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Abstract 

 
 

This dissertation consists of two essays on the labor market impact of agglomeration 

economies and that of homeownership. The empirical analyses use different U.S. data and 

econometric techniques to examine the impact on different labor market outcomes such as 

volatility of hours worked and men’s employment. 

The first essay is motivated by the labor market pooling model from Krugman (1991). 

The paper adds to a small but important literature that provides evidence on the microeconomic 

foundation of agglomeration economies. Using various years of data from the American 

Community Survey and the County Business Patterns survey, I show that the agglomeration of 

economic activities reduces the volatility of hours worked. Drawing on Krugman’s model, I 

argue that this implies that labor pooling contributes to agglomeration economies, and helps to 

explain why cities are productive places.  

In the second essay, I consider the extent to which homeownership affects men’s 

labor supply. Research on the labor-supply consequences of homeownership is complicated 

by the endogeneity of housing tenure status. To address this endogeneity problem, I use a set 

of family size instruments (the presence of the third and additional children in a single 

family household) to estimate the effect of homeownership in a bivariate probit model. 

Based on a sample of married white male household heads from the American Community 

Survey, the IV result suggests that men who own their homes are 1.2% more likely to be 

employed relative to those who rent. I also show that the relationship between 

homeownership and family size is highly nonlinear and nonmonotonic. The first two 

children have positive influence on both homeownership and men’s employment. The third 



 

and additional children are negatively associated with homeownership but have no 

significant incremental effects on men’s labor supply.  
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Essay I: Agglomeration and Volatility of Hours Worked
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1. Introduction 

Labor market pooling is one of the many ways in which spatial concentrations of 

economic activities, also known as agglomeration economies, can increase productivity 

(Rosenthal and Strange, 2004; Combes, et al., 2007). Spatially concentrated pools of skilled 

labor are thought to provide spillover benefits that reduce job search cost and improve job match 

quality (Helsely and Strange, 1990). Another spillover from labor pooling is that it helps 

employers to adapt to firm-specific shocks, and reduces the volatility of wages and hours 

worked. The latter type of spillover was first mentioned in Marshall (1920)1, and more carefully 

articulated by Krugman (1991, Ch. 2 and App. B). Krugman argued that in the presence of firm-

specific shocks, employers operating close to pools of skilled labor had greater ability to vary the 

size of their workforce (through hiring and firing) while keeping hours worked stable. Employers 

operating in more isolated locations, as Krugman argued, were more reliant on overtime work of 

employed workers as a mechanism to adjust the level of labor input, thus their hours worked tend 

to have greater volatility.  

Despite the theoretical predictions, the connection between agglomeration and the 

volatility of hours worked has received little attention in empirical literature. Only a few studies 

had offered evidence on the Krugman (1991) type of labor pooling spillover by examining the 

locations of companies of specific industries. Gerlach et al. (2009) found that US firms engaging 

in risky R&D activities tend to locate together to gain access to large pools of skilled labor. 

Similar patterns were found by Overman and Puga (2010) using UK data. They showed that the 

                                            
1 According to Marshall (1920), “A localized industry gains great advantage from the fact that it offers constant 
market for skill.…(whereas) the owner of an isolated factory is often put to great shifts for want of special skilled 
labor…” 
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industrial sectors whose establishments experience more idiosyncratic shocks tend to be more 

spatially concentrated. However, no empirical studies have ever considered the relationship 

between agglomeration and volatility of hours worked. 

This paper examines the extent to which agglomeration reduces the volatility of hours 

worked through labor market pooling. The paper makes three contributions. First, it establishes 

that there is a systematic negative relationship between agglomeration and the volatility of hours 

worked. Second, it shows that this reduction in volatility of hours worked is larger among the 

skilled professional workers, relative to the less skilled nonprofessional workers. The third 

contribution of this paper is to provide evidence that helps to identify labor market pooling as a 

potential source of agglomeration economies. The empirical evidence presented in this paper is 

consistent with the predictions from the labor pooling model developed by Krugman (1991). To 

the best of my knowledge, this paper is the first study to provide evidence on hours worked in 

support of the model. 

One of the many challenges in this study is to obtain data sufficient to test the spillover 

effect of labor pooling. The ideal data would be an employer-employee matched micro dataset. 

However, this type of data is usually confidential and I do not have access to it at this time. 

Instead, I use publicly available data from two sources, one is the American Community Survey 

(ACS) and the other is the County Business Patters (CBP) survey. The ACS data provides rich 

information on worker’s socio-demographic attributes and labor market outcomes, while the 

CBP data provides information on the employment sizes and locations of business 
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establishments. Data samples from these two sources are merged at the Metropolitan Statistical 

Area (MSA) level, and cover sample years from 2005 to 2009, and separately for year 20001.  

Using the datasets from ACS and CBP, I use two different approaches to examine 

agglomeration’s impact on volatility of hours worked. The first approach focuses on how inter-

temporal change of average hours worked varies with degrees of labor pooling. Krugman (1991) 

suggested that in pooled settings, companies could easily hire and fire workers with a large pool 

of skilled workers nearby, therefore hours worked were more stable across time. In contrast, in 

isolated settings with little pooling, companies are more reliant on overtime work as a 

mechanism to vary labor input, which caused hours worked to be more variable across time. 

Moreover, in locations where the degrees of labor pooling are somewhere in between pooled 

settings and isolated settings, companies have to adjust their labor input through both 

mechanisms of hiring & firing and overtime work. In this case, wages and hours worked will 

vary across time at intermediate levels. By comparing across the three types of settings, I 

hypothesize that there is a negative relationship between the inter-temporal change of average 

hours worked and the degrees of labor pooling.  

To test this hypothesized relationship described above, I start with a simple cross 

sectional analysis by regressing the standard deviation of MSA’s average hours worked on a set 

of MSA agglomeration variables. The dependent variable measures how much the average hours 

worked of all workers in an MSA varies across sample years. The key MSA agglomeration 

variable is the average number of establishments in the MSA over sample years, which is a 

proxy for degrees of labor pooling. Following the cross sectional analysis, I carry out a panel 

                                            
1 For sample year 2000, data on workers demographics and labor market outcomes are from Census 2000 5% data, 
also available in the IPUMS database. 



 

5 

data analysis based on an MSA-level panel. I regress the first-differenced MSA average hours 

worked on a set of time-variant MSA agglomeration variables, including the number of 

establishments in the MSA. MSA fixed effects are included in the regressions to control for 

unobserved time-invariant MSA characteristics. Estimates from both the cross sectional analysis 

and panel analysis show a significant and negative relationship between inter-temporal change of 

hours worked and degrees of labor pooling. 

My second approach is to examine how agglomeration reduces the cross sectional 

variance of individual’s hours worked through labor pooling. As suggested by Krugman (1991), 

companies in more pooled settings have greater ability to vary the size of their workforce 

(through hiring and firing), and workers employed by these companies work for a competitive 

market wage rate and a standard number of hours worked. The implication is that the greater 

degree of labor pooling in an MSA, the smaller cross sectional variance of hours worked of all 

employed workers in the MSA. In contrast, because companies in more isolated settings are 

more reliant on overtime work as a mechanism to vary labor input, workers employed by 

different companies may work different numbers of hours. This suggests that MSAs with limited 

labor pooling should display relative larger cross sectional variance of hours worked of all 

employed workers in the MSA. The comparison between pooled settings and isolated settings 

shows that the cross sectional variance of hours worked tends to be smaller in MSAs with greater 

degrees of labor pooling, relative to MSAs with little labor pooling. 

I use several different specifications and data to test the following hypothesis: the cross 

sectional variance of hours worked is negatively associated with degrees of labor pooling. In the 

main specification, I first regress individuals’ hours worked on a set of socio--demographic 

controls, and generate the residuals as conditional hours worked. Next I calculate the cross 



 

6 

sectional variance of these residuals in each MSA. This MSA-specific cross sectional variance of 

hours worked is then regressed on a set of MSA agglomeration variables, including a proxy for 

degrees of labor pooling. Based on the data from sample year 2000, the results show that the 

cross sectional variance of hours worked in an MSA has a negative relationship with the degrees 

of labor pooling in the MSA. In addition to the main specification, I experiment with alternative 

specification (using WPUMA based cross sectional variance) and data from different sample 

year (ACS 2008). The results are consistent with findings from my main specification. 

More importantly, in this paper I also examine the differential impact of labor pooling on 

skilled professional workers versus less-skilled nonprofessional workers. Krugman (1991) 

argued that the spillover effects of labor pooling arise primarily from localized industries that 

rely on workers with industry-specific skills. This is both because companies require more 

skilled workers when they experience a positive market demand shock, and because it is 

expensive for companies to train new skilled workers or to attract skilled workers from other 

locations. The less skilled workers, however, are relative easier to train or replace. As a result, 

pooling of less-skilled workers provides little benefit to both companies and less-skilled workers. 

Drawing on the above comparison between skilled and less-skilled workers, I expect that the 

spillover effects from labor pooling have greater impact on skilled workers, relative to the less-

skilled workers.  

Throughout the paper, all of the regressions are run twice using data stratified by workers 

skill types, one for skilled professional workers and the other for less-skilled nonprofessional 

workers. The estimates show that the reductions in volatility of hours worked through labor 

pooling are consistently more significant and larger in magnitude for skilled workers, relative to 

the less-skilled workers. This result is congruent with the assumption in Krugman’s (1991) 
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model, that the spillover effect of labor pooling is primarily based only on skilled workers, but 

not on the less-skilled workers. 

This paper is related to a small but important literature that provides evidence on the 

microeconomic foundations of agglomeration economies. There are many potential sources of 

agglomeration economies1, and identifying the specific microfoundation of each source has been 

a challenging task for researchers. This is because these different sources all generate positive 

and similar productivity gains, making it difficult to trace out their specific mechanisms using 

productivity data2. Previous studies have resorted to alternative approaches and datasets, and 

have successfully identified some of the potential sources3. However, there is very limited 

evidence on how labor market pooling reduces the employment and unemployment risk associate 

with idiosyncratic firm-specific shocks (Gerlach et al., 2009; Overman and Puga, 2010). This 

paper adds to this literature and provides new evidence on this spillover from labor pooling by 

examining the reduction in volatility of hours worked in agglomeration economies.  

The rest of the paper is organized in the following sequence. Section 2 introduces the data 

and key variables. Section 3 examines on how inter-temporal change of average hours worked 

varies with degrees of labor pooling, and reports estimation results based on the MSA-level 

panel data. Section 4 investigates on how cross sectional variance of hours worked varies with 

degrees of labor pooling, and reports estimation results based on cross sectional datasets. Section 

5 concludes.   

                                            
1 Such as intermediate input sharing, knowledge spillover, and labor market pooling, as suggested by Alfred 
Marshall (1920). In addition to these three, there are also many other potential sources proposed by previous studies, 
see Rosenthal and Strange (2004).  
2 This is known as the “Marshallian equivalence”, that all of the potential sources of agglomeration economies 
generate positive productivity gains, making it difficult to trace out specific mechanisms by measuring the quantity 
of the productivity gains. For more details, see survey by Duranton and Puga (2004). 
3 See a survey of empirical studies on micro-foundations of agglomeration economies by Rosenthal and Strange 
(2004). 
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2. Data and Variables 

In this paper, I use the IPUMS1 2000 Census and American Community Survey2 (ACS) 

from 2005 to 2009 as the primary data for information on workers. The primary data source of 

business establishments for this study is the County Business Patterns Survey3 (CBP), which is 

available to public through the US Census Bureau. I consider each MSA as an agglomeration 

economy in this study, and merge the individual-level records from the Census and ACS with the 

firms-level records from CBP at the MSA level, using their geographic codes. This approach 

allows me to proxy the degree of labor pooling by the total number of establishments in each 

MSA. It is worth noting that the data used in this paper is not employer-employee matched. An 

employer-employee matched data would be the ideal one for this study, however it is usually 

confidential and I do not have access to it at this time.  

The ACS and Census data provide rich information on worker’s socio-demographics and 

labor market outcomes, such as worker’s Usual Hours Worked Per Week4. I restrict the data to 

include only male workers resides in MSAs, between age 25 and 55, worked for more than 50 

weeks last year, and are employed in the private sectors. The full sample is stratified into two 

subsamples as skilled professional workers and nonprofessional workers with less skill. The 

professional subsample includes workers who have education attainments at the Master, 

Professional, or PhD degree level, and have their primary occupations in the Census professional 

                                            
1 The Integrated Public Use Microdata Series (IPUMS) website (www.ipums.org) provides a more user-friendly 
version of micro-data samples of United States census records for public use. 
2 The American Community Survey is conducted annually by the US Census Bureau. 
3 The County Business Patterns survey is conducted annually by the US Census Bureau, and public available on the 
Census Bureau website (www.census.gov). 
4 In the IPUMS this is measured using variable UHRSWORK, I include the workers with full length of 
UHRSWORK from 1 hour to maxim 99 hours. 
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occupation categories1. The nonprofessional subsample includes workers who have education 

attainments equal to or below high school graduate or GED, and have Census occupation types 

in all occupation categories other than the professional ones2.  

The CBP data is a good source of information on locations and employment sizes of all 

business establishments in the US. I restrict my sample to only large establishments that have 

more than 50 employees and locate in MSAs. Business establishments with less than 50 

employees are mostly family and startup companies, whose employment decision in hiring and 

firing may not directly relate to market conditions and business shocks, and may be different 

from the standard competitive profit-maximizing business establishments. Exclusion of these 

small companies helps to reduce potential noise in the sample. One thing worth noting is that the 

CBP survey is county-coded, which cannot fully identify all coded MSAs in the IPUMS 

database. In several cases, a county straddles over the MSA boundary and extends to two 

adjacent MSAs3. To solve this problem, I allocate all workers and business establishments from a 

straddling county to the MSA where the county’s majority population resides in. 

Based on the combined data described above, I construct two separate datasets, one in 

panel setting and the other in cross sectional setting. The panel dataset follows 275 MSAs for 

five ACS sample years from 2005 to 2009, and it is used to test how inter-temporal change of 
                                            
1 Worker's occupation is classified according to the 1998 Standard Occupational Classification (SOC) system. This 
paper uses the first two digit code of the SOC code to categorize work’s occupation. The professional occupations 
include the following categories that can be identified by the first 2 digit SOC code: Management, Business 
Operations Specialists, Financial Specialists, Computer and Mathematical Occupations, Architecture and 
Engineering Occupations, Life, Physical, and Social Science Occupations, Legal Occupations, Education, Training, 
and Library Occupations, Healthcare Practitioners and Technical Occupations. 
2 The nonprofessional group’s first two digit SOC occupation categories includes: Food Preparation and Serving 
Occupations, Building and Grounds Cleaning and Maintenance, Sales Occupations, Office and Administrative 
Support Occupations, Construction Trades, Extraction Workers, Installation, Maintenance, and Repair Workers, 
Production Occupations, Transportation and Material Moving Occupations. 
3 There are eight counties that straddle over two MSAs: Middlesex County, MA; Norfolk County, MA; 
Hillsborough County, NH; New Haven County, CT; Fairfield County, CT; Plymouth County, MA; Worcester 
County, MA; Bristol County, MA. 
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MSA’s average hours worked varies with degrees of labor pooling. The cross sectional dataset is 

a combination a sample of workers drawn from 2000 Census 5% file and a sample of business 

establishments from 2000 CBP survey, matched at MSA level. This cross sectional dataset is 

used to test how MSA’s variance of individual hours worked varies with degrees of labor market 

pooling. 

The summary statistics of all agglomeration variables are presented in Table 1, with the 

first panel reports the cross sectional dataset and second panel reports the panel dataset. All 

agglomeration variables are defined at the MSA level. A MSA contains a large population center 

and adjacent communities with a high degree of economic and social interactions. According to 

2000 Census, about 76% of US population resides in MSAs. The variable Population Size in the 

MSA is the MSA’s total number of all residence1, which is a proxy for the size of local economy. 

Throughout the paper, the IPUMS person sampling weights (PERWT) are used in constructing 

demographic related agglomeration variables to ensure that they are representative at the national 

level. The variable Total Employment in the MSA is an aggregated measure based on the Mid-

March Employment records from CBP data. It measures the total number of all employed 

workers in the local labor market. The variable Industry diversification Index in the MSA is an 

inverse form of the Herfindahl index based on the MSA’s sectoral employment concentration. It 

is similar to the measure used by Henderson et al. (1995)2. Additionally, the variable Labor 

Demand Shock in the MSA is a plausible exogenous measure of the inter-temporal shifts of 

                                            
1 This refers to the general population in the MSA, includes all men and women, children and adults. 
2 The variable Industry Diversification Index in the MSA follows the method of Henderson et al. (1995), in which: 
Diversification Indexj = ∑k(ek/e)2/ ∑k(ejk/ej)2 
The term ejk/ej is the jth MSA’s industry sector kth’s share of employment in the total employment of the jth MSA. 
Similarly, term ek/e is the kth sector’s share of employment of the total employment at the national level. The higher 
value of this index suggests larger diversification in local industrial employment. The industry categories are defined 
by the first two digits of the 6-digit NAICS code. All establishments are counted into their respective two-digit 
industry categories, and there are 19 such categories defined in total. 
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MSA’s labor demand. I construct this variable using the same method developed by Bartik 

(1991)1.  

3. Agglomeration and Inter-temporal Change of Hours Worked 

Drawing on the labor pooling model developed by Krugman (1991), this section develops 

an empirical strategy using panel data analysis to test how labor pooling reduces the inter-

temporal changes of average hours worked. Krugman (1991) argued that labor market pooling 

could be considered as a mechanism to reduce the employment and unemployment risk 

associated with firm-specific shocks. It helps spatially concentrated firms and workers to 

improve their abilities to adapt to firm-specific labor demand shocks, and benefit from more 

stable wages and hours worked. In this section, I present a version of Krugman’s (1991) labor 

pooling model that relates to hours worked, and find that labor pooling in agglomeration 

economies reduces the inter-temporal changes of hours worked.  

3.1 A labor market pooling model 

Figure 1 illustrates a version of Krugman’s (1991) model on labor pooling. Figure 1A 

shows an economy where a large number of firms are operating close to a large pool of skilled 

workers. In the presence of idiosyncratic firm-specific shocks, one firm’s good times (positive 

shocks) may coincide another firm’s bad times (negative shocks). A firm can easily hire more 

workers in good times and fire redundant workers in bad times, since there is a pool of workers 

readily available in the local labor market. Meanwhile, workers simply switch jobs between 

                                            
1 Where: MSA Labor Demand Shockt,t-1,MSA =  

∑n
I=1{[(Employmenti

t,national/Employmenti
t-1,national)-1] × (Employmenti

t-1,MSA/Employmentt-1,MSA)} 
It is the summary of all present industries’ national level employment growth rate from time t to t-1, interact with 
each industry’s share of the total local employment. The changes of industry’s employment at the national level are 
plausibly uncorrelated with the local labor supply, but are correlated with the local labor demand shifts. 
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firms and always work for a stable wage rate and hours worked. This makes the firm-specific 

labor supply schedule to be completely elastic. In contrast to Figure 1A, Figure 1B shows a one-

company town where all local skilled workers are employed by the company. Since there is no 

labor pooling and the number of available local skilled workers is limited, the labor supply 

schedule is inelastic in this case. When this company is experiencing labor demand shifts, it 

relies on workers’ overtime work as a mechanism to adjust labor input. This indicates a greater 

degree in across-time volatility of hours worked. Additionally, Figure 1C shows an economy 

where the degree of labor pooling, proxy by the number of employers, is in between that of 

Figure 1A and Figure 1B. In this economy, labor pooling is not large enough to accommodate 

firm-specific labor demand shifts. Each firm thus needs to partially rely on overtime work to 

adjust its labor input. This situation results in an upward sloping firm-specific labor supply 

schedule.  

Comparing across Figure 1A, 1B, and 1C, it is immediately clear that labor pooling tends 

to reduce inter-temporal change of hours worked. This pattern suggests that the average number 

of hours worked in an MSA tends to have less fluctuation across sample years, if there is a larger 

number of business establishments in that MSA. Drawing on the model presented above, I carry 

out a set of regression analysis to test the effects of labor pooling. Two different measures of 

inter-temporal change of hours worked were used as dependent variables in the regressions. The 

first measure is the standard deviation of MSA’s average hours worked across sample years, and 

the second measure is the first-differenced average of hours worked in each MSA. 

3.2 Results based on standard deviation of average hours worked 
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I start with a simple cross sectional analysis to test how labor pooling reduces the 

standard deviation of MSA’s average hours worked across sample years. The data used in this 

analysis is an MSA-level cross sectional dataset derived from the MSA panel described earlier in 

Section 2. One of the variables provided in the MSA panel is the average hours worked in the 

MSA for each sample year. Using this variable, I calculate the standard deviation of average 

hours worked in the MSA across all sample years. In the regression, this standard deviation is 

used as the dependent variable. The explanatory variables are a set of MSA agglomeration 

characteristics. Each explanatory variable is generated by taking the averaged value (over all 

sample years) of the respective time-variant agglomeration variables in the MSA panel. 

Table 2 reports the results from the cross sectional analysis. Column (1) shows the 

estimates based on the stratified subsample of skilled professional workers1. The key explanatory 

variable is the Average Number of Establishments in the MSA, used as a proxy for the degrees of 

labor pooling. The estimated elasticity on this variable is -19.5% and is statistically significant 

(with t-ratio of -1.69). It shows that the average hours worked tends to have smaller volatility in 

MSAs where a larger number of business establishments are clustered together enjoying a 

greater degree of labor pooling. This result is consistent with the predictions from Krugman’s 

labor pooling model.  

Column (2) of Table 2 reports results based on the stratified subsample for less-skilled 

nonprofessional workers. The estimated coefficient on variable Average Number of 

Establishments in the MSA is not statistically significant in this case. Comparing to the 

significant estimate on the same variable for professional workers in column (1), it suggests that 

                                            
1 See earlier descriptions on the stratification of professional workers and nonprofessional workers in Section two of 
this paper on Data and Variables.  
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the spillover from labor pooling perhaps does not affect the volatility of hours worked for the 

less-skilled workers.  

Among the other agglomeration variables listed in Table 2, I use the variable Average 

Population Size in the MSA to control for the impact from the size of the local economy. The 

estimated elasticity on this variable is -36.3% for professionals in column (1), and is -24.9% for 

nonprofessionals in column (2). Both estimates are statistically significant. This result implies 

that the size of economy also tends to reduce volatility of hours worked for works regardless skill 

levels, when controlling for labor pooling and other agglomeration variables. This result is 

congruent with the central place theory, which suggests that a more diversified and vibrant 

economy may offer more stability in the local labor market.  

3.3 Results based on first-differenced average hours worked 

Next I carry out a set of panel data analysis using the MSA-level panel described earlier 

in Section 2. In these panel regressions, I use the first-differenced MSA average hours worked as 

the dependent variable, which all measure the change of the MSA average hours worked 

between any two consecutive sample years.  

Table 3 reports results. I experiment with several different specifications in formatting 

the dependent variable in the terms of its absolute value. The reason to use absolute value of the 

fist-differenced average hours worked is to ensure that the dependent variable correctly measures 

the magnitude of its change between any two sample years, regardless whether the change is an 

increase or a decrease. In Table 3, column (1) and (2) report results using the logged form of 

absolute value of the first-differenced hours worked as the dependent variable, column (3) and (4) 

use absolute value of first-differenced hours worked as the dependent variable, and the last two 
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columns (5) and (6) use absolute value of first-differenced log hours worked as the dependent 

variable. For each different dependent variable, the regression is carried out twice and separately 

for professional workers and nonprofessional workers. In all panel data regressions listed in 

Table 2, the MSA fixed effects are applied to account for any potentially unobserved time-

invariant MSA characteristics.  

Several patterns clearly stand out after inspecting the estimated coefficients on the 

variable of interest, number of establishments in MSA, across all six columns in Table 3. First, 

for all three different forms of dependent variable, the estimated coefficients for the professional 

workers are all negative and statistically significant (all above the 10% level). This result is 

consistent with the predictions from the labor pooling model, showing the spillover from labor 

pooling tends to reduce the inter-temporal change of average hours worked. Second, for 

nonprofessional workers, all three estimated coefficients on number of establishments in MSA 

are much smaller in magnitude relative to that of professional workers, although they do not have 

strong statistical significance (all below 10% level). This is congruent with the assumption 

embedded in the Krugman’s (1991) labor pooling theory, which assumes that the spillover from 

labor pooling is only effective among skilled workers, but not among the less-skilled workers.  

In all regressions reported in Table 3, the labor demand shock in MSA is included as an 

explanatory variable to control for the exogenous labor demand shifts in the MSA. In addition, 

an interaction term between the labor demand shock in MSA and the number of establishments 

in MSA is also included to control for any potential impact jointly determined by the two 

variables. The variable Industry diversification index in MSA controls for the industrial 

composition of sectorial employment in the MSA.  
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4. Agglomeration and Cross Sectional Variance of Hours Worked 

This section focuses on how cross sectional variance of individual’s hours worked in an 

MSA varies with degrees of labor pooling. To identify this relationship, I adopt the second 

approach briefly described earlier in the introduction section, and use the cross sectional data 

drawn from year 2000 Census and CBP to perform empirical tests. To start, I first present a 

modified model of labor pooling based on Krugman (1991), with a focus on the cross sectional 

perspective of the variance of hours worked. 

4.1 Labor pooling model focusing on cross sectional variance 

Figure 2 illustrates a modified version of labor pooling model and shows how cross 

sectional variance of hours worked would vary with degrees of labor pooling. This model is 

based on the stylized model developed by Krugman (1991) and is slightly different from the 

model presented in the previous section focusing on the inter-temporal change of hours worked. 

In the presence of idiosyncratic firm-specific shocks, one firm’s good times are more likely to 

correlate with another firm’s bad times, when a larger number of firms are nearby. Figure 2A 

shows an economy in which a large number of firms are clustered together, and the negative 

correlation between their demands for skilled labor prompt a greater degree of labor pooling. 

Since there are large pools of skilled labor, the supply schedule of the labor market is elastic with 

a relative flat slope. At any given moment, the firm (for example, firm 2) experiencing a negative 

shock would employ a small number of skilled workers. In the same time, another firm (for 

example, firm 1) experiencing a positive shock would employ a large number of skilled workers. 

Workers work for firm 1 and firm 2 receive similar wage and work for similar numbers of hours.  
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In contrast, Figure 2B shows an economy with a relative smaller number of firms. Since 

there are only a few firms in the economy, one firm’s good times are less likely to coincide with 

another firm’s bad times, resulting in a lesser degree of labor pooling. Therefore, the labor 

market supply schedule is inelastic and displays a relatively steeper slope. In this case, firms find 

it costly and difficult to vary the sizes of their workforces (through hiring and firing), and have to 

rely more on changing hours worked to acquire the optimal level of labor input. For example, at 

any given moment, the firm (firm 1 in Figure 2B) experiencing a positive shock would pay a 

higher wage to its skilled workers for overtime work. In the same time, the firm (firm 2 in Figure 

2B) experiencing a negative shock would pay a lower wage asks its workers to work a reduce 

number of hours. As a result, there is a large variance in the wages and number of hours worked 

of workers employed by different firms.  

By comparing between Figure 2A and 2B, it is apparent that the economy with greater 

degrees of labor pooling has less cross sectional variance of hours worked. The opposite is true 

for the economy with lesser degrees of labor pooling. This suggests that the cross sectional 

variance of hours worked tends to be smaller in the MSA with a larger number of business 

establishments. Next I carry out a set of regression analysis to test this relationship.  

4.2 Main Results based on cross sectional variance of hours worked 

To test how cross sectional variance of hours worked varies with degree of labor pooling, 

the first step is to construct a measure of variance of hours worked conditioned on worker’s 

socio-demographic attributes. Different individuals may have different levels of hours worked, 

and this difference is determined not only by the characteristics of local economies (such as labor 
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pooling), but also by workers’ demographic attributes as well as their occupations and industries 

(Rosenthal and Strange, 2008). 

I first regress individual worker’s Usual Hours Worked Per Week on a set of standard 

socio-demographic variables, such as age, education, race, and others. Occupation and industry 

effects are included in the regressions to control for the unobserved differences across industries 

and occupations at the individual level. The dataset used is the cross sectional data from the 

sample year 2000. A detailed description of this dataset is provided in Section 2. This reduced 

form approach is similar to the labor supply model used by Rosenthal and Strange (2008). Table 

4 reports the estimated coefficients, and they are consistent with the findings from those in 

Rosenthal and Strange (2008)1.  

Next, based on the estimated coefficients reported in Table 4, I generate the residuals of 

hours worked of each worker, and group them using their respective MSA codes. For each MSA, 

I calculate its standard deviations of the individual-level residuals of hours worked. This standard 

deviation is MSA-specific measure, representing the cross sectional variance of conditioned 

hours worked. It is used as the dependent variable in the following estimations. 

Table 5 shows the estimations of agglomeration’s impact on the cross sectional variance 

of hours worked. The dependent variable is the logged form of standard deviation of residuals of 

hours worked in MSA. The explanatory variables are a set of MSA-level agglomeration 

variables. For example, the variable number of establishments in MSA is a proxy for degrees of 

labor pooling. The variable population size in the MSA controls for the size of local economy. 

                                            
1 One thing worth noting is that this paper’s labor supply model uses hours worked directly as dependent variable 
while previous studies (for example, Rosenthal and Strange, 2008) uses the log form of hours worked. Once 
converted to the log form, my estimates are consistent with previous studies.  
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The industry diversification index in the MSA controls for the industrial composition of sector 

employment in the MSA. The total employment in the MSA is a measure of the total size of local 

employed work force.  

It is important to note that all standard errors reported in Table 5 are bootstrapped 

standard errors. Since the dependent variable standard deviation of residuals of hours worked in 

MSA is calculated based on the residuals generated from the regression on hours worked, the 

directly estimated standard errors become incorrect and are not valid for statistical inference1. To 

obtain correct standard errors for the estimates on the agglomeration variables, I apply a 

bootstrapping2 procedure on both the first regression on hours worked and the second 

regression, and report the bootstrapped second stage coefficients and the associated bootstrapped 

standard errors in Table 5. Throughout this section, all two-step estimations on cross sectional 

variance of hours worked are bootstrapped for 999 replications to generate correct standard 

errors on agglomeration variables.  

Column (1) in Table 5 reports the estimates based on the subsample for the skilled 

processional workers. Column (2) reports estimates based on the subsample for the less-skilled 

nonprofessional workers. The most notable estimate is the coefficients on the variable of interest, 

number of establishments in MSA. For both professional and nonprofessional workers, the 

coefficients are negative in value and statistically significant. This result is consistent with the 

predictions from the labor pooling model, that agglomeration reduces the cross sectional 

variance of hours worked through labor pooling. 
                                            
1 It is well known that the two-stage procedures can yield consistent estimates of the second stage parameters, but 
the directly estimated standard errors in the second stage regression are invalid for statistical inference. A detailed 
econometric theoretical analysis and proof can be found in Murphy and Topel (1985). 
2 See Efron and Tibshirani (1994) for a comprehensive study on bootstrapping. The bootstrapping method is a 
nonparametric procedure which does not require prior distribution assumptions on error terms, and can generate 
valid standard errors based on random re-sampling. 
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More importantly, there is a distinct difference between professional and nonprofessional 

workers in their estimated coefficients on variable Number of establishments in MSA. For 

professional workers in column (1), the estimated elasticity is -22.7% (with bootstrapped z-ratio 

of -2.19). This estimate is 12 percentage points larger than the estimated elasticity for 

nonprofessional workers in column (2), which is -11.4% (with bootstrapped z-ratio of -2.35). 

This difference indicates that the effect of labor pooling is stronger among skilled workers than 

those less-skilled workers. This pattern is consistent with the results in Sections 3 of this paper, 

and is also congruent with the skilled labor assumption in the labor pooling model.   

The estimates on other explanatory agglomeration variables can shed further light on how 

other characteristics of local economy may affect the cross sectional variance of hours worked. 

For instance, the estimated coefficients on the variable population size in MSA are positive for 

both professional and nonprofessional workers, indicating that larger urbanized areas tends to 

have higher cross sectional variance in hours worked for both type of workers, with everything 

else equal. This is plausible because individuals may have heterogeneous tastes in how many 

hours they wish to spend on working, and a larger number of workers are likely to have a greater 

variety of preferences in hours worked. The positive sign of the estimated coefficients on 

industrial diversification index in MSA indicates that a more diversified industrial composition 

may leads to greater variance of hours worked.  

4.3 Results based on MSA-stratified cross sectional variance of hours worked 

One potential concern with the main results in the previous section is that the estimates 

on individual worker’s attributes in the first-step regression are restricted to be the same across 

all MSAs. This can be problematic because the impact of worker’s attributes on their hours 



 

21 

worked may correlated with his location. Keeping their estimates fixed across MSAs may result 

in potential heteroskedasticity in the error terms. Consequently, the predicted residuals may be 

correlated within MSA clusters, causing biased estimates on the agglomeration variables in the 

regression on standard deviations of hours worked.  

However, it is not completely unreasonable to restrict the coefficients in the hours 

worked regression to be fixed for all MSAs. Perhaps some of the MSA-specific agglomeration 

characteristics are associated to certain attributes shared by the workers in the MSA. In my main 

specifications, these agglomeration variables are estimated in the second step MSA-level 

regression, but are omitted from the first step individual-level hours worked regression. If the 

coefficients in the first step individual-level hours worked regression are restricted to be the same 

for all MSAs, the effect of these omitted MSA agglomeration characteristics will be captured by 

the generated residuals of hours worked. When the MSA-specific variance of these residuals is 

used as the dependent variable in the second step regression, the effect of these MSA 

characteristics could be properly estimated. Therefore, restricting the coefficients in hours 

worked regression across MSAs may help keep some valuable information about the MSA 

agglomeration characteristics in the residuals of hours worked, thus improve the estimates on the 

agglomeration variables in the second step regression on the variance of residuals of hours 

worked.  

Column (3) and column (4) in Table 5 report estimations using an alternative 

specification to address the concerns described above. More specifically, the first step individual-

level hours worked regression, from which the residuals are generated, is MSA-stratified. The 

coefficients on worker’s attributes are estimated separately for each MSA, allowing them to vary 

across MSAs. Using these MSA-stratified estimates, I generate a new set of residuals of hours 
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worked from the first-step regression. Next I follow the same steps from the main specification, 

calculating the MSA-specific standard deviations of hours worked, and use it as the dependent 

variable to regress on the same set of agglomeration variables in the second-step regression.  

Column (3) presents results for professional workers. The estimated elasticity with 

respect to the number of establishments in the MSA is -21.4%, which is statistically significant at 

10% level. This is consistent with the estimates from column (1) of Table 5. It is also congruent 

to my prediction that agglomeration tends to reduce cross sectional variance of hours worked. 

Column (4) reports results for nonprofessional workers. The estimated coefficient on number of 

establishments in the MSA is -8.3% but does not have strong statistical significance (with a z-

ratio of -1.51). This estimate is 13 percentage points lower in magnitude than that of the 

professional workers in column (3). The distinct difference between professional and 

nonprofessional workers is similar with the pattern found in column (1) and (2). It is also 

consistent with the assumption that the spillover from labor pooling is only effective among 

skilled workers. 

4.4 Robustness Tests  

This subsection investigates the degree to which the estimates from previous subsections 

(reported in Table 5) are robust to alternative geographic measures for agglomeration economies, 

and to data from different sample year. The cross sectional data used in previous estimations is 

merged by Census and CBP data for sample year 2000, and the geographic area of an 

agglomeration economy is defined at the MSA level. In this subsection, I experiment the same 

specifications on two alternative datasets in cross sectional setting.  
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Table 6 reports estimation results based on the first alternative dataset. In this dataset I 

use WPUMA1 to define the agglomeration economy’s geographic area, and merge the 2000 

census data with the 2000 CBP data at the WPUMA level. The estimates reported in Table 6 are 

consistent with my main results in earlier sections. In column (1) for professional workers, the 

estimated elasticity with respect to the number of establishments in the WPUMA is -21% and 

statically significant (with z-ratio of -4.67). Column (2) reports that nonprofessional workers’ 

estimated elasticity of the same variable is -19% and is also statistically significant (with z-ratio 

of -8.76). These estimates show that the number of establishments in the WPUMA has a negative 

relationship with the cross sectional variance of hours worked, and the magnitude of this impact 

is larger for skilled workers relative to the less skilled workers. These results are consistent with 

the estimates obtained by using the MSA-level cross sectional data (reported in Table 5). This 

suggests a strong robustness of my results subject to different geographic measures. 

Table 7 presents estimations based on the second alternative cross sectional data from 

sample year 2008, and the estimates are similar with the results based on data from sample year 

2000. This 2008 data is merged by the single year ACS data and the CBP data from 2008, and is 

matched at MSA level. The 2008 cross sectional dataset has the exact same parameters as the 

cross sectional data of sample year 2000. Due to the ACS survey design, however the sample 

                                            
1 PUMA is short for Public Use Microdata Areas, a geographic statistic unit used by the U.S. Census Bureau. 
WPUMA (Work PUMA) is identified by the first 3 digits of the full 5 digits PUMA code, it includes all PUMA 
areas within. Prior evidence suggested that agglomeration economies attenuate rapidly (Rosenthal and Strange, 
2003, 2005), and since workers generally live and commute to work inside a work PUMA, I consider work PUMA 
as a local labor market with a pooled labor force that can be shared by locally clustered firms. In total, there are 
1,153 work PUMAs identified in our sample.  



 

24 

size of the 2008 data is much smaller than that of the 2000 Census sample1. All reported 

coefficients in Table 7 are estimated using the same methods from the main specifications.  

Column (1) in Table 7 reports results for professional workers. The estimated coefficient 

on number of establishments in the MSA is -22.9, and its bootstrapped standard error fails to 

show statistical significance. This weak significance could be attributed to the small sample size 

of the 2008 ACS data, which could potentially reduce the dataset’s statistical power. Despite the 

low statistical significance, this estimate can still shed some light on robustness of earlier results. 

The negative sign of this coefficient again confirms the findings from the earlier estimation, that 

the cross sectional variance of hours worked tends to be reduced by the labor market pooling. 

Furthermore, this estimated elasticity of the professional workers is three percentage points 

larger relative to the nonprofessional workers’ estimates reported in column (2). This relative 

difference between the skilled workers and the less skilled workers is consistent with the same 

pattern I find based on the cross sectional data of sample year 2000.  

5. Conclusions 

This paper is the first one to systematically document the relationship between 

agglomeration and the volatility of hours worked. The paper provides empirical evidence in 

support of the labor pooling model developed by Krugman (1991), and show that the spatial 

concentration of firms and labor reduces the volatility of hours worked associated with 

idiosyncratic firm-specific shocks. My test results are robust to different measures of volatility of 

hours worked, as well as to data from different sample years. Moreover, my findings also 

                                            
1 For the professional group, our customized sample from the ACS data is 26% of the size of the customized sample 
from 2000 Census 5% data. For nonprofessional group, the ACS 2008 customized sample size is 20% of the size of 
the 2000 Census 5% customized sample. 



 

25 

indicate that this spillover effect of labor pooling is more significant and stronger among skilled 

professional workers, relative to the less skilled nonprofessional workers.   

 This paper adds to a small but important literature that provides evidence on the 

microeconomic foundations of agglomeration economies. Labor market pooling is one of the 

many potential sources of agglomeration economies. The previous literature has offered many 

theories in explaining the micro foundations of labor market pooling, but has had less success in 

offering empirical evidence to identify the specific mechanisms. This paper provides direct 

evidence to a specific type of spillover from labor pooling, showing how labor pooling helps the 

spatially concentrated firms smooth labor market fluctuations and reduce firm-specific 

employment and unemployment risk. This paper is one of very few studies to have provided 

empirical evidence to identify the micro foundation of labor market pooling, and to help explain 

why cities are productive places. 
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TABLE 1 
Descriptive Statistics of Agglomeration Variables at MSA-levela 

MSA-level Cross Sectional Data (Sample Year 2000) 
  Mean Std. Dev. Min. Max. 

Population size in the MSA 770,347 1,590,788 100,506 17,200,000 
Industry Diversification Index in the MSA 0.89 0.13 0.39 1.16 
Total Employment in the MSA 337,888 700,821 26,236 7,266,626 
No. of Establishments in the MSA (>50 employees Est.) 1,190 2,435 91 23,878 
No. of White Male Full-time Professional Workers in MSA 12,941 32,445 464 368,769 
No. of White Male Full-time Nonprofessional Workers in MSA 43,168 87,382 3,748 905,257 

MSA-level Panel (From Sample Year 2005 to 2009) 
  Mean Std. Dev. Min. Max. 
Population size in the MSA 813,499 1,651,158 98,329 17,800,000 
Industry Diversification Index in the MSA 0.83 0.12 0.28 1.07 
Total Employment in the MSA 348,010 704,350 29,395 7,329,855 
No. of Establishments in the MSA (>50 employees Est.) 1,237 2,450 100 23,867 
No. of White Male Full-time Professional Workers in MSA 62,516 72,975 67 273,917 
No. of White Male Full-time Nonprofessional Workers in MSA 99,949 115,650 1,138 475,767 
a. All MSA-level characteristics are based on the sample combined by the male full-year workers data from IPUMS 
ACS and Census data and the business establishment data from CBP. There are total 275 MSAs identified in both the 
cross sectional data and the panel data. 
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TABLE 2 
Volatility of Average Hours Worked at the MSA-level Across Sample Years (From 2005 to 2009) 
Dependent Variable: Log Std. Dev. of MSA’s Average Hours Worked From 2005 to 2009a (t-ratios in parentheses) 

Professionala Nonprofessionala 
  (1) (2) 

Log Avg Number of Establishments in the MSA 2005-2009   -0.20 -0.04 
 (-1.69) (-0.43) 
Log Avg Std Dev of Labor Demand Shockb in the MSA 2005-2009   -0.06 0.57 
 (-0.24) (2.86) 
Log Avg Population Size in the MSA 2005-2009   -0.36 -0.25 
 (-2.99) (-2.58) 
Log Avg Industry Diversification Indexc in the MSA 2005-2009   -0.02 0.18 
 (-0.11) (0.99) 
Constant 6.25 6.25 
  (4.12) (5.18) 
No. of Observations 276 276 
Adj R squared 0.62 0.36 
Root MSE 0.47 0.37 
a. The Log Std. Dev. of MSA Yearly Average Hours Worked is defined as ln{square root[(∑5

t=1(Ht - H ))/(5-1)]} 
b. Professional workers belong to management and professional occupations and have a master's or higher degree. 
Nonprofessional workers belong to nonprofessional and service occupations and are high school graduated or less. 
c. The MSA Demand Shock is defined as the summation of each industry's employment growth rate at the national 
level, weighted by the industry’s employment share in each MSA:   
  MSA Labor Demand Shockt,t-1,MSA =  

∑n
I=1{[(Employmenti

t,national/Employmenti
t-1,national)-1] × (Employmenti

t-1,MSA/Employmentt-1,MSA)}     
For a more detailed explanation on this variable, see page 11. 
d. The MSA Industry Diversification Index is defined as the inverted Herfindahl index: ∑k(ejk/ej)2/∑k(ek/e)2 
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TABLE 3 
Volatility of MSA Average Hours Worked Across Sample Years (From 2005 to 2009):  
Estimates Based on MSA-level Panel Dataset following MSAs From 2005 to 2009 (in parentheses: t-ratios based on robust standard errors) 

Dependent Variablea 

Log Absolute Value of  
First-Differenced  

MSA Avg Hours Worked  
 

ln|Ht,MSA- Ht-1,MSA| 

Absolute Value of  
First-Differenced  

MSA Avg Hours Worked 
 

|Ht,MSA- Ht-1,MSA| 

Absolute Value of  
First-Differenced  

Log MSA Avg Hours Worked 
 

|ln(Ht,MSA/Ht-1,MSA)|    

Professionalb Nonprofessionalb Professional Nonprofessional Professional Nonprofessional 
  (1) (2)   (3) (4)     (5) (6) 

Log Number of Establishments in MSAt -1.74 -0.04 -5.14 -1.40 -0.10 -0.03 
 (-1.84) (-0.05)  (-1.95) (-1.14)   (-1.81) (-1.06) 
Labor Demand Shock in MSAt,t-1

c -18.79 32.52  -20.46 14.42   -0.56 0.29 
 (-1.03) (1.9)  (-0.55) (0.72)   (-0.72) (0.65) 
Log Number of Establishments in MSAt 2.20 -5.54  1.82 -3.37   0.06 -0.07 

× Labor Demand Shock in MSAt,t-1
c (0.8) (-2.13)  (0.36) (-1.2)   (0.53) (-1.17) 

Industry Diversification Index in MSAt
d 2.29 2.00 2.86 2.59 0.05 0.06 

 (1.1) (0.91)  (0.54) (1.02)   (0.48) (1.09) 
Constant 8.29 -1.12 29.02 7.37 0.55 0.15 
  (1.58) (-0.23)   (2.06) (1.11)     (1.92) (1.00) 
No. of Observations 1104 1104 1104 1104 1104 1104 
MSA Fixed Effects 276 276 276 276 276 276 
R squared 0.50 0.38 0.47 0.42 0.48 0.41 
Root MSE 1.02 1.06 2.36 1.17 0.05 0.03 
a. “H” indicates yearly MSA average hours worked, t ϵ [1,5], MSA ϵ [1, 276] 
b. Professional workers belong to management and professional occupations and have a master's or higher degree. Nonprofessional workers belong to nonprofessional 
and service occupations and are high school graduated or less. 
c. The Labor Demand Shock in MSA is defined as the sum of each industry's employment growth rate at the national level, weighted by the industry’s employment share 
in each MSA: 

MSA Labor Demand Shockt,t-1,MSA = ∑n
I=1{[(Employmenti

t,national/Employmenti
t-1,national)-1] × (Employmenti

t-1,MSA/Employmentt-1,MSA)}     
  For a more detailed explanation on this variable, see page 11. 
d. The variable MSA Industry Diversification is defined as the inverted Herfindahl index: ∑k(ejk/ej)2/∑k(ek/e)2 
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TABLE 4 
Hours Worked Regression at Worker-level: Estimates Based on Data From Sample Year 2000 
Dependent Variable: Usual Hours Worked Per Week (t-ratio in parentheses) 

Professionala Nonprofessionala 
  (1) (2) 
PhD degreeb 2.57 - 
 (20.21) - 
Professional degreeb 2.68 - 
 (22.53) - 
High school graduatec - 0.47 
 - (8.21) 
Have children younger than 10 -0.11 0.36 
 (-1.58) (7.46) 
Age 0.23 0.28 
 (5.98) (20.02) 
Age squared -0.01 -0.00 
 (-9.81) (-20.92) 
Married 1.17 1.36 
 (13.41) (27.19) 
Black -1.47 -1.54 
 (-9.11) (-16.24) 
Asian -1.64 0.04 
 (-11.86) (0.13) 
Hispanic -2.01 -0.84 
 (-3.68) (-8.33) 
Other race -0.43 -0.26 
 (-0.83) (-1.18) 
Immigrated 6-10 years agod 0.53 -0.02 
 (1.68) (-0.12) 
Immigrated 11-15 years agod 1.17 0.04 
 (4.54) (0.26) 
Immigrated 16-20 years agod 1.84 -0.07 
 (5.19) (-0.32) 
Immigrated >21 years or US citizend 1.85 0.07 
 (7.3) (0.42) 
Speak English 0.47 0.49 
 (1.01) (3.01) 
Log commute time 0.01 -0.06 
 (0.19) (-1.6) 
Constant 44.44 41.08 
  (31.13) (52.93) 
No. of Occupation effects 8 8 
No. of Industry effects 19 19 
No. of observations (individuals) 150,048 459,531 
R squared 0.07 0.05 
Root MSE 10.62 9.29 
No. of MSAs (clusters adjusted by Std. Err.) 275 275 
a. Professional workers belong to management and professional occupations and have a master's 
or higher degree. Nonprofessional workers belong to nonprofessional and service occupations 
and are high school graduated or less. 
b. Omitted categories for professional workers are master's degree. 
c. Omitted categories for nonprofessional workers are not high school graduated. 
d. Omitted category is immigrated in the last five years. 
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TABLE 5 
Cross Sectional Variation of Hours Worked in MSA: Estimates Based on Cross Sectional Data From Sample Year 2000  
Dependent Variable: Log of Std. Dev. of Residuals of Hours Worked in MSAa (bootstrapped t-ratio in parentheses) 

MSA Level Estimates Based on 
Unstratified Estimates from Hours 

Worked Regression Reported in Table 4b 

 MSA Level Estimates Based on MSA-
Stratified Estimates from Hours 

Worked Regression (not reported)c 
Professionald Nonprofessionald Professional Nonprofessional 

  (1) (2)   (3) (4) 
Log Population Size  0.07 0.11 0.30 0.09 
    in the MSA (2.14) (2.21)  (2.34) (1.57) 
Industry Diversification Index  0.09 0.33 0.13 0.24 
    in the MSA (1.43) (11.71)  (1.5) (6.63) 
Log Total Employment  0.16 0.02 0.22 -0.01 
    in the MSA (1.52) (0.29)  (1.63) (-0.02) 
Log Number of Establishments  -0.23 -0.11 -0.21 -0.08 
    in the MSA (-2.19) (-2.35)  (-1.72) (-1.51) 
Constant 0.98 1.46 -0.17 1.36 
  (1.61) (5.13)   (-0.22) (4.17) 
No. of observations (MSAs) 275 275 275 275 
Adjusted R squared 0.05 0.30 0.24 0.27 
Root MSE 0.13 0.08   0.16 0.07 
a. The Dependent Variable for the 1st stage is Usual Hours Worked Per Week for all two-stage procedures. All 
demographic variables listed in Table 4 are also included in each 1st stage regressions in all two-stage procedures, but 
their coefficients are suppressed in this table to conserve space. 
b. Both hours worked regression showed in Table 4 and the standard deviation regression showed in this table are 
bootstrapped for 999 reps. I only report the regression estimates on agglomeration variables here in this table. 
c. In this MSA-stratified procedure, the hours worked regressions (reported in Table 4) are stratified by MSA. There are 
in total 275 hours worked regressions. Each regression corresponds to a specific MSA. This entire procedure is also 
bootstrapped for 999 reps. 
d. Professional workers belong to management and professional occupations and have a master's or higher degree. 
Nonprofessional workers belong to nonprofessional and service occupations and are high school graduated or less. 

 

 

 

 

 

 

 

 

 

 

 



 

32 

TABLE 6 
Cross Sectional Variation of Hours Worked in WPUMA: Estimates Based on Data From Sample Year 2000a 
Dependent Variable: Log of Std. Dev. of Residuals of Hours Worked (bootstrapped t-ratio in parentheses) 

WPUMA Level Estimates Based on  
Unstratified Estimates From  
Hours Worked Regressionbc 

Professionald Nonprofessionald 
  (1) (2) 
Log Population size in the WPUMA 0.20 0.16 
 (4.24) (7.36) 
Industry Diversification Index in the WPUMA 0.07 0.31 
 (2.12) (20.09) 
Log Total Employment in the WPUMA 0.19 0.17 
 (4.09) (7.63) 
Log Number of Establishments in the WPUMA -0.21 -0.19 
 (-4.67) (-8.76) 
Constant 1.23 1.19 
  (4.44) (9.2) 
No. of observations (WPUMAs) 1,150 1,151 
Adjusted R squared 0.05 0.22 
Root MSE 0.15 0.10 
a. All the workers demographic variables listed in table 4 are also included in the hours worked regression of this 
procedure. Their coefficients are suppressed in this table to conserve space. 
b. The entire estimation procedure is Bootstrapped for 999 replications. The bootstrapping z-ratios are reported in 
parentheses. 
c. Similar results are estimated by a procedure with WPUMA-stratified hours worked regressions.  
d. Professional workers belong to management and professional occupations and have a master's or higher degree. 
Nonprofessional workers belong to nonprofessional and service occupations and are high school graduated or less. 
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TABLE 7 
Cross Sectional Variation of Hours Worked in MSA: Based on The Cross Sectional Data From Sample Year 2008a 
Dependent Variable: Log of Std. Dev. of Residuals of Hours Worked (bootstrapped t-ratio in parentheses) 

MSA Level Estimates Based on Unstratified 
Estimates From Hours Worked Regressionb 

Professionalc Nonprofessionalc 
  (1) (2) 
Log Population size in the MSA 0.26 0.17 
 (1.46) (1.47) 
Industry Diversification index in the MSA 0.05 0.23 
 (0.28) (2.62) 
Log Total Employment in the MSA 0.21 0.21 
 (1.16) (1.78) 
Log Number of Establishments in the MSA -0.23 -0.19 
 (-1.34) (-1.65) 
Constant 0.55 1.19 
  (0.52) (1.78) 
No. of Observations (MSAs) 275 275 
Adjusted R squared 0.02 0.03 
Root MSE 0.22 0.14 
a. This alternative sample is drawn from the IPUMS ACS 2008 and CBP 2008 data. The sample is restricted to male 
workers identified in MSAs, employed in business sectors and who have full-year employment status. The full-year 
status is defined as worked more than 50 weeks last year. All the workers demographic variables listed in table 3 are 
also included in the 1st stage regression of this two-stage procedure. Their coefficients are suppressed in this table to 
conserve space. 
b. The entire estimation procedure is bootstrapped for 999 reps. The bootstrapping z-ratios are reported in parentheses.
c. Professional workers belong to management and professional occupations and have a master's or higher degree. 
Nonprofessional workers belong to nonprofessional and service occupations and are high school graduated or less. 
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Figure 1:  Labor pooling and inter-temporal change of hours worked 
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Figure 2: Labor pooling and cross sectional variance of hours worked 
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1. Introduction 

Homeownership is strongly associated with men’s labor supply. A probit estimate 

suggests that for male household heads in the U.S., homeowners are 2.6% more likely to be 

employed relative to renters1. This positive effect, however, is potentially biased by the 

endogeneity of homeownership. On one hand, individuals with good jobs have better access to 

mortgage markets and are more likely to buy homes. On the other hand, homeowners have 

strong motivations to work in order to afford mortgage payments and homeownership costs. A 

number of studies (for example, Coulson and Fisher, 2008, Munch et al., 2006, Bottazzi, 2007, 

Del Boca and Lusardi, 2003)2 have investigated the relationship between homeownership and 

labor supply. However, their results are mixed, and the endogeneity of homeownership remains 

as a challenging identification problem.   

In this paper, I use a new set of instrumental variables (IV) to address this endogeneity 

problem, and to estimate the causal effect of homeownership on men’s labor supply. The 

instruments are four dummy variables (whether the household has three children, four children, 

five children, and six or more children, respectively), which measures the size of single family 

households. I show that these family size instruments are highly correlated with homeownership, 

and the IV diagnostic test results suggest that my instruments meet all conventional requirements 

of a valid IV estimation. 

I find that family size is closely related to a household’s decision on whether to owner-

occupy its homes. Using household-level data from the American Community Survey (ACS) 
                                            
1 See column (1) in Table 4, the estimated marginal effect on Homeownership. This probit estimation is based on a 
sample of married white male household heads of single-family households in the U.S., more information about the 
sample is provided in section 3. 
2 See Section 2 of this paper for a brief review of the previous studies on the relationship between homeownership 
and labor supply. 
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2010 3% file, I find that the likelihood of single family households being homeowners is 

positively associated with the presence of the first two children, but negatively associated with 

additional children beyond the first two kids. This result is consistent with the prediction from a 

conceptual model. In the model, homeownership is jointly determined by the household’s 

consumption demand and investment demand for housing stocks. Both demands are assumed to 

be functions of the number of children in the household. 

Drawing from the evidence that the third and additional children are highly correlated 

with homeownership, I use them as family size instruments to address the endogenous 

relationship between homeownership and men’s labor supply. The IV estimates suggest that 

male household heads who own homes are 1.2% more likely to be employed relative to renters, 

after controlled for demographic and socio-economic attributes. Comparison of IV and probit 

estimates suggest that there is substantial upward endogeneity bias in the conventional cross-

sectional estimates of the effect of homeownership on men’s labor supply. In particular, the IV 

results are congruent with previous theories arguing that homeownership has a positive effect on 

labor supply, but do not support the Oswald hypothesis - that homeownership decreases 

employment. 

I also examine the extent to which the effect of homeownership on men’s labor supply 

differs across age groups. Using the instruments described above, I separately estimate IV 

models for men between ages 18 and 33, and for men between ages 34 and 55. I find that 

homeownership has a positive and significant effect on labor supply among younger men but it 

does not have a significant effect for men in older age. This result suggests that younger male 

homeowners have more incentive to work relative to older ones. In addition, I explore how 

family size relate to men’s hours worked. OLS estimates suggest that family size has a 
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significant and nonlinear incremental effect on men’s hours worked. The first two children have 

positive effects but the third and additional children have negative effects.3  

This paper makes three contributions. Firstly, using household-level dataset, the paper 

provides micro-data evidence on the positive effect of homeownership on men’s labor supply. 

This evidence adds to a small but important literature on the spillover effects of homeownership. 

Secondly, I develop a new set of instruments to address the endogeneity of homeownership in 

estimating its impact on men’s labor supply. Thirdly, this paper shows that the relationship 

between housing tenure status and family size is highly nonlinear and nonmonotonic.  

The rest of paper is organized in the following manner. Section 2 provides some 

background on previous research. Section 3 presents the data and variables. Section 4 covers the 

effect of children on homeownership. Section 5 covers estimations of impact of homeownership 

on men’s labor supply. Section 6 explores the effects on hours worked. Section 7 concludes. 

2. Background 

On the topic of homeownership’s labor market impacts, the previous literature provides 

many competing theories which predict different effects, either positive or negative. There are 

several reasons to argue that homeownership has a positive impact on household’s labor market 

outcomes. Firstly, a number of studies argue that homeowners are more likely to be employed 

relative to renters. Being a homeowner often means that the household has to bear additional 

financial responsibilities (such as mortgage repayments and maintenance costs) over extensive 

                                            
3 Lundberg and Rose (2002) argue that the negative incremental effects by children in addition to the first two kids 
are potentially caused by the heterogeneity bias in OLS estimates. After using a fixed-effects approach, they show 
that children in addition to the first two kids do not have significant increment effects on men’s hours worked and 
hourly wages. 
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periods of time.4 To fulfill the repayments of debts, homeowners are more likely to increase 

their labor supply and to work harder (for longer hours, or take a second job) relative to renters. 

Fortin (1995), Del Boca and Lusardi (2003), Bottazzi (2007), and Bottazzi et al. (2007) find that 

women from households with greater mortgage commitments are more likely to work, and tend 

to work longer. Flatau et al. (2003) and Munch et al. (2006) find homeowners tend to have 

shorter unemployment spells than renters, based on Australian and Danish data, respectively.  

Secondly, several studies show that homeowners may have higher productivity and 

higher wage level relative to renters. Owner-occupiers on average tend to have longer residence 

spells, which not only increase their stability and social capital but also lead homeowners to 

focus more on work thus they become more productive (Rohe and Stewart, 1996; Dipasquale 

and Glaeser, 1999). Coulson and Fisher (2002) find that homeowners have higher wages relative 

to renters in the U.S. Munch et al. (2008) find similar result by using data from Denmark, and 

argue that the immobility of homeowners may cause them to invest more in local jobs, increasing 

their firm-specific productivity.  

There are also reasons to believe that homeownership has a negative impact on 

households’ labor market outcomes. For example, relative to renters, owner-occupiers tend to 

have lower mobility due to high costs of buying and selling homes (Ferreira, et al., 2010, and 

others5). Low household mobility, argued by Oswald (1997) and others, links homeownership to 

inferior labor market outcomes. Less-mobile homeowners are either constrained to their 

residential locations or tend to have longer commutes, thus they are less efficient in exploiting 

                                            
4 About 83% of single-family households in the Unites States who own their homes have mortgage debts, according 
to the author’s calculation using a sample of white male household heads drawn from the ACS 2010 3% data file. 
5 For instance, Quigley (1987), Stein (1995), Genesove and Mayer (1997, and 2001), Chan (2001), and Engelhardt 
(2003). 
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job opportunities elsewhere than mobile renters. Other models based on search theories (Dohmen, 

2005; Munch et al., 2006; Coulson and Fisher, 2008) further argue that this immobility of owner-

occupiers constrains their ability to move and to accept job offers from firms in other locations. 

Therefore, the immobility exacerbates the spatial mismatch between jobs and workers’ 

residential locations.  

A number of previous studies offered evidence on the negative effect of homeownership 

by investigating the aggregate-level relationship between homeownership rates and 

unemployment rates. For example, Oswald (1997, 1999) and others6 found positive correlation 

between homeownership rates and unemployment rates among OECD countries. However, this 

type of cross-county analysis usually suffers from potential problems of omitted variables and 

measurement errors.7  

With respect to the relationship between homeownership and family size, many 

researchers have argued that households with large family size are more likely to be homeowners. 

It is reasonable to think that if there are more children in a single family household, the family 

would consume more housing and prefer more control over their living spaces. Therefore, they 

are more likely to become owner-occupiers relative to households with no child or small number 

of children. However, previous literature offered limited evidence to support this speculated 

relationship. A number of studies consider the inter-dependence between family’s fertility 

                                            
6 Similar results based on aggregate macro data are also found by Green and Hendershott (2001), Partridge and 
Rickman (1997), and Pehkonen (1999). However, Barrios and Rodríguez (2004) found the correlation to be in the 
opposite direction. 
7 Many of the important individual-level attributes relate to homeownership labor market outcomes could not be 
properly accounted for by the aggregate measures. 
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decisions and their housing tenure status, but most of them focus on the birth of a new child (i.e., 

the first child)8 rather than the total size of the household. 

In the labor literature, the traditional focus of impacts of bearing children is centered on 

women’s labor market outcomes, but several studies find that children also affect men’s labor 

supply and earnings. For example, Lundberg and Rose (2002) show that the effects of children 

on the father’s labor supply are highly nonlinear and nonmonotonic. Similar result is offered by 

Angrist and Evans (1998), who use gender differences of the first two children to predict the 

likelihood of the parents having a third child, and use the same-sex instruments to estimate the 

effect of the third child on women’s and men’s labor supply. 

In the labor economics literature, the studies on the effect of children on men’s labor 

supply is relative less extensive comparing to research on the effect of fertility on women’s labor 

market outcomes. Women are traditionally viewed as the primary caretakers for children. 

However, it is reasonable to think that both the husband and the wife bear part of the time and 

financial cost (although in different proportions) for raising children. Assuming the labor market 

decisions of husbands and wives are inter-dependent, children should also affect men’s labor 

supply, perhaps to a different extent from that of women’s.  

Several studies have examined the relationship between children and men’s labor supply. 

For example, Lundberg and Rose (2002) find that the effect of children is highly nonlinear and 

nonmonotonic. They show that the first two children have positive and significant impact on 

                                            
8 For example, Mudler and Wagner (2001), Feijten and Mudler (2002), Courgeau and Lelievre (1992), Murphy and 
Sullivan (1985) all considers some aspects of the interaction between household housing types and birth of the first 
child. One possible exception is Kulu and Vikat (2007), who considers the relationship between selective moves into 
owned housing and birth of the first, second, and third children separately.  
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men’s probability of being employed. Agrist and Evans (1998) find similar result, using gender 

differences of the two first-borns as instrument for the birth of a third child. 

3. Data and Variables 

The primary data of this study is a sample of married white male household heads from 

the American Community Survey (ACS) 2010 3% household-level data file. It is obtained from 

the IPUMS9 database. For the purpose of examining the impact on men’s labor supply, I restrict 

my sample to include married white male heads of single family households. A typical single 

family household consists of a married couple and their offspring.  

Following the approach used by Angrist and Evans (1998) as well as Coulson and Fisher 

(2008), I limit the male household heads sample to those who are aged between 18 and 55, and 

whose wives are aged between 18 and 35. The restriction on wife’s age is to avoid generating a 

selective sample. There are several reasons. Firstly, I only use the number of children below age 

18 to proxy for family size. A child over age 18 is more likely to live in another residence (i.e. in 

college dorm), and have ambiguous effects on its parents’ housing demand and labor supply. 

Secondly, since ACS does not track children who are currently not living with their parents, the 

18 cut-off on children’s age will ignore children who are living with their parents but are older 

than 18. Thirdly, fewer women younger than 18 are mothers, and women younger than age 35 

are very unlikely to have children over the age of 18.  

I also exclude households who have moved into their current address less than 12 month 

ago because some of the labor market outcome variables reported in the ACS refers to the year 

                                            
9 The Integrated Public Use Microdata Series provides a more user-friendly version of the ACS data. The ACS is 
conduct by the US Census bureau and is also available on the Census website. 
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before the time of survey. The dichotomy choice of being a renter or a homeowner usually takes 

place when the household moves to a new address. For those households that moved into their 

current addresses fewer than 12 months ago, it is difficult to determine whether the decision on 

homeownership is before or after the change of their labor market status. This ambiguity may 

cause unexpected problems. 

I further screen out observations in the following categories: male household heads that 

are not in labor force, self-employed, living in farms or group quarters, currently serving in 

military, and using the house for commercial purpose. All households included in the sample are 

residing in the Metropolitan Statistical Areas (MSA), where labor market and housing market are 

relatively dense and competitive. The final full sample is comprised of 84,805 observations of 

white male household heads.  

Table 1 reports the summary statistics of key variables of the demographic and socio-

economic attributes of male household heads. The variable Homeownership is a dummy variable 

with value 1 if the household owns its current home, and zero otherwise. The variable 

Employment is also a dummy. It takes value 1 if the male household head is employed and 0 

otherwise. The variable Hours worked measures the male household head’s usual hours worked 

per week in the past 12 months before the time of survey. Other variables are used as controls in 

regression models, they are age and age squared, whether wife is at work, whether the male 

household head has the U.S. citizenship, and a series of categorical dummy variables indicating 

the male household head’s level of education attainments. The continuous variable FHFA Index 

change is included in all regressions to control for price change in the local housing market. This 

variable is MSA-specific and is matched with other household-level variables using households’ 

MSA codes. It measures the percentage change of the FHFA index from 2007 to 2010 for each 
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MSA. The FHFA Index is a quality-adjusted repeat transactions housing price index produced by 

the Federal Housing Finance Agency at the MSA level. 

To further control individual male household head’s labor market attributes, all 

estimation models in this paper include series of dummies indicating their associated two-digit 

occupation categories and two-digit industry categories. There are 22 occupation effects and 24 

industry effects in total. 

Table 2 shows the frequencies of different family sizes of the single family households in 

the sample. Family size is measured by a series of categorical dummies indicating the number of 

children in the households. The family size categories (from no child to six or more children) are 

mutually exclusive and collectively exhaustive. The first two columns show the frequencies and 

percent of different family sizes for the full sample. The second pair of columns and the third 

pair of columns report the frequencies and percent of number of children respectively for sample 

that only includes homeowners and sample that only includes renters. 

4. Relationship between homeownership and family size 

4.1 A conceptual model 

How does homeownership relate to family size? In this section, I explore this relationship 

based on a conceptual model in which homeownership is jointly determined by the household’s 

consumption demand and investment demand for housing stocks. Both demands are functions of 

number of children in the household. This model is a version of the theoretical model proposed 

by Henderson and Ioannides (1983). They assume that housing stock is homogeneous, and can 

be owned for both consumption and investment purposes, or for investment purpose only. A 

household has consumption demand for housing stock derived from housing services it wish to 
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consume, and has an investment demand for housing stock based on its portfolio motives. In the 

absence of tax distortions, borrowing constraints, and transaction costs, families tend to live in 

owner-occupied housing if their investment demand for housing exceeds their consumption 

demand for housing (Henderson and Ioannides, 1983). 

The conceptual model assumes both the consumption demand and investment demand for 

housing stock are associated with the family size (i.e., the number of children) of the household. 

For the consumption demand, it is reasonable to think that families of larger sizes tend to 

consume more housing services. In a single family household, if there are more children, the 

household needs more housing space to accommodate the entire family. For the investment 

demand for housing stock, I assume it is positively and nonlinearly associated with the number 

of children. There are a couple of reasons. Firstly, households that have more children are more 

likely to assert control on their homes, such as to be able to freely improve or modify housing 

space and structures to accommodate the needs of children. They thus have a higher investment 

demand for housing and are more likely to own their housing property. Secondly, as the number 

of children becomes larger, raising children will cost a larger part of the family’s financial 

resources. This also imposes a constraint on the household’s investment demand for housing, and 

reduces its likelihood to become homeowner. 

Figure 1 illustrates the conceptual model, in which both consumption demand and 

investment demand for housing are functions of number of children. The horizontal axis 

indicates the number of children in the household. An increase in number of children increases 

both the investment and consumption demands of the household. The vertical axis indicates 

housing stock. In the region Rent1, where the household only has a few number of children, its 

associated consumption demand exceeds the investment demand. It indicates that the amount of 
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housing stock the household wish to consume is higher than the housing stock it wants to assert 

control for, and the household is better off renting than owning. In the region Own, where there 

are a moderate number of children, it is advantageous for the household to owner-occupy the 

home since the investment demand exceeds the consumption demand. In this case, being a 

homeowner provides both the amount of housing services and control needed to accommodate 

the family. Finally, in the region Rent2 where the household has a large number of children, its 

investment demand is impeded by the increasing cost of raising children. This makes the 

investment demand lower than the consumption demand, and the household is better off to rent 

rather and owner-occupy its home. 

Based on the conceptual model, I expect that households have a moderate number of 

children (i.e., two or three) are more likely to be homeowners, comparing with households with 

fewer or more children. This would suggest that the effects of family size on homeownership are 

highly nonlinear: it first increases homeownership for households with relative small family size, 

and decrease homeownership for households with very large family size.  

4.2 Estimations and results 

I use probit models to estimate the relationship between homeownership and family size. 

The data used for the estimation is the household-level ACS data described in section 3.  

The base specification is 

ℎݏݎ݁݊ݓ݁݉ℎ݅ = ߙ + ∑ ௗ,ௗୀଵܦߚ + ߛ  ܺ +    (1)ݑ

Where the subscript “i” indicates individual male household heads. Recall the dependent 

variable homeownership equals to 1 if the household is a homeowner and 0 otherwise. X is a 
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vector of controls for demographic and socio-economic attributes, and γ is the corresponding 

coefficients. Dkid is a series of categorical family size dummies indicating the number of children 

in the household, and β is the corresponding coefficients. 

It is important to note that the omitted category of family size dummies is no child, in this 

case the reference group is households with no child. The family size dummies included in the 

equation are one child, two children, three children, four children, five children, and six or more 

children. The estimated coefficients on these family size dummies indicate the relative likelihood 

of being homeowners comparing to that of households with no child. 

Column (1) in Table 3 reports results based on the base specification. The estimated 

coefficients on family size dummies suggest that households with one to five children are 

significantly more likely to be homeowners comparing to households with no child. The 

associated average marginal effects are reported in brackets. By inspecting marginal effects 

across family size dummies, it is clear that the effects of children on homeownership is highly 

nonlinear and nonmontonic. Households with one child are 8.6% more likely to be homeowners 

relative to those who have no child. The estimated relative likelihood are 11% for both two 

children and three children, and then decreases to 9.7% for four children and 5.6% for five 

children. It further drops to 2.5% for six or more children and becomes statistically insignificant.  

Figure 2A plots the average marginal effects of different family sizes, using no child as the 

reference group. The plot indicates that the positive impacts of family size on homeownership 

are highly nonlinear and nonmonotonic. 

As an alternative to the base specification, I estimate a probit model where the omitted 

category of family size is two children; that is 



 

49 

ℎݏݎ݁݊ݓ݁݉ℎ݅ = ߙ + ∑ ௗ,ଵௗୀܦߚ + ∑ ௗ,ௗୀଷܦߚ + ߛ  ܺ +    (2)ݑ

where households with two children is the reference group for all other households of 

different family sizes, including no child, one child, and from three children to six or more 

children. In this specification, the estimated coefficients on family size dummies imply the 

relative likelihood of being homeowners comparing to that of households with two children.  

Column (2) in Table 3 reports the estimation results based on equation (2). The negative 

and significant coefficients on all specified family size dummies indicate that the corresponding 

households are less likely to be homeowners comparing to households with two children. 

Average marginal effects of each family size dummies are reported in brackets, and are plotted in 

Figure 2B. Note the relative patterns between each family sizes and the nonlinearity and 

nonmonotonicity are consistent with the plot illustrated in Figure 2A. Households with two 

children, as the reference group, have the highest likelihood to be homeowners comparing to 

others. More importantly, the results show that children beyond the second child are negatively 

and significantly associated with the likelihood of homeownership. 

In addition, I experiment a linear specification to test the effects of family size on 

homeownership for households with more than two children. I include a continuous variable 

Nkid≥2, which indicating the number of children if the household has more than two kids, and two 

dummy variables for households with no child and one child; that is   

ℎݏݎ݁݊ݓ݁݉ℎ݅ = ߙ + ∑ ௗ,ଵௗୀܦߚ + ߠ ܰௗஹଶ, + ߛ  ܺ +    (3)ݑ

Column (3) of Table 3 reports the results based on the model equation (3). The estimated 

coefficient on variable Nkid≥2 is negative and statistically significant (at 1% level). The average 
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marginal effect (reported in brackets) indicates that by adding one more child in the households 

who have already had two children, the likelihood of being homeowners decrease by 1.3%. This 

result is consistent with the findings from previous nonlinear specifications, and confirms the 

negative and significant incremental effects of children beyond the second child.  

To summarize, the above findings based on different specifications are congruent with 

the conceptual model, in which the likelihood of a household being homeowner is associated 

with the numbers of children in a nonlinear and nonmonotonic relationship. Moreover, the 

likelihood of homeownership is negatively and significantly associated with the number of 

children for households that have more than two children. 

5. The effect of homeownership on men’s labor supply 

Instrumental variable (IV) is a standard approach to address the problem of endogeneity. 

However, adequate instrument for homeownership is often difficult to find. A valid instrument 

for homeownership should be strongly correlated with the propensity of household’s housing 

tenure status, but uncorrelated with the male household head’s labor market decisions. There are 

several instruments that potentially fit these criteria. 

5.1 Instrumental variables 

A possible aggregate-level instrument is the state marginal tax rate. In the U.S. many 

states have tax codes that allow deduction of the mortgage interest from individual’s income tax 

payments, while some other states do not permit such deductibility. If the mortgage interest is 

deductible in a state, individuals in this state are likely to have higher propensity to own homes 

rather than renting. It is also plausible to argue that the marginal tax rate allowing deduction of 

the mortgage interest has no effect on individual’s labor supply. However, this instrument has 
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some potential limitations. Firstly, the state marginal tax rate is an aggregate-level measure, 

which may not provide sufficient variations in estimations using cross sectional individual level 

data. Secondly, it is valid to argue that the state tax policy is an important factor to influence 

individual’s decision in choosing where to live and to work, and tax policies could be potentially 

interdependent with individual’s labor market decisions.  

For individual level instruments of homeownership, one example is the same-sex 

instrument used by Coulson and Fisher (2008) to test homeownership’s impact on married men’s 

unemployment and income. The same-sex instrument is originally used by Angrist and Evans 

(1998) to solve the endogenetiy between fertility and women’s labor supply. They use the gender 

difference of the two first-born children as an instrument for the birth of a third child. This 

approach is reasonable under the assumption that parents prefer a third child in a different gender 

if their first two kids are the same sex. Because the gender composition of the first two children 

is virtually random, it is exogenous to parents’ labor market decisions. Coulson and Fisher (2008) 

assume that having a third child increases households’ likelihood to be homeowners, and they 

argue that the same-sex measure is an appropriate instrument for homeownership. Since it 

predicts the birth of a third child, it is relevant to homeownership. In addition, it is exogenous to 

men’s labor supply. 

However, there are several potential limitations in the same-sex instruments. First of all, 

the same-sex measure only considers the relative effect of the third child comparing to the first 

two children. Since the effect of children is highly nonlinear and nonmonotonic, the incremental 

impact of the third child may not be sufficient for the identification purpose. For instance, 

estimates based on equation (2) show that the impact of having three children on homeownership 
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does not significantly differ from the impact of having two children.10 Secondly, using the same-

sex instrument requires a sample of households who have at least two children. This restriction 

reduces the household sample size significantly, to the extent that the final sample only 

represents a small share of all the single-family households in U.S.11 

To address the endogeneity problem of homeownership, I use a new set of household-

level instruments. They are a set of family size dummy variables indicating whether the 

household has three children, four children, five children, and sixth or more children. In the 

previous sections, I have shown that the incremental effects of children after the second child are 

highly correlated with the probability of households being homeowners, and they are possibly 

exogenous to men’s labor supply. Therefore, they have potential to be valid instruments for 

homeownership. In the following part, a series of IV diagnostic tests are performed to test the 

validity of these instruments. 

5.2 The IV recursive bivariate probit model  

I use a recursive bivariate probit model to estimate the effect of homeownership on the 

probability of being employed. The recursive probit model is a standard econometric method to 

correct for the endogeneity issue (Greene, 1998). Identification of the effect of homeownership 

relies on the set of family size instruments.   

The model contains two equations: 

 

                                            
10 See results reported in column (2) of Table 3. These results are the probit estimates of the effect of children on 
homeownership. 
11 In my ACS sample of white male household heads (age from 18 to 55, and with wife’s age from 18 to 35) of 
married couple from single-family households, only 51.2% have two or more than two children in their households.  
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ℎݏݎ݁݊ݓ݁݉ℎ݅ = ߙ + ∑ ௗ,ଵௗୀܦߚ + ∑ ௗ,ௗୀଷܦߚ + ߛ ܺ +    (4)ݑ
ݐ݊݁݉ݕ݈݉݁ = ߬ + ߮ℎݏݎ݁݁݊ݓ݁݉ℎ݅ + ∑ ௗ,ଵௗୀܦߠ + ߜ ܺ + ݁ (5) 

Where i is the index for individual household observations associated with the male 

household heads. X is a vector of model controls as described earlier. Dkid denotes the set of 

dummy variables indicating whether the household have kid number of children. To test the 

effect of homeownership on man’s labor supply, homeownership is included as the instrumented 

variable in the employment equation (5). The error terms of the two equations ui and ei are 

assumed to have joint normality. 

The instruments are four family size dummies (denoted by ∑ ௗ,ௗୀଷܦ ), indicating 

whether the household has three children, four children, five children, and six and more children. 

They are included in equation (4) and are excluded from equation (5). It is important to note that 

the reference group for family size dummies in equation (4) is households with two children. The 

reference group in equation (5) is households with two and more children.  

The two equations included in the recursive bivariate probit model can be estimated 

simultaneously using the maximum likelihood method. If endogeneity is present between 

homeownership and employment, the error term ui of the homeownership equation (4) will be 

significantly correlated with the error term ei in the employment equation (5). The simultaneous 

estimation of the model can ensure that this correlation is dealt with, as the correlation matrix of 

error terms is estimated. Moreover, the dependent variables of equation (4) and equation (5) are 
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both binary outcome variables. The bivariate probit model ensures that the nonlinearity in both 

equations is properly considered.12 

5.3 Estimation results and diagnostic tests 

The results are reported in Table 413. In column (1), I first show estimates of a 

conventional probit model, where homeownership appears as explanatory variable in the 

employment equation without considering its potential endogeneity. The estimated coefficient on 

homeownership is 0.335 and is statistically significant, indicating a large and strong correlation 

between homeownership and men’s labor supply. The average marginal effect suggests that male 

household heads who own their homes are 2.6% more likely to be employed relative to renters.  

The estimates of the IV recursive bivariate probit model are reported in column (2) and 

column (3). The estimates of the first equation (equation 4) are shown in column (2). The 

estimated coefficients on the instrumental variables are all statistically significant at 1% level. 

Moreover, the F-statistic of the joint significance test of all instruments is 18.84, with p-value of 

0.002. These results imply that the instruments have a strong relevance to the instrumented 

variable homeownership. 

Next I carry out a test to examine whether homeownership is endogenous to employment. 

Due to the nonlinear nature of the bivariate probit model, the standard Hausman test, which is 

based on the linear property of the OLS and IV 2SLS estimations, is not appropriate here for the 

                                            
12 An alternative to bivariate probit estimation is to use the conventional linear IV estimators. See Chiburis, Das and 
Lokshin (2011) for a discussion of the similarity and difference between bivariate and linear probability model for 
IV estimation. In general, the linear results are similar to the ones based on bivariate probit model. However, 
because the bivariate probit is estimated using maximum likelihood, the estimations can provide better efficiency. In 
this study the bivariate probit model is preferred over the linear probit model. 
13 All regressions reported in Table 4 contain additional socio-demographic controls for the household 
characteristics and attributes of the male household head. To conserve space, these controls are not reported in the 
table. A footnote in the table provides the list of these controls. 
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testing of endogeneity. Drawing on the work by Knapp and Seaks (1998), I use an alternative 

approach to test whether the correlation between the residuals of equation (4) and equation (5) is 

significantly different from zero.14 A significant non-zero correlation coefficient (denoted as rho) 

rejects the null hypothesis that there is no correlation between homeownership and unobserved 

factors affecting employment. This is equivalent to rejecting the null hypothesis that the 

homeownership is exogenous to employment. In column (3), the Wald statistics (with p-value of 

0.063) rejects that the rho is equals to zero, which indicates that homeownership is indeed 

endogenous. The result of the Hansen’s J-test for over-identification15 is also reported in column 

(3). The p-value is 0.56, suggesting that the instruments are likely to be valid.  

The key result in column (3) of Table 4 is the estimated coefficients on homeownership, 

the instrumented variable. The positive and significant (at 5% level) coefficient suggests that 

homeownership has a positive impact on men’s labor supply. The average marginal effect 

suggests that being a homeowner increase the employment probability of male household heads 

by 1.2%. Comparing results between the IV marginal effect (1.2%) and the probit marginal 

effect (2.6%), the difference suggests that there is a substantial upward endogeneity bias in the 

conventional probit estimation. The economic magnitude of the probit estimate almost doubles 

that of the IV estimate.  

The IV result is consistent with the theory that homeownership tends to increase labor 

market participation, for reasons such as mortgage debt commitment and bearing of additional 

ownership costs. It offers evidence to support the previous findings that homeownership has a 

                                            
14 Knapp and Seaks (1998) show that a likelihood-ratio test of whether the correlation coefficient of the residuals of 
the two equations in a bivariate probit model is equal to zero can be used as a Hausman endogeneity test. 
15 Since there is no proper method to directly perform the over-identification test in the bivariate probit model, 
instead I perform the test using the IV linear probability model.   
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positive effect on labor supply. However, the IV results do not support the hypothesis proposed 

by Osward (1997), in which homeownership is associated with inferior labor market outcomes.  

5.4 Results based on samples of different age groups 

Age is an important factor that affects both homeownership and men’s labor supply. 

Individual household’s transition from renter to homeowner is closely related to the age of the 

household head. It is also well documented that men’s labor supply is affected by their age. Thus 

I expect that for male household heads in different stages of life, their labor supply may respond 

differently to the impact of homeownership. 

In this section, I consider how the effect of homeownership on men’s labor supply differs 

between households of different age groups. I stratify the full sample of male household heads 

into two age groups: one group is for those with age between 18 and 33, and the other group is 

for those with age between 34 and 55. The cut off line 33 is the average age in the full sample, 

which generates two age groups with equal sample size. For each age group, I repeat the IV 

recursive bivariate probit estimation using the same set of instrumental variables.  

Table 5 reports the IV results for different age groups of male household heads. Note that 

only the estimated coefficients on the instrumented variable homeownership are reported, the 

coefficients on other control variables are not reported in the table. Column (1) reports the results 

based on the group of household heads aged 18-33. The coefficient is positive and significant, 

indicating a positive effect of homeownership on younger men’s labor supply. The average 

marginal effect suggests that younger male household heads who own homes are 1.3% more 

likely to be employed relative to renters. However, for male household heads aged 34-55, the IV 

estimate in column (2) indicates that homeownership has no significant impact on their labor 
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supply. Comparing results from age group 18-33 and age group 34-55, it reveals that 

homeownership’s impact on men’s labor supply tends to be concentrated on younger male 

household heads. For male household heads that have reached their mid-30’s, homeownership 

seems to have little impact on their labor supply. 

The usual set of IV diagnostic tests is performed for each age group, and reported in 

Table 5. They include the F test on the relevance of the instruments, the test on the endogeneity 

of homeownership, and the over-identification test. The results of these tests suggest that the 

instruments and the bivariate probit model are appropriate for the IV estimations. 

6. Relationship between men’s hours worked and family size 

In this section, I investigate the relationship between family size and men’s hours worked. 

I estimate a reduce form labor supply function using usual hours worked as the dependent 

variable. That is  

(ݏݎݑℎ)݈݃ = ߙ + ∑ ௗ,ଵௗୀܦߚ + ∑ ௗ,ௗୀଷܦߚ + ߛ  ܺ +   (6)ݑ

where the dependent variable is the logged usual hours worked per week of male 

household heads. The reference group (the omitted category) of family size dummies is 

households with two children. The data used for the estimation is the sample of married white 

male household heads described in section 3. Note that male household heads with zero hours 

worked are not used in the estimation (582 observations dropped16). 

                                            
16 The size of the male household heads sample used in the hours worked estimation is 84,218. 
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 Column (1) of Table 6 reports the OLS estimates on family size dummies, based on 

equation (6)17. Figure 3 plots these estimates to illustrate the nonlinearity of the effect of family 

size on hours worked. The result suggests that the incremental effect of the third and additional 

children on men’s hours worked is negative and significant. For households with two or more 

children, having additional kids tends to reduce men’s hours worked so that they could spend 

more time caring for children at home. Since the third and additional children are significantly 

associated with men’s hours worked, excluding them from equation (6) is likely to cause 

heterogeneity bias. Therefore, the third and additional children may not be appropriate 

instruments to estimate the effect of homeownership on men’s hours worked. 

With the IV approach out of the question, I have to rely on OLS to look for the influence 

of homeownership on men’s hours worked. Caution is required in interpreting OLS results 

because the endogeneity problem is not address in OLS estimations. Column (2) of Table 6 

reports OLS estimates of an hours worked regression which includes homeownership as a 

regressor. The estimated coefficient suggests that homeowners work 4.8% more hours per week 

relative to renters. Although this estimate is likely to be biased, it gives a rough sense of the 

direction and upper bond of the effect of homeownership. Moreover, in Table 6 column (3) and 

(4) report OLS results based on two sub-samples of different age. One group is men of age 18-33, 

and the other is men of age 34-55. Comparison between the two groups suggests that 

homeownership tend to have a larger influence among younger male household heads (with 5.2% 

increase in hours worked) relative to older ones (with 4.0% increase in hours worked). This 

relative pattern is consistent with earlier results of homeownership’s effects on the employment 

                                            
17 Estimated coefficients on socio-economic controls, such as age and education levels, are not reported in the table. 
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of younger versus older men.18 Perhaps for men younger than 33, being a homeowner (or want 

to be a homeowner) provides more motivation and incentive to work harder, relative to men in 

older age. 

7. Conclusion 

In this paper, I show that the relationship between family size and homeownership is 

nonlinear and nonmonotonic for single family households in the U.S. For households with two or 

less children, homeownership is positively correlated with family size. But for households that 

have more than two children, homeownership is negatively correlated with family size.  

Using the presence of children after the second child as instruments for homeownership, I 

adopt an IV strategy to solve the endogeneity problem between homeownership and men’s labor 

supply. The IV results suggest that households who are homeowners are 1.2% more likely to be 

employed than renters. The magnitude of the IV estimate is half of the magnitude of the 

conventional probit estimate. Moreover, I estimate the same IV model using samples stratified 

by age group. The results indicate that homeownership has positive and significant effect on 

men’s labor supply for younger male household heads, but not for older men.  

My findings have contributions as well as limitations. In this paper, I use a new set of 

instruments to correct the endogeneity between homeownership and men’s labor supply. 

Previous empirical literature has limited success in solving this endogeneity problem, but the 

instruments used in this paper seem to produce valid and sensible results. This paper also has 

several limitations. The estimations in this paper use cross-sectional data, which may have 

                                            
18 See Table 6 for IV estimates of the effect of homeownership on men’s employment, based on samples stratified 
by age groups.  
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potential heterogeneity problem caused by unobserved factors. Future research using better 

dataset may shed further light on this issue. In addition, although this paper provides evidence of 

the positive effect of homeownership on men’s labor supply, the specific mechanism of this 

effect is still unclear and requires further research. 
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TABLE 1 
Descriptive Statisticsa 

Dummy variables Frequency Percent 
Homeownership  66,909 78.9 
Employment 81,977 96.7 
Spouse is at work 57,457 67.8 
Less than highschool 6,250 7.4 
Highschool GED or diploma 32,107 37.9 
Associate degree 7,249 8.6 
Bachelor degree 26,130 30.8 
Master degree 9,214 10.9 
Professional degree 2,611 3.1 
PhD degree 1,244 1.5 
U.S. citizenship 76,825 90.6 

Continuous variables Mean Std. Dev. 
Hours Worked 44.5 10.0 
Age 33.8 5.4 
FHFA Index change -0.1 0.1 
a. There are a total of 84,805 white male household heads included in the sample. All 
included households live in 297 MSAs. Sample drawn from the ACS 2010 three year 
3% file.  
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TABLE 2 
Frequency Distribution: Number of Children in the Householda 

Full Sample Homeowners Renters 
  Frequency Percent   Frequency Percent   Frequency Percent 

Number of children in the household               
No children 20,874 24.61 15,230 22.76 5,644 31.54 
One child 20,590 24.28 16,519 24.69 4,071 22.75 
Two children 27,499 32.43 22,797 34.07 4,702 26.27 
Three children 11,569 13.64 9,214 13.77 2,355 13.16 
Four children 3,239 3.82 2,432 3.63 807 4.51 
Five children 705 0.83 492 0.74 213 1.19 
Six or more children 329 0.39   225 0.34   104 0.58 
a. The sample includes a total of 84,805 households, with white male household head between the ages of 18 and 55. 
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TABLE 3 
The Effect of Family Size on Homeownership 
Dependent Variable: Homeownership (1=owner, 0=renter)ab 
Probit Model Estimates, with Standard Errors in Parentheses and Average Marginal Effects in Bracketsc 
  (1) (2) (3) 
No child - -0.460*** -0.471*** 
 - (0.025) (0.027) 
 - [-0.116] [-0.119] 
One child 0.328*** -0.131*** -0.143*** 
 (0.017) (0.018) (0.020) 
 [0.086] [-0.029] [-0.032] 
Two children 0.460*** - - 
 (0.025) - - 
 [0.116] - - 
Three children 0.451*** -0.008 - 
 (0.031) (0.018) - 
 [0.114] [-0.001] - 
Four children 0.376*** -0.084*** - 

(0.044) (0.033) - 
[0.097] [-0.018] - 

Five children 0.207*** -0.253*** - 
(0.063) (0.069) - 
[0.056] [-0.059] - 

Six or more children 0.088 -0.372*** - 
(0.110) (0.122) - 

  [0.025] [-0.091] - 

Number of children (2~6, continuous) - - -0.056*** 
- - (0.015) 

  - - [-0.013] 

Spouse is at work 0.333*** 0.333*** 0.332*** 
 (0.014) (0.014) (0.014) 
Age 0.236*** 0.236*** 0.237*** 
 (0.009) (0.009) (0.009) 
Age squared -0.002*** -0.002*** -0.002*** 
 (0.000) (0.000) (0.000) 
Highschool GED 0.319*** 0.319*** 0.319*** 

(0.033) (0.033) (0.033) 
Associate degree 0.569*** 0.569*** 0.568*** 

(0.037) (0.037) (0.037) 
Bachelor degree 0.690*** 0.690*** 0.689*** 

(0.036) (0.036) (0.036) 
Master degree 0.664*** 0.664*** 0.663*** 

(0.042) (0.042) (0.042) 
Professional degree 0.553*** 0.553*** 0.551*** 

(0.068) (0.068) (0.068) 
PHD degree 0.376*** 0.376*** 0.374*** 
 (0.070) (0.070) (0.070) 
U.S. citizenship 0.792*** 0.792*** 0.790*** 
 (0.035) (0.035) (0.034) 
FHFA index change 0.932*** 0.932*** 0.933*** 

  (0.242) (0.242) (0.242) 
F-test on all variables of more than two children - 18.84 13.99 

p-value - {0.001} {0.001} 
No. of Occupation effects 22 22 22 
No. of Industry effects 25 25 25 
No. of observations 84,805 84,805 84,805 
Pseudo R squared 0.16 0.16 0.16 
a. Estimations are based on 2010 ACS three years sample, restricted to married white male household head between age 
18 and 55, whose wife is between age 18 to 35, and are living in households in MSAs. 
b. *** 1% statistical significance, ** 5% statistical significance, * 10% statistical significance. 
c. In parentheses "()" reports the Robust Standard Errors adjusted for 276 MSA clusters. In Brackets "[]" reports the 
average marginal treatment effects for the sample population. In curly brackets "{}" reports p-value. 
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TABLE 4 
The Effect of Homeownership on Men’s Labor Supplyab 
IV Bivariate Probit Estimates, with Standard Errors in Parentheses and Marginal Effects in Bracketscd 

Probit Model IV Bivariate Probit Model 
  1st Equation 2nd Equation 

Dependent Variable:  Employment Homeownership Employment 
  (1)   (2) (3) 
Homeownership 0.330*** - 0.166** 
 (0.020)  - (0.081) 
 [0.026]  - [0.012] 
No children -0.045* -0.460*** -0.064** 

 (0.023)  (0.025) (0.025) 
 [-0.003]  [-0.116] [-0.004] 

One children -0.050** -0.131*** -0.054** 
 (0.023)  (0.018) (0.023) 
 [-0.003]  [-0.029] [-0.003] 

Two or more children (reference group) - - - 
Instruments excluded from the 2nd equation 

Three children - -0.008 - 
 -  (0.018) - 
 -  [-0.001]  
Four children - -0.084*** - 
 -  (0.033) - 
 -  [-0.018]  
Five children - -0.253*** - 
 -  (0.069) - 
 -  [-0.059]  
Six or more children - -0.372*** - 

- (0.122) 
  -   [-0.091] - 

F-statistic on excluded instruments -  18.84 - 
p-value -  {0.002} - 

Endogeneity test (Wald test of rho=0) -  - 3.38 
p-value -  - {0.063} 

Hensen-J test for over-identification  -  - 2.82 
p-value -   - {0.424} 

No. of observations 84,805   84,805 84,805 
a. Estimations based on 2010 ACS three years sample, restricted to married white male between age 18 
and 55, whose wife is between age 18 to 35, and resides in MSAs. 
b. Additional controls included in the regressions but not reported in the table: Spouse is at work, Age, 
Age squared, Highschool GED, Associate degree, Bachelor degree, Master degree, Professional degree, 
PHD degree, U.S. citizenship, FHFA Index change, 22 Occupation effects, and 25 Industry effects. 
c. *** indicates 1% significance, ** indicates 5% significance, * indicates 10% significance. 
d. In parentheses "()" reports the Robust Standard Errors adjusted for 276 MSA clusters. In Brackets "[]" 
reports the Average Marginal Effects is the average marginal treatment effects for the sample population. 
In curly brackets '{}" reports p-value. 
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TABLE 5 
The Effect of Homeownership on Men’s Labor Supply: Age Group 18-33 vs. Age Group 34-55 
Dependent Variable: Employment Status (1=Employed, 0=Unemployed)ab 
IV Bivariate Probit Estimates, with Standard Errors in Parentheses and Marginal Effects in Bracketscd 

Age 18-33 Age 34-55 
  (1) (2) 
Homeownership 0.192** -0.057 
 (0.100) (0.122) 
  [0.013] [-0.004] 
F-statistic on excluded instruments 15.02 20.28 

p-value {0.004} {0.001} 
Endogeneity test (Wald test of rho=0) 2.961 7.478 

p-value {0.085} {0.006} 
Hensen-J test for over-identification  3.096 0.424 

p-value {0.377} {0.935} 
No. of observations 42,083 42,722 
a. Estimations based on the 2010 ACS three years sample of married white male household heads, 
stratified by age to groups,  age 18-33, and age 34-55. 
b. Additional controls included in the regressions but not reported in the table: Spouse is at work, Age, 
Age squared, Highschool GED, Associate degree, Bachelor degree, Master degree, Professional degree, 
PHD degree, U.S. citizenship, FHFA Index change, 22 Occupation effects, and 25 Industry effects. 
c. *** indicates 1% statistical significance, ** indicates 5% statistical significance, * indicates 10% 
statistical significance. 
d. In parentheses "()" reports the Robust Standard Errors adjusted for 276 MSA clusters. In Brackets "[]" 
reports the Average Marginal Effects is the average marginal treatment effects for the sample population. 
In curly brackets '{}" reports p-value. 
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TABLE 6 
The Effect of Family Size on Hours Worked of Male Household Headsab 
Dependent Variable: (Log of The) Hours Worked Per Week 
OLS Estimates, with Standard Errors in Parenthesescd 

Full Sample Age 18-33 Age 34-55 
  (1) (2)   (3) (4) 
Homeownership - 0.048*** 0.052*** 0.040*** 
  - (0.003)   (0.004) (0.003) 
No child -0.005** -0.001 0.003 -0.002 
 (0.002) (0.002)  (0.003) (0.003) 
One child -0.004** -0.003 0.004 -0.011** 

 (0.002) (0.002)  (0.003) (0.002) 
Two children (reference 
group) - - - - 

 - -  - - 
Three children -0.002 -0.002 -0.001 -0.002 
 (0.002) (0.002)  (0.003) (0.002) 
Four children -0.009** -0.008** -0.008 -0.008* 
 (0.004) (0.004)  (0.007) (0.005) 
Five children -0.024** -0.021* -0.032 -0.017* 
 (0.011) (0.011)  (0.024) (0.009) 
Six or more children -0.049** -0.045** -0.027 -0.054** 

  (0.023) (0.022)   (0.033) (0.023) 
No. of observations 84,218 84,218 

 

41,849 42,369 
R squared 0.07 0.08   0.07 0.08 
a. Estimations based on 2010 ACS three years sample, restricted to married white male between age 18 and 
55, whose wife is between age 18 to 35, and resides in MSAs. 
b. Additional controls included in the OLS regressions but not reported in the table: Spouse is at work, Age, 
Age squared, Highschool GED, Associate degree, Bachelor degree, Master degree, Professional degree, 
PHD degree, U.S. citizenship, FHFA index, 22 Occupation effects, and 25 Industry effects. 
c. *** indicates 1% significance, ** indicates 5% significance, * indicates 10% significance. 
d. In parentheses "()" reports the Robust Standard Errors adjusted for 276 MSA clusters. In curly brackets 
"{}" reports p-value. 
e. The sample used for hours worked regression excludes male household heads who are not employed. 
Thus have a slightly smaller sample size.  
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Figure 1: Relationship between Family Size and Homeownership 
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Figure 2A: The Effect of Family Size on Homeownership (Reference Group: No Child) 

 
 
 

Figure 2B: The Effect of Family Size on Homeownership (Reference Group: Two Children) 
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Figure 3: The Effect of Family Size on Men’s Hours Worked (Reference Group: Two Children) 
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