1-9) 

For a half-space non-reciprocal medium, the radiated field in the region of 'z z  is 


 




0 0

0

0

0 0

0

01
0 0

0

01
0

0
0

01
0 0

0

01
0

( , )

( , )
( )

4
( , )

( , )

z d z d

z d

z d z d

z d

ik h ik h

hh x y

ik h

hv x yik r

ik h ik h

vh x y

ik h

vv x y

h e R k k h e
h

R k k v eIl
E r e u

r
v e R k k h e

v

R k k v e





 






 






    
  
  

    
   

    
  
      









 (4.1-10) 

4.1.2 The Source Embedded in the Anisotropic Region 

For the region above the source point ( 'z z ), the radiated field of a Hertzian dipole 

correlates with the current source through the dyadic Green‟s function of 
(0,1) '

( , )G r r  in the 

following form.  

'

(0,1) ' '

0 0( ) ( , ) ( )

V

E r i dvG r r J r    (4.1-11) 
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(0,1) '

( , )G r r  is the dyadic Green‟s function of Region 0 when the source is located in 

Region 1. As derived in Chapter 3, the dyadic Green‟s function of 
(0,1) '

( , )G r r   can be obtained 

through the direct construction method as well as through applying the symmetrical property to 

the DGF of 
(1,0) '

( , )G r r . These two approaches give the consistent dyadic Green‟s functions.  

Since the radiated fields of a Hertzian dipole in the presence of both layered reciprocal and 

non-reciprocal media are of interest, it‟s more straightforward to utilize the DGF formulated with 

the direct construction method. For convenience, the DGF of 
(0,1) '

( , )G r r  obtained through the 

direct construction method is repeated below. 
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 (4.1-12) 

where the coefficients are defined as 
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 (4.1-13) 

In Eq. (4.1-13), 4a  is the coefficient of the forth order term of zk
 
in Booker quartic equation, 

which is the fourth order polynomial of the determinant of the electric wave matrix expanded in 

terms of zk . ( , ; , )q

zpk p I II q u d  are the four roots of the Booker quartic equation. The terms of 

( , 0,1; , ; , )ij u u

pq I IIX i j p e e q h v    indicate the half-space transmission coefficients. The 

first index of the superscript i indicates the region where the wave is incident from, and the first 
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index of the subscript p indicates the polarization of the incidence wave. The second index of the 

superscript j indicates the region where the transmitted wave exists, and the second index of the 

subscript q indicates the polarization of the transmitted wave. For example, 10
u
Ie h

X  indicates the 

half-space transmission coefficient for a wave incident from Region 1 to Region 0, while the 

incident and transmitted waves are Type I and h-polarized, respectively.  

Applying the method of stationary phase as in Section 4.1.1, it yields the radiated field for 

the isotropic region of Region 1 as follows.  

  
  

0

10 10
0 0

0
0

10 10
0 0

( )

( )
4

( )

u
zI d

u u
zII I

u
zII d

u u
zIIII II

u
ik hu u

IIe h e v
ik r

u
ik hu u

IIIIe h e v

X h X v c k v e
Il

E r i e u
r

X h X v c k v e





 

 

  
   

  
       



 


 

 (4.1-14) 

 

4.2 Radiation of a Hertzian Dipole for a Two-Layer Problem 

 In this section, the radiated fields of a Hertzian dipole located above and inside an 

anisotropic slab are formulated. The two-layer geometries with a Hertzian dipole source placed 

in Region 0 and in Region 1 (anisotropic) are shown in  Fig. 4-2(a) and (b), respectively.  

(a)       (b) 

Fig. 4-2: Two-layer geometry: (a) The dipole is located in Region 0 (isotropic medium) and 

(b) The dipole is located in Region 1(anisotropic medium). 

 In both cases, it is assumed that the Hertzian dipole is positioned at a distance of hd away 

from the interface separating Region 1 (anisotropic) and Region 0 (isotropic). For a two-layer 
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problem here, Region 0 is isotropic region with relative permittivity and permeability of 0 0,r r  , 

Region 1 is denoted as the anisotropic region with relative permittivity and permeability tensors 

of 1 1,r r  , and Region 2 is isotropic region with relative permittivity and permeability of 

2 2, .r r  The thickness of anisotropic region (Region 1) is d. 

4.2.1 The Source Embedded in the Isotropic Region 

The first case considered here is the radiation of a Hertzian dipole when it is located in the 

isotropic region as shown in Fig. 4-2(a). The half-space problem with source inside the isotropic 

region as presented in Section 4.1.1 can be treated as one special case of a two-layer problem. In 

order to calculate the radiated field for the region of 'z z , the DGF of the corresponding region 

for the two-layer geometry is required. The detailed derivation of the DGF of the two-layer 

geometry has been discussed in Section 3.4. For convenience, the DGF of the two-layer 

geometry for region of 'z z  is repeated below. 
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(4.2-1) 

In Eq. (4.2-1), the two-layer reflection coefficients can be expressed in terms of half-space 

reflection coefficient matrices as follows. 
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If Region 1 is filled with a biaxial medium, the relation in Eq. (4.2-3) holds for two-layer 

reflection coefficients as Eq. (4.1-4) for half-space reflection coefficients. It is noted here that no 

rigorous proof is given for Eq. (4.2-3). This relation is verified numerically only. 
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(4.2-3) 

Using Eq. (4.2-3), the DGF of Region 0 as in Eq. (4.2-1) for a two-layer problem with Region 1 

filled with a biaxial medium can be simplified to Eq. (4.2-4). 
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 (4.2-4) 

If Region 1 is filled with a non-reciprocal medium, such as a gyrotropic medium, then the 

relation Eq. (4.2-4) no longer holds. DGF of Eq. (4.2-1) must be used for the calculation of the 

electric field in Region 0. The electric field in Region 0 is expressed in terms of the dyadic 

Green‟s function of Region 0 as follows. 
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To obtain the radiated field for the region of 1hz   , Eq. (4.2-5) still applies with the DGF 

of 
(0,0) '

( , )G r r  in Region 0 replaced with the DGF of 
(2,0) '

( , )G r r  for Region 2 ( 1hz   ). The 

detailed derivation about how to obtain the DGF of 
(2,0) '

( , )G r r is presented in Section 3.4, and it 

is repeated here for convenience. 
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 (4.2-6) 

The two-layer transmission coefficients are given in the following form. 
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Substituting Eq. (4.2-1) and Eq. (4.2-7) into Eq. (4.2-3) gives the radiated electric field 


 



'

' '

0 0

0

'

0

''
0 0

0

'

0

0 0 2

0

0 0

0

0

0 0

0

0

1
( )

8

( , )

( , )

( , )

( , )

x y

zV

ik r i r

hh x yik r

i r

hv x y

ik r i r

vh x yik r

i r

vv x y

i
E r i dv dk dk

k

h e R k k h e
h e

R k k v e

v e R k k h e
v e

R k k v e
















 







 
 









    
  
  

    


    
 
 
   

 

 





 












'

( )J r









 




 (4.2-8) 

When the dipole source is located at 
'

dz h , the above equation reduces to Eq. (4.2-9) 



108 

 


 



'

0 0

0

0

0 0

0

0

0
0

2

0

0 0

0

0

0 0

0

0

1
( )

8

( , )

( , )

( , )

( , )

z d z d

z d

z d z d

z d

x y

zV

ik h ik h

hh x yik r

ik h

hv x y

ik h ik h

vh x yik r

ik h

vv x y

Il
E r dv dk dk

k

h e R k k h e
h e

R k k v e

v e R k k h e
v e

R k k v e





 

 

 






 







 

    
  
  

    


   
 
 
   

  












u







 
 
 
 



 (4.2-9) 

Applying the method of stationary phase as discussed in Section 4.1.1, the radiated fields of a 

Hertzian dipole in the isotropic region of Region 0 are expressed in Eq. (4.2-10) and Eq (4.2-11). 
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(4.2-11) 

The radiated field for Region 2 ( z d  ) below the source point takes the same form for 

both the layered reciprocal and non-reciprocal media as follows. 

    0 020
2 2 2 0 2 2 0( )

4
z d z dik h ik hik r

hh hv vh vv

Il
E r i e X h X v h e X h X v v e u

r





           
      

     
(4.2-12) 

In Eq. (4.2-10) - Eq. (4.2-12) above, the wave vectors, the h- and v-polarized waves in 

Region 0 and 2 are defined as follows. 
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The h- and v-polarized waves can be expanded as follows. 

 

0

, , ,

0

y x nz x nz

n

y nz y nzx
n n n n

n n

n n

k k k k k

k k k kk

k k k kk
h h v v

k k k k k

k k

k k

 

  

 

   

    
    

    
    
        
    
    
      
         

      

2 2

2 2 2

0 0

,

0 or 2

x y

nz n x y

n nr nr

k k k

k k k k

k

n



    

 

  





 (4.2-14) 

where xk , yk are the tangential components of the wave vector for a specific direction. 

Observing Eq. (4.2-11) shows that the total electric field in the far field region includes two 

parts. 
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(4.2-16) 

 The first part shown in Eq. (4.2-15) indicates the waves generated by the source in the isotropic 

region of Region 0 in the absence of the anisotropic medium. The second part shown in Eq. 

(4.2-16) has four terms that indicate the reflected field from the boundary of isotropic and 

anisotropic regions. Comparing Eq. (4.2-11) with Eq. (4.1-9) reveals that the radiated fields of 

two-layer and half-space problems take the same form with different coefficients of the dyad.  
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It can also be observed from Eq. (4.2-16) that in a given direction only one elementary wave, 

having the same incidence angle as the observation angle, contributes significantly to the 

reflected field. The terms associated with reflection coefficients of 01( , )hv x yR k k   and 

01( , )vh x yR k k   indicate that the reflected waves at the interface of the Region 0 and Region 1 

have excited both the polarizations of vE  and hE . This is due to the cross-coupling of the two 

characteristic waves inside the anisotropic region. The cross-coupling generally results in an 

elliptically polarized wave instead of a linearly polarized wave that occurs in free space.  

 When the dipole is oriented in the x -direction, indicating  u x , and then Eq. (4.2-11) can 

be written in Eq. (4.2-17) decomposed into the horizontal and vertical components as follows. 
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When the dipole is oriented in the y  direction, as equivalent to  u y , then the radiated field 

can be simplified to Eq. (4.2-17) with the horizontal and vertical components shown below. 
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 When the dipole is oriented in z  direction, implying u z  , then Eq. (4.2-11) can be 

written in the form of Eq. (4.2-17)  with the horizontal and vertical polarized components shown 

below. 
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 (4.2-20) 

It is observed from Eq. (4.2-18) and Eq. (4.2-19) that for a horizontally oriented dipole, both  

h  and v  polarized waves are excited from the reflection of the direct waves at the interface, 

indicating both the co-polarized and cross-polarized reflections contribute to the reflected waves.  

However, for a vertically oriented dipole, as shown in Eq. (4.2-20) only the v  polarized 

direct wave can be excited while the h  polarized direct wave cannot be excited. Thus, the h  

polarized component of the total radiated field comes only from the cross-polarized reflection 

due to the the v  polarized direct wave. The v  component of the total radiated field is from the 

direct wave of the v  polarization and the co-polarized reflection with the v  polarized incidence 

wave only. No cross-polarized reflected wave exists, since no direct h  polarized wave can be 

excited for z -directed dipole. It is noted here that in the spherical coordinate system, the h  

component of the far field corresponds to the   component and the v  component of the far field 

corresponds to the   component. 
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4.2.2 The Source Embedded in the Anisotropic Region  

If the source is embedded inside the anisotropic region instead of the isotropic region, the 

following dyadic Green‟s functions obtained in Section 3.4 are required to calculate the radiated 

field.   
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For z d 
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where the coefficients are defined as  
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Applying the method of stationary phase yields 

For 0z 
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For z d 
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(4.2-24) 

Observing the formulas above shows that when the source is located inside the anisotropic 

region, the radiated field in Region 0 consists both h -polarized and v -polarized transmitted 

waves. Each of these waves is due to the transmission of both upward waves characterized by 

,
u u

I IIe e   and downward waves characterized by ,
d d

I IIe e  .   

 Comparing the transmission matrix bX  (as it corresponds to the transmission of the 

downward waves ,
d d

I IIe e  ) with transmission matrix aX  (as it corresponds to the transmission of 

the upward waves  ,
u u

I IIe e  ) reveals that 
12

b aX X R , which implies that the downward wave is 

first reflected at the boundary of Region 1 and Region 2 and then transmitted into Region 0.  
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 The radiated field in Region 2 consists of the h  and v  waves transmitted from both the 

upward and downward waves. Observing the transmission matrix aT  shows that the downward 

waves a  are transmitted directly. On the other hand, the upward waves are first reflected at the 

boundary of Region 0 and Region 1 and then transmitted through the boundary of Region 1 and 

Region 2 as indicated by bT . 

 

4.3 Analytic and Numerical Validation 

In order to validate the radiation fields obtained in the previous sections, three cases are 

considered in this section. Case I corresponds to the self-check of the analytical results obtained 

in the previous two sections. Case II presents the radiation of a Hertzian dipole in the presence of 

a biaxial slab as shown in [37]. Case III corresponds to the two-layer slab filled with gyroelectric 

and gyromagnetic media with the source located in the free space.  

4.3.1 Case I: Self-check of 
(0,0)

G and 
(0,1)

G  

The geometry considered here is shown in Fig. 4-3.  

(a) (b) 

Fig. 4-3: Geometry of Case I with (a) DGF 
(0,0)

G (b) DGF 
(0,1)

G . 

z=0 

z=−d 

z=0 

z=−d 
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The dipole is placed right at the interface between Region 0 and Region 1. Region 1 is 

assumed to be isotropic having the same permittivity as Region 0 with 1 0  . Region 2 is 

assumed to be a ground plane with 2  . The thickness of the slab is assumed to be d.  

The radiated fields of a vertical dipole placed at the interface of 0dh   are solved using 

(0,0)

G and 
(0,1)

G , respectively. Since Region 0 and Region 1 are assumed to be the same, it is 

expected to obtain the exact same expressions for radiated fields derived from either 
(0,0)

G or 

(0,1)

.G  First, the general expressions for the radiated fields of a z-directed dipole obtained using 

(0,0)

G  as in Eq. (4.2-20) are repeated here in Eq. (4.3-1) for convenience.   
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(4.3-1) 

When Regions 0 and Region 1 are the same media, the half-space reflection and 

transmission matrices at the interface of Region 0 and Region 1 take the following forms. 

01 10 01 100 0 1 0
,

0 0 0 1
R R X X

   
      

     

(4.3-2) 

Then, the two-layer reflection coefficient matrix of the geometry reduces to Eq. (4.3-3).  

01 10 12 10 12 01 12
1( )

hh hv

vh vv

R R
R X R I R R X R

R R

 
    

   

(4.3-3) 

12

R can be calculated as follows with d1=−d. 
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 (4.3-4) 

The above expression of Eq. (4.3-1) for the z-directed dipole reduces to the following form. 
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When the same problem is solved using 
(0,1)

G , the radiated field for the region above the 

source point can be obtained using Eq. (4.2-23), which is repeated here for convenience.  
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 (4.3-6) 

Since Region 0 and Region 1 are the same, the transmission coefficients reduce to the 

following form. 

10 1 0

0 1
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(4.3-7) 
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 (4.3-8) 

The characteristic wave vectors of , , ,
u d u d

I I II IIv v v v    in Region 1 reduce to 

 
0 0 0 0, , ,h h v v
      and the amplitude coefficients of , , ,u d u d

I I II IIc c c c  reduce to 1 since the 

Region 1 and in Region 0 are the same isotropic media. Thus, Eq. (4.3-7) reduces to Eq. (4.3-9). 
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 (4.3-9) 

Substituting the transmission coefficients of Eq. (4.3-7) and Eq. (4.3-8) back into Eq. (4.3-9) 

gives the following expression of the far field in Region 0. 
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Inspecting Eq. (4.3-10) and Eq. (4.3-5) shows that the radiated field of the z -directed dipole 

calculated using either 
(0,0)

G or 
(0,1)

G of the two-layer geometry gives the exactly same results. 

Assuming Region 0 and Region 1 are both free space with the thickness for Region 1 being 1h =

00.05 , and Region 2 being PEC or same as Region 0 (equivalent to an unbounded problem), the 

radiation patterns of a z-directed  Hertzian dipole placed at the interface of Region 0 and Region 

1 are plotted in Fig. 4-4. Fig. 4-4(a) plots the radiated field of a vertical dipole calculated using 

DGF of 
(0,0)

G , while Fig. 4-4(b) plots the radiated field of a vertical dipole calculated using DGF 

of 
(0,1)

.G   

   

Fig. 4-4: Radiated fields calculated using (a) DGF of 
(0,0)

G  and (b) DGF of 
(0,1)

.G  
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Inspecting Fig. 4-4(a) and Fig. 4-4(b) shows that radiation patterns calculated using both the 

DGFs give the exactly same results. Applying the same procedure, the radiated fields of a 

horizontal x -directed dipole at the interface of a layered geometry with Region 0 and Region 1 

being different media are derived. It is shown in Eq. (4.3-11) that a horizontal dipole‟s radiated 

fields derived from both the DGFs of 
(0,0)

G and 
(0,1)

G  give the same results.  
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(4.3-11) 

It is noted here that if both regions of the layered geometry are filled with different media, 

the radiated field for a vertical dipole placed at the interface of Region 0 and Region 1, obtained 

using 
(0,0)

G and 
(0,1)

,G  are usually not the same because the normal component of the electric 

field is not continuous across the boundary. For this reason, Region 0 and Region 1 are assumed 

to be the same in the derivation of the radiated field for a vertical dipole.  

4.3.2 Case II: Unbounded Isotropic Medium and Layered Biaxial Medium 

  In this section, we show that the formulas of radiated fields obtained in Section 4.2 when 

the source is located in Region 0 and Region 1 are consistent with a number of known cases. 

A. Unbounded Isotropic Medium  

The first problem analyzed is shown in Fig. 4-5, where both Region 0 and Region 1 are isotropic 

with permittivity 0 , i.e., it is an unbounded problem. The far field radiation pattern was 

calculated in the 0   plane with a Hertzian dipole oriented along x, y and z directions. 
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Fig. 4-5: Geometry of unbounded isotropic medium. 

It is known that the theoretical normalized radiated field pattern for a z-directed dipole in 

unbounded isotropic medium is as follows. 

( ) sinzf  
 (4.3-12) 

For an x-directed dipole, the normalized radiated field pattern is given by 

2 2( , ) 1 sin cosxf       (4.3-13) 

while for a y-directed dipole, the normalized radiated field pattern is  

2 2( , ) 1 sin sinyf       
(4.3-14) 

The calculated and exact results for the x, y and z-directed Hertzian dipoles are shown in 

Fig. 4-6(a), (b) and (c). Excellent agreement between the numerical solution and the exact 

solution is observed for all three cases. 

(a) (b) (c) 

Fig. 4-6: Radiation pattern of the x, y and z-directed Hertzian dipole in unbounded medium 

in the XZ plane. 

It is noted here that to calculate the radiation field of a Hertzian dipole with Region 1 being 

isotropic medium such as the case of the free space, the three diagonal elements of the 
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permittivity tensor for Region 1 are chosen as  1,1,1.00001  , so the anisotropic medium 

reduces to the isotropic case. Choosing  1,1,1.00001   instead of  1,1,1   is because the 

adjoint wave electric matrix is always zero for an isotropic medium, and the eigen-

decomposition method is no longer applied. The detail has been explained in Chapter 2.  

B. Biaxial Medium 

Now we consider the radiation of a Hertzian dipole in the presence of a biaxial slab. The 

radiations of a Hertzian dipole, located in an isotropic or biaxially anisotropic region for the half-

space and two-layer problems, have been thoroughly analyzed by Pettis [37]. To verify with the 

results in [37], radiation patterns for the following four different cases are given. 

 First, let Region 1 and Region 2 as shown in Fig. 4-2 are the same medium; then, the two-

layer problem reduces to a half-space problem. The radiation patterns of the Hertzian dipole 

when it is located in the isotropic region and biaxial region are shown in Fig. 4-7 and Fig. 4-8, 

respectively.  

 

Fig. 4-7: E vs.   in the 45o  plane for a z-directed Hertzian dipole in Region 0 (free 

space) with 00.1dh   and  , 2,3x  ,
 x =2, 5, 9. 
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Fig. 4-8: E vs. dh  in the 45o  plane for a z-directed Hertzian dipole in Region 1 with 

( , , ) (2,8,4), ( , , ) (30 ,20 ,0 )o o o

x y z       . 

Now let Region 2 be an isotropic medium, then the radiated field can be calculated using the 

formula derived in Section 4.2, and the results are displayed in Fig. 4-9 and Fig. 4-10, 

respectively. 

 

Fig. 4-9: | |E  vs.  in the 90o   plane for various values of 
dh for a z-directed Hertzian 

dipole positioned in region 0 of a two-layer problem. Region 1 is biaxial with 

( , , ) (2,8,4), ( , , ) (0,0,0)x y z       and slab thickness is 00.4 . 

 

Fig. 4-10: E  vs.   in the 0o   plane for various values of  (rotation angle) and an x-

directed Hertzian dipole positioned in Region 1 of a two-layer problem. Region 1 is biaxial with 

( , , ) (2,8,4), ( , , ) (0 ,70 ,0 )o o o

x y z       and with 0 00.3 , d 0.4dh    . 
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Fig. 4-9 is consistent with the result of Fig. 5.45 shown in [37]. Fig. 4-10 is consistent with 

result of Fig. 5.53 shown in [37]. As shown in Fig. 4-9, the radiation pattern of a Hertzian dipole 

is symmetric when the dipole is placed in the isotropic region, while it is not when the dipole is 

inside the biaxial slab. The numerical results validate the use of the Green‟s function obtained in 

Chapter 3. Since the purpose here is for validation only, detailed discussion about the biaxial 

anisotropic effect on the radiation of a Hertzian dipole is omitted here. 

4.3.3 The Anisotropic Region Filled with Gyroelectric and Gyromagnetic Media 

Now let us consider the radiation of a Hertzian dipole in the presence of a non-reciprocal 

slab filled with gyrotropic media.  

 

Fig. 4-11: Geometry of the grounded gyroelectric slab in [46]. 

A. Gyroelectric Medium 

The first case shown here is for a numerical verification with the work of Wu [46]. The 

dipole is placed in the isotropic region over a grounded gyroelectric slab as shown in Fig. 4-11. 

The numerically obtained radiation patterns of the dipole over a grounded slab of different 

thickness are plotted in Fig. 4-12.  The distance of the dipole away from the interface between 

Region 0 and Region 1 is 00.55dh   and the thickness of the slab is chosen as 00.05 , 00.3  and 

00.55 . The relative frequency for the gyroelectric medium is chosen as 2.2, 0.6
pb



 
  . 
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(a) (b) 

Fig. 4-12:  | |E  vs.   in the plane of 0o   for a z-directed Hertzian dipole located in 

Region 0, with 00.55dh 
 
away from the interface of free space and gyroelectric slab. (a) Result 

from Wu [46] and (b) Radiated field using the formula in this chapter. 

 Fig. 4-12(a) displays the numerical results obtained from [46], while Fig. 4-12(b) displays 

the radiation pattern calculated using the formulas derived in this chapter. As observed in Fig. 

4-12, very good agreement is obtained between our results and the results from [46]. 

B. Gyromagnetic Medium 

 The second case will establish consistency between the numerical results obtained here and 

these of Tsalamengas and Uzunoglu [54]. The geometry of the problem is shown in Fig. 4-13. 

The dipole is located in Region 0 along the vector  x y z    at a distance of 6cm from the ferrite 

slab whose thickness is 5mm and the radiated field in Region 2 is of interest. Region 1 is filled 

with a ferrite medium, which is electrically isotropic with 1 14.8r   and magnetically gyrotropic 

with 9

0 2 2.8 10 / ,rad s     921.111 10 /m rad s   . The incident frequency is 10 GHz.   

 

Fig. 4-13: Geometry of a two-layer problem filled with gyromagnetic medium. 
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Normalized radiation patterns of | |E and | |E
for the XZ-plane are shown in Fig. 4-14 (a1), 

(b1), while normalized radiation patterns of | |E and | |E
for the YZ-plane are shown in Fig. 

4-14(c1), (d1). The radiation patterns obtained from [54] are displayed in Fig. 4-14(a2)-(d2).  

  

  

  

  

Fig. 4-14: | |E  and | |E
vs.   in the plane of 0 , 90o o   with the source in Region 0 and 

the field in Region 2. 

 Each subplot shows four curves, corresponding to the radiated fields of an x-directed 

dipole on the layered ferrite slab with four distinct orientations of the biasing magnetic field:

         , 20 ,50 , 40 ,50 , 60 ,50 , 80 ,50 .o o o o o o o o    It is seen that the radiation patterns of 
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the transmitted field for Region 2 obtained using the E-DGF developed here (Eq. (4.2-12)) give 

very good agreement with what is obtained in [54]. 

 

4.4 Radiation of a Hertzian Dipole in the Presence of Gyroelectric Medium 

 In this section, we will investigate the radiation of a Hertzian dipole in the presence of a 

gyroelectric medium. First, the radiation of a Hertzian dipole above a half-space gyroelectric 

medium is presented in Section 4.4.1. Then the radiations of a Hertzian dipole when it is above 

and inside a two-layer gyroelectric slab are presented in Sections 4.4.2 and 4.4.3, respectively.    

4.4.1 Radiation of a Vertical Dipole on Top of a Half-space Gyroelectric Medium 

Since the gyroelectric medium is dispersive, the medium property is dependent on the 

frequency of the incident wave. According to the specific wave type that can propagate inside the 

gyroelectric medium, the whole frequency is divided into eight different frequency bands [72]. 

For convenience, the eighth frequency bands are repeated in Table 4-1. It is seen from Table 4-1 

that Regions 1, 2, 3 and Region 8 always exist. If 
b p  , Region 4 and Region 5 cannot exist. 

If 2b p  , Region 6 and Region 7 cannot exist.  

Both characteristic waves propagate in Region 1 and Region 6 and do not depend on the 

direction of propagation. In Region 3 and Region 7, the Type I wave always exists, while the 

Type II wave exists only for certain propagation directions with respect to the biasing magnetic 

field. In Region 2, the Type I wave exists for all the propagation directions. In Region 4, type II 

wave exists for all the propagation directions, while in Region 8, the Type II wave exists only for 
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certain propagation directions with respect to the biasing magnetic field. There is no propagation 

in Region 5. 

 Frequency Band Wave Propagating  

Region 1 1   Type I, Type II Always exist 

Region 2 2 1     Type I Always exist 

Region 3 2max( , )b p      Type I, Type II Always exist 

Region 4 3max( , )b p      Type II Exist only if 
b p   

Region 5 3b     No propagation Exist only if 
2

p

b


   

Region 6 p b     Type I, Type II Exist only if 
b p   

Region 7 3 min( , )b p      Type I, Type II Exist only if 
2

p

b


   

Region 8 30 min( , )b     Type II Always exist 

2 2
2 2 2 2

1 2 3 3 2 1, , , ,
2 4 2 4

b b b b
p b p p p

   
                       

Table 4-1:  Frequency bands with different propagating waves for a gyroelectric medium. 

The far field of a Hertzian dipole placed on top of a half-space gyroelectric medium for 

different incident frequencies is analyzed in this section using the formula proposed in the 

previous sections. The Hertzian dipole is z-oriented ( u z  ); and the distance from the dipole to 

the interface is 0. In this case, the field expression reduces to  
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
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       


 

where 

                                                

0 0sin cos , sin sinx obs obs y obs obsk k k k      

(4.4-1) 

Spherical components of the far field are obtained as follows. 

00( ) ( , )sin
4

ik r

hv obs obs obs

Il
E r i e R

r



  


   (4.4-2) 

 00 1 ( , ) sin
4

ik r

vv obs obs obs

Il
E i e R

r



  


     (4.4-3) 

Then, the normalized field pattern for the z-directed dipole is obtained as follows. 

1 ( , )
( , ) sin

max 1 ( , )

( , )
( , ) sin

max ( , )

vv obs obs

obs obs obs

vv obs obs

hv obs obs

obs obs obs

hv obs obs

R
f

R

R
f

R





 
  

 

 
  

 

 


 





 

(4.4-4) 

It is seen from Eq. (4.4-4) that when the z -oriented Hertzian dipole is placed at the interface 

of free space and a gyroelectric medium, both co-polarized and cross-polarized field components 

exist if the cross-polarized reflection coefficient ( , )hv obs obsR    is non-zero. It is also seen that 

the co-polarized field pattern f  is the free space pattern sin  multiplied by the co-polarized 

reflection factor  1 ( , )vv obs obsR     , and the cross-polarized field pattern f  is the free space 

pattern sin  multiplied by the cross-polarized reflection factor ( , )hv obs obsR   . It needs to be 

noted here that such simple relations only hold for a z-directed dipole when it is located at the 

interface with 0dh  . The radiation pattern of a z -directed dipole is first studied for a half-space 
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gyroelectric medium with different frequencies and a biasing magnetic field along different 

orientations.   

4.4.1.1 Parametric Effect of Frequency and Biasing Magnetic Field  

A. Effect of Frequency 

 Since the gyroelectric medium is dispersive, the first parameter of interest is the frequency 

of the incident wave. The following numerical results and discussions investigate the effect of 

the frequency of the incident wave to the radiation with 92 10p   and 1.9b p  . 

Considering a z-directed Hertzian dipole in Region 0 at the interface of the half-space 

gyroelectric medium, the radiation patterns | |E  in the plane of 0o   are displayed in Fig. 

4-15. Fig. 4-15(a) and (b) correspond to the cases with the biasing magnetic field of a 

gyroelectric medium along z-direction and y-direction, respectively. It is seen in Fig. 4-15 that 

the main beam direction varies with frequency of incidence wave. For the case of a biasing 

magnetic field along the y-direction, the main beam will become narrower with a side lobe also 

appearing as the frequency is increased. 

(a) (b) 

Fig. 4-15: | |E   vs.   in the plane of 0o   for a z-directed Hertzian dipole located in 

Region 0 with 0dh  away from the interface of free space and gyroelectric medium. The biasing 

magnetic field is along the (a) z and (b) y directions. 
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B. Effect of the Biasing Magnetic Field Direction 

Then, the effect of the biasing magnetic field direction to the radiation pattern is studied. 

Fig. 4-16(a) and (b) show the co-polarized field pattern | |E  and cross-polarized field pattern 

| |E  in the XZ plane, while Fig. 4-16(c) and (d) show the co-polarized and cross-polarized field 

patterns | |E  and | |E
in the YZ plane. In each subplot of Fig. 4-16, there exist four curves 

which correspond to the radiation patterns of a Hertzian dipole on the gyroelectric substrates 

with four different biasing magnetic fields.  

(a) (b) 

(c) (d) 

Fig. 4-16: Field pattern for a z-directed Hertzian dipole located in Region 0 with 0dh  away 

from the interface of free space and gyroelectric medium. The biasing magnetic field is along 

20 , 40 , 60 , 80 , 0o o o o o

B B    and the frequency of the incidence wave is 1.01
1 . (a) | |E  

and 

(b) | |E
 vs.   in the plane of 0o  ; (c) | |E  

and (d) | |E
 vs.   in the plane of 90o  . 

When the biasing magnetic field is in the XZ plane ( 0o

B  ), it is seen in Fig. 4-16(a) that 

the co-polarized field patterns in the XZ plane ( 0o  ) are always symmetric for different 

directions of 20 , 40 , 60 , 80 ;o o o o

B   further, the main beam of the co-polarized field for the 
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XZ plane is constant and around 70 degrees. However, the co-polarized field pattern in the YZ 

plane ( 90o  ) is not symmetric, as shown in Fig. 4-16(c), and the direction of the main beam 

varies with B . As B  increases, the cross-polarized field pattern in the XZ plane increases, as 

shown in Fig. 4-16(b), and the cross-polarized field pattern of YZ plane decreases, as shown in 

Fig. 4-16(d). 

4.4.1.2 Relation of Directive Radiation with Total Internal Reflection   

As shown in the previous section that the directive radiation exists. In this section, the 

relation of the directive radiation with the total internal reflection associated with the 

characteristic waves of the gyroelectric medium is revealed. To be consistent with the discussion 

of previous section, the plasma frequency and gyrofrequency for the gyroelectric medium are 

chosen as 92 10p   and 1.9 ,b p   such that both Type I and Type II waves exist [72].  

When the frequency of the incident wave is in Region 1 as 11.01  , 
2

2

1
2 4

b b
p

 
     

and the biasing magnetic field is along the z-direction, the relative permittivity and permeability 

of the gyroelectric medium are given by 

1 1

0.4805 0.4196 0

0.4196 0.4805 0 , 1

0 0 0.8193

r r

i

i 

 
 

  
 
  

 (4.4-5) 

The study of the radiation pattern starts with the analysis of the reflection coefficients as it is 

seen from Eq. (4.4-4) that the co-polarized and cross-polarized reflection factors of

 1 ( , )vv obs obsR    and ( , )hv obs obsR   are essential to the  corresponding field patterns of f  and 

f . Total internal reflection is one of the most interesting phenomena analyzed here.  
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It is known that when the wave is incident from dense medium upon less dense medium 

(assuming both media are isotropic), there exists one critical angle beyond which total internal 

reflection occurs with the magnitude of the reflection coefficient to be 1. If the wave is incident 

from an isotropic medium upon an anisotropic medium, there usually exist two critical angles 

since there are two types of waves in an anisotropic medium. 

 To demonstrate the concept of the total internal reflection, the magnitude of the wave vector 

surface for waves propagating in the isotropic medium and the gyroelectric medium 

characterized by Eq. (4.4-5) is plotted in Fig. 4-17.  

 

Fig. 4-17: Normalized wave vector surface of an isotropic medium and these for Type I and 

Type II waves of a gyroelectric medium vs.   in the plane of 0o  . 

It is noted here that the magnitudes of the wave vector for each case have been renormalized 

to the wave number of the isotropic medium. It is observed from Fig. 4-17 that since the wave 

vector surfaces for both Type I and Type II waves are within that of the isotropic medium, the 

total internal reflection will exist. It is easy to determine the critical angle at the interface of two 

isotropic media using 1sin t
c

i

k
k

     
 

, where ik  and tk are the wave numbers of the incident and 

transmitted regions. However, unlike a wave vector surface of an isotropic medium, the 

magnitude of the wave vector in an anisotropic medium varies along different propagation 
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directions. Thus, it is important to get the magnitudes of the wave vectors for both two types of 

waves along the direction at which the total reflection occurs, denoted as Ik  and IIk .  

Assuming total reflection occurs for a wave incident from an angle of ,in in  , it  leads to the 

transmitted wave of the specific type propagating along 90 ,o

t t in    .Then the angle   

between the propagation direction of the transmitted wave and the direction of the biasing 

magnetic field  ,B B   of the gyroelectric medium can be calculated by 

2 2 2cos sin cos ( )B in B      (4.4-6) 

The wave numbers ,I IIk k  can be expressed in terms of the permittivity of the medium and 

angle   and have been derived as follows. 

   
 

 
 

2 2 4 2 2 22 2 2 22
/ / / // /

2 2 2 2 2
0 / / / /

sin 4 cossin 1 cos

2 sin cos 2 sin cos

g ggIk

k

            

       

  

 

    
 

 
 (4.4-7) 

   
 
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 

2 2 4 2 2 22 2 2 22
/ / / // /

2 2 2 2 2
0 / / / /

sin 4 cossin 1 cos

2 sin cos 2 sin cos

g ggIIk
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            

       

  

 

    
 

 
 

(4.4-8) 

The typical equations 1 1sin , sinI II
cI cII

i i

k k
k k

         
   

 can be used to calculate the 

critical angles for Type I and Type II waves in a gyroelectric medium. It is noted here that the 

above critical angles are derived based on the assumption that both Type I and Type II waves can 

exist in a gyroelectric medium. Actually it is known that since a gyroelectric medium is 

dispersive, one type of wave or both types of waves may not exist in the gyroelectric medium 

depending on the frequency of the incident wave. Eq. (4.4-4) indicates that the radiated field is 

closely related with the reflection coefficients ( , )vv obs obsR   and ( , )hv obs obsR   , which are the 
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co-polarized and cross-polarized reflection coefficients when the incidence angles are obs and 

.obs
 
Thus, the magnitude and phase of the reflection coefficients of ( , 0)vv obs obsR     and 

( , 0)hv obs obsR   
 
are plotted with respect to different incidence angles in Fig. 4-18.  The 

relative permittivity of the gyroelectric medium is given by Eq. (4.4-5), with 

2
2

1 11.01 , ,
2 4

b b
p

 
        and the biasing magnetic field along z-direction 0 .o

B    

 

Fig. 4-18: Magnitude and phase of reflection coefficients 01 01,vv hvR R
 
vs. different incidence 

angles for an incidence plane of 0o  .  

It is observed from Fig. 4-18 that 65o

cI   and 20o

cII   correspond to the critical angles 

of Type I and Type II characteristic waves, respectively. It is known that for transverse waves 

with the propagation direction perpendicular to the biasing magnetic field, the Type I wave 

corresponds to an ordinary characteristic wave with a linear polarization, while Type II wave is 

an extraordinary wave with an elliptical polarization. This is consistent with the phenomenon 

that only co-polarized reflection coefficient exists at 65o with the cross-polarized reflection 

coefficient to be 0, while at 20o  both co-polarized and cross-polarized reflection coefficients 

exist with the phase difference of 90o . As expected, a linearly polarized radiated field is 
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observed at 65o and an elliptically polarized wave (circular polarization is possible depending on 

the property of the medium) is observed at 20o . 

 In addition, since the biasing magnetic field is along the z-direction, all of the co-polarized 

and cross-polarized reflection coefficients are independent of obs  and symmetric with respect to 

obs  as shown in Fig. 4-18. Thus, the normalized field pattern for a z-directed dipole located at 

the interface is also independent of the angle   and symmetric with respect to the z-axis. 

 (a) (b) 

(c) (d) 

Fig. 4-19: (a) E  and (b) | |E
vs.   in the plane of 0o   for a z-directed Hertzian dipole 

located in region 0 with 0dh  away from the interface of free space and gyroelectric medium 

with the direction of biasing magnetic field along 0o

B  . 9

12 10 , 1.9 , 1.01 ,p b p       

2
2

1 .
2 4

b b
p

 
   

 

 Renormalizing the field components of the radiated field of the Hertzian dipole for both 

half-space and free-space to the same maximum value of max(| |)half gyroE 
, the 2D patterns of 
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| |E  and | |E
 of 0o   are shown in Fig. 4-19(a) and (b), while the 3D patterns are shown in 

Fig. 4-19(c) and (d). It is seen from Fig. 4-19(a) that the co-polarized field pattern is not 

symmetric and more directive compared to the radiation of the dipole in free space. Also, the 

cross-polarized pattern occurs as shown in Fig. 4-19(b). The co-polarized field pattern | |E has a 

maximum radiation angle around 65o  , which corresponds to the total internal reflection angle 

for the Type I wave. This can be verified with the magnitude of the reflection coefficient 01

vvR  as 

shown in Fig. 4-18(a). Meanwhile, the cross-polarized field pattern | |E  
has a null around 

65o  , which corresponds to the minimum of the magnitude of the reflection coefficients of 

01

hvR  as displayed in Fig. 4-18(a).  

 Consider a z-oriented dipole placed at the interface of the isotropic and gyroelectric media 

with the biasing magnetic field along the y-direction of 90 , 90o o

B B   . The radiated field 

patterns for the XZ plane ( 0o  ) and YZ plane ( 90o  ) are plotted in Fig. 4-20 and Fig. 4-21, 

respectively.  

(a) (b) 

Fig. 4-20: (a) | |E  and (b) | |E
vs.   in the plane of 0o   for a z-directed Hertzian dipole 

located in Region 0 with 0dh  away from the interface of free space and a gyroelectric medium 

with 11.01   and the biasing magnetic field along 90 , 90o o

B B   .  

 Fig. 4-20(a) presents the co-polarized radiation pattern of | |E , and Fig. 4-20(b) displays 

the cross-polarized radiation pattern of | | .E  
It is seen in Fig. 4-20(a) that when the biasing 
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magnetic field is along the y-direction, the maxim radiation occurs at around the angle of 

52 , 0o o   . Also, it shows that the co-polarized radiation pattern | |E  is no longer 

symmetric with respect to z-axis in the XZ plane. As expected, for the observation plane of the 

XZ plane, which is perpendicular to the biasing magnetic field, no-cross polarized field exits, 

which is obvious in Fig. 4-20(b). 

 

Fig. 4-21: (a) | |E  and (b) | |E
vs.   in the plane of 90o   for a z-directed Hertzian dipole 

in Region 0 with 0dh 
 
away from the interface of half-space gyroelectric medium with the 

biasing magnetic field along 90 , 90o o

B B   . 

 However, as shown in Fig. 4-21(a) and (b), both the co-polarized and cross-polarized 

patterns are symmetric with respect to the z-axis in the YZ plane. This is because when the 

observation plane is parallel to the direction of the biasing magnetic field, the reflection 

coefficients satisfy the symmetric condition, which leads to symmetric radiation patterns. Also, it 

is observed in Fig. 4-21(b) that the maximum cross-polarized field is in the same order as the co-

polarized field. The maximum radiation along the peak directions in both patterns are due to the 

total internal reflections of the Type I and Type II waves of a gyroelectric medium. 

4.4.2 The Two-Layer Problem with a Source above the Anisotropic Region 

 In reality, radiation of a dipole with a grounded substrate is a more practical problem. 

Thus, the radiation of a Hertzian dipole located over the grounded gyroelectric slab is discussed 

in this section. It is known from the image theory that the radiated field of a horizontal dipole 
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over a ground plane significantly reduces with the decrease of the distance between the dipole 

and the ground plane. For a horizontal dipole over a ground plane to radiate effectively, a 

minimum distance of quarter wavelength away from the ground is needed. In this case, the 

radiated field along the broadside direction will be double the field of dipole in free space.  

Here we wish to show that even with an ultra thin grounded gyroelectric slab, enhanced 

radiation for a horizontal dipole over the slab is still possible. The following assumptions are 

made for the analysis. The direction of the biasing magnetic field is along the z-direction with 

0o

B 
 
and the dipole is located at the interface of 0dh  .The operating frequency range of the 

gyroelectric medium is changed by varying the plasma frequency while keeping the frequency of 

the dipole as 92 10   and the ratio of gyrofrequency to the plasma frequency as a constant of 

0.5b p  .  

 

Fig. 4-22: Normalized radiated field E  for an x-directed dipole located at the interface of 

the grounded gyroelectric slab and air in the xz-plane for different frequency regions of the 

gyroelectric medium. 

 With the choice of the plasma frequency as the middle frequency point of each existing 

frequency region as shown in Table 4-1, the normalized co-polarized radiation patterns of a 

horizontal Hertzian dipole over a grounded gyroelectric slab with thickness of 00.05  are plotted 

in Fig. 4-22 for the plane of 0o  . Usually there exist 8 different frequency regions. However, 
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for a gyroelectric medium with the choice of 92 10 , 0.5b p    
 
here, Region 6 and Region 

7 don‟t exist.  Also, no enhanced radiation is observed for the radiation patterns in Region 1, 5 

and 8, thus the radiation patterns in these regions are not considered.  

It is seen from Fig. 4-22 that when an x-directed dipole is placed 
00.05  away from the 

ground, the maximum magnitude of the radiated field along the broadside direction (solid line) is 

less than two thirds of the magnitude of the radiation for a Hertzian dipole in free space (dash 

line). However, enhanced radiation is still obtained using the gyroelectric slab when it is 

operated in frequency Region 3 (dotted line). Compared with the radiation of a Hertzian dipole 

over the ground plane in the absence of the slab (grounded isotropic case), the maximum 

radiation power is increased by two times (which is around 6dB) and the maximum radiation is 

around 45o .   

  

Fig. 4-23: Normalized radiated field  patterns E  for an x-directed dipole located at an air-

gyroelectric medium interface of a grounded slab as a function of different biasing magnetic field 

directions. 

 In addition to changing the operating frequency region, additional freedom of tuning the 

biasing magnetic field for the gyroelectric medium helps to tune the direction of the maximum 

radiation. Parametric analysis of the effect of the biasing magnetic field for the radiation of an x-

directed dipole over the grounded gyroelectric slab operating in frequency Region 3 with 
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thickness of 1 00.05h   is shown in Fig. 4-23. It is seen that the direction and the magnitude of 

the maximum radiation are dependent on the choice of the direction of the biasing magnetic 

field. About a 2 times (6dB) increase in maximum radiation power relative to the radiation of a 

dipole in free space is obtained along 20o  when 60o

B  . It is expected that maximum radiation 

along the broadside direction is potentially achievable with proper tuning of the direction of the 

biasing magnetic field. It has been shown in this section that a horizontal dipole placed over an 

ultrathin gyroelectric slab of 00.05  can still radiate effectively with the maximum radiation 

around two times (6dB) higher than the radiation of a dipole in free space. In the next section, 

focus will be on the radiation of the dipole embedded inside the grounded gyroelectric slab.  

4.4.3 The Two-Layer Problem with a Source Embedded in the Anisotropic Region 

It has been shown in [73-75] that the enhanced radiated field along the broadside direction 

can be realized by placing a horizontal dipole inside a grounded isotropic plasma slab with 

permittivity very close to zero. In the previous work [73-75], the analysis of the directive 

radiation is considered for a grounded metamaterial slab based on the isotropic dispersive model. 

Here, the anisotropic effect to the radiation of a Hertzian dipole introduced by applying the 

biasing magnetic field is considered. It is shown that utilizing the anisotropic effect, the 

broadside radiation can be obtained for a vertical dipole that is oriented perpendicular to the 

interface. In addition, it is demonstrated that applying the biasing magnetic field helps to reduce 

the required thickness of the isotropic plasma slab for the enhanced broadside radiation.  

This section is organized as follows. First, the radiation features for a horizontal dipole 

inside a grounded isotropic slab are studied and compared with the results available in [75]. Then 

the isotropic slab is extended to an anisotropic slab, and the effect of the anisotropy to the 
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radiation pattern of the dipole is studied. Finally, the radiation of a vertical dipole inside an 

anisotropic slab is studied.  

4.4.3.1 Radiation of a Horizontal Dipole inside a Grounded Isotropic Plasma Slab 

                

Fig. 4-24: Geometry of a horizontal dipole located inside a grounded gyroelectric slab with a 

distance dh
 
away from the air-slab interface. 

 The geometry of interest is shown in Fig. 4-24. A horizontal dipole is located at the middle 

of a grounded gyroelectric slab with the orientation of the dipole designated as u . The dipole is 

dh  away from the air-slab interface, and the direction of the biasing magnetic field for the 

gyroelectric substrate is designated with  
B  and 

B . The permittivity of the gyroelectric 

medium with an arbitrarily biasing magnetic field is provided in Eq. (2.3-4).  In the absence of 

the biasing magnetic field, which is equivalent to the choice for the gyrofrequency of =0b , the 

gyroelectric medium reduces to an isotropic medium. Setting the plasma frequency being 1 GHz 

and the operating frequency of the source being 1.1 GHz as shown in Eq. (4.4-9), the dielectric 

constant of the gyroelectric medium is given in Eq. (4.4-10). 

9 92 10 / , 1.1 2.2 10 /p prad s rad s          (4.4-9) 

2
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(4.4-10) 

 u y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Air 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dh  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gyroelectric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

The first case considered here is where a horizontal dipole oriented along the y-direction (

 u y ) is embedded at the center of the slab. According to Baccarelliet et al. [73], there exists an 

optimized frequency to obtain the maximum broadside radiation for a fixed thickness of the slab 

filled with the isotropic plasma. For the fixed frequency of the dipole, the broadside radiation 

varies periodically with the thickness of the slab. The observation distance is 040r  , where 0

is free space wavelength and defined as in Eq. (4.4-11).  

1/2
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0 2
, 1 654

pc c
mm

f f



 





 
     

 

 (4.4-11) 

It is known that the two general characteristic waves inside the isotropic plasma are h-

polarized and v-polarized. When the dipole is located inside the slab, the Type I wave is assigned 

as an h-polarized wave and the Type II wave is assigned as a v-polarized wave in the general 

expression of the radiated field. If the incidence plane is an XZ-plane ( 0o  ) and the dipole is 

oriented along the y-direction, the general expression reduces to the following form. 
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(4.4-12) 

where the coefficients are given in Eq. (4.4-13) and Eq. (4.4-14). 
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For the special case of an isotropic medium, it is straightforward to derive that  
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Then, the radiated field in Region 0 can be expressed as 
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For the field along the broadside direction ( 0)k  , 
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 (4.4-16) 

 It is easy to see that if / 2dh d , corresponding to the case of the dipole located in the 

middle of the slab, the period of 0 ( 0 )oE   as function of the slab thickness is  , as shown in 

Eq. (4.4-11). The radiation power density along the broadside direction for different slab 

thicknesses is shown in Fig. 4-25 with a solid line.  

(a) (b) 

Fig. 4-25: Power density (dB) of (a)   component and (b)   component as a function of the 

slab thickness.  
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 It is noted here that to plot Fig. 4-25, the dipole is always placed in the middle of the 

grounded slab ( / 2dh d ) for different slab thickness  and the permittivity of the slab is 

characterized by Eq. (4.4-10). It is seen that for an isotropic plasma slab no cross-polarized 

radiated field E  exists. As shown in Fig. 4-25, the power density along the broadside direction 

for the dipole inside the slab has been increased by 14dB compared with the radiation of a 

Hertzian dipole in free space (dotted line in Fig. 4-25). It can also be observed that (0)P is a 

strictly periodic function of the slab thickness and shows maxima when the thickness of the slab 

is an odd integer multiple of / 2 . This result is consistent with the result obtained in [73]. 

 

Fig. 4-26: Power density (dB) of   component as a function of the slab thickness. 

0.25dh 
 
and 1.1 pf f .  

 If / 4dh  , then it is easy to derive from Eq. (4.4-16) that the period of 0 ( 0 )oE    as a 

function of the slab thickness is / 2 . This is verified by plotting the radiation power density 

along the broadside direction versus the thickness of the slab with 0.25dh 
 
in Fig. 4-26. It is 

observed that the maximum broadside radiation occurs when the thickness of the slab is an 

integer multiple of / 2 . The maximum radiation has been increased by 14dB compared to the 
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radiation of a Hertzian dipole in free space, which is the same as the case of the dipole located in 

the middle of the slab. 

 Inspection of Fig. 4-25 and Fig. 4-26 shows that the location of the Hertzian dipole will not 

change the directivity of the dipole when it is embedded inside the slab. However, the period of 

the slab thickness for the maximum radiation along the broadside direction is affected by the 

location of the Hertzian dipole. This is due to the different phase advance introduced by the 

dipole location. This result obtained above is consistent with the conclusion in [73]. It should be 

noted here that in [73] only the line source is considered.  

In the next section, the anisotropic effects introduced by the biasing magnetic field for the 

radiation of horizontal and vertical dipoles are studied. It will be shown that with the proper 

choice of the gyrofrequency and the thickness of the grounded gyroelectric slab, directive 

emission along the broadside direction is achievable.  

4.4.3.2 Radiation of a Horizontal Dipole inside the Grounded Gyroelectric Slab 

  In this section, the anisotropic effect introduced due to the biasing magnetic field is studied 

for the radiation patterns of a horizontal dipole. The analysis starts with the minor anisotropic 

effect by setting 0.001b p  . Then, the off-diagonal elements are introduced into the 

permittivity matrix of the gyroelectric medium as follows.  

0.1736 0.0008 0

0.0008 0.1736 0

0 0 0.1736

p

i

i

 
 

 
 
    

(4.4-17) 



145 

 

 It is noted here that due to the choice of extremely small 0.001b p  , all the diagonal 

elements of the permittivity matrix appear to be same. The power density radiated by the unit 

current moment Hertzian dipole placed in a grounded slab is plotted in Fig. 4-27.  

  (a) (b) 

Fig. 4-27: Power density of (a)   component and (b)   component radiated in broadside 

direction by a unit current moment y-directed Hertzian dipole placed at the center of a grounded 

gyroelectric slab as a function of the slab thickness with 0.001b p  , 1.1 pf f .  

 It can be observed from Fig. 4-27 that due to the off-diagonal element, the significant 

cross-polarized radiated component ( 0 )oP    has been introduced and has maxima every / 2  

in a periodic way versus the thickness of the slab. On the other hand, ( 0 )oP    is not much 

affected and still behaves in the same way as the radiation of the horizontal dipole in the 

grounded isotropic plasma slab. 

 If the gyrofrequency b is further increased, then the negative elements will be introduced 

into the diagonal elements of the permittivity matrix. Letting b p  , 1.1 pf f , the permittivity 

matrix of the gyroelectric medium is given by 
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3.7619 4.3290 0
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(4.4-18) 

The radiation power densities of both   and   components along the broadsided direction for 

the horizontal dipole in the middle of the grounded slab with p  shown in Eq. (4.4-18) are 

plotted in Fig. 4-28.  

  (a) (b)  

Fig. 4-28: (a) Power density and (b) phase difference of (0)P  and (0)P  for a unit current 

moment y-directed Hertzian dipole placed in the middle of a grounded gyroelectric slab as a 

function of the slab thickness with b p  , 1.1 pf f .  

 It is observed that the amplitudes of   and   components are equal and overlay each other 

and their phase difference is 270 degrees. Thus, the radiated field along the broadside direction is 

now a circular polarized wave for the special case of b p  . Also, it is seen in Fig. 4-28 that 

the first maximum radiation along the broadside direction occurs when the slab thickness is 

0.275   and maxima repeat when the thickness is increased by every 0.55  . This thickness is 

only half of the optimum thickness to achieve the maximum radiation when the dipole is placed 

inside an isotropic plasma slab. Compared to the maximum radiation of power density of the 
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Hertzian dipole in free space, shown as the straight line in  Fig. 4-28(a) , the radiation of the 

Hertzian dipole inside the slab has been increased by 2.5dB for both the   and   components. 

 It has been observed from Fig. 4-25 and Fig. 4-26 that in order to achieve a high directivity 

along the broadside direction for a horizontal dipole inside the grounded isotropic plasma slab, 

the thickness of the slab is usually in the order of free space wavelength at the operating 

frequency. Considering the case of the isotropic plasma slab with 910 , 1.1p pf Hz f f  , the 

optimum thickness for the slab to achieve the maximum radiation along the broadside direction 

is 

1/2
2

02
0.5 0.5 1 327 1.2

pc
mm

f



 





 
     

   

(4.4-19) 

 To reveal the negative impact of the thinner isotropic slab, the radiated fields E  versus 

angles in XZ plane are shown Fig. 4-29 for a y-directed dipole inside such a grounded isotropic 

plasma slab with different thicknesses of 00.05 , 00.5  and 01.2 . It is seen that when the 

thickness of the isotropic plasma slab is reduced from the optimum thickness of 01.2  to 00.5 , 

the maximum radiation direction maintains around the broadside direction. However, the 

amplitude of the maximum radiation is decreased. When the thickness of the isotropic plasma 

slab is reduced to 00.05 , the radiation power decreases continuously across the whole angular 

range. Along the broadside direction, the radiation power is 15dB lower than the radiation power 

of a Hertzian dipole in free space. Only the   component of the radiated field contributes to the 

total radiated power since the horizontal dipole is oriented along the y-direction which is 

perpendicular to the observation plane. 
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Fig. 4-29: Normalized radiated field for a y-directed dipole located in the middle of the 

isotropic plasma slab in the XZ-plane as a function of observation angle which is measured from 

the z-axis. 

 If the anisotropic gyroelectric slab with 
b p   is used instead of an isotropic slab, a 

similar kind of behavior can be observed, as shown in Fig. 4-30. The radiation power densities 

(0)P  and (0)P  for a gyroelectric slab of thicknesses 01.2 , 00.5 , and 00.05  are shown in Fig. 

4-30(a), (b) and (c). The radiation power density of the dipole in the free space is given with a 

black dotted line in each figure. As shown in Fig. 4-30(a), in addition to the enhanced radiation 

along the broadside direction, extra three peaks of radiation occur at the angles of 58o , 70o , and 

80o . The same phenomenon can be observed for the slab thickness of 00.5 , as shown in Fig. 

4-30(b). However, when the thickness of the slab is reduced to 00.05 , no such strong radiation 

peaks occur any more as shown in Fig. 4-30(c). Actually, when the thickness of the slab reduces 

to 00.05 , the horizontal dipole can no longer radiates effectively since the image current of the 

horizontal dipole over PEC cancels out each other. For all the observation angles in the XZ 

plane, the radiation power of a Hertzian dipole in such a slab has always been lower than the 
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Hertzian dipole in free space. However, it is a different case if the dipole is vertically oriented (z-

oriented). Detailed discussion is given in the next section. 

  

 

 

Fig. 4-30: Radiation patterns for a y-oriented dipole located in the middle of the anisotropic 

gyroelectric slab vs. different slab thicknesses.   

4.4.3.3 Radiation of a Vertical Dipole inside the Grounded Gyroelectric Slab 

                                      

Fig. 4-31: Geometry of a vertical dipole located inside the grounded anisotropic slab with a 

distance of dh
 
away from the air-slab interface. 
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 If the dipole inside the slab is oriented to be perpendicular to the interface of the slab as 

shown in Fig. 4-31, then the thickness of the slab can be chosen very thin and very high 

directivity can still be achieved along the broadside direction. The parametric study of the effects 

of frequency, biasing magnetic field direction and the slab thickness is presented in this section 

to show how the directive radiation along the broadside direction will be achieved with a vertical 

dipole inside a grounded gyroelectric slab.  

A. Effect of Frequency 

 Assuming the gyro-frequency 0.8b p  , the effect of the frequency to the radiation 

features of a vertical dipole inside the gyroelectric slab is first studied. Normalized field patterns 

E  
of a vertical dipole inside the grounded gyroelectric slab with different frequencies of 

0.9 pf , 0.95 pf , 1.05 pf , and 1.1 pf  are plotted with a solid line, dashed line, dotted line, and a 

dash-dot mixed line in Fig. 4-32.  

 

Fig. 4-32: Normalized field pattern of E  vs.   in the plane of 0o   with vertical dipole 

located in the middle of the grounded gyroelectric slab of thickness of 00.05 . 

 It can be seen from the normalized field patterns of E that the beam is symmetric with 

respect to the z-axis, and the maximum radiation occurs at around 20o

 
for all four cases. 
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However, the radiations along 70o  for the frequencies of 0.95 pf  and 1.05 pf  are much smaller 

than the radiation for the frequencies of 0.9 pf  and 1.1 pf . 

To gain better understanding of the effect of the frequency of the excitation, the maximum 

radiation direction and the directivity with respect to the radiation of the dipole in free space vs. 

the excitation frequency of the source are shown in Fig. 4-33(a) and (b), respectively.  

(a) (b) 

Fig. 4-33: (a) The angle of the maximum radiation of the vertical dipole inside the grounded 

gyroelectric slab vs. different frequencies. (b) The difference of the radiated power along the 

maximum radiation direction of the Hertzian dipole inside the slab and in free space vs. different 

frequencies. 

 As shown in Fig. 4-33(a), the maximum radiation direction is around 20o

 
when 0.9 pf f  

and decreases to around 10o  when the frequency increases to the plasma frequency of pf . It is 

noted here that the maximum radiation direction of 10o  varies with the change of the biasing 

magnetic field. It is seen in Fig. 4-33(b) that only when the frequency is above 0.9 pf  the 

maximum radiation power of the Hertzian dipole inside the slab is stronger than that of the 

dipole in free space. 
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 Also, the maximum radiation power of both   and   components in the XZ observation 

plane increases when the frequency of the Hertzian dipole approaches the plasma frequency. 

When the excitation frequency of the vertical Hertzian dipole decreases or increases  from the 

plasma frequency, the difference between the maximum radiation power due to   and   

components decreases as shown in Fig. 4-33(b).  When the frequency reduces to the gyro-

frequency 0.8b p    , the maximum radiation power for   and   components are the same 

though the maximum radiation of   component occurs at around 75
o
  and the maximum 

radiation power of   component occurs at around 35
o
 as shown in Fig. 4-33(a). For now, only 

the radiation of a vertical Hertzian dipole inside a grounded gyroelectric slab with a z-oriented 

biasing magnetic field is considered. The effect of different directions of the biasing magnetic 

field is presented in the following discussion.  

B. Effect of Biasing Magnetic Field Direction 

Normalized field patterns for the different biasing magnetic directions are shown in Fig. 

4-34. When the biasing magnetic field is along the x-axis (e.g.,
 

0 090 , 0B B   ), which is 

parallel to the XZ plane, the normalized field pattern E  is symmetric with respect to the z-

axis. When the biasing magnetic field is perpendicular to the observation plane (e.g., 

0 090 , 90B B   ), only the co-polarized field component E  exists and the cross-polarized 

field component E  does not exist, because the two types of characteristic waves of the 

gyroelectric medium are decoupled, one of the waves corresponding to the h-polarized wave in 

free space, and the other wave corresponding to the v-polarized wave in free space. It is noted 
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here that in Fig. 4-34, all the field patterns are normalized to the maximum value of both E  

and E . 

(a) (b) 

(c) (d) 

Fig. 4-34: Normalized field pattern of E  and E  (xz plane) for a vertical dipole located 

in the middle of a grounded gyroelectric slab of thickness 00.05 (free space wavelength) with 

different direction of the biasing magnetic field. 92 10 , 0.8 , 1.1p b p p        . 

C. Effect of Slab Thickness 

Assuming the biasing magnetic field is along the y-axis (perpendicular to the incidence 

plane), the radiation patterns of a vertical dipole in the presence of the gyroelectric slab with 

different thicknesses are shown in Fig. 4-35. It is known that since the biasing magnetic field is 

perpendicular to the observation plane (XZ plane), the cross-polarized field component does not 

exist ( 0E  ) for both the grounded gyroelectric slab and the grounded isotropic slab. Thus, 

only E  is displayed here. It is seen from Fig. 4-35(a) and (b) that a z-oriented dipole can 

radiate along the broadside direction if it is located inside a grounded gyroelectric slab instead of 

a grounded isotropic slab. 
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(a) (b) 

Fig. 4-35: Normalized field pattern of E  (XZ plane) for the vertical dipole located in the 

middle of the grounded gyroelectric slab with the biasing magnetic field perpendicular to the 

observation plane as a function of different thickness. 92 10 , 0.8 , 1.1p b p p        . 

For the purpose of comparison, the normalized field patterns of E  (XZ plane) for a 

vertical dipole located in the middle of a grounded isotropic slab with different thicknesses are 

shown in Fig. 4-36. 

 

Fig. 4-36: Normalized field pattern of E  (XZ plane) for a vertical dipole located in the 

middle of a grounded isotropic slab of 1   vs. different slab thickness.  

 With the increase of the thickness of the slab, the direction of the maximum radiation shifts 

from 20
o
 to the broadside direction, and the maximum radiation power also increases. The 

optimum height to radiate along the broadside direction is around one 00.25 , the radiated field 

along the broadside direction is now almost 8.5 dB higher than the radiation of the dipole in free 

space. This height is much less than the optimum height of 01.2  for the enhanced radiation of a 

horizontal dipole inside a grounded isotropic slab with the same choice of the plasma frequency. 
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maximum radiation direction again shifts away from the broadside direction. It is to be noted 

here that the vertical dipole can radiate effectively along the broadside direction only for the 

biasing magnetic field perpendicular to the slab. When the biasing magnetic field is along the z-

axis, no broadside radiation occurs. 

In this chapter, the radiated field of an arbitrarily oriented Hertzian dipole located either 

above or inside a layered anisotropic medium is obtained by applying the method of stationary 

phase to the corresponding E-DGFs. Numerical analysis for the radiation of an elementary dipole 

is presented for three different cases including the dipole located over a half-space gyroelectric 

medium, above a grounded layered gyroelectric slab, and immersed inside the slab.  

 The radiation for a vertical dipole on top of a half-space gyroelectric medium is first 

presented. Through the analysis of reflection coefficients as a function of incidence angle, it is 

revealed that the maximum radiation direction for a vertical dipole on top of a half-space 

gyroelectric medium is closely related to the critical angles of the characteristic waves of the 

gyroelectric medium. The radiation of a Hertzian dipole in the presence of a grounded 

gyroelectric slab is further analyzed. The analysis indicates that a grounded gyroelectric slab can 

be used to achieve the directive radiation using two different mechanisms. One is through the 

reflection by placing the dipole over the slab, and the other is through the transmission by 

placing the dipole inside the slab. 

  When a horizontal dipole is placed over a grounded gyroelectric slab, the parametric study 

of the effect of the frequency range and the biasing magnetic field of the gyroelectric medium 

indicates that the directive radiation is still achievable even for an ultra-thin slab. A maximum 6 

dB (twice the radiated field of a dipole in free space) increase in the radiation is observed for a 
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dipole placed above the gyroelectric slab of 
00.05 , when the direction of the biasing magnetic 

field is 60o  and the frequency is operated in Frequency Region 3. The maximum radiation 

direction for the dipole over a gyroelectric slab can be further changed through the adjustment of 

the biasing magnetic field. Even higher radiation is possible by placing a Hertzian dipole inside a 

gyroelectric slab and changing its orientation from horizontal to vertical. In particular, almost 8.5 

dB enhanced radiation along the broadside direction, compared to the radiation of the dipole in 

free space, is obtained with the proper adjustment of the thickness of the slab and the magnitude 

and direction of the biasing magnetic field. Without the biasing magnetic field, the gyroelectric 

medium reduces to isotropic plasma, and the optimum thickness required to achieve the directive 

emission along the broadside direction with a horizontal dipole inside the slab is significantly 

larger.  

 This analysis may lead to a method whereby the volume of the radiator can be reduced 

simply by changing the orientation of the magnetic field and using a z-directed radiator. This size 

reduction may make it possible to create a miniaturized antenna, which is the goal of most 

antenna manufacturers.  
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5 RADIATION OF A MICROSTRIP DIPOLE PRINTED ON AN 

ANISOTROPIC SUBSTRATE 

Currently, there is an increasing interest in complete monolithic systems which combine 

antenna elements or antenna arrays on the same substrate as the integrated RF/IF front end 

network. One type of the most popular antenna elements is the printed antenna due to its 

characteristics of low-cost, low-profile, conformability, and ease of manufacturing. The literature 

survey from Chapter 1 shows that existing works mainly study printed antennas on an isotropic 

substrate [57-59, 63] or on a specific type of anisotropic substrates such as uniaxial medium [4], 

ferrite medium [8], and biaxial medium [37, 65].  

To demonstrate the general feasibility and validity of the eigenvector dyadic Green‟s 

functions developed in previous chapters, we apply the developed E-DGFs with the method of 

moments (MOM) to solve a microstrip dipole printed on a general anisotropic substrate in this 

chapter. Particularly, previous literature indicates that there exist few results on the application of 

a gyroelectric medium to the printed antenna. To fill the gap, detailed analysis on the radiation 

behavior of a printed dipole on a gyroelectric substrate will be presented utilizing the methods 

developed in this chapter.  

  This chapter is organized as follows. First the formulation of the method of moment is 

presented. Since the DGF discussed in the previous chapter is obtained using the eigen-

decomposition method, and it applies to the general anisotropic medium with no restrictions 

imposed on the property of the medium, the formulation of MOM is applicable to a printed 

dipole on a general anisotropic substrate. In the second section, the numerical results of a printed 

dipole over different grounded substrates are presented for the purpose of validation. The input 
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impedance, resonant length, and radiation patterns of a microstrip dipole over a grounded 

isotropic slab, a grounded biaxial slab, and a grounded ferrite slab are calculated and compared 

with the previous research. As will be made clear, the comparisons suggest that the current study 

is in agreement with previous research. In the third section, numerical results and discussions 

will be presented in detail to illustrate the effect of the magnitude and direction of the biasing 

magnetic field to the current distribution, input impedance, resonant length, and radiation pattern 

of a microstrip dipole on a gyroelectric substrate. It will be shown that tunable resonant length 

and radiation patterns of a printed dipole are achievable to a certain degree by changing the 

material properties through adjusting the biasing magnetic field of the gyroelectric medium.  

 

5.1 Formulation of Method of Moment (MOM) 

 

Fig. 5-1: Geometry of the microstrip dipole problem. 

 Geometry of a microstrip dipole is shown in Fig. 5-1. The dipole is printed at the interface 

of an isotropic medium and an anisotropic medium. It is assumed that the geometry extends 

laterally to infinite in both regions. The length of the dipole antenna is denoted as L, and the 

dipole is assumed to be oriented along the x-axis. The width of the antenna is W, and it is 

measured along the y-axis. Furthermore, it is also assumed that the width of the antenna is much 
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less than the wavelength. Hence, transverse currents are neglected, and current is assumed to 

flow only in the x-direction. Method of moment formulation for the microstrip dipole is 

presented in this section. The formulation presented in this section is similar to the approach in 

[59], which analyzed the radiation properties of the microstrip dipoles utilizing the Green's 

functions in the spectral form by the methods of moment.  

5.1.1 Basis Function 

If the width of the dipole is a small fraction of wavelength, the current distribution along the 

x-axis is assumed. It is also assumed that the current is separable in its x and y dependence. 

( , ) ( ) ( ), n=x or yn n nJ x y J x J y  (5.1-1) 

For a thin dipole, current is floating exclusively in the x-direction and dipole current is  

( , ) ( ) ( )x x xJ x y J x J y
 (5.1-2) 

To approximate arbitrary current distributions, subdomain basis functions instead of entire 

domain basis functions are used here as the current basis functions in the longitudinal direction. 

Particularly, triangular basis functions instead of sinusoidal expansion function [59] are used. 

    

    

1
,

( )
1

,

p p p

x

p p p

x x a x a x x
a

J x

x a x x x x a
a

 
      

  
     
  

 (5.1-3) 

where /a L N , L is the length of the dipole, N is the number of subdivisions used along x-

direction, px  is the x-coordinate of the center of the basis function. 

For the analysis along the length of the dipole, the Fourier transform of the triangular basis 

function is given as  
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
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2 1 1
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2 2

x pik x
x x x xJ k ae k a k a
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    

     

(5.1-4) 

For the transverse current distribution, the pulse function is used as the basis function. 

W
,
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J y M

else

 
  

  
 
 

 (5.1-5) 

where py  is the y-coordinate of the center of the basis function, and W is the width of the dipole. 

M is the number of subdivisions used along y-direction. 

The Fourier transform of the transverse current distribution is as follows. 

 W2
( ) sin , 0, ( ) 1

W 2

y pik y y
x xy y y

y

kM
J k e k J k

k M

  
   

 
 (5.1-6) 

In the following analysis, it is assumed that an arbitrary number of pulses are presented in 

the transverse direction. However, for exceedingly narrow microstrip dipole, the width of the 

dipole is usually equal to the width of the basis function. This implies that only a single 

transverse pulse is used for the analysis. 

We order the location of the centers of the basis functions in the following convention. Total 

number of basis function is  1M N  .  1,2... 1m N M  . 

 

Fig. 5-2: Locations of the subdomain basis functions ( )xJ x  and ( )xJ y  along x-direction.  
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The m
th

 basis function corresponds to the p
th 

element in the row and the q
th 

element in the 

column with p and q calculated as follows. 

  

1 1 1

2( 1) 21

1 1

m N qm
q

N m N qN

p m q N

      
            

   
 

(5.1-7) 

The center coordinate of the m
th

 basis function is  

L L L
, 1, 1

2 2

m

o c cx x p x pa p N
N

         

W 1 W
(1 ) ( 1) , 1, , 1, ( 1)

2

m

o cy y q q M m N M
M M

          

(5.1-8) 

The absolute coordinate of the center of the microstrip dipole is represented as  , .c cx y   

5.1.2 Excitation 

For a microstrip dipole, the excitation is assumed as a simple delta gap source located in the 

0z   plane which imposes a known electric field given by 

  tan

W W

2 2

imp

f f fE x x x u y y u y y
       

             
       

 (5.1-9) 

where  u y  represents the Heaviside step function, and  ,f fx y
 
represents the center location 

of the feeding point of dipole.  

In order to have only one non-zero basis function at the location of delta gap source, the 

number of basis functions along longitudinal (x) direction (N-1) is taken as odd. Through the 

analysis, the feeding point is at the coordinate center of dipole    , , .f f c cx y x y
 
Applying the 

PEC (perfect electric conductor) boundary condition along the microstrip antenna, we have 
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tan tan tan tan0
imp s imp s

E E E E      
(5.1-10) 

tan

imp

E  is the tangential component of the electric field due to the impressed source while tan

s

E is 

the tangential component of the electric field due to the current induced along the microstrip 

dipole. Since the scattered field tan

s

E can be written in terms of the dyadic Green‟s function and 

source current, Eq. (5.1-10) can be written as follows. 

   

  

(0,0) ' '' ,

W W

2 2

s

s

f f f

ds G r r J r

x x x u y y u y y

 

       
            

       

 

 (5.1-11) 

where  'sJ r
 
is the surface current floating on the antenna in the ' 0z   plane and  

(0,0) '

,G r r  

is the appropriate electric type dyadic Green‟s function for the geometry. 

Since we have assumed an x-directed current, the current vector can be written as  

         
( 1)

' ' ' ' '

1

,
M N

m m

s x m x x

m

J r xJ x y x a J x J y




    (5.1-12) 

Substituting Eq. (5.1-12) and Eq. (5.1-11) into the above boundary condition Eq. (5.1-10) 

and it gives 

          

  

( 1)
' '' (0,0) (0,0) ' '

1

, ,

W W

2 2

M N
m m

xx yx m x x

ms

f f f

ds G r r x G r r y a J x J y

x x x u y y u y y





 

       
             

       


 (5.1-13) 

where 

 ''
(0,0)(0,0) ' ( )( )

2

1
( , )

4

yx
ik y yik x x

x yG r r G e e dk dk







 
 

(5.1-14) 
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The spectral domain DGF 
(0,0)

G  takes the following form. 



  
 



'

0

'

0

'

0

( )

0 0 0 0 0 0 0 0

(0,0)
0 0 0 0( )

0 0 0 0 0

0 0 0 0( )

0 0

( ) ( ) ( ) ( )

( , ) ( ) ( )1

2 ( , ) ( ) ( )

( , ) ( ) ( )

( , ) (

z

z

z

ik z z

z z z z

hh x y z zik z z

z hv x y z z

vv x y z zik z z

vh x y z

e h k h k v k v k

R k k h k h ki
G e

k R k k h k v k

R k k v k v k
e

R k k v k







    

    
  
      

   


   

 



 

 
0 0) ( )zh k

 
 
 
 
 
 
 
 
 

  
  
    

 

(5.1-15) 

Substituting Eq. (5.1-15) back into (5.1-13) gives 

   

   

   

  

''

(0,0)

( )( )

2 (0,0)
'

( 1)
' '

1

,1

4 ,

W W

2 2

yx

xx x y ik y yik x x

x y

yx x y

s M N
m m

m x x

m

f f f

G k k x
dk dk e e

G k k yds

a J x J y

x x x u y y u y y





 


 





   
   
     

     
 
 
  

       
             

       

 






 (5.1-16) 

Since   
(0,0)

,xx x yG k k ,   
(0,0)

,yx x yG k k  do not depend on 'x  and 
'y , the order of the integration 

above can be interchanged as follows. 

        
    

  

''

(0,0) (0,0)

( 1)

2 ' ' '
1

, ,
1

4

W W

2 2

yx

yx

ik yik x
xx yxx y x yM N

m x y ik yik xm m
m

x x

s

f f f

G k k x G k k y e e

a dk dk
ds J x J y e e

x x x u y y u y y





 


  

 
 

  
 
  

       
             

       

  
  (5.1-17) 

Converting the current basis to its spectral form results in  
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        
     

  

(0,0) (0,0)

( 1)

2
1

, ,1

4

W W

2 2

yx
ik yik x

M N xx yxx y x y

m x y
m m

m
x xx y

f f f

G k k x G k k y e e
a dk dk

J k J k

x x x u y y u y y





 

  

 
 


 
  

       
             

       

  
  (5.1-18) 

Galerkin‟s method is applied to the above equation here, and the testing function used is 

same as the assumed basis function which is repeated here. 

      , , 1,2, ( 1)
i i i
x x xJ x y xJ x J y i M N    (5.1-19) 

So it leads to  



   

   

   
     

       

2

(0,0)
( 1)

(0,0)
1

1

4

,

,

W W

2 2

yx

i i

x x

M N xx m mx y ik yik xs
x xm x y x y

m yx x y

i i

x x f f f

J x J y

dsx G k k x
a dk dk e e J k J k

G k k y

ds J x J y x x x x u y y u y y





 

  

 
 
  

    
   
    
     

       
              

       


  

 



  
 
  

 (5.1-20) 

Eq. (5.1-20) can then simply reduce to the following form.  

            

     

( 1)
(0,0)

2
1

1
,

4

W W

2 2

yx

M N
m m ik yik xi i

xx x xx x m x y x y x y

ms

i i

x x f f f

s

ds J x J y a dk dk G k k J k J k e e

ds J x J y x x u y y u y y





 

  

       

         
              

         

  



 (5.1-21) 

Interchange the integration order for the LHS of Eq. (5.1-21) above leads to 

             

     

( 1)
(0,0)

2
1

1
,

4

W W

2 2

M N
m m i i

xx x x x xm x y x y x y x y

m

i i

x x f f f

s

a dk dk G k k J k J k J k J k

dsJ x J y x x u y y u y y





 

  

 
   

 

       
             

       

  

 

 (5.1-22) 
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Denoting the RHS of Eq. (5.1-22)  as iV  , Eq. (5.1-22) becomes 

             
( 1)

(0,0)

2
1

1
,

4

M N
m m i i

xx x x x xm x y x y x y x y i

m

a dk dk G k k J k J k J k J k V


 

  

 
    

 
  

 

(5.1-23) 

Calculating the integration for iV  gives 

 
L/2 W/2

L/2 W/2

W W
( ) ( )

2 2

1 ( 1)(N 1) / 2

0

i i

i x f x f fV dxJ x x x dyJ y u y y u y y

i M N

else


 

       
             

       

    
  
 

 
 (5.1-24) 

Then Eq. (5.1-23) can be written in the following matrix form. 

 1 /2 ( 1)( 1) /2 ( 1)... ... ... , 0 ... 1 ... 1 ... 0N M N N N M

Z x V

x a a a a V
 

   

  
  

   

 

(5.1-25) 

where Z is a square matrix of size ( 1)M N  by ( 1)M N   and each element of the matrix 

 1,2,... ( 1); 1,2,... ( 1)imZ i M N m M N     is  

            
(0,0)

2

1
,

4

i i m m

x x xx x xim x y x y x y x yZ dk dk J k J k G k k J k J k


 

 

 
    

 
 

 

(5.1-26) 

 As shown in Eq. (5.1-26), the 2D infinite numerical integration of the dyadic Green‟s 

function in the spectral domain for imZ  is critical to obtain the current distribution coefficients x . 

5.1.3 Symmetry Analysis for Impedance Matrix 

It is known from the previous section that the impedance matrix Z  is a square matrix of size 

( 1)M N   by ( 1)M N  . It is shown in this section that there exist certain symmetry relations for 

the matrix elements imZ  which help to reduce the computation time. 
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5.1.3.1 imZ and miZ  

For convenience, the matrix elements imZ   in Eq. (5.1-26) obtained from the previous 

sections are repeated here.   

            
(0,0)

2

1
,

4

i i m m

x x xx x xim x y x y x y x yZ dk dk J k J k G k k J k J k


 

 

 
    

 
 

 

Substituting the spectral domain current basis functions, Eq. (5.1-4) and Eq. (5.1-6), for 

  x xJ k and   x yJ k into the above equation gives  

  

2

2

(0,0) ( )( )

22

1
sin

W1 22
, sin

4 W 21

2

y i mx i m

im

x
ik y y yik x x

xxx y x y

y

x

Z

k a
kM

dk dk G k k e e a
k M

k a


 


 



                     
    

  
 (5.1-27) 

 Similarly, the matrix element miZ can also be obtained from Eq. (5.1-26) by swapping the 

first and the second subscripts, and it takes the following form.  

  

2

2

(0,0) ( )( )

22

1
sin

W1 22
, sin

4 W 21

2

y m ix m i

mi

x
ik y y yik x x

xxx y x y

y

x

Z

k a
kM

dk dk G k k e e a
k M

k a


 


 



                     
    

  
 (5.1-28) 

 Let    , ,x y x yk k k k   , then it is easy to see that mi imZ Z
 
if the following condition 

Eq. (5.1-29) is satisfied. 

     
(0,0) (0,0)

, ,xx xxx y x yG k k G k k  
 

(5.1-29) 
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This relation Eq. (5.1-29) holds true if the anisotropic medium is reciprocal. In this case, the 

impedance matrix Z  is a symmetrical matrix, and only the elements in the top half matrix need 

to be calculated. Furthermore, if the number of basis function along y-direction is M=1, then the 

matrix elements miZ
 
shown in Eq. (5.1-28) will be independent of the y-coordinate, thus the 

following relation can be easily derived.  

1, 1mi m iZ Z    (5.1-30) 

The impedance matrix reduces to a Toeplitz matrix under the condition of Eq. (5.1-30), thus 

only the elements in the first row of the impedance matrix need to be calculated. 

However, if the substrate is a non-reciprocal medium, then the symmetry relation Eq. 

(5.1-29) for the spectral domain Green‟s function no longer holds and mi imZ Z . So for a general 

non-reciprocal medium, each element of the impedance matrix needs to be calculated and the 

computation time is significantly longer than the special case of a reciprocal medium. It is worth 

to note here that if M=1, then Eq. (5.1-30) still applies. In this case, it only requires calculating 

the elements of the first row and first column in the impedance matrix.  

5.1.3.2 Symmetry of Integrand for imZ  

This previous section mainly discusses the symmetry relation of the elements imZ  of the 

impedance matrix with imZ  in the form of 2D infinite integration in the spectral domain. In this 

section, it is shown that 2D infinite integration of imZ  can be further simplified. For 

convenience, integral imZ  is repeated here.  
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            
(0,0)

2

1
,

4

i i m m

x x xx x xim x y x y x y x yZ dk dk J k J k G k k J k J k


 

 

 
    

 
 

 

(5.1-31) 

 Observation of imZ
 
in Eq. (5.1-31) indicates that its evaluation requires a bidimensional 

doubly infinite integral to be calculated. Theoretically, this implies the integrand must be 

integrated over all the four quadrants of the x yk k
 
plane as shown in Fig. 5-3(a) and the integral 

of imZ  can be written as follows.  

1 2 3 4im Q Q Q QZ I I I I   
 

(5.1-32) 
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(5.1-33) 

 It is shown here that the integration area of all the four quadrants can be folded to the only 

first quadrant of the x yk k plane as shown in Fig. 5-3(c).   

 

Fig. 5-3: Integration in the x yk k plane. Area over (a) the entire x yk k plane, (b) the 

upper half-space, and (c) the first quadrant of x yk k plane. 

kx 

ky 

(a) (b) (c) 

ky ky 

kx kx 
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First, replacing  ,x yk k  with  ,x yk k  in 2QI , and it gives, 

            
(0,0)

2 2

0 0

1
,

4

i i m m

x x xx x xQ x y x y x y x yI dk dk J k J k G k k J k J k


  
     

 
 

 

(5.1-34) 

Replacing  ,x yk k  with  ,x yk k   in 3QI , it gives, 
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(5.1-35) 

Replacing  ,x yk k  with  ,x yk k  in 4QI , it gives, 
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(5.1-36) 

Combining Eq. (5.1-33) – Eq. (5.1-36) shows that the integral imZ  only requires the 

integration area in the first quadrant. As shown in the last section, the following symmetry 

relations for the spectral domain DGF exist if the anisotropic medium is reciprocal.  

           
(0,0) (0,0) (0,0) (0,0)

, , , , ,xx xx xx xxx y x y x y x yG k k G k k G k k G k k       (5.1-37) 

The symmetry relations are summarized in Fig. 5-4. 

 

Fig. 5-4: Symmetry relation for the dyadic Green‟s function elements of   
(0,0)

,xx x yG k k  for 

a reciprocal medium. 
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With the aid of the above symmetry relation, Eq. (5.1-37), the expression of imZ
 
reduces to 

the following form. 
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(5.1-38) 

As shown in Eq. (5.1-38), the bi-dimensional integration over the whole integration area 

shown in Fig. 5-3(a) can be reduced to integration over the area as shown in Fig. 5-3(c) with the 

spectral domain DGF evaluated only in the first and second quadrants. 

Furthermore, for an isotropic medium, the spectral domain DGFs of the first and second 

quadrants has the following symmetry relation. 

     
(0,0) (0,0)

, ,xx xxx y x yG k k G k k 
 

(5.1-39) 

Then the integral Eq. (5.1-31) can be further simplified to Eq. (5.1-40).  
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(5.1-40) 

However, the simplifications of Eq. (5.1-37) and Eq. (5.1-39) above do not apply to a 

general non-reciprocal medium.  In this case, Eq. (5.1-32) needs to be used, which requires the 

evaluation of the spectral domain Green‟s functions in all four quadrants of the Cartesian 

coordinate system including            
(0,0) (0,0) (0,0) (0,0)

, , , , , , and , .xx xx xx xxx y x y x y x yG k k G k k G k k G k k     
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5.1.3.3 Integration Path  

To evaluate impedance matrix elements imZ  in Eq. (5.1-31), a 2D infinite integration in the 

spectral domain is needed. It is desirable to keep the integration path along the real axis of xk and 

yk
 
for simplicity. However,   

(0,0)

,xx x yG k k (part of the integrand of imZ ) is singular for certain 

real values of xk  and yk . These values of xk  and yk  where   
(0,0)

,xx x yG k k  is singular actually 

correspond to the propagating surface wave modes supported by the corresponding layered 

geometry. Depending on the type of the medium, the loci of the propagation constants for the 

surface waves vary. 

 Different methods have been proposed for the treatment of the singularity of the integrand. 

A pole extraction method was used in [59, 65, 76] for the radiation of the dipole over a grounded 

isotropic slab which in addition to the numerical integration, requires the calculation of the 

residues and Cauchy principle values at the singularity points.  

However, for a general anisotropic medium, to obtain the location of the singularities usually 

introduces more complexity into the problems. Thus, instead of extracting each single surface 

wave pole and calculating the residues due to the poles, the integration path is indented off the 

real axis. The detailed discussions about the integration path and surface wave pole are presented 

in Sections 5.2.1 and 5.2.2. Except indenting the integration path off the real axis, another 

approach to deal with the singularity of the integrand is to move the surface wave pole of the 

integrand off the real axis by introducing a slight loss to the anisotropic medium. Since the 

surface wave poles of the integrand   
(0,0)

,xx x yG k k  of the impedance matrix now move off the 

real axis, the integration path can stay on the real axis.  
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5.1.3.4 Sampling Rate and Integration Range 

As shown in the Section 5.1.3.2, the double infinite integral is reduced to the integral in the 

first quadrant only. The integration step has been derived in [37]. The sampling rates for xk  and 

yk domains are given below, respectively. 

min 1
10kx

L N
f

N 

 
  

   
(5.1-41) 

min 2 1
10

2
ky

W M
f

M 

 
  

   
(5.1-42) 

It is worth noting here that if the integration path stays on the real axis without indenting, the 

sampling rates need to be refined especially in the integration region where the surface wave 

pole exists by observing the convergence of the integral. The minimum frequency (or maximum 

step size) for which the integration has converged is then chosen. Also, the limit of the doubly 

infinite integral can then be chosen by increasing the integration range step by step till the 

difference of the integral between previous step and current step is converged to a predefined 

number.  

 

5.2 Properties of the Dyadic Green’s Function 

As it is stated, the dyadic Green‟s function for two-layer geometry can be used to calculate 

the current distribution of a microstrip dipole on an anisotropic substrate. When a current is 

tangential to the interface, the following dyadic Green‟s functions 
(0,0) '

( , )G r r , 
(0,1) '

( , )G r r , 

(1,0) '

( , )G r r  and 
(1,1) '

( , )G r r  can be used with the first superscript indicating the field region and 
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the second superscript indicating the source region. Of all the four types of Green‟s function, 

(0,0) '

( , )G r r  is repeated here. 
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(5.2-1) 

This can be simplified in the following form, 
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(5.2-3) 

It is noted here that to obtain the result for 
(0,0)

G  consistent with what is found in [37], the 

constant term 
2

0 4i   needs to be multiplied to the above formula of Eq. (5.2-3).  The two-layer 

reflection coefficients hhR , hvR vhR  and vvR  are obtained through half-space reflection and 

transmission matrices as in Eq. (5.2-4). 
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 (5.2-4) 

where d  is the thickness of the slab. 

Observing the Green‟s function Eq. (5.2-3) reveals that the singularity of the dyadic Green‟s 

function 
(0,0)

G occurs in the following two cases.  

Case 1) 0 0zk  , corresponds to the case of 0k k   . This is a branch point of the isotropic 

medium. Since 2 2

0 0zk k k   is a multi-valued function, 0k k   is the branch point of the 

above Green‟s function 
(0,0)

G . It is noted here that just as the isotropic medium, there also exist 

branch points for an unbounded biaxial medium. However, these branch points for the 

unbounded biaxial medium do not pose singularity for 
(0,0)

G ; further, the value of 
(0,0)

G  is 

continuous when these branch points are crossed. How to obtain the branch point loci of the 

biaxial medium has been discussed in detail in [37] using the so-called Sylvester resultant. As for 

the branch point of the isotropic medium causing the discontinuity of the function 
(0,0)

G , a 

vertical branch cut is chosen here. 
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Case 2) If 
10 12

0I R R  , then the inverse of the matrix 
10 12

I R R  does not exist. It will be 

shown below that the values of k  making 
10 12

0I R R   correspond to the surface wave pole 

loci of the anisotropic slab of thickness d . 

5.2.1 Integration Path to Avoid the Singularity of 
(0,0)

G  

The determinant of the matrix 
10 12

0I R R   results in the singularity of the Green‟s 

function. Physically, the values of 
10 12

0I R R   correspond to the surface wave poles of the 

geometry. To get the converged result for the integration above, the integration path needs to be 

carefully chosen to avoid the singularity of the integrand. In this section, the integration path is 

chosen in the same way as what‟s used for a printed dipole on a grounded biaxial substrate in 

[37].  

 

Fig. 5-5: Integration regions in the xk - yk plane: (a) Region 1 (b) Region 2 and (c) Region 3.  

Since the evaluation of 
(0,0) '

( , )G r r  requires the 2D integration of 
(0,0)

G , generally, values of 


(0,0)

G  in all four quadrants of the spectral domain need to be evaluated for the anisotropic 
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medium. For the purpose of illustration here, the integration region in the first quadrant of xk  ‒ 

yk  plane is presented. Usually, the region can be divided into three regions as shown in Fig. 5-5.  

In Region 1, there exists no singularity; thus, it is possible to perform the integration along 

the real axis for both the xk  plane and the yk  plane. The integration paths for the xk  plane and 

the yk  plane are shown in Fig. 5-6(a) and Fig.5-6(b), respectively. 

 

 

 

Fig. 5-6: Region 1 integration paths in the xk and yk planes: (a) xk plane, (b) yk plane. 

The path of integration in Region 2 can no longer simply remain on the real axis due to the 

presence of the surface wave poles. This region is further divided into three regions defined as 

Region 2A, Region 2B and Region 2C shown in Fig. 5-5(b). Each region is defined below. 
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s s
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s s

y xk k k k k u      

Region 2C:    2 2

0 0max max
/ 2 ; / 2

s s s s

x yk k k u k k k u       

2

max

s s
k  is determined by an analysis of the wave-vector surface. This value represents the 

largest value of k  where 
u

zk  or 
d

zk turns from real to imaginary. u  is an arbitrary positive 

number used to define the outer boundary of Region 2B.  

Region1: xk
 
path 

kxR 

kxI 

0 / 2k  

Region1: yk
 
path 

kyR 

kyI 

0 / 2k  

(a) (b) 
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 It is apparent that the surface wave pole will always be intercepted in Region 2A if the 

integration contour is taken along the real axis. In order to avoid the numerical instabilities of 

integrand caused by the singularities, the integration path in the yk plane must be indented off the 

real axis.  However, the integration path along the xk  axis is allowed to remain on the real xk  

axis. An appropriate integration path in the complex xk
 
plane is shown in Fig. 5-7(a). Likewise, 

an appropriate integration path in the yk
 
plane is shown in Fig. 5-7(b). 

 

 

  

   

Fig. 5-7: Region 2A integration paths in the xk  and yk planes: (a) xk plane, (b) yk plane. 

 Similarly, the integration path for Region 2B is shown in Fig. 5-8 with yk  staying on the 

real axis and xk  indented off the real axis. 

 

 

 

 

Fig. 5-8: Region 2B integration paths in the xk and yk planes: (a) xk plane, (b) yk plane. 
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The integration path for Region 2C is shown in Fig. 5-9 with both yk  and xk indented off the real 

axis. 

 

    

 

Fig. 5-9: Region 2C integration paths in the xk and yk  planes: (a) xk plane, (b) yk plane. 

In Fig. 5-7 ‒ Fig. 5-9, the parameter   is used to signify how far the path is indented away 

from the real axis. The offset must be large enough so that the singularities due to the surface 

wave poles do not cause the Green‟s function to become exceedingly large on the path of 

integration in the xk plane. To visualize the singularity of 
(0,0)

G , numerical calculation of 
(0,0)

G  

for the following special cases are presented. 

The grounded biaxial slab has 00.1h 
 
and the permittivity tensor is    , , 5,3,4x y z    . 

The biaxial medium is un-rotated; for example, the rotation angle of the medium is 

   , , 0 ,0 ,0o o o    . The magnitude of the integrand 
(0,0)

G  for different cases of indent offset 

  is calculated and plotted vs. xk  and yk  in Fig. 5-10. This example shows that when 

00.05k   discontinuity occurs for the magnitude of the integrand 
(0,0)

xxG  as shown in Fig. 5-10 

(a). However, increasing the offset to 00.6k   leads the 
(0,0)

xxG  to be smooth and continuous, as 

shown in Fig. 5-10 (b). Thus proper offset for the integration path is critical to avoid the 

singularity of the integrand 
(0,0)

xxG , which is the key to getting converged and stable results. 
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(a) (b) 

Fig. 5-10: Effect of the magnitude of  on the calculation of  (0,0)

Re xxG in the region 2A. (a) 

00.05k  , (b) 00.6k  .        , , 5,3,4 , , , 0 ,0 ,0o o o

x y z       , and 00.1h  . 

In summary, a general description about the singularity of 
(0,0)

xxG  corresponding to 

10 12

0I R R   is presented. The integration path to avoid the singularity is discussed. However, 

the loci of the values for xk and yk  making 
10 12

0I R R   and its physical meanings are still 

unknown. Thus, in order to demonstrate the physical insight to the values for xk and yk  giving 

10 12

0I R R  , in the next section, a detailed analysis of the surface waves which are related to 

10 12

0I R R   will be presented for various media including uniaxial and biaxial media. 

 

5.2.2 Surface Wave Pole 

5.2.2.1 A Grounded Isotropic Slab 
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The first case considered here is shown in Fig. 5-11.  

 

  Fig. 5-11: Geometry of the grounded isotropic slab. 

Region 0 and Region 1 are isotropic and Region 2 is a perfect electric conductor. Region 0 

and Region 1 are assumed to be non-magnetic. The relative permittivities of Region 0 and 

Region 1 are denoted as 0r  and 1r . For convenience, the free space wave number is defined as 

0k  where 
2 2

0 0 0k    , 0  and 0  are the permittivity and permeability of free space. 

Further, the relation 
10 12

0I R R 
 
can be reduced to the simple form as follows. 

10 12 10

10 10 12

1
0

1

hh hh vh

hv vv vv

R R R

R R R

 


 
 

(5.2-5) 

Since there is no cross-coupling for an isotropic medium, the corresponding cross-polarized 

reflection coefficients are zero. Thus, the above formula becomes 

  10 12 10 121 1 0hh hh vv vvR R R R  
 

(5.2-6) 

which is equivalent to 

 10 121 0hh hhR R 
 

(5.2-7a) 

or 

z 

x 

y 

Region 2 (Perfect electric conductor) 

d 

Region 0 (Isotropic) 

 Region 1 (Isotropic) 

 

z=−d 

z=0 
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 10 121 0vv vvR R 
 

(5.2-7b) 

Eq. (5.2-7a) is called the guidance condition for the TE wave, which corresponds to the 

surface wave poles of TE modes, if the structure in Fig. 5-11 is viewed as a waveguide. Eq. (4.2-

8b) is called the guidance condition for the TM wave, which corresponds to the surface wave 

poles of TM modes. 

For the surface wave mode, the total internal reflection occurs for the wave incident from 

Region 1 to Region 0. The normal component 0zk  of wave vector inside the Region 0  will be 

purely imaginary. Denoting
 

0zk i  (5.2-8) 

Then the half-space reflection coefficients for wave incident from Region 1 to Region 0 can 

be written as follows 

2 2

10 10,hh vvi ihh vvR e R e
 

 
 

(5.2-9) 

where  

1 11 1

0 1 0 1

tan , tanhh vv

z zk k

  
 

 

    

 
(5.2-10) 

If the two-layer geometry is filled with an isotropic medium of thickness “ d ” and backed 

with PEC, then 12

12 1 zi k dhhR e   and 12

12 1 zi k dvvR e  . 1zk is the normal component of the wave vector 

for Region 1.  

Applying the guidance conditions for both TE and TM modes, we obtain 

1f 2 2 2 , 1,2...or TE mode hh zk d m m       (5.2-11) 

1f 2 2 2 , 0,1...or TM mode vv zk d m m       (5.2-12) 
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Then the guidance conditions for both TE and TM modes can be expanded in the following 

form. 

0 1
1

1

cotfor TE )es ( mod z
z

k
k d





   

(5.2-13) 

0 1
1

1

tan(for TM modes ) z
z

k
k d





  

(5.2-14) 

The dispersion relation for the isotropic media of Region 0 and Region 1 (non-magnetic) can 

be written as  

2 2 2

0 0 0z rk k k     (5.2-15) 

2 2 2

1 0 1z rk k k    (5.2-16) 

where  0r  and 1r  are relative permittivities of Region 0 and 1, respectively. 

Eliminating k  from the above two equations and applying Eq. (5.2-8), the following 

relation is obtained. 

2 2 2

1 0 1 0( )z r rk k       (5.2-17) 

Combining the guidance conditions in Eq. (5.2-13) and Eq. (5.2-14) for TE mode and TM 

mode, with the above dispersion relation, Eq. (5.2-17), the tangential components of the wave 

vector k  for the specific surface wave mode can be determined using the graphical method. One 

example of two-layer geometry filled with isotropic medium of 1 2.55r   and thickness  

00.3d   with 0  being free space wavelength is shown in Fig. 5-12.  
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(a) (b) 

Fig. 5-12: Graphical determination of 1zk d  for (a) TM and (b) TE modes.  

In this example, Region 0 is assumed to be free space with =10r . It can be seen from Fig. 

5-12 that in this case, 1TE and 0TM  are the only two propagating modes. It is noted that the 

dominant 0TM
 
mode has a zero cutoff frequency. 

 

Fig. 5-13: Surface wave propagation constants for a grounded dielectric slab with =2.551r , 

for 0/ 0 to 1.2d   . 

The propagation constants of the first six propagating surface wave modes of a grounded 

dielectric medium with =2.551r  for 0/ 0 to 1.2d    are calculated by finding the numerical 
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solution of the guidance conditions and plotted in Fig. 5-13. It is seen from Fig. 5-13 that with 

the increase of the thickness of the slab, the number of the surface wave modes existing inside 

the slab also increases. 

5.2.2.2 A Grounded Uniaxial Slab 

Consider the slab of a uniaxial medium with the optic axis along z-direction as shown in Fig. 

5-14. The relative permittivity tensor of uniaxial medium is defined as 

1

1 1

1

0 0

0 0

0 0

r

z



 



 
 


 
  

. For 

the purpose of simplicity, the notation of  1 1 1 1, ,r z     is used throughout the analysis. 

    

Fig. 5-14: Geometry of the grounded uniaxial slab with the optic axis along z-direction. 

It is known that there exist two characteristic waves inside a uniaxial medium – ordinary and 

extraordinary waves. For an ordinary wave, the electric field is polarized perpendicular to the 

plane formed by the optic axis and the wave vector, and for an extraordinary wave, the electric 

field is polarized in the plane formed by the optic axis and the wave vector. When the optic axis 

is aligned along the z-direction, the ordinary wave will be perpendicular to the incidence plane 

and the extraordinary wave will be parallel to the incidence plane.  

z 

x 

y 

Region 2 (Perfect electric conductor) 

d Region 1 
Optic axis 

z = －d 

z = 0 
Region 0 
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In [65], Type I wave is designated as one of the two characteristics waves with the wave 

number of plus sign, and Type II wave is designated as the one with the wave number of minus 

sign. It is noted here that the designations of the Type I and Type II waves won‟t affect the 

results presented here. Just to be consistent with the definition used in [65], for a positively 

uniaxial medium ( 1 1z  ), Type I wave is assigned to the extraordinary wave with the larger 

wave vector surface and Type II wave is assigned to the ordinary wave with the smaller wave 

vector surface for the example illustrated here.  

The unit vectors 
u

Ie , 
u

IIe , 
d

Ie , and 
d

IIe  for the electric field of ordinary and extraordinary 

waves are shown in Eq. (5.2-18). It is noted here that the subscripts of the unit vectors of 
u

Ie  and 

others indicate the type of wave and the superscripts indicate the direction of a specific 

propagating wave – upward or downward. 

1 1

1 1

, ,

0

u d

x zI x zI y

s s

u d
u d u d

y zI y zI x
I I II II

s s

z s z s

k k k k k

k k k k k

k k k k k
e e e e

k k k k k

k k

k k

  

  

  

 

     
     
     
     
        
     
     
      
         

   

 

(5.2-18) 

2 2 2 2 2 21
0 1 1 1

1

, ( ) /u d u

zI zI s zII z

z

k k k k k k k 


  


     

 

(5.2-19) 

2 2 2 2

0 1 ,u d

zII zII x yk k k k k k k      
 

(5.2-20) 

where xk  and yk are the tangential components of the wave vector for any incident wave. 

Since Type I and Type II waves are orthogonal to each other (the cross product of the two 

unit vectors is zero), no cross-polarization exists at the interface of an isotropic medium and a 
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uniaxial medium, which implies that the reflected field of Type II wave (or Type I wave) from 

incident Type I wave (or Type II wave) is zero. With the co-polarized reflection coefficients 

derived for both the Type I and Type II waves incident from Region 1 (uniaxial) to Region 0 

(isotropic), the whole reflection matrix 
10

R  is given as follows. 

1010

10

0

0

eIeI

eIIeII

R
R

R

 
  
   

(5.2-21) 

where  

10 10 10 100 1 0

0 1 0

, , 0
u u

zI z zII z
eIeI eIIeII eIeII eIIeIu u

zI z zII z

k k k k
R R R R

k k k k





 
   

 
  

 

Similarly, the reflection coefficient matrix at the interface of Region 1 (uniaxial medium) 

and Region 2 (PEC) denoted as 
12

R is given below. 

   

   

12 12
12

12 12

exp exp

exp exp

d u d u

eIeI zI zI eIIeI zII zI

d u d u

eIeII zI zII eIIeII zII zII

R i k k d R i k k d
R

R i k k d R i k k d

       
    

       
      

(5.2-22) 

Since 

12 12

, , 0

1, 1,

u d u d u u

I I II II I II

eIeI eIIeII

e e e e e e

R R

    

  

     
 (5.2-23) 

We have 

 

 

12 exp 2 0

0 exp 2

u

zI

u

zII

i k d
R

i k d

 
 
 
   

(5.2-24) 

As discussed earlier, the Type I wave is polarized with the magnetic field perpendicular to 

the incidence plane, and the Type II wave is polarized with the electric field perpendicular to the 
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incidence plane; thus, Type I and Type II waves correspond to TM and TE surface waves, 

respectively. For convenience, the guidance condition of the surface wave is repeated below. 

10 12

0I R R   
(5.2-25) 

Substituting Eq. (5.2-22) and Eq. (5.2-24) into Eq. (5.2-25), guidance conditions for TM 

surface wave (Type I wave) and TE surface wave (Type II wave) inside the uniaxial slab can be 

obtained through the following derivation.  

For TM wave:  

 10 10exp 2 1 ( ) 2 2 , 0,1,2...u u

eIeI zI eIeI zIR i k d Arg R k d m m    
 

(5.2-26) 

10 10 1 1 1

0 1 1

( ) 2 , where tan
u u

zI z zI
eIeI eI eIu u u

zI z zI zI

k k k i
Arg R Arg Arg

k k k i k

  
 

 

    
       

   
 

(5.2-27) 

1 1tan , 0,1,2...u

zIu

zI

k d m m
k


   

 
(5.2-28) 

1tan( ) , 0,1,2...u u

zI zIk k d m m   
 

(5.2-29) 

Using Eq. (5.2-15) (the dispersion relation for isotropic Region 0) together with Eq. (5.2-19) 

(the dispersion relation for Type I wave of Region 1) and eliminating k in both equations gives  

 
2

2 21
0 1 0

1

( )u z
zI z rk k


  


  

 

(5.2-30) 

Then the propagation constant of the TM surface wave modes can then be obtained using the 

graphical method by combing both Eq. (5.2-29) and Eq. (5.2-30). 

For TE wave:  
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 10

10

exp 2 1

( ) 2 (2 1) , 1,2...

u

eIIeII zII

u

eIIeII zII

R i k d

Arg R k d m m

 

    
 

(5.2-31) 

10 10

0

( ) 2 , tan
u u

zII z zII
eIIeII eII eIIu u u

zII z zII zII

k k k i
Arg R Arg Arg

k k k i k

 
 



    
       

   
 (5.2-32) 

1 1tan ( ) , 1,2...
2

u

zIIu

zII

k d m m
k


      (5.2-33) 

 1tan ( ) , 1,2...
2

u u

zII zIIk k d m m      (5.2-34) 

Eliminating k in both Eq. (5.2-15) and Eq. (5.2-20) (the dispersion relation for isotropic 

Region 0 and Type II wave of Region 1) gives  

 
2

2 2

0 1 0( )u

zII rk k    
 

(5.2-35) 

Eq. (5.2-34) and Eq. (5.2-35) determine k for the TE surface wave mode.  

Since the optic axis for the uniaxial medium is aligned along the z-axis, the cross-polarized 

reflection coefficients between Type I and Type II waves are zero. Thus, the guidance conditions 

of the surface wave modes for the grounded uniaxial slab have a similar form as that of the 

grounded isotropic slab.  

It is also noted here that the dispersion relation for the TE wave of the uniaxial slab of 

 1 1 1, , z    is the same as that of an isotropic slab of 1 . However, the dispersion relation for 

the TM wave is different from that of an isotropic slab with dielectric constant of either 1  or 1 .z  

Thus, it is expected that the TE surface wave of the uniaxial slab is the same as the TE surface 

wave of the isotropic slab, while the TM surface wave of the uniaxial slab is different from that 

of the isotropic slab. 
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 One example of using the graphical method to determine the propagation constants for 

both the TE and TM surface modes is presented here. Assuming the grounded uniaxial slab of 

 2.55, 2.55, 4 , the corresponding surface wave modes (including both TE and TM modes) are 

shown in Fig. 5-15(a) and in Fig. 5-15(b) for slab thickness of 00.63  and 01.2 , respectively. 

To understand the effect of permittivity tensor‟s variation to the propagating surface wave 

modes, the propagating constants k  of each mode versus the thickness of the slab corresponding 

to the four different permittivity tensors are shown in Table 5-1 . 

               

Fig. 5-15: Graphical method to obtain the surface wave modes for a grounded uniaxial slab 

of    1 1 1 2.55 2.55 4 .z     The slab thickness is (a) 00.63  and (b) 01.2 . 

It is observed in Fig. 5-15(a) that  and  modes have the same value of , which 

is around  as is marked by the black dash line, corresponding to . This is also 

verified in Table 5-1(d), that is, when the thickness of the slab is ,  and  surface 

wave modes intersect at . This is an interesting characteristic for a uniaxial slab, 

which was not observed for a grounded isotropic slab.  

0 1 2 3
0

1

2

3

k
1z

d/


d

/

TE Mode

TM
1

TM
0

TE
1

0 1 2 3 4 5
0

1

2

3

4

5

k
1z

d/


d

/

TE Mode

TM
0

TE
1

TE
2

TE
3 TM

3

TM
1

TM
2

1TE 1TM d

1.4 01.46k k 

00.63 1TE 1TM

01.46k k 

(a) (b) 



190 

 

(a) (b) 

(c) (d) 

Table 5-1: k  versus the thickness of the slab for various surface wave modes in a grounded 

uniaixal slab with (a)    1 1 1, , 2.55, 2.55, 2.55z    , (b)  2.55, 2.55, 0.5 , (c)  0.5, 0.5, 2.55 , 

(d)  2.55, 2.55, 4 . 

It is also seen in Table 5-1(b) that the TE surface wave modes of a uniaxial slab of 

 are the same as the TE surface wave modes of an isotropic medium of . It 

is also apparent that the TM surface wave modes do not exist since .  Table 5-1(c) 

indicates that when , the TE surface wave modes disappear and only the TM surface wave 

modes exist. Table 5-1(d) suggests that when , there exist 3 TE surface wave modes 

and 4 TM surface wave modes. The surface wave mode  exists in a uniaxial slab, while it 

doesn‟t exist for an isotropic slab of 2.55, as seen in Table 5-1(a).  For a grounded isotropic slab 
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of any thickness, either TE or TM surface mode is supported at a specific value of k . TE and 

TM surface modes are always separate for different values of k . However, for a uniaxial slab, 

both the TE and TM surface wave modes can be supported at the same k  at certain heights as 

illustrated in Table 5-1(d). The surface wave modes for different combinations of the permittivity 

of uniaixal medium are summarized in Table 5-2. 

Conditions 1 1   1 1   

1 1z   TM and TE TM 

1 1z   TE None 

Table 5-2: Propagating modes for different choices of permittivity 

5.2.2.3 A Grounded Biaxial Slab 

For a grounded isotropic slab and a uniaxial slab with the z-oriented optic axis as shown in 

the previous sections, TE and TM surface wave modes can be separated from each other, and k
 

for both modes supported by the slab can be obtained using graphical method by combining the 

guidance conditions and the dispersion relations.  

However, this is not the case for a  biaxial slab. Due to the complexity of the permittivity 

tensor of a biaxial medium, the guidance condition of the surface wave pole (
10 12

0I R R  ) for 

a grounded biaxial slab can no longer be reduced to simple forms with TE and TM surface wave 

modes differentiated from each other. However, the general rule that the surface wave pole of k
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should be located within the range of 2

0 max

s sk k k   always applies. 
2

max

s sk is the maximum 

magnitude of the wave vector on the wave vector surface. 

To calculate k
 for a specific surface wave mode, the values of  00

Re ( )xxG  and 

10 12

0I R R   are plotted versus k
. A grounded biaxial slab of  with the 

thickness  is considered here. The value of  versus  is shown in Fig. 

5-16(a), and the determinant versus  is shown in Fig. 5-16(b). 

(a) (b) 

Fig. 5-16: The value of (a)  00

Re ( )xxG  and (b) the determinant 
10 12

I R R  vs. k  for the 

propagation angle of  1tan 45o

y xk k   . 

 It is seen in Fig. 5-16(b) that there exist certain values of  where the determinant  
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singularity for . The values of  are still smooth around the branch points. Only 

those values of   where the values of  are discontinuous do truly correspond to the 

surface wave poles. Thus, it is an interesting discovery here that 
10 12

I R R  will present the 

conditions of both the surface wave modes and the branch points. It is assumed the propagation 

direction is 45o   in Fig. 5-16. Furthermore, the determinant  
10 12

I R R  for other 

propagation directions from  to  is presented in Fig. 5-17. 

 

 

Fig. 5-17: The determinant 
10 12

I R R  vs. k  for the different propagation angles  

1tan (k / k )y x  of the surface wave from 0o  to 90o . 
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 It is obvious that at  of surface wave propagation angle, the tangential propagation 

constants  for the first and second surface wave modes are almost the same. With the increase 

of the propagation angle, the difference between the first and second surface wave modes 

increases correspondingly. Meanwhile, the third surface wave does not occur until the 

propagation angle increases up to around . Using the searching criteria discussed above, the 

full loci for the surface wave and branch points in the xk - yk  plane are shown in Fig. 5-18.   

     

Fig. 5-18: Surface wave poles and branch point loci for a grounded biaxial slab of 

   , , 3,5,4x y z     with 00.3d  . (a) in all the four quadrants of the xk - yk
 
plane, and (b) in 

the first quadrant of the xk - yk
 
plane.  

 The result is consistent with Fig. 4-42 in [37]. It is noted here that unlike the surface wave 

locus of a grounded isotropic medium as a circle in the -  plane, the surface wave locus for a 

biaxial medium is usually not a circle and is sometimes even incomplete. Thus for different 

angles, the dispersion curves for the surface wave modes will also be different. Similar to a 

grounded isotropic slab, the number of surface wave modes depends on the “electrical thickness” 

of the medium. The surface wave modes for a conductor backed biaxial slab with a relative 

permittivity of  vs. different thickness for surface wave propagation direction of  (

0o

k

45o

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k
x
/k

0

k
y/k

0

 

 

sw pole 1

sw pole 2

sw pole 3

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k
x
/k

0

k
y/k

0

 

 

sw pole1

sw pole2

sw pole3

branch 1

branch 2

xk yk

 3,5,4 0o

(b) (a) 



195 

 

) and  ( ) are shown in Fig. 5-19(a) and (b), respectively. Same results are 

obtained using a different method by Pettis in [37]. 

 

Fig. 5-19: The propagating constant ,x swk  (a) (with 0yk  ) and (b) ,y swk
 
(with 0xk  ) versus 

the thickness of a biaxial slab for various surface wave modes present in a conductor backed 

biaxial slab with    , , 3,5,4x y z    . 

 

5.2.2.4 A Grounded Gyroelectric Slab 

Since a gyroelectric medium is dispersive, the medium property is dependent on the 

frequency of the incident wave. According to the specific wave type that can propagate inside a 

gyroelectric medium, the whole frequency is divided into eight different frequency regions [71]. 
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and Region 5 cannot exist. If 
2

p

b


  , Region 6 and Region 7 do not exist. Thus, two different 

choices of b  are considered here.  

    Case I: 0.5b p  , Region 6 and Region 7 do not exist. 

    Case II: 1.9b p  , Region 4 and Region 5 do not exist. 

 Provided the direction of the biasing magnetic field ( ,B B  ) and the direction of the wave 

propagation ( ,  ), a second order polynomial about the magnitude of wave vector in this 

propagating direction can be obtained from the determinant of the electric wave matrix. The 

coefficients of the polynomial are expressed in terms of ,B B  , ,  , b , 
p  and  . 

Generally, there exist two solutions to a second order polynomial. Each solution corresponds to 

the magnitude of the wave vector of a specific type of wave in the predefined propagation 

direction. The wave vector surfaces of each existing frequency region corresponding to Case I 

and Case II are plotted in Table 5-3 and Table 5-4, respectively. 

 It is noted here for Region 1, the frequency is set as , while for all other existing 

frequency regions, the operating frequency is always set as the center frequency of the band for 

the corresponding region. For example, if Region 3 exists, then the wave vector surface is plotted 

for the operating frequency as , since Region 3 exists in the band of 
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9Case I: 0.5 , 2 10 , 0b p p B        

  

  

  

Table 5-3: Wave vector surfaces of all the frequency regions for Case I with the choice of 
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9Case II: 1.9 , 2 10 , 0b p p B        

  

  

  

Table 5-4: Wave vector surfaces of all the frequency regions for Case II with the choice of 
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 In Table 5-3 and Table 5-4, there are four subplots for each frequency region. The top left 

plot shows the real ( ) versus  when , while the top right one shows real ( ) versus 

 when . The 3D wave vector surfaces of Type I and Type II waves in the -  plane 

are presented in the bottom left and bottom right subplots, respectively. Some observations from 

the wave vector surfaces shown in Table 5-3 and Table 5-4 are summarized here.  

 First, it is noted here that for the commonly existing frequency regions including Regions 

1, 2, 3 and 8 for both Case I and Case II, there is no significant difference between the two cases 

observed for the wave vector surface corresponding to each frequency region. Secondly, both 

Type I and Type II characteristic waves exist along any propagation direction in Region 1 and 

Region 6 (which only exists for Case II). In Region 2, the only existing wave is the Type I wave 

and it can propagate along all directions. In Region 3 and Region 7 (which only exists for Case 

II), the Type I wave  exists along any propagation direction while the Type II wave exists only 

for certain propagation directions with respect to the biasing magnetic field. In Region 4 (which 

only exists for Case I), the Type II wave exists for all the propagation directions. In Region 8, the 

Type II wave exists only for certain propagation directions with respect to the biasing magnetic 

field. There is no wave propagation in Region 5 (which only exists for Case I).  

 It is obvious to see from Table 5-3 and Table 5-4 that since the wave vector surfaces of 

both Type I and Type II waves for Region 1 is within that of the isotropic medium, no surface 

wave modes exist for a grounded gyroelectric slab in Frequency Region 1. Careful inspection 

indicates that Regions 3 and 8 for Case I and, Regions 3, 6, 7 and Region 8 for Case II are the 

only regions where the surface wave possibly exists. Referring to Table 4-1, it is observed that 

zk xk 0yk  zk

yk 0xk  xk yk
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the surface waves are restricted to the frequency region of 2 20 b p     .  This result is 

consistent with what is obtained in [76].  

In general, it is very sophisticated to get the complete surface wave loci for a grounded 

gyroelectric slab. For the purpose of illustration, the propagating constants of surface wave 

modes versus different thickness of a grounded gyroelectric slab are presented here for a specific 

frequency region. Particularly, Region 3 for Case I is considered here since the wave vector 

surface for frequency Region 3 is quite different from that of an isotropic medium. With the 

choice 9 90.5 , 2 10 , 6.654 10b p p        , the permittivity matrices of gyroelectric slabs 

with the biasing magnetic field along y and z-directions are shown below. 

Biasing magnetic field along y-direction, 1

0.1474 0 0.5417

0 0.1084 0

0.5417 0 0.1474

r

i

i



  
 


 
  

 

Biasing magnetic field along z-direction, 1

0.1474 0.5417 0

0.5417 0.1474 0

0 0 0.1084

r

i

i

 
 

  
 
  

 

It is seen in Fig. 5-20(a) that when the biasing magnetic field is along the y-direction, the 

propagation constants of the surface wave modes propagating along the x-direction are bounded 

within . However, there is no upper bound for the surface wave modes propagating along 

the x-direction when the biasing magnetic field is along the z-direction. This is a different 

phenomenon from the surface wave modes in grounded isotropic and grounded biaxial slabs. As 

the wave vector surfaces for the isotropic and biaxial media are closed surfaces, there exists the 

maximum magnitude of the wave vector along a certain direction. As it is known, propagation 

01.3k
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constants of the surface wave modes  no longer exist for the region of  where it exceeds the 

maximum magnitude of the wave vector and are always bounded.  

(a)  (b) 

Fig. 5-20: ,x swk  obtained with 0yk   versus the thickness of the gyroelectric slab for various 

surface wave modes present in a conductor backed gyroelectric slab with the biasing magnetic 

field along (a) y-direction, and (b) z-direction. 

 Fig. 5-21 displays the propagation constants of the surface wave modes along the y-

direction. 

 (a) (b) 

Fig. 5-21: ,y swk  obtained with 0xk   versus the thickness of the gyroelectric slab for various 

surface wave modes present in a conductor backed gyroelectric slab with biasing magnetic field 

along (a) y-direction, and (b) z-direction. 
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 As seen in Fig. 5-21, no upper bounds exist for the propagation constants of the surface 

wave modes for grounded gyroelectric slabs with both the y-directed and z-directed biasing 

magnetic fields. Another interesting thing noted here is that the y-propagating surface wave 

modes always exist even for the region of  when it is very close to  if the grounded 

gyroelectric slab is y-directed biased, while y-propagating surface wave modes only exist in the 

region of  where it is larger than  if the grounded gyroelectric slab is z-directed biased. 

  

5.3 Current Distribution of a Microstrip Dipole 

5.3.1 Current Distribution of a Microstrip Dipole on a Grounded Biaxial Slab 

The first numerical validation in this section is to check the current distribution of a printed 

dipole on a grounded biaxial medium, which were obtained by Pettis [37]. The current 

distribution can then be used to calculate the input impedance. The antenna is resonant when the 

reactance (imaginary part of the input impedance) is zero, and the corresponding antenna length 

is called as the resonant length. There usually exists more than one resonant length, which can be 

observed from impedance plot since the reactance crosses zeros many times. A half wavelength 

resonance ( / 2 ) dipole is resonant at the length where the reactance crosses zero for the first 

time, while a full wavelength resonance ( ) dipole is resonant at the length where the reactance 

crosses zero for the second time. Since only the current distribution for a  dipole is presented 

in [37], for the purpose of comparison, the same case is considered here. The thickness of the 

biaxial medium is  and the width of the dipole is  

k 0k

k 01.6k





00.1
00.01 .
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Fig. 5-22: Current distributions of a   dipole on (a) a unroasted biaxial medium of 

   , , 5,3,4x y z    and (b) a rotated biaxial medium with    , , 10 ,20 ,30o o o    . 

 Fig. 5-22(a) presents the current distribution when the dipole is on an unrotated biaxial 

medium with principal permittivity of . Fig. 5-22(b) shows the current 

distribution for the  dipole when the biaxial medium is rotated by . It 

is shown in Fig. 5-22 that the current density is likely to be symmetric about the feeding point 

(N/2) regardless of the rotation of the medium. Meanwhile, the current density for a resonant 

dipole is complex along the dipole except at the feeding point. At the feeding point, the current is 

purely real. Hence, the input impedance is purely real. Also, the magnitudes for both the real and 

imaginary parts of the current density for a resonant dipole agree very well with the results in 

[37]. It has been found that the resonant lengths of the dipole on unrotated and rotated biaxial 

media are  and . Comparing with the resonant lengths of  and 

 obtained in [37], the relative difference is within 5%.  
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5.3.2 Current Distribution for a Microstrip Dipole on a Grounded Gyroelectric Slab 

The current distribution of a / 2  resonant length dipole on a grounded gyroelectric slab is 

shown in this section. For the purpose of illustration, plasma frequency and gyrofrequency are 

chosen as 
92 10 / , 0.5p b prad s      and the operating frequency is 

92 1.059 10 /rad s    . Thus, the permittivity matrices are shown below.  

Biasing magnetic field along x-direction gives  

1

90 , 0

0.1083 0 0

0 0.1475 0.5418

0 0.5418 0.1475

o o

B B

r i

i

 



 

 
 

 
 
   

 (5.3-1) 

Biasing magnetic field along z-direction gives 

1

0

0.1475 0.5418 0

0.5418 0.1475 0

0 0 0.1083

o

B

r

i

i







 
 

  
 
  

 (5.3-2) 

Biasing magnetic field along y-direction gives 

1

90 , 90

0.1475 0 0.5418

0 0.1083 0

0.5418 0 0.1475

o o

B B

r

i

i

 



 

  
 


 
  

 (5.3-3) 

 First, the current distribution along the thin dipole on a grounded gyroelectric medium with 

the x-directed biasing magnetic field is displayed in Fig. 5-23. The x-axis indicates the 

normalized coordinate along thin dipole with respect to the resonant length of , while 

the y-axis shows the real part of the current along the thin dipole. The curves with the square 

00.7992
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marker, the circle marker, and the dashed line correspond to the cases when the subdivisions 

along the dipole are N=6, 12, and 16. It is observed that the peak current at the feeding point 

tends to converge with the increase of the subdivision along the thin dipole. It is seen that 

subdivisions of N=12 are a good estimate and will be used in the following numerical 

calculation.  

 

Fig. 5-23: Current distribution of  Re ( )J x for a / 2 dipole on gyroelectric medium with 

9 92 1.059 10 / , 2 10 / , 0.5p b prad s rad s           and the biasing magnetic field along 

x-direction ( 90 , 0o o

B B   ). 0 00.1 ,W 0.01h    . N=6, N=12 and N=16.  

The current distributions for a dipole on gyroelectric substrates with the biasing magnetic 

field along z-direction and y-direction are shown in Fig. 5-24(a) and (b), respectively. The solid 

line indicates the real part, and the dashed line indicates the imaginary part of the current 

distribution. It is interesting to note here that for both the x- and z- oriented biasing magnetic 

fields, the  and  are always symmetric. Specifically, similar phenomenon is 

observed for the current distribution of the dipole on biaxial medium when M=1 [37, p. 374]. 
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Fig. 5-24: Current distribution of  Re ( )J x  and  Imag ( )J x for a / 2
 
dipole on a 

gyroelectric medium with 
92 1.059 10 / ,rad s    92 10 / ,p rad s  0.5b p   and the 

biasing magnetic field along (a) the z-direction ( 0o

B  ) and (b) the y-direction 

( ). . N=12. 

However, when the biasing magnetic field is along the y-direction, the current distribution is 

no longer symmetric with respect to the feeding point as shown in Fig. 5-24(b). Asymmetric 

current distribution along the dipole may occur due to the non-reciprocal nature of the 

gyroelectric medium, which is not observed for a microstrip dipole on isotropic and biaxial 

media. Asymmetry in the current of a guided wave structure on a multilayered medium, 

including a ferrite material layer, has been reported in [77]. Another interesting phenomenon 

observed here is that the resonant length of a microstrip dipole is larger than half of the free 

space wavelength, and the resonant length of a microstrip dipole varies with the direction of the 

biasing magnetic field. The largest resonant length occurs at 00.7992
 
when the biasing 

magnetic field is along the direction of the current distribution (x-direction). With the biasing 

magnetic field along both the y- and z-directions, the resonant lengths are 00.6151  and 
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00.6357 , respectively. With the current distribution calculated, other antenna parameters such 

as input impedance and directive gain can be obtained, correspondingly. Detailed discussion on 

the antenna parameters will be shown in the next section. 

 

5.4  Antenna Parameters  

With calculated current distribution of a printed dipole, the input impedance, resonant length 

and radiation pattern can easily be obtained and the formulations can be found in the extensive 

literature [4, 8, and 37]. In Section 5.4.1, the formulations of the input impedance and radiation 

pattern obtained from the current distribution are first presented. Then, Section 5.4.2 shows the 

numerical validation of antenna parameters for printed dipoles on various grounded substrates 

including isotropic, biaxial and ferrite media. Finally, a detailed parametric analysis is presented 

to study the effect of biasing field and operating frequency on the radiation of a microstrip dipole 

printed on a grounded gyroelectric substrate. 

5.4.1 Formulations of Input Impedance and Radiated field 

5.4.1.1 Input Impedance 

The input impedance of a network can be calculated using 

*

s
in

in in

P
Z

I I


 
(5.4-1) 

where sP  is the input power and inI  is the total input current.  

Two variables of sP  and inI
 
need to be calculated here to obtain the input impedance. The 

complex input power delivered to the antenna is defined as  
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'

* '
s ss

S

P E J ds    (5.4-2) 

where sE  is the electric field generated from the surface currents.  

It is known from the boundary condition that the electric field generated from the surface 

currents is equal to and opposite of the impressed electric field vector at the impressed source 

location and is zero everywhere else as discussed in Eq. (5.1-10). Thus,  

'

* '
tan s

imp

s

S

P E J ds    (5.4-3) 

tan

imp

E  is the impressed electric field and sJ is the inducted current generated by the impressed 

electric field.  

Substituting the impressed electric field Eq. (5.1-9) and the current distribution Eq. (5.1-12) 

into the above equation gives 

  

    
'

'

( 1)
* * ' * '

1

W W

2 2
f f f
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M N

S m m

m x x

m

x x u y y u y y x

P ds

x a J x J y







        
             

          
 
 
 






 (5.4-4) 

If N is even, then the above formula reduces to 

 
*

[( 1)( 1)]

( 1)( 1) /2

1

M
q N

s q N N x c

q

P a J x 

  



   
 

(5.4-5) 

Furthermore, since triangular sub domain basis functions are used with   1x cJ x  , the 

power delivered to the source can be further simplified as  

*

( 1)( 1) /2

1

M

s q N N

q

P a   



   
 

(5.4-6) 
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The next step is to calculate the input current. As N is an even number, the input current inI  

is given by integrating the surface current flowing in the longitudinal direction at cx x .  

Hence, 

/2

( 1)( 1) /2

1/2

( ) ( )

W M

in x c x q N N

qW

I dyJ x J y a   



    
 

(5.4-7) 

Thus, the input impedance  

*

( 1)( 1) /2

1

1s
in M

in in
q N N

q

P
Z

I I
a   



 

  
 

(5.4-8) 

In the simple case when M=1 and N is even, 

/2

1
in

N

Z
a



 
(5.4-9) 

5.4.1.2 Radiation Behavior 

Similar to the formulations for the far field of a Hertzian dipole shown in Chapter 4, the 

method of stationary phase can be applied to the integral for the radiated field of a microstrip 

dipole to determine the radiated power. With given Green‟s function and the current distribution 

of the printed dipole, the final expression of the far field is given in [37], which is repeated here 

for convenience.  
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  
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(5.4-10) 
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  ,s x yJ k k  is the Fourier transform of the current distribution .sJ  It‟s noted here that if the 

current source is a delta source as for a Hertzian dipole, then 
  , 1.s x yJ k k   Eq. (5.4-10) reduces 

to Eq. (4.2-10), which is the radiated field of a Hertzian dipole in the presence of a layered 

reciprocal medium. Since the coordinate system for the microstrip dipole is chosen such that 

dipole is located at z
'
=0, the expression above is reduced to the following form. 
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(5.4-11) 

0 0where sin cos , sin sinx yk k k k     .  

According to the definitions of the field vectors for horizontally and vertically polarized waves, 

h


, v
 can be related with unit vectors in the spherical coordinate system as follows. 
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5.4.1.3 Antenna Gain 

The directive gain of an antenna D  is defined as the ratio of the radiation intensity in a 

particular direction to the radiation intensity of an isotropic antenna with the same amount of 

total radiated power. Mathematically, it is given by Balanis [78, p. 39] 
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(5.4-14) 

where  ,U    is the radiation intensity, given as 
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(5.4-15) 

The directivity of an antenna is then given by  

22

max

2 /2
22

0 0

4

sin

g

E E

D

E E d d

 

 

 



  

 
  



 
   

 

(5.4-16) 

5.4.2 Numerical Validation with Printed Dipoles on Various Media 

5.4.2.1 A Printed Dipole on an Isotropic Slab 

In order to validate our calculation of the input impedance, the results obtained here are 

compared with those in the published literature and from the commercial software − Ansoft 

Designer. Input impedances of the microstrip dipole on isotropic slabs of two different 

thicknesses are calculated here.  

The first example is accomplished by calculating the input impedance of a 00.01  wide 

microstrip dipole on substrate of 1 00.0796h   with dielectric constant 3.25. 0  is the free space 
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wavelength. The result of this example can be found in [37, p.421]. The second example is to 

calculate the input impedance of a 00.001  wide microstrip dipole on a substrate of 1 00.2h   

with dielectric constant 2.45. The numerical results for this example appear in Yang et al. [79]. 

As presented in detail in Chapter 2, the dyadic Green‟s function of an anisotropic medium is no 

longer valid if the medium reduces to an isotropic medium. Thus, the relative permittivity tensors 

were set to    , , 3.25,3.25,3.251x y z    and    , , 2.45,2.45,2.451x y z   
 
in order to 

simulate a printed dipole on a grounded isotropic slab using the code developed here.  

        

Fig. 5-25: (a) Real and (b) imaginary parts of the input impedance of a printed dipole on an 

isotropic substrate of    , , 3.25,3.25,3.251x y z     with the dipole width of 00.01 . The 

height of the slab is 00.0796 . 

For the first example, the input impedances of the microstrip dipole with various lengths are 

simulated and compared with the results obtained using Planar EM solver of Ansoft Designer. 

The real part of the input impedance is shown in Fig. 5-25(a) and the imaginary part of the input 

impedance is shown in Fig. 5-25(b). For the dipole width of 00.01 , it has been carefully 

checked that the integral of the matrix elements converges with integration range of xk and yk up 
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to 0120k . In addition to the integration range, different number of basis functions is also chosen 

to check the convergence of the integration. The solid line, dashed line, and dotted line in Fig. 

5-25 correspond to the number of the basis functions N=6, N=12, and N=20. The results 

obtained using Ansoft Designer are plotted in Fig. 5-25 using the curve with square maker. It is 

noted here that M=1 for all cases. It is observed from the Fig. 5-25(b) that the resonant length is 

approximately 00.57  for N=6. This matches closely with the result obtained in [37], which 

assumes the same number of the basis functions. When the number of the basis function is 

increased to N=20, the resonant length converges to 00.54 , which is almost at the resonant 

length obtained using the Ansoft Designer.  

 

Fig. 5-26: Input impedance for gap-fed dipole with width of 00.001  printed on an isotropic 

substrate with    , , 2.45,2.45,2.451x y z    . The height is 00.2 . 

The second example considered here (Fig. 5-26) is for the dipole width of . Due to a 

much narrower dipole width, the integration range for  and  is up to  to get the 

converged integral. The number of the basis functions is chosen as N=12 and M=1. Again, the 
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input impedances versus the different dipole length obtained using the method proposed here are 

compared with the results obtained from the Ansoft Designer, as shown in Fig. 5-26. It is seen 

from Fig. 5-25 and Fig. 5-26 that input impedances for various lengths obtained using the 

method developed here closely match the results obtained from the commercial software. 

Resonant length for this case is between  and , which also agrees very well with the 

published results in [80]. 

5.4.2.2 A Printed Dipole on a Grounded Biaxial Slab 

 The first example considered is the printed dipole on grounded biaxial medium. 

Previously, a good agreement with [37] has been observed for the current distribution of a  

dipole on an unrotated biaxial medium of  as shown in Fig. 5-22. In this 

section, we present the results for the input impedance and the radiation pattern of the printed 

dipole on a biaxial anisotropic medium. The real part and imaginary parts of the input 

impedances versus different dipole lengths when the thickness of the grounded biaxial slab 

varies from  to  are displayed in in Fig. 5-27 (a) and (b). A careful comparison 

with what is obtained in Fig. 7-29 and Fig. 7-30 in [37] shows that for each different thickness of 

the slab, our results based on eigen-decomposition DGF are almost identical with the results 

obtained using transition-matrix DGF in [37] with a slight deviation around the second resonance 

point. Employing only five triangular subdomain basis functions yielded results that were within 

approximately 5% of the results in [37]. 

00.6 00.7



   , , 5,3,4x y z   

00.05 00.15
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Fig. 5-27: (a) Real and (b) imaginary parts of the input impedance vs. dipole length of a 

microstrip dipole on an unrotated biaxially anisotropic medium of    , , 5,3,4x y z    . The the 

dipole width is 00.01 . 

  Furthermore, the effect of rotation angles to the resonant length has been studied in detail 

in [37]. Similar results are presented here in Fig. 5-28 － Fig. 5-29 to verify with what is 

obtained in Fig. 7-31－Fig. 7-38 of [37]. Good agreement is observed. With α =0
o
 and γ=0

o
, the 

effects of the rotation angle β to the input impedance and resonant length are calculated and 

plotted in Fig. 5-28. Fig. 5-28(a1) and (b1) show the real part of the input impedance vs. the 

thickness of the biaxial slab with different rotation angles β of 0
o
, 30

o
, 60

o
, and 90

o
 using the 

transition matrix method [37] and our method, respectively. Fig. 5-28(a2) and (b2) show the 

resonant length vs. the thickness of the biaxial slab with different rotation angle β of 0
o
, 30

o
, 60

o
, 

and 90
o
 using the transition matrix method and our method, respectively. As indicated in the 

plots, the resonant length of the printed dipole decreases by around  to depending 

on the thickness of the slab, while the real part of input impedance is almost kept constant.  
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Fig. 5-28: Effect of rotation angle β to the input impedance and the resonant length with α 

=0
o
 and γ=0

o
. (a1) and (a2) are from Pettis [37]. 

 With β =0
o
 and γ=0

o
, the effects of the rotation angle α are calculated and plotted in Fig. 

5-29. Fig. 5-29(a1) and (b1) show the real part of the input impedance vs. the thickness of the 

biaxial slab with different rotation angles α of 0
o
, 30

o
, 60

o
, and 90

o
 using the transition matrix 

method and our method, respectively. Fig. 5-29(a2) and (b2) show the resonant length vs. the 

thickness of the biaxial slab with different rotation angles α of 0
o
, 30

o
, 60

o
, and 90

o
 using the 

transition matrix method and our method, respectively. As indicated in the plots, the resonant 

length of the printed dipole decreases by around  to depending on the thickness of 

the slab, while the real part of input impedance decreases. 
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Fig. 5-29: Effect of rotation angle α to the input impedance and the resonant length with 

β=0
o
 and γ=0

o
. (a1) and (a2) are from Pettis [37]. 

 The radiation pattern for a 

 

dipole (full wave resonant length) on a conductor backed 

slab filled with an unrotated biaxial medium is calculated and shown in Fig. 5-30. Fig. 5-30(a) 

shows the radiation pattern calculated in [37] and Fig. 5-30(b) shows the radiation pattern 

calculated using the method proposed here. It is observed that in Fig. 5-30(a), the maximum 

radiation is along the broad side direction ( 0o  ). The directive gain calculated here is 7.1dB. 

Compared with 7.5dB directive gain obtained in [37], the relative difference of the directive gain 

is less than 5%. The radiation patterns of a dipole on a ferrite substrate are calculated using the 

same set of code and are presented in the next section. 
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Fig. 5-30: Directive gain of a  resonant dipole on a conductor backed slab filled with an 

unrotated biaxial medium of . (a) from Pettis [37]. 

5.4.2.3 A Printed Dipole on a Grounded Ferrite Slab 

As mentioned previously, the resonant length of the dipole can be found from the plots of 

the input impedance. The antenna is resonant when the reactance is zero. There usually exists 

more than one resonant length, which can be observed from impedance plot since the reactance 

crosses zeros multiple times. In this section, the resonant length of a printed dipole on top of the 

ferrite substrate is calculated and compared with Hsia et al. [81].  

The principal permeability tensor of a ferrite material under a z-directed dc biasing field is 

given by 

 (5.4-17) 

where  
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 is the operating frequency, sM
 
is the material saturation magnetization, and 0H is the dc 

biasing magnetic field. For an arbitrary direction of the biasing magnetic field  ,B B  , the 

permeability tensor in the Cartesian coordinate system can be related with the principal 

permeability matrix 
p  through transformation matrix as follows. 

            

 

(5.4-18) 

 For comparison purpose, the resonant length is chosen as the length where the reactance is 

zero and resistance is a maximum. Resonant lengths on an isotropic substrate and an x-directed 

biased ferrite substrate (along the direction of the dipole) are plotted in Fig. 5-31.  

 

Fig. 5-31: Center-fed dipole resonant length versus frequency of printed dipole on a ferrite 

substrate of ,  and an isotropic substrate of 

. The direction of the biasing magnetic field is along the direction of the dipole axis, i.e., 

x-direction . 
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 In Fig. 5-31, the solid line and dashed line show the resonant lengths obtained using the 

method developed in this chapter, while the square and circle markers correspond to the results 

obtained from [81]. As seen in Fig. 5-31, resonant lengths on an isotropic substrate and a 

gyromagnetic substrate agree very well with those of [81]. The slight difference might be due to 

the choice of a different number of basis functions and the different Green‟s functions used. In 

addition to validating the numerical comparisons for the input impedances and resonant lengths 

of a dipole on different substrates (isotropic, biaxial and ferrite media), the radiation patterns of a 

printed dipole on the grounded ferrite substrate are presented in Table 5-5 for the purpose of 

comparison. The permittivity and permeability are the same as those in [82]. The frequency is 30 

GHz. The biasing field is parallel to the dipole with the length of 0.5 cm. The substrate thickness 

is 2.0 mm and , . 

(a1)  (a2) 

(b1)  (b2) 

Table 5-5: (a) E-plane and (b) H-plane directivity for a center-fed dipole on a ferrite 

substrate.  (a1) and (b1) from [82]. 

  Table 5-5(a1) and (b1) display the E-plane and H-plane radiation patterns (Fig. 2.4 and 

Fig. 2.5 obtained in [82] ). The same patterns are recalculated here again using the method 
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proposed in this chapter with E-DGFs involved and plotted in Table 5-5(a2) and (b2). Careful 

inspection of Table 5-5(a1) and (b1) with Table 5-5(a2) and (b2) indicates very good agreement. 

It is interesting to note that E-plane directivity is symmetric with respect to 0o  , while H-

plane is not. The maximum radiation direction of E-plane is around 30o    with directive gain 

of 2 dB; and the maximum directive gain occurs around 75o    in the H-plane with directivity 

gain more than 15 dB. 

5.4.3 A Printed Dipole on a Grounded Gyroelectric Slab 

The results of a microstrip dipole printed on isotropic, biaxial, and gyromagnetic substrates 

in the previous sections verified our method for modeling a printed dipole on top of a general 

anisotropic substrate using the E-DGFs. In this section, this method is used to model a printed 

dipole on a grounded gyroelectric slab, whose result has not been reported in the literature. 

Particularly, the input impedance, the resonant lengths and radiation patterns of a microstrip 

dipole on a grounded gyroelectric substrate are of primary interest.  

5.4.3.1 Input Impedance and Resonant Length 

The choice of plasma frequency and gyrofrequency is 
92 10 / , 2p b prad s     , and

0 1r  . The operating frequency is chosen in Frequency Region 6 with 

92 1.059 10 /rad s    . The dipole width is 00.01 . In the case of the biasing magnetic 
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where  , g  and / /  are defined in Eq. (2.3-3). When corresponding to the x-

directed biasing magnetic field for the gyroelectric substrate, the relative permittivity matrix of 

the substrate is given by 

 (5.4-19) 

In both cases, the wave vector surfaces of two characteristic waves in the gyroelectric 

medium are closed surfaces. The wave vector surface for the case of z-directed biasing magnetic 

field is shown in Fig. 5-32.  

 

Fig. 5-32: Wave vector surfaces of Type I and Type II waves for the gyroelectric medium 

with 
9 92 1.059 10 / , 2 10 / , 2 ,p b prad s rad s         
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A. Effect of Biasing Magnetic Field Direction 

The first parameter investigated is the direction of the biasing magnetic field. Fig. 5-33 

displays the variation of the input impedance of the antenna when the length of the dipole 

antenna changes from 
00.1

 

to 
01.0 . The impedances for different directions of the biasing 

magnetic field are given. Specifically, Fig. 5-33 (a) presents the real part of the input impedance 

and Fig. 5-33 (b) shows the imaginary part of the input impedance.  

    

Fig. 5-33: (a) Real and (b) imaginary parts of the input impedance of the printed dipole on 

gyroelectric substrate with different directions of the biasing magnetic field. 
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Given the choice of the gyrofrequency it is calculated . 

Assuming the case for a printed dipole on top of an isotropic substrate of 00.1
 
 with relative 

permittivity of 1.3474, the resonant length is around 
0 00.5 0.5 / 0.4582eff eff     . 

1.191eff   is the effective permittivity, which can be obtained using the formula in [83],  

1 1 1

2 2 1 12 / W

r r
eff

d

 


 
 


 (5.4-20) 

where d is the thickness of the substrate and W is the width of the dipole. 

This estimated resonant length is very close to the resonant length of the dipole on a 

gyroelectric substrate with the biasing magnetic field along x-direction, as shown by the solid 

line of Fig. 5-33 (b).  Thus, it may be concluded that, the dominant parameter of the permittivity 

tensor for a gyroelectric medium with permittivity tensor of Eq. (5.4-19) is 

2

2 2
1 1.3474

p

b




 
   


 when the biasing magnetic field is oriented along the direction of the 

dipole. If the biasing magnetic field changes from x-direction to z-direction, the resonant length 

increases from 00.45  to

 

00.55 , indicating the decreased effect of the dominant term and  

increased effect of other terms in the permittivity tensor of  Eq. (5.4-19). 

B. Effect of Gyrofrequency or Magnitude of Biasing Magnetic Field 

The next investigation is about the effect of the gyrofrequency (equivalently, the magnitude 

of the biasing field) on the resonant length when the direction of the biasing magnetic field is 

along the dipole orientation ( 90 , 0o o

B B   ). The parameters for the gyroelectric medium 

2 ,b p 

2

2 2
1 1.3474

p

b




 
   


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are chosen as 
92 10 /p rad s  , 

92 1.059 10 / ,rad s     and the thickness of the slab is 

00.1 . Three different cases are considered here with 0.5b p  , 1.5b p   and 2b p  . 

 The input impedances versus the length of a printed dipole on the substrate with the 

different values of gyrofrequency are plotted in Fig. 5-34. Fig. 5-34(a) shows the real part of the 

impedance while Fig. 5-34(b) shows the imaginary part of the impedance.  

  

Fig. 5-34: (a) Real and (b) imaginary parts of input impedance vs. various dipole length for a 

microstrip dipole printed on a gyroelectric substrate with gyrofrequency 0.5b p  , 1.5b p  , 

and 2b p  .  
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resonant length is the slight increase of the dominant term , which increases 

from 1.3474 to 1.8861 when decreases from  to . However, when ,  

becomes negative. In this case, the gyroelectric medium operates in Frequency Region 3. The 

wave vector surface as shown in Table 5-6 is no longer closed for Type II wave. The dominant 

term of the permittivity matrix in determining the resonant length is , which 

results in a significant increase of the resonant length from  to 
00.8 . 

b  
Frequency Region 3: 

0.5b p 
 

Frequency Region 6: 

1.5b p 
 

Frequency Region 6: 
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Table 5-6: Resonant lengths for microstrip dipoles on a gyroelectric substrate.  
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plasma frequency, which is controlled by the magnitude of the biasing magnetic field. This 

additional parameter introduces more degrees of freedom to the antenna design and optimization. 

5.4.3.2 Radiation Behavior 

The radiation behavior of a printed dipole is also of interest. The radiation pattern of the 

printed dipole on the grounded biaxial substrate and ferrite was validated in Sections 5.4.2.2 and 

5.4.2.3. We computed the fields in the same way using the method of the stationary phase here to 

study the effect of the biasing magnetic field as well as the ratio of the gyrofrequency to plasma 

frequency.  

The first set of radiation patterns is obtained for the printed dipole on a gyroelectric substrate 

with different directions of biasing magnetic field. Fig. 5-35, Fig. 5-36 and Fig. 5-37 display the 

radiation patterns for both the E-plane ( 0  ) and the H-plane ( 90  ) with the biasing 

magnetic field along x-direction, y-direction and z-direction.  
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Fig. 5-35: Co-polarized and cross polarized radiation pattern of printed dipole for  (a) E-

plane and (b) H-plane with the direction of the biasing magnetic field along x-direction.  
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Fig. 5-36: Co-polarized and cross polarized radiation pattern of printed dipole for (a) E-

plane and (b) H-plane with the direction of the biasing magnetic field along y-direction.  
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Fig. 5-37: Co-polarized and cross polarized radiation pattern of printed dipole for (a) E-

plane and (b) H-plane with the direction of the biasing magnetic field along z-direction.  
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radiated field always exists in both E-plane and H-plane for all three different directions of the 

biasing magnetic field with only one exception − that is, for the E-plane radiation pattern when 

the direction of the biasing magnetic field is along y-direction. When the biasing magnetic field 

is along x-direction, the cross-polarized field is much higher in the E-plane than in the H-plane. 

The cross-polarized field ( ) is almost 10 dB lower than the co-polarized field ( ) in the E-

plane and almost 30 dB lower than the co-polarized field in the H-plane. When the biasing 

magnetic field is along y-direction, the cross-polarized field exists only in the H-plane, and it is 

around 10 dB lower than the co-polarized field component. When the biasing magnetic field is 

along z-direction, the cross-polarized field exists in both the E-plane and H-plane and they are 

around the same level, which is almost 10 dB lower than the co-polarized field component in 

both planes. 

Another interesting thing noted here is that the radiation pattern is no longer always 

symmetric as is the case when a microstrip dipole is printed on a substrate filled with a biaxial 

medium. Only when the direction of the biasing magnetic field is along z-direction are both the 

co-polarized and cross-polarized field components symmetric with respect to  in both E-

plane and H-plane. Asymmetry is introduced for the co-polarized pattern in the E-plane when the 

biasing magnetic field is along y-direction. This asymmetric co-polarized radiation pattern 

actually corresponds to the asymmetric current distribution when the biasing magnetic field is 

along y-direction, as shown in Fig. 5-24(b). The maximum directive gain is around 10 dB along 

10
o
 in E-plane when the biasing magnetic field is along y-direction.  

The second set of radiation patterns is calculated for a printed dipole on a gyroelectric 

substrate with the different choice of the gyrofrequency when the direction of the biasing 

E E

0 
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magnetic field is along x-direction. The parameters are chosen as 92 1.059 10 /rad s    ,

92 10 / ,p rad s   2b p  , 1.5b p  , 0.5b p   and the dipole width is 00.01 . 

Fig. 5-38(a) and (b) display the co-polarized and cross-polarized radiation patterns in the E-

plane. Fig. 5-39(a) and (b) display the co-polarized and cross-polarized radiation patterns in the 

H-plane, respectively. Though the resonant length changes from 00.42  to 
00.8  with b  

decreasing from 2 p  to 0.5 p , as shown in Table 5-6, the radiation pattern is quite similar for 

each different case of gyrofrequency. However, as seen in both Fig. 5-38 (a) and Fig. 5-39 (a), 

the broadside gain is decreased by almost 3 dB with b  decreasing from 2 p  to 0.5 p . Also, the 

cross-polarized level is significantly larger in the E-plane for the choice of 0.5 p
 
than in the H-

plane, as seen in Fig. 5-38(b) and Fig. 5-39(b). The cross-polarized component is 10 dB higher 

for 0.5 p
 
than the other two cases. Thus, special attention needs to be paid to the choice of the 

different parameters of a gyroelectric medium when it is used as a substrate for the antenna 

design and optimization process.   

  

Fig. 5-38: (a) Co-polarized field pattern and (b) cross-polarized field pattern in E-plane with 

gyrofrequency 0.5b p  , 1.5b p  , 2b p  ,when the biasing magnetic field is along x 

direction.  
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Fig. 5-39: (a) Co-polarized field pattern and (b) cross-polarized field pattern in H-plane with 

gyrofrequency 0.5b p  , 1.5b p  , 2b p  , when the biasing magnetic field is along x 

direction.  

In this chapter, we have presented the formulation of a method of moment solution for a 

dipole antenna printed on a general anisotropic substrate. There is no restriction applied to the 

permittivity and permeability matrices of the medium. It can either be reciprocal media such as 

arbitrarily oriented uniaxial and biaxial media, or it can be non-reciprocal media such as a 

gyromagnetic medium (ferrite) or a gyroelectric medium.  

Numerical examples of calculating current distribution, input impedance, resonant length 

and radiation pattern for the printed dipole on various media, including isotropic, biaxial, and 

ferrite media, are given. We observed very good agreement between the results obtained using 

our method and other methods from previous work. This validates the feasibility of the method 

proposed here applicable to solving for the radiation problems with a general anisotropic 

medium involved.  

Furthermore, a more detailed analysis is given when the printed dipole is on a gyroelectric 

substrate. Numerous simulations were given to show the effect of the direction and magnitude of 

the biasing magnetic field.  
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6 CONCLUSIONS 

 In this dissertation, the eigenvector dyadic Green‟s functions (E-DGF) for unbounded and 

layered anisotropic geometry are derived and applications to the radiation problems are 

presented. It is demonstrated in the research that the proposed E-DGFs have no restriction 

imposed on the property of the anisotropic medium and may lead to broad numerical applications 

utilizing these E-DGFs to solve for practical problems with anisotropic media involved.  

 Using the eigen-decomposition method, the E-DGFs for an unbounded general anisotropic 

medium are derived in Chapter 2. The analytic expressions for E-DGFs for the unbounded 

uniaxial and gyrotropic media are presented. It is discovered that to fully represent the non-

reciprocal behavior, E-DGFs of an unbounded non-reciprocal medium take a slightly different 

form from that of an unbounded reciprocal medium.  

 With the E-DGFs for the unbounded medium available, we proceed to derive the E-DGFs 

for a layered problem when the source is located either inside the isotropic region or anisotropic 

region in Chapter 3. The major contribution in this chapter includes two parts. The first part is to 

modify and generalize the symmetrical property so it accommodates with the problem when the 

anisotropic medium involved in the layered geometry is non-reciprocal. The second part is to 

propose the direct construction method to obtain the E-DGFs for layered geometry with a source 

inside the anisotropic region. This new method constructs the E-DGFs of a layered general 

anisotropic medium directly from the characteristic waves in each region using the eigen-

decomposition and the matrix method. The advantages and disadvantages of both methods are 

briefly reviewed. Modified symmetrical property of DGF simplifies the process to obtain the 

DGF. However, applying the modified symmetrical property cannot provide the complete set of 
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DGFs for all the regions when the source is located inside the anisotropic slab. Also, the 

available symmetrical property doesn‟t apply to the medium with magnetic anisotropy. On the 

other hand, the direct construction method provides the complete DGFs of all regions, and can be 

extended to calculate the DGFs for a multilayered geometry filled with a general anisotropic 

(electric or magnetic) medium with a source located in any region. 

  To demonstrate the power of the E-DGFs obtained in Chapter 3, the radiated field of an 

arbitrarily oriented Hertzian dipole located either above or inside the layered anisotropic medium 

is solved in Chapter 4. By applying the method of stationary phase to the E-DGFs of layered 

anisotropic medium, the radiated field is formulated in a concise form with the straightforward 

physical interpretation. Numerical analysis for the radiation of a Hertzian dipole is discussed for 

three different cases including the dipole located over a half-space anisotropic medium, the 

dipole above a grounded layered gyroelectric slab, and the dipole immersed inside the 

gyroelectric slab. It is shown that a grounded gyroelectric slab may be used to achieve the 

directive radiation using two different mechanisms. One is through the reflection when the dipole 

is above the slab, and the other is through the transmission when the dipole is inside the slab. The 

analysis in this chapter may lead to a method whereby the volume of the radiator can be reduced 

with the utilization of a gyroelectric medium. This size reduction may make it possible to create 

a miniaturized antenna, which often is the goal of most antenna manufacturers. 

  In Chapter 5, application of the E-DGFs is further extended to a more practical problem − 

the radiation of a microstrip dipole antenna printed on a general anisotropic substrate.  The 

formulation of a method of moment solution using the E-DGF with Galerkin‟s method is 

presented. The singularity of the integrand associated with the E-DGFs is discussed and 

integration path is carefully chosen. Since the E-DGFs derived for the layered geometry impose 
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no restriction to the permittivity and permeability matrices of the medium, the algorithm 

developed in this dissertation can solve for radiation problem of the microstrip dipole antenna 

printed either on a reciprocal medium (arbitrarily oriented uniaxial and biaxial media) or on a 

non-reciprocal medium (gyromagnetic medium (ferrite) or gyroelectric medium). To validate the 

general feasibility of the method proposed here, numerical examples for the printed dipole on 

isotropic, biaxial, and ferrite media are given. Particularly, current distribution, input impedance, 

resonant length and radiation pattern are calculated. Very good agreement with the results 

obtained in previous work using other methods is observed.   

Furthermore, a detailed analysis is presented for the dipole printed on a gyroelectric 

substrate. Numerous simulations are presented to show the effect of the direction and magnitude 

of the biasing magnetic field. In our studies, we have found that gyrotropic anisotropy of y-

directed biasing magnetic field perpendicular to the dipole axis results in the asymmetric current 

distribution and asymmetric radiation pattern with respect to . This is not observed for the 

dipole on an isotropic or a biaxial substrate. We have found that the resonant length of the dipole 

depends on the direction as well as the magnitude of the biasing field. Finally, we have studied in 

detail the radiation behavior of the printed dipole, and found that the existence of the cross-

polarized field is dependent on the gyrofrequency and the direction of the biasing magnetic field. 

Though the algorithm developed in this dissertation has a broad scope applicable to a 

general anisotropic medium, it is not recommended to apply the approach blindly without 

considering the medium property first. From the singularity analysis of the surface wave pole in 

Section 5.2.2, it is known that the surface wave poles are bounded in the region of 0k  and 
2

max

s sk  

for the anisotropic medium with closed wave vector surface including the uniaixal and biaxial 

media. However, for a gyroelectric medium, there exists the case when the wave vector surfaces 

0o 
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for one or both of two characteristic waves are not closed. In this case, 
2

max

s sk  is an infinite number 

and indenting the integration path along the real axis in the region where surface wave 

singularity exists is not well defined. To overcome this problem, slight loss is added to a 

gyroelectric medium when calculating a dipole on a gyroelectric medium.  With slight loss 

applied to the medium, we fail to get converged results when the wave vector surfaces of both 

characteristic waves are not closed. Thus, in the numerical analysis for the dipole printed on a 

gyroelectric substrate, the numerical results are presented only for Frequency Region 3 and 

Frequency Region 6 as listed in Table 5-6. When utilizing the numerical approach developed in 

this dissertation, special attention needs to be paid to a medium for which the wave vector 

surface of the characteristic waves is not closed. 

Future work may include the following topics. 

(1) Applying the E-DGFs obtained in this dissertation to the propagation problem such as 

the transmission line on anisotropic substrates. 

(2) Applying the E-DGFs obtained in this dissertation to the radiation problem of a patch 

antenna. 

(3) Applying the E-DGFs obtained in this dissertation to the scattering problem with an 

arbitrarily shaped object embedded inside an anisotropic medium. 

(4) Numerical comparison of the E-DGF obtained in this dissertation with the T-DGF to 

investigate the benefits and drawback of the E-DGFs including the stability of the DGF 

when kx and ky are large numbers, and the computation time. 
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