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Small and Large Time Stability of the Time taken for a Lévy

Process to Cross Curved Boundaries

Philip S. Griffin and Ross A. Maller∗

Syracuse University and Australian National University

Abstract

This paper is concerned with the small time behaviour of a Lévy process X . In particular,

we investigate the stabilities of the times, T b(r) and T ∗

b (r), at which X , started with X0 = 0,

first leaves the space-time regions {(t, y) ∈ R
2 : y ≤ rtb, t ≥ 0} (one-sided exit), or {(t, y) ∈ R

2 :

|y| ≤ rtb, t ≥ 0} (two-sided exit), 0 ≤ b < 1, as r ↓ 0. Thus essentially we determine whether

or not these passage times behave like deterministic functions in the sense of different modes of

convergence; specifically convergence in probability, almost surely and in Lp. In many instances

these are seen to be equivalent to relative stability of the process X itself. The analogous large

time problem is also discussed.

Keywords: Lévy process; passage times across power law boundaries; relative stability; overshoot;

random walks.

AMS 2010 Subject Classifications: 60G51; 60F15; 60F25; 60K05

1 Introduction

There is a strand of research, going back to [4], and continuing most recently in [2], in which the

local behaviour of a Lévy process Xt is compared with that of power law functions, tb, b ≥ 0. Here

we address this question, but take a different line, by asking for properties of the first exit time

∗Research partially supported by ARC Grant DP1092502
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of the process out of space-time regions bounded, either on one side or both sides, by power law

functions. Our aim is to give a very general study of the small time stability, as the boundary level

r → 0, of the one-sided exit time

T b(r) = inf{t ≥ 0 : Xt > rtb}, r ≥ 0, (1.1)

and the 2-sided exit time,

T ∗
b (r) = inf{t ≥ 0 : |Xt| > rtb}, r ≥ 0, (1.2)

when 0 ≤ b < 1. (We adopt the convention that the inf of the empty set is +∞.) While not the

primary motivation for this paper, in Section 5 we also include results on stability for large times

as the boundary level r → ∞. When b = 0 such results form part of classical renewal theory for

Lévy processes.

The restriction of b to the interval [0, 1) in (1.1) and (1.2) involves no loss of generality, since as

we show below in Proposition 3.1, neither passage time can be relatively stable when b ≥ 1. Thus

unless otherwise mentioned we keep 0 ≤ b < 1 in what follows. Our study will draw out similarities

as well as differences between the behaviours of T b(r) and T ∗
b (r) with respect to differing modes of

stability. By relative stability at 0 of T b(r), we will mean that T b(r)/C(r) converges in probability

to a finite nonzero constant (which by rescaling we can take as 1), as r → 0 for a finite function

C(r) > 0. We will show that this is precisely equivalent to the positive relative stability at 0 of the

process X, i.e., to the property that

Xt

B(t)

P−→ +1, as t → 0, (1.3)

for some norming function B(t) > 0. The corresponding result for the two-sided exit is that T ∗
b (r)

is relatively stable at 0 iff Xt is relatively stable at 0 in the two-sided sense, i.e., if

|Xt|
B(t)

P−→ 1, as t → 0, (1.4)

2



for some function B(t) > 0. The statements of these results are similar, and this is exploited in

one direction of the proof, but the proofs in the opposite direction are completely different.

We also consider relative stability in the a.s. sense and in Lp. In the former case the results for

the one-sided and two-sided exit times are again similar, see Theorem 3.2, and we are again able

to exploit this in one direction. In the case of stability in Lp, the behaviour of the two exit times is

significantly different, see Theorem 3.4. Section 3 contains a complete discussion of these results.

Given the equivalences between the relative stability of T b(r) and T ∗
b (r), and the relative sta-

bility of the original process X, we begin Section 2 by reprising, and where necessary extending,

the properties of a relatively stable X. Our main results, related to the stability of T b(r) and

T ∗
b (r), are then given in Section 3. Proofs of these results can be found in Section 4, together with

some preliminary results which may be of independent interest. Finally Section 5 contains results

in the large time setting. We strive for, and mostly achieve, definitive (necessary and sufficient)

conditions.

We conclude this section by introducing some of the notation that will be needed in the re-

mainder of the paper. The setting is as follows. Suppose that X = {Xt : t ≥ 0}, X0 = 0, is a

Lévy process defined on (Ω,F , P ), with triplet (γ, σ2,Π), Π being the Lévy measure of X, γ ∈ R

and σ ≥ 0. Thus the characteristic function of X is given by the Lévy-Khintchine representation,

E(eiθXt) = etΨ(θ), where

Ψ(θ) = iθγ − σ2θ2/2 +

∫

R

(eiθx − 1− iθx1{|x|≤1})Π(dx), for θ ∈ R. (1.5)

If X is of bounded variation, then σ = 0 and the Lévy-Khintchine exponent may be expressed in

the form

Ψ(θ) = iθd +

∫

R

(eiθx − 1)Π(dx), for θ ∈ R, (1.6)

where d = γ−
∫
x1{|x|≤1})Π(dx) is called the drift of X. We will sometimes include a subscript, as

in for example dX , to make clear the process we are referring to. X is a compound Poisson process

if σX = 0, ΠX(R) < ∞ and dX = 0.
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Let Π and Π
±
denote the tails of Π, thus

Π
+
(x) = Π{(x,∞)}, Π

−
(x) = Π{(−∞,−x)}, and Π(x) = Π

+
(x) + Π

−
(x),

for x > 0, and define kinds of Winsorised and truncated means A(x) and ν(x) by

A(x) := γ +Π
+
(1) −Π

−
(1) +

∫ x

1

(
Π

+
(y)−Π

−
(y)
)
dy

= γ + x
(
Π

+
(x)−Π

−
(x)
)
+

∫

1<|y|≤x
yΠ(dy)

=: ν(x) + x
(
Π

+
(x)−Π

−
(x)
)
, x > 0, (1.7)

where
∫
1<|y|≤x = −

∫
x<|y|≤1 if x < 1. Similarly, for variances, we set

U(x) := σ2 + 2

∫ x

0
yΠ(y)dy

= σ2 + x2Π(x) +

∫

0<|y|≤x
y2Π(dy)

=: V (x) + x2Π(x), x > 0. (1.8)

Note that, because
∫
{|x|≤1} x

2Π(dx) < ∞, we have

lim
x→0

xA(x) = lim
x→0

xν(x) = 0. (1.9)

2 Small Time Relative Stability of X

Recall that X is relatively stable (in probability, as t → 0), denoted X ∈ RS at 0, if there is a

nonstochastic function B(t) > 0 such that

Xt

B(t)

P−→ +1, or
Xt

B(t)

P−→ −1, as t → 0. (2.1)

(We abbreviate this to Xt/B(t)
P−→ ±1.) If (2.1) holds with a “+” sign we say that Xt is positively

relatively stable as t → 0, denoted X ∈ PRS; a minus sign gives negative relative stability, NRS.
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Various properties of relative stability at 0 are developed in [9]. We need only assume B(t) > 0

for t > 0: B(t) is not assumed a priori to be nondecreasing, but can always be taken as such.

Further properties of relative stability in probability at 0, and of the norming function B(t), are

summarized in the next proposition.

Proposition 2.1 There is a non-stochastic function B(t) > 0 such that

Xt

B(t)

P−→ ±1, as t → 0, (2.2)

if and only if

σ2 = 0 and
A(x)

xΠ(x)
→ ±∞, as x → 0. (2.3)

(The + or − signs should be taken together in (2.2) and (2.3).) If these hold, then |A(x)| is slowly

varying as x → 0, and B(t) is regularly varying of index 1 and B(t) ∼ t|A(B(t))| as t → 0. Further,

B(t) may be chosen to be continuous and such that t−bB(t) is strictly increasing for all 0 ≤ b < 1.

In addition, we have

|Xt|
B(t)

P−→ 1, as t → 0, (2.4)

for a non-stochastic function B(t) > 0, if and only if

σ2 = 0 and
|A(x)|
xΠ(x)

→ ∞, as x → 0, (2.5)

and this is equivalent to (2.2) and (2.3) (with either the + or − sign). Thus (2.4) implies that

limt→0 P (Xt > 0) = 1 or limt→0 P (Xt < 0) = 1, just as (2.5) implies that A(x) is of constant sign

for all small x, that is, A(x) > 0 for all small x > 0 or A(x) < 0 for all small x > 0.

Further, the following conditions are also each equivalent to (2.4):

there exist constants 0 < c1 < c2 < ∞ and a non-stochastic function B̃(t) > 0 such that

lim
t→0

P

(
c1 <

|Xt|
B̃(t)

< c2

)
→ 1; (2.6)

there is a nonstochastic function B̂(t) > 0 such that every sequence tk → 0 contains a subsequence

5



tk′ → 0 with

Xtk′

B̂(tk′)

P−→ c′, (2.7)

where c′ is a constant with 0 < |c′| < ∞ which may depend on the choice of subsequence.

Note: If Π(R) = 0 then A(x) = γ for all x > 0, and the meaning of the limit in (2.3) is that

γ > 0 when the limit is ∞ and γ < 0 when the limit is −∞. This corresponds to the case that

Xt = γt + σWt is Brownian motion with drift, and it’s clear that X ∈ PRS (X ∈ NRS) at 0 iff

σ2 = 0 and γ > 0 (γ < 0). In this case B(t) = |γ|t. Similarly the meaning of the limit in (2.5)

when Π(R) = 0 is that γ 6= 0.

Proof of Proposition 2.1. See Theorem 2.2 of [9] for the equivalence of (2.2) and (2.3), and the

properties of B(·) and A(·). (A blanket assumption of Π(R) > 0 is made in [9], but it is unnecessary

in any of the instances where references are made to [9] in this paper. One way to see this is to

add an independent rate 1 Poisson process to X and use that the resulting process agrees with X

at sufficiently small times.) The strict monotonicity of t−bB(t) for 0 ≤ b < 1 follows easily from

the regular variation of B; see for example, Section 1.5.2 of [3].

Clearly (2.3) implies (2.5) and the converse holds by continuity of A. Further, it is trivial that

(2.2) implies (2.4) and (2.4) implies (2.6). Also (2.6) implies (2.7) because, under (2.6), every

sequence tk → 0 contains a subsequence tk′ → 0 such that Xtk′ /B̃(tk′) → Z ′ , where Z ′ is an

infinitely divisible random variable with P (c1 ≤ |Z ′| ≤ c2) = 1. Thus, Z ′ is bounded a.s., hence is

a constant, c′, say, with |c′| ∈ [c1, c2]. Hence we may take B̂ = B̃ in (2.7). Thus to complete the

proof of Proposition 2.1, it suffices to show (2.7) implies (2.5).

Assume (2.7) holds. Then every sequence tk → 0 contains a subsequence tk′ → 0 with

Xtk′

B̂(tk′)

P−→ c′, (2.8)
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for some c′ 6= 0. We first show that this condition holds if B̂ is replaced by any function D with

D(t) ∈ Lt for all t > 0, where

Lt = {limit points of B̂ at t} ∪ {B̂(t)}.

Since P (Xt = 0) > 0 for some t > 0 precisely when X is compound Poisson, it follows from (2.8)

that P (Xt 6= 0) = 1 for all t > 0. Thus if 0 ∈ Lt, then along some sequence s → t, we have

|Xs|/B̂(s)
P−→ ∞ . From this it follows that 0 /∈ Lt if t is sufficiently small. Now take any sequence

tk → 0. Choose sk so that

B̂(sk)

D(tk)
→ 1 and

X|tk−sk|

D(tk)

P−→ 0.

The former is possible since D(tk) ∈ Ltk , and the latter since Xt
P−→ 0 as t → 0. Now choose a

subsequence sk′ of sk so that Xsk′/B̂(sk′)
P−→ c′ where c′ 6= 0. Then

Xtk′

D(tk′)
=

Xsk′

B̂(sk′)

B̂(sk′)

D(tk′)
+

Xtk′ −Xsk′

D(tk′)

P−→ c′.

Thus

every sequence tk → 0 contains a subsequence tk′ → 0 with Xtk′/D(tk′)
P−→ c′ 6= 0. (2.9)

From the convergence criteria for infinitely divisible laws, e.g. Theorem 15.14 of Kallenberg [15],

this is equivalent to every sequence tk → 0 containing a subsequence tk′ → 0 such that for every

ε > 0,

lim
tk′→0

tk′Π(εD(tk′)) = 0, lim
tk′→0

tk′V (D(tk′))

D2(tk′)
= 0, and lim

tk′→0

tk′A(D(tk′))

D(tk′)
= c′ 6= 0. (2.10)

From this we may conclude that,

lim
t→0

D(t)|A(D(t))|
V (D(t))

= ∞, and lim
t→0

|A(D(t))|
D(t)Π(D(t))

= ∞. (2.11)
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Observe that D(t)|A(D(t))| → 0 as t → 0 by (1.9), since necessarily D(t) → 0. Hence, σ2 ≤

V (D(t)) → 0, proving the first condition in (2.5). Next, let

D1(t) = lim inf
s→t

B̂(s), D2(t) = lim sup
s→t

B̂(s) ∨ B̂(t).

Since D1 and D2 satisfy (2.9), it follows easily that

lim sup
t→0

D2(t)

D1(t)
< ∞. (2.12)

Now given x > 0, let

tx = inf{s : B̂(s) ≥ x}.

Then tx < ∞ for sufficiently small x, D1(tx) ≤ x ≤ D2(tx), and tx → 0 as x → 0. Further

|A(D1(tx))−A(x)| ≤ |xΠ(x)−D1(tx)Π(D1(tx))|+
∫

D1(tx)<|y|≤x
|y|Π(dy)

≤ 2D2(tx)Π(D1(tx)),

hence by (2.11) and (2.12),

A(x)

A(D1(tx))
→ 1 as x → 0. (2.13)

Thus by (2.11), (2.12) and (2.13),

|A(x)|
xΠ(x)

≥ |A(D1(tx))|
D1(tx)Π(D1(tx))

|A(x)|
|A(D1(tx))|

D1(tx)

D2(tx)
→ ∞,

which proves the second condition in (2.5). ⊔⊓

Remarks: (i) An equivalence for PRS, i.e., (1.3), is (2.3) holding with a “+” sign. Then A(x) > 0

for all small x. Symmetrically, for NRS.

(ii) For any family of events At, we say that At occur with probability approaching 1 (WPA1)

as t → L if limt→L P (At) = 1. (L may be 0 or ∞.) We sometimes describe a situation like (2.6),
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i.e, for a stochastic function Yt, t ≥ 0, there exist constants 0 < c1 < c2 < ∞ such that

lim
t→L

P (c1 < Yt < c2) = 1, (2.14)

by writing Yt ≍ 1 WPA1 as t → L. The strict inequalities may be replaced by non-strict ones.

(iii) It is possible to have A(x) → 0 as x → 0, and also X ∈ RS as t → 0. For example, take

σ2 = 0, and define

Π
+
(x) =

1

x(log x)2
, 0 < x < e−1, Π

+
(x) = 0, x ≥ e−1,

and Π
−
(x) ≡ 0. Then A(x) = γ− 1− 1/ log x, for x ≤ e−1. Thus if γ = 1 then A(x) → 0 as x → 0.

Further A(x)/xΠ(x) → ∞ as x → 0, so that X ∈ PRS as t → 0. In this case, X(t)/B(t)
P−→ 1

where B(t) = t/| log t|.

In studying T b and T ∗
b we will need the following corresponding maximal processes;

Xt := sup
0≤s≤t

Xs, and X∗
t := sup

0≤s≤t
|Xs|.

Lemma 2.1 Let tk be any sequence with tk → 0 as k → ∞. Assume Xtk/B(tk)
P−→ a ∈ R, where

B(tk) > 0, when k → ∞. Then

(i)
X∗

tk

B(tk)

P−→ |a|, and (ii)
Xtk

B(tk)

P−→ max(a, 0), as k → ∞. (2.15)

Conversely, (i) with a ∈ R implies |Xtk |/B(tk)
P−→ |a| as k → ∞. Finally, as a partial converse to

(ii), if a > 0 and Xt/B(t)
P−→ a as t → 0, then Xt/B(t)

P−→ a as t → 0.

Proof of Lemma 2.1. Assume Xtk/B(tk)
P−→ a as tk → 0. Use the decomposition in [9], Lemma

6.1, to write

Xt = tν(h) +X
(S,h)
t +X

(B,h)
t , t > 0, h > 0, (2.16)

9



where X
(B,h)
t is the component of X containing the jumps larger than h in modulus, and X(S,h)

is then defined through (2.16). We will use (2.16) with t = tk and h = B(tk). As in (2.10),

tkΠ(B(tk)) → 0 as tk → 0, so

P ( sup
0≤s≤tk

|X(B,h)
s | = 0) = e−tkΠ(B(tk)) → 1. (2.17)

Next, X
(S,h)
t is a mean 0 martingale with variance tV (h), so by applying Doob’s inequality to the

submartingale (X
(S,h)
t )2, for any ε > 0,

P

(
sup

0≤s≤tk

|X(S,h)
s | > εB(tk)

)
≤ tkV (B(tk))

ε2B2(tk)
→ 0,

using (2.10) again. A third use of (2.10) gives tkν(B(tk)) ∼ aB(tk), so from (2.16),

X∗
tk

B(tk)
= sup

0≤s≤tk

|Xs|
B(tk)

= sup
0≤s≤tk

s|ν(B(tk)|
B(tk)

+ op(1)
P−→ |a|.

Thus (i) is proved and (ii) follows similarly.

Conversely, let (i) hold. Then X∗
tk
/B(tk) is stochastically bounded and the inequality P (|Xtk | >

xB(tk)) ≤ P (X∗
tk

> xB(tk)) for x > 0 shows that Xtk/B(tk) is also stochastically bounded. Thus

every subsequence of {tk} contains a further subsequence tk′ → 0 along which Xtk′ /B(tk′)
D−→ Z ′,

for some infinitely divisible random variable Z ′ with |Z ′| ≤ |a|. As a bounded infinitely divisible

random variable, Z ′ is degenerate at z′, say. But then X∗
tk′

/B(tk′)
P−→ |z′| by the converse di-

rection already proved. Hence by (i), |z′| = |a| and since this is true for all subsequences we get

|Xtk |/B(tk)
P−→ |a|.

Finally assume Xt/B(t)
P−→ a as t → 0 where a > 0. We may assume B(t) is nondecreasing;

see for example Lemma 4.1. We first show that

lim sup
t→0

B(t)

B(2t)
< 1. (2.18)

10



If not, there exists a sequence tk → 0 so that B(tk)/B(2tk) → 1 as k → ∞. Thus

Xtk

B(tk)

P−→ a and
X2tk

B(tk)

P−→ a, as k → ∞. (2.19)

Let τk = inf{t : Xt > aB(tk)/2} and set Yt = Xτk+t − Xτk . Then P (τk ≤ tk) ≥ P (X tk >

aB(tk)/2) → 1, and on {τk ≤ tk},

Y tk ≤ X2tk −Xτk ≤ (X2tk −Xtk) + (Xtk − aB(tk)/2).

By (2.19),

X2tk −Xtk

B(tk)
+

Xtk − aB(tk)/2

B(tk)

P−→ a

2
,

and hence

P (X tk > 3aB(tk)/4) = P (Y tk > 3aB(tk)/4) → 0,

which is a contradiction. Thus (2.18) holds. Now write

X2t = Xt ∨ (Xt +X
′
t), (2.20)

where X
′
t = supt≤s≤2t(Xs −Xt) is an independent copy of Xt. Given any sequence tk → 0 we may

choose a further subsequence tk′ → 0 so that

B(tk′)

B(2tk′)
→ λ′

where necessarily λ′ ∈ [0, 1) by (2.18). Setting t = tk′ in (2.20), dividing throughout by B(2tk′)

and taking limits, we see that

Xtk′

B(2tk′)
P−→ a(1− λ′) > 0. (2.21)

Thus with B̂(t) = B(2t) in (2.7), it follows that X ∈ RS and since the subsequential limits in

(2.21) are positive, X ∈ PRS. Thus for some function D(t) > 0, Xt/D(t)
P−→ 1. Then from part

(ii), Xt/D(t)
P−→ 1. Hence D(t) ∼ aB(t) and the proof is complete. ⊔⊓

11



Remark: We are unsure whether a subsequential version of the converse to (ii), with a > 0, holds.

Since it will not be needed in this paper we do not pursue it further.

One final result which will prove useful below is the following;

Proposition 2.2 Suppose Xt/B(t)
P−→ 1, where B(t) > 0, when t → 0, and let Yt(λ) := Xλt/B(t)

for λ ≥ 0. Then for every δ > 0, 0 < η ≤ T < ∞ and 0 ≤ b < 1,

P ( sup
η≤λ≤T

|λ−bYt(λ)− λ1−b| > δ) → 0 as t → 0.

Proof of Proposition 2.2. By a result of Skorohod, see for example Theorem 15.17 of [15], for

every δ > 0

P ( sup
0≤λ≤T

|Yt(λ)− λ| > δ) → 0 as t → 0. (2.22)

Thus

P ( sup
η≤λ≤T

|λ−bYt(λ)− λ1−b| > δ) ≤ P ( sup
η≤λ≤T

|Yt(λ)− λ| > δηb) → 0

by (2.22). ⊔⊓

3 Relative Stability of T b(r) and T
∗
b (r) for Small Times

Recall we always assume, unless explicitly stated otherwise, that 0 ≤ b < 1. The first two theorems

concern the relative stability in probability or almost surely of T b(r) and T ∗
b (r), as r → 0. These

are shown to be equivalent to positive relative stability at 0 of X and relative stability at 0 of

X, in the relevant mode of convergence, respectively. Proposition 3.1 demonstrates that there is

no loss of generality in assuming 0 ≤ b < 1, since T b(r) and T ∗
b (r) cannot be relatively stable, in

probability (and hence also a.s.), as r → 0, when b ≥ 1.

Theorem 3.1 (a) Assume Xt/B(t)
P−→ 1 as t → 0, where B(t) > 0. Then B(t)/tb may be chosen

to be continuous and strictly increasing, in which case T b(r)/C(r)
P−→ 1 as r → 0, where C(r) is

the inverse to B(t)/tb.

12



Conversely, assume T b(r)/C(r)
P−→ 1 as r → 0, where C(r) > 0. Then C(r) may be taken to be

continuous and strictly increasing with inverse C−1, in which case Xt/B(t)
P−→ 1 as t → 0, where

B(t) = tbC−1(t).

(b) The same result holds if X and T b(r) are replaced by |X| and T ∗
b (r) respectively in (a).

In either case, (a) or (b), the function C(r) is regularly varying with index 1/(1 − b) as r → 0.

In the example given prior to Lemma 2.1, X(t)/B(t)
P−→ 1 where B(t) = t/| log t|. Thus

T b(r)/C(r)
P−→ 1 and T ∗

b (r)/C(r)
P−→ 1 where C(r) =

(
(1− b)−1r| log r|

)1/(1−b)
.

Remark: Implicit in Theorem 3.1 we understand, is that T b(r) and T ∗
b (r) are finite WPA1 as

r → 0, as a consequence of their relative stability when X ∈ PRS or X ∈ RS.

Corollary 3.1 Assume Xt/B(t)
P−→ 1 as t → 0, where B(t) > 0. Then P (T b(r) = T ∗

b (r)) → 1 as

r → 0.

Proposition 3.1 Suppose b ≥ 1. Then neither T b(r) nor T ∗
b (r) can be relatively stable, in proba-

bility, as r → 0.

Theorem 3.2 (a) T ∗
b (r) is almost surely (a.s.) relatively stable, i.e., T ∗

b (r)/C(r) → 1, a.s., as

r → 0, for a finite function C(r) > 0, iff X has bounded variation with drift dX 6= 0.

(b) T b(r) is almost surely relatively stable, i.e., T b(r)/C(r) → 1, a.s., as r → 0, for a finite function

C(r) > 0, iff X has bounded variation with drift dX > 0.

In either case, (a) or (b), the function C(r) may be chosen as C(r) = (r/|dX |)1/(1−b).

The next theorem deals with the position of the process after exiting, in the setting of Theorem

3.1.

Theorem 3.3 (a) Suppose Xt/B(t)
P−→ 1 as t → 0, where B(t) > 0 satisfies the regularity condi-

tions of Theorem 3.1. Let C be the inverse of B(t)/tb. Then, as r → 0,

XT b(r)

r(T b(r))b
P−→ 1,

XT b(r)

B(T b(r))

P−→ 1,
XT b(r)

B(C(r))

P−→ 1, and
XT b(r)

r(C(r))b
P−→ 1. (3.1)
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(b) Suppose |Xt|/B(t)
P−→ 1 as t → 0. Then (3.1) holds with |X| and T ∗

b (r) in place of X and

T b(r) respectively.

Remark: By Theorem 4.2 of [9], Xt/B(t) → 1 a.s. as t → 0 for some B(t) > 0, is equivalent to

X having bounded variation with drift dX > 0, and in that case B(t) ∼ dXt. Using this, it is then

easy to see that the analogous result to Theorem 3.3 holds when
P−→ is replaced throughout by a.s.

convergence.

In the results so far, T b(r) and T ∗
b (r) have behaved very similarly. This is not the case when it

comes to stability in Lp as our final result shows. When considering ET b(r), the immediate problem

arises as to whether or not the expectation is finite. As shown in Theorem 1 of [11], finiteness of

ET b(r) for some (all) r > 0 is equivalent to Xt → ∞ a.s. as t → ∞. Since our aim is to study the

local behaviour of X for small times, imposing a large time condition is most unnatural. Thus, we

remove the issue of finiteness of ET b(r), by studying instead, E(T b(r) ∧ ε) as r → 0 for small ε.

Similarly for E(T ∗
b (r) ∧ ε).

Theorem 3.4 (a) Assume X has bounded variation with drift dX > 0, then

lim
ε→0

lim
r→0

E(T b(r) ∧ ε)

C(r)
= 1, (3.2)

where C(r) = (r/dX)1/(1−b).

(b) Fix a function C(r) > 0; then T ∗
b (r)/C(r)

P−→ 1 iff (T ∗
b (r) ∧ ε)/C(r) → 1 in Lp for some (all)

p > 0 and some (all) ε > 0. In particular, if T ∗
b (r)/C(r)

P−→ 1, then for every p > 0 and ε > 0

lim
r→0

E(T ∗
b (r) ∧ ε)p

C(r)p
= 1. (3.3)

By standard uniform integrability arguments, see for example Theorem 4.5.2 of [12], (3.2) implies

that (T b(r) ∧ ε)/(r/dX)1/(1−b) → 1 in Lp as r → 0 then ε → 0, if p ≤ 1. However, unlike (3.3), (3.2)

does not extend to convergence of the p-th moment for p > 1. Nor does (3.2) hold without taking

the additional limit as ε → 0. To illustrate this, let Xt = at − Nt where Nt is a rate one Poisson

14



process and a > 0. Then X has bounded variation with dX = a. Clearly T b(r) = (r/a)1/(1−b) if

N(r/a)1/(1−b) = 0, while T b(r) ≥ a−1 if N(r/a)1/(1−b) ≥ 1. Thus for any p > 0, if ε < a−1 and r is

sufficiently small that (r/a)1/(1−b) < ε, then

E(T b(r) ∧ ε)p = (r/a)p/(1−b)e−(r/a)1/(1−b)
+ εp(1− e−(r/a)1/(1−b)

).

Hence, with p = 1, we obtain

lim
r→0

E(T b(r) ∧ ε)

(r/dX)1/(1−b)
= 1 + ε,

showing that the limit on ε → 0 is needed in (3.2). If p > 1, then

lim
r→0

E(T b(r) ∧ ε)p

(r/dX)p/(1−b)
= ∞,

for every ε > 0, so the first moment convergence in (3.2) does not extend to p-th moment conver-

gence for any p > 1.

Remarks: (i) Although parts (a) and (b) of Theorem 3.1 are similar in content, the proof for

T ∗
b is quite different to that for T b. To prove (a) we need to establish a priori certain regularity

properites of C(r), whereas the proof of (b) relies heavily on the fact that bounded infinitely

divisible distributions must be degenerate.

(ii) In Theorem 3.2 we deduce results for T b from those for T ∗
b , whereas in Theorem 3.3, we do the

opposite.

(iii) We restricted ourselves to the boundary functions t 7→ tb in this paper for clarity of exposition,

though it’s clear that many of our arguments will go through for more general regularly varying or

even dominated varying functions.

4 Proofs

We set out some preliminary results. Throughout, take 0 ≤ b < 1. A key to proving Theorem 3.1

for T b(r) is to obtain the a priori regularity of C(r) contained in the following Proposition;
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Proposition 4.1 Suppose T b(r)/C(r)
P−→ 1 as r → 0 for a finite function C(r) > 0. Then C(r)

may be chosen to be continuous and strictly increasing.

We emphasize that no assumptions are being made on C beyond positivity. This creates several

difficulties which could be avoided if we were to assume, for example, that C is regularly varying.

Such an assumption, however, would clearly be unsatisfactory, and, as we show, unnecessary. The

main purpose of Proposition 4.1, which is somewhat hidden in the proof of Theorem 3.1, is that

from T b(r)/C(r)
P−→ 1 we can conclude that C(r) − C(r−) = o(C(r−)) as r → 0. This latter

condition is actually all that is needed, but proving the stronger continuity simplifies matters at

several points.

The proposition will be proved by a series of lemmas. Recalling (2.14) we begin with the

following elementary result which we will apply below to the processes X,X∗, T b and T ∗
b :

Lemma 4.1 Let Wt be any nonnegative, nondecreasing stochastic process with Wt → 0 a.s. as

t → 0. If Wt/D(t) ≍ 1 WPA1 as t → 0 for some non-stochastic function D(t) > 0, then D(t) → 0

and may be chosen to be nondecreasing. If Wt/D(t)
P−→ 1 as t → 0 for some function D, then

again D(t) → 0 and may be chosen to be nondecreasing.

Proof of Lemma 4.1. Suppose that P (c1 < Wt/D(t) < c2) → 1 for some 0 < c1 < c2 < ∞, as

t → 0. This trivially implies D(t) → 0 as t → 0. To avoid pathological cases where D(t) → 0 as

t → 1 for example, choose t0 small enough that P (c1 < Wt/D(t) < c2) ≥ 1/2 for all 0 < t ≤ t0.

Then 0 < inft≤s≤t0 D(s) ≤ supt≤s≤t0 D(s) < ∞ for all 0 < t ≤ t0. Let D∗(t) = inft≤s≤t0 D(s) for

0 < t ≤ t0. It then suffices to show

1 ≤ lim inf
t→0

D(t)

D∗(t)
≤ lim sup

t→0

D(t)

D∗(t)
≤ c2

c1
.

Only the final inequality requires proof. If this did not hold there would be a sequence tk → 0 with

D(tk)/D
∗(tk) → a > c2/c1. Thus for some sequence sk → 0, sk ≥ tk, we have D(tk)/D(sk) → a.
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But this leads to a contradiction since

Wtk

D(tk)
≤ Wsk

D(sk)

D(sk)

D(tk)
,

and the LHS is ≥ c1 WPA1, whereas the RHS is ≤ c2/a < c1 WPA1. ⊔⊓

Lemma 4.1 clearly applies to X and X∗. For application of Lemma 4.1 to T b and T ∗
b , note

that in general T b(r) (respectively T ∗
b (r)) need not converge to 0 a.s. as r → 0. However, when

T b(r)/C(r) ≍ 1 (respectively T ∗
b (r)/C(r) ≍ 1) WPA1 as r → 0, almost sure convergence of T b(r)

and T ∗
b (r) to 0 does occur. This is because T b(r) ↓ T 0(0) a.s. as r ↓ 0, and if P (T 0(0) = 0) < 1,

then, combined with T b(r)/C(r) ≍ 1, we would have P (T 0(0) > c) = 1 for some c > 0. Hence

Xt ≤ 0 for all t and so T b(r) = ∞ for all r > 0; but this contradicts T b(r)/C(r) ≍ 1 WPA1.

Similarly for T ∗
b . For later reference, we note that the same argument holds if T b is replaced by

T f , where

T f (r) = inf{t ≥ 0 : Xt > rf(t)}, r ≥ 0, (4.1)

and f is any function for which f(t) > 0 for t > 0 and f(t) → 0 as t → 0. Similarly for T ∗
f .

Lemma 4.2 Suppose there is a (nondecreasing, without loss of generality) function C(r) > 0 such

that

(a) T ∗
b (r)/C(r)

P−→ 1 or (b) T b(r)/C(r)
P−→ 1 as r → 0.

Then for every β > 1, in either case,

lim sup
r→0

C(βr)

C(r)
< ∞. (4.2)

Proof of Lemma 4.2. (a) Let

Ys := XT ∗

b (r)+s −XT ∗

b (r)
, s ≥ 0, (4.3)
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and T ∗
b,Y (r) be the corresponding two-sided passage time, viz,

T ∗
b,Y (r) := inf{s ≥ 0 : |Ys| > rsb}, r ≥ 0. (4.4)

Fix ε ∈ (0, 1) so that ξ := 21−b((1− ε)/(1 + ε))b > 1 and set

A+
r : = {XT ∗

b (r)
> 0, YT ∗

b,Y (r) > 0,
T ∗
b (r)

C(r)
∈ (1− ε, 1 + ε),

T ∗
b,Y (r)

C(r)
∈ (1− ε, 1 + ε), T ∗

b (ξr) ≥ (1− ε)C(ξr)},

A−
r : = {XT ∗

b (r)
< 0, YT ∗

b,Y (r) < 0,
T ∗
b (r)

C(r)
∈ (1− ε, 1 + ε),

T ∗
b,Y (r)

C(r)
∈ (1− ε, 1 + ε), T ∗

b (ξr) ≥ (1− ε)C(ξr)}.

Then on A+
r we have

XT ∗

b (r)+T ∗

b,Y (r) = XT ∗

b (r)
+ YT ∗

b,Y (r)

≥ r(T ∗
b (r))

b + r(T ∗
b,Y (r))

b

> 2r((1− ε)C(r))b

= ξr (2(1 + ε)C(r))b

≥ ξr
(
T ∗
b (r) + T ∗

b,Y (r)
)b

.

Hence, still on A+
r , we have

(1− ε)C(ξr) ≤ T ∗
b (ξr) ≤ T ∗

b (r) + T ∗
b,Y (r) ≤ 2(1 + ε)C(r). (4.5)

Replacing X by −X (which does not change T ∗
b or T ∗

b,Y ) in this argument shows that (4.5) also

holds on A−
r .

Since P (A+
r ∪A−

r ) > 0 for small r (in fact, lim infr→0 P (A+
r ∪A−

r ) ≥ 1/2), we have for small r

C(ξr)

C(r)
≤ 2(1 + ε)

1− ε
,
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proving that

lim sup
r→0

C(ξr)

C(r)
≤ 2.

Thus (4.2) holds for β = ξ, and the general result holds, for the two-sided case, by iteration and

monotonicity.

(b) Exactly the same argument works for the one-sided case if T ∗
b is replaced by T b throughout,

including in the definition of Y in (4.3), and T ∗
b,Y (r) is replaced by the corresponding one-sided exit

time in (4.4). In fact the one-sided case is slightly simpler in that there is no need to consider the

events A−
r since P (A+

r ) → 1 as r → 0. ⊔⊓

Lemma 4.3 Suppose there is a function C(r) > 0 such that T b(r)/C(r)
P−→ 1 as r → 0. Then,

with λ := 21−b, we have

lim inf
r→0

C(λr)

C(r)
≥ 2, (4.6)

and, with β = λn, n = 1, 2, . . ., we have

lim inf
r→0

C(βr)

C(r)
≥ β1/(1−b), (4.7)

or, equivalently, with α = λ−n, n = 1, 2, . . .,

lim inf
r→0

C(r)

C(αr)
≥ 1

α1/(1−b)
. (4.8)

Proof of Lemma 4.3. Fix ε ∈ (0, 1) and let

Zs := X(1−ε)C(r)+s −X(1−ε)C(r), s ≥ 0,

and T b,Z := inf{t ≥ 0 : Zt > rtb}, r ≥ 0. Then on

Ar :=
{
(1− ε)C(r) < T b(r), (1 − ε)C(r) < T b,Z(r), T b(λr) ≤ (1 + ε)C(λr)

}
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we claim

Xt ≤ 21−brtb, for all 0 ≤ t ≤ 2(1− ε)C(r). (4.9)

This is trivial for 0 ≤ t ≤ (1− ε)C(r), while for 0 < s ≤ (1− ε)C(r), on Ar,

X(1−ε)C(r)+s = X(1−ε)C(r) + Zs

≤ r ((1− ε)C(r))b + rsb

≤ 21−br ((1− ε)C(r) + s)b ,

where the last inequality follows from convexity of x 7→ xb, 0 ≤ b < 1, which implies xb + yb ≤

21−b(x + y)b, for x, y > 0. Thus we get (4.9). So, on Ar, we have T b(λr) ≥ 2(1 − ε)C(r), where,

recall, λ = 21−b. Since P (Ar) > 0 for small r (in fact P (Ar) → 1 as r → 0) this gives

2(1 − ε)C(r) ≤ (1 + ε)C(λr).

Letting r → 0 then ε → 0 yields (4.6).

For (4.7), let β = λn and write

C(βr)

C(r)
=

n∏

k=1

C(λkr)

C(λk−1r)
,

from which we get lim infr→0C(βr)/C(r) ≥ 2n. But 2n = (λ1/(1−b))n = β1/(1−b).

Finally, (4.8) follows immediately from (4.7). ⊔⊓

Now we need a little analysis. Fix n ≥ 1, a = an > 0 and α ∈ (0, 1), and consider the following

curves for t ≥ a:

y1 = rnt
b and y2 = αrn+1(t− a)b + rn+1a

b,

where for notational convenience we let rn = 1/n. (A picture which also includes the curve

y = rn+1t
b is helpful). We wish to estimate where these curves intersect. For this it is more
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convenient to consider them in the new coordinate system:

s = t− a, Y = y − rn+1a
b,

in which they become

Y1 = rn(s+ a)b − rn+1a
b := f1(s) and Y2 = αrn+1s

b := f2(s). (4.10)

Elementary calculus shows that f ′
1 = f ′

2 iff

s =
(αn)1/(1−b)a

(n+ 1)1/(1−b) − (αn)1/(1−b)
.

Thus the curves cross at most twice. We will show that they cross at exactly 2 points and estimate

the positions of these points.

To do this, first note that the function

g(x) :=
(1 + x)b − 1

xb
, x > 0, (4.11)

is strictly increasing on (0,∞), with g(x) ↓ 0 as x ↓ 0, and g(x) ↑ 1 as x ↑ ∞. For α ∈ (0, 1) define

c(α) = g−1(α), and, for c > 0,

Rn(c) :=
ca

(αn)1/b
and R̂n(c) := ca. (4.12)

Now we need:

Lemma 4.4 Define f1, f2, Rn(c), and R̂n(c) as in (4.10) and (4.12). Fix α ∈ (0, 1), but allow

a = an > 0 to vary with n. Then for large n,

f1(Rn(c))
>

<
f2(Rn(c)) if c

<

>
1; (4.13)
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and

f1(R̂n(c))
<

>
f2(R̂n(c)) if c

<

>
c(α). (4.14)

Consequently, for any ε ∈ (0, 1), if n is sufficiently large, then

f2(s) > f1(s) for all s ∈
(
Rn(1 + ε), R̂n((1− ε)c(α))

)
. (4.15)

Proof of Lemma 4.4. First, as n → ∞,

n(n+ 1)f1(Rn(c)) = (n+ 1)
(
1 + c/(αn)1/b

)b
ab − nab

= (n+ 1)
(
1 + bc/(αn)1/b +O(1/n2/b)

)
ab − nab

→ ab, since b < 1,

while

n(n+ 1)f2(Rn(c)) = αn(ca/(αn)1/b)b = cbab,

which proves the first statement.

For the second, we have that

f1(R̂n(c))

f2(R̂n(c))
=

(n+ 1) (1 + c)b ab − nab

αn(ca)b

=
(1 + c)b − 1

αcb
+

(1 + c)b

αncb
.

Since the second term on the RHS tends to 0, the result then follows from the definition of c(α)

and the monotonicity of g.

Finally, (4.15) follows immediately from (4.13) and (4.14). ⊔⊓

Lemma 4.5 Suppose T b(r)/C(r)
P−→ 1, as r → 0, where C(r) > 0. Then with rn = 1/n, we have

lim sup
n→∞

C(rn)

C(rn+1)
≤ 1.

22



Proof of Lemma 4.5. Fix ε ∈ (0, 1) small enough that

b1/(1−b)(1 + ε)3

(1 − ε)2
< 1. (4.16)

Recall c(α) = g−1(α), where g is defined in (4.11). As x ↓ 0, we have

(1 + x)b − 1

xb
∼ bx

xb
= bx1−b,

thus bc(α)1−b ∼ α, as α ↓ 0, or, equivalently,

lim
α↓0

c(α)

α1/(1−b)
=

1

b1/(1−b)
.

Hence we can choose α > 0 of the form α = λ−k small enough that

α1/(1−b)

b1/(1−b)
< (1 + ε)c(α). (4.17)

For n ≥ 1 let

An =

{
T b(rn)

C(rn)
∈ (1− ε, 1 + ε),

T b(rn+1)

C(rn+1)
∈ (1− ε, 1 + ε),

T b,Y (αrn+1)

C(αrn+1)
∈ (1− ε, 1 + ε)

}
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where Ys = XT b(rn+1)+s −XT b(rn+1)
, s ≥ 0, and T b,Y (r) := inf{s ≥ 0 : Ys > rsb}, r ≥ 0. Then on

An we have, for n sufficiently large, depending on α,

(1 + ε)T b(rn+1)

(α(n + 1))1/b
≤ (1 + ε)2C(rn+1)

(α(n + 1))1/b

≤ (1− ε)C(αrn+1) (by Lemma 4.2, and taking n large enough)

< T b,Y (αrn+1)

< (1 + ε)C(αrn+1)

≤ (1 + ε)2α1/(1−b)C(rn+1) (by (4.8))

≤ (1 + ε)2

(1− ε)
α1/(1−b)T b(rn+1)

≤ (1 + ε)3

(1− ε)
b1/(1−b)c(α)T b(rn+1) (by (4.17))

≤ (1− ε)c(α)T b(rn+1) (by (4.16)).

Thus with a = an+1 = T b(rn+1) in (4.10) and (4.12), we have shown that on An, for large n,

Rn+1(1 + ε) < T b,Y (αrn+1) < R̂n+1((1− ε)c(α)). (4.18)

This means that, on An,

XT b(rn+1)+T b,Y (αrn+1)
= XT b(rn+1)

+ YT b,Y (αrn+1)

≥ rn+1(T b(rn+1))
b + f2(T b,Y (αrn+1))

> rn+1(T b(rn+1))
b + f1(T b,Y (αrn+1)) (by (4.15) and (4.18))

= rn(T b(rn+1) + T b,Y (αrn+1))
b

by (4.10), and so

T b(rn) ≤ T b(rn+1) + T b,Y (αrn+1).

Since P (An) > 0 for large n this implies

(1− ε)C(rn) ≤ (1 + ε)C(rn+1) + (1 + ε)C(αrn+1).
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Hence

lim sup
n→∞

C(rn)

C(rn+1)
≤
(
1 + ε

1− ε

)(
1 + lim sup

n→∞

C(αrn+1)

C(rn+1)

)
≤
(
1 + ε

1− ε

)(
1 + α1/(1−b)

)
,

by (4.8). Now let α ↓ 0 then ε ↓ 0 to complete the proof. ⊔⊓

Proof of Proposition 4.1. By Lemma 4.1 and the paragraph following, we may assume C is

nondecreasing and C(r) → 0 as r → 0. With rn = 1/n as above, define

D(rn) = C(rn)(1 + rn), n ≥ 1,

and interpolate D(rn) linearly for 0 < r ≤ 1. Then D is continuous and strictly increasing on (0, 1].

Thus to complete the proof of Proposition 4.1, it suffices to show that

D(r)

C(r)
→ 1 as r → 0.

This follows easily from Lemma 4.5, because, given r ∈ (0, 1], by letting n satisfy rn+1 < r ≤ rn,

we obtain

D(r) ≤ D(rn) = C(rn)(1 + rn) ≤ [C(r) + (C(rn)− C(rn+1))] (1 + rn),

hence

D(r)

C(r)
≤
{
1 +

C(rn)− C(rn+1)

C(rn+1)

}
(1 + rn) → 1 as n → ∞,

while

D(r) ≥ D(rn+1) ≥ C(rn+1) ≥ C(r)− (C(rn)− C(rn+1)),

and so, also,

D(r)

C(r)
≥ 1− C(rn)− C(rn+1)

C(rn+1)
→ 1 as n → ∞.

⊔⊓
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Proof of Theorem 3.1. We first show that if X is positively relatively stable, then so are T b and

T ∗
b . This will prove one direction of (a), and also one direction of (b) because if |Xt|/B(t)

P−→ 1,

then by Proposition 2.1, either X ∈ PRS or X ∈ NRS, and in the latter case we simply apply

the result to −X rather than X, which does not change T ∗
b . Thus assume there is a non-stochastic

function B(t) > 0 such that Xt/B(t)
P−→ 1, as t → 0, assumed to have the properties listed in

Proposition 2.1. Let C(r) be the inverse function to B(t)/tb, uniquely defined because B(t)/tb is

chosen continuous and strictly increasing. Thus we have B(C(r)) = rC(r)b. Since T ∗
b (r) ≤ T b(r),

it suffices to show

P
(
T b(r) > (1 + ε)C(r)

)
→ 0 and P (T ∗

b (r) < (1− ε)C(r)) → 0 as r → 0 (4.19)

for every ε > 0. Now for any η ∈ (0, 1 + ε),

P
(
T b(r) > (1 + ε)C(r)

)
≤ P

(
sup

0<t≤(1+ε)C(r)

Xt

tb
≤ r

)

≤ P

(
sup

η≤λ≤1+ε

λ−bXλC(r)

B(C(r))
≤ 1

)
→ 0

by Proposition 2.2. A similar argument shows that for any ε ∈ (0, 1) and η ∈ (0, 1− ε)

P (T ∗
b (r) < (1− ε)C(r)) ≤ P (T ∗

b < ηC(r)) + P

(
sup

η≤λ≤1−ε

λ−b|XλC(r)|
B(C(r))

≥ 1

)
.

As above, the second term converges to 0 as r → 0 by Proposition 2.2. For the first we use the

Lévy process version of Remark 2.1 and Proposition 2.1 in [7], which translated into our notation,

and using that A is slowly varying, gives, for some universal constant c,

P (T ∗
b (r) < ηC(r)) ≤ cηC(r)A(r(ηC(r))b)

r(ηC(r))b

∼ cη1−bC(r)A(rC(r)b)

rC(r)b

→ cη1−b

26



as r → 0, since B(C(r)) = rC(r)b, A(·) is slowly varying at 0, and tA(B(t))/B(t) → 1 as t → 0,

by Proposition 2.1. Letting η → 0 completes the proof of (4.19).

We now come to the converse direction. We first consider (a). Thus assume there exists a finite

function C(r) > 0 such that T b(r)/C(r)
P−→ 1 as r → 0. Then C(r) → 0 as r → 0, and we may

assume that C(·) is continuous and strictly increasing. Thus B(t) := tbC−1(t) is uniquely defined

and t−bB(t) ↓ 0 as t ↓ 0. We first show that, for each δ > 0,

lim
t→0

P

(
Xt

B(t)
> 1 + δ

)
= 0. (4.20)

To see this, take t > 0 and λ > 0, and define r = C−1(t/λ), so that λC(r) = t. On the event

{T b(r)/C(r) > λ} we have Xs ≤ rsb for all 0 ≤ s ≤ λC(r) = t, and hence

Xt ≤ tbC−1(t/λ) = λbB(t/λ)

on that event. Thus for every 0 < λ < 1,

lim inf
t→0

P

(
Xt

B(t/λ)
≤ λb

)
≥ lim inf

r→0
P

(
T b(r)

C(r)
> λ

)
= 1. (4.21)

Now given δ > 0, choose 0 < ε < 1 so that (1−ε)b+εb < 1+δ. This is possible since (1−ε)b+εb ↓ 1

as ε ↓ 0. Hence

P

(
Xt

B(t)
> 1 + δ

)
≤ P

(
Xt

B(t)
> 1 + δ

)
≤ P

(
X(1−ε)t

B(t)
> (1− ε)b

)
+ P

(
Xεt

B(t)
> εb

)
→ 0

as r → 0, by (4.21).

Next, still assuming that T b(r)/C(r)
P−→ 1 as r → 0, we show that, for each δ > 0,

lim
t→0

P

(
Xt

B(t)
> 1− δ

)
= 1. (4.22)
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To see this, take δ > 0 and choose ε ∈ (0, 1) small enough that

(2ε)b ≤ δ and (1 + 2ε)(1 − ε) > 1. (4.23)

Given t > 0, set r = C−1(t/(1− ε)); thus t = (1− ε)C(r). Now since T b(r)/C(r)
P−→ 1, we have

1− ε <
T b(r)

C(r)
< (1 + 2ε)(1 − ε)

WPA1 as r → 0. On this event

Xs > rsb for some s ∈ [(1− ε)C(r), (1 + 2ε)(1 − ε)C(r)] = [t, (1 + 2ε)t].

Thus for this s,

Xs > rsb ≥ C−1

(
t

1− ε

)
tb ≥ C−1 (t) tb = B(t). (4.24)

Now suppose (4.22) fails. Then along a subsequence tk → 0, with probability bounded away from

0, we have

Xs −Xtk > B(tk)− (1− δ)B(tk) = δB(tk),

for some s ∈ [tk, (1 + 2ε)tk], by (4.24). Thus with probability bounded away from 0

X2εtk > δB(tk) = pk(2εtk)
b, (4.25)

where

pk :=
δB(tk)

(2εtk)b
→ 0. (4.26)

But

C−1(tk) =
B(tk)

tbk
=

(2ε)bpk
δ

≤ pk

by (4.23), and so, tk ≤ C(pk). Hence by (4.25) and (4.26), with probability bounded away from

0, T b(pk) ≤ 2εtk ≤ 2εC(pk) where pk → 0. This contradicts the relative stability of T b(·). Thus

(4.22) holds and together with (4.20) this proves X ∈ PRS.
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We now consider (b). Thus suppose T ∗
b (r)/C(r)

P−→ 1 as r → 0 for a function C(r) > 0. Then

C(r) → 0 as r → 0, and we may assume, by Lemma 4.1, that C(·) is nondecreasing. (Note that we

are not assuming a priori that C(·) is continuous and strictly increasing, in this proof.) For any

t > 0, define C−1(t) = inf{r > 0 : C(r) ≥ t}. Then

C(C−1(t)−) ≤ t ≤ C(C−1(t)+),

and so by Lemma 4.2, for some constants 0 < c1 ≤ c2 < ∞

c1 C(C−1(t)) ≤ t ≤ c2 C(C−1(t)), (4.27)

if t is sufficiently small.

Observe that for any λ > 0,

P (T ∗
b (r) ≤ λC(r)) ≥ P

(
sup

0<t≤λC(r)

|Xt|
tb

> r

)
≥ P

(
X∗

λC(r)

(λC(r))b
> r

)
.

The LHS tends to 0 as r → 0 for λ ∈ (0, 1), so we have, for such λ,

lim
r→0

P
(
X∗

λC(r) ≤ λbD(r)
)
= 1 (4.28)

where D(r) = rC(r)b. Now take any sequence tk → 0 and define rk = C−1(tk). Note that by (4.27),

for large k

c1 C(rk) ≤ tk ≤ c2 C(rk). (4.29)

Setting λ = 1/2, it follows from (4.28) that along a further subsequence tk′ ,

XC(rk′ )/2

D(rk′)

D−→ Z ′(1/2),
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where |Z ′(1/2)| ≤ (1/2)b a.s. Since Z ′(1/2) is infinitely divisible, this means Z ′(1/2) is degenerate

at a constant, c′(1/2), say. By considering characteristic functions for example, this then implies

XλC(rk′ )

D(rk′)

P−→ c′(λ), (4.30)

for all λ > 0, where the constants c′(λ) satisfy c′(λ) = λc′(1).

We next show c′(1) 6= 0. If not, (4.30) gives XλC(rk′ )
/D(rk′)

P−→ 0 for every λ > 0, and so by

Lemma 2.1 X∗
λC(rk′ )

/D(rk′)
P−→ 0 for every λ > 0. Fix ε ∈ (0, 1). Then for any δ ∈ (0, 1), s, r > 0,

P (T ∗
b (r) ≥ s) ≥ P

(
sup
0<t≤s

|Xt|
tb

≤ r

)

≥ P

(
sup

δs<t≤s
|Xt| ≤ r(δs)b, sup

0<t≤δs

|Xt|
tb

≤ r

)

≥ P

(
sup

δs<t≤s
|Xt −Xδs| ≤ εr(δs)b, sup

0<t≤δs

|Xt|
tb

≤ (1− ε)r

)

≥ P
(
X∗

(1−δ)s ≤ εr(δs)b
)
P (T ∗

b ((1− ε)r) > δs) . (4.31)

Now by Lemma 4.2, for r small enough

1 ≤ C(r)

C((1− ε)r)
≤ cε,

for some cε < ∞. Thus if we let

δ =
1− ε

(1 + ε)cε
, λ = (1− δ)(1 + ε)

and substitute r = rk, s = (1 + ε)C(rk) into (4.31), we obtain for large k

P (T ∗
b (rk) ≥ (1 + ε)C(rk)) ≥ P

(
X∗

λC(rk)
≤ ε[δ(1 + ε)]bD(rk)

)
P

(
T ∗
b ((1− ε)rk)

C((1− ε)rk)
> 1− ε

)
.

But along the sequence k′, the LHS converges to 0 while both terms on the RHS converge to 1.

Thus it must be the case that c′(1) 6= 0.
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By again considering characteristic functions, (4.30) easily extends to

Xλk′C(rk′ )

D(rk′)

P−→ c′(λ),

if λk′ → λ ∈ [0,∞). By choosing a further subsequence k′′ of k′ if necessary, it follows from (4.29)

that for some λ̂ ∈ (0,∞),

tk′′

C(rk′′)
→ λ̂.

Consequently

Xtk′′

D(rk′′)

P−→ c′(λ̂),

where c′(λ̂) = λ̂c′(1) 6= 0. Hence every sequence tk → 0 contains a subsequence tk′′ → 0 with

Xtk′′ /D(rk′′) converging to a finite nonzero constant. Thus, by Proposition 2.1, we have X ∈ RS.

Finally under (a) or (b), the proofs show that C(r) may be taken as the inverse of the continuous

and strictly increasing function B(t)/tb where B(t) is regularly varying with index 1. Hence C(r)

is regularly varying with index 1/(1− b) and may be taken to be continuous and strictly increasing.

⊔⊓

Proof of Corollary 3.1. Assume Xt/B(t)
P−→ 1, where B(t)/tb is continuous and strictly increas-

ing and B(t) is regularly varying with index 1. Then by Theorem 3.1

T ∗
b (r)

C(r)

P−→ 1 and
T b(r)

C(r)

P−→ 1,

where C is the inverse of B(t)/tb. In particular B(C(r)) = rC(r)b. Fix ε ∈ (0, 1). On

Ar =

{
T ∗
b (r)

C(r)
∈ (1− ε, 1 + ε),

T b(r)

C(r)
∈ (1− ε, 1 + ε), T ∗

b (r) 6= T b(r)

}
,

it must be the case that XT ∗

b (r)
< 0 and so

XT ∗

b (r)+s −XT ∗

b (r)
> 2r((1− ε)C(r))b = 2(1− ε)bB(C(r))
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for some 0 ≤ s ≤ 2εC(r). Hence if lim infr→0 P (T b(r) = T ∗
b (r)) < 1, then lim supr→0 P (Ar) > 0

and so

lim sup
r→0

P (X2εC(r) > 2(1 − ε)bB(C(r))) > 0.

Using the regular variation of B, this contradicts Xt/B(t)
P−→ 1 if ε is sufficiently small, by Lemma

2.1. ⊔⊓

Proof of Proposition 3.1. We will prove this in a little more generality than stated. Assume

f : (0,∞) 7→ (0,∞) is such that f(x) → 0 as x → 0, and there exists ε > 0 for which

f(x+ y) ≥ f(x) + f(y), for all 0 < x ≤ εy (4.32)

if y is sufficiently small.

For the one-sided exit, recall the definition of T f (r) in (4.1), and assume there is a C(r) > 0

such that T f (r)/C(r)
P−→ 1 as r → 0. By Lemma 4.1 and the paragraph following it, C(r) → 0

and we may assume C(r) is nondecreasing. Fix ε ∈ (0, 1/2) so that (4.32) holds. Observe that if r

is sufficiently small,

rf(s) + rf((1− ε/2)C(r)) ≤ rf((1− ε/2)C(r) + s) (4.33)

for all 0 ≤ s ≤ ε(1 − ε/2)C(r). Since ε(1 − ε/2) ≥ 3ε/4, (4.33) holds in particular for all 0 ≤ s ≤

3εC(r)/4. Now let

Ys := X(1−ε/2)C(r)+s −X(1−ε/2)C(r), s ≥ 0

and

T
Y
f (r) := inf{s ≥ 0 : Ys > rf(s)}, r ≥ 0.

Then by (4.33)

P
(
T f (r) ≤ (1 + ε/4)C(r)

)
≤ P

(
T f (r) ≤ (1− ε/2)C(r)

)
+ P

(
T
Y
f (r) ≤ 3εC(r)/4

)
. (4.34)
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Since the LHS of (4.34) tends to 1, while P
(
T f (r) ≤ (1− ε/2)C(r)

)
tends to 0, we may conclude

that

lim
r→0

P
(
T f (r) ≤ 3εC(r)/4

)
= lim

r→0
P
(
T
Y
f (r) ≤ 3εC(r)/4

)
= 1,

which is a contradiction, since 3ε/4 < 1.

The proof for the 2-sided exit is virtually the same; simply replace T
Y
f (r) by T ∗,Y

f (r) := inf{s >

0 : |Ys| > rf(s)}, r ≥ 0. (4.34) holds with this replacement. ⊔⊓

If f(x) = xb with b ≥ 1 it’s easy to check that f satisfies (4.32). More generally, if, for small y,

f ′ is increasing and

f ′(y) ≥ f(x)

x
for 0 < x ≤ εy,

then (4.32) holds. For example, f(x) = x/| log x| satisfies this condition. If (4.32) holds for all x, y

and ε = 1, then f is superadditive, so the proposition holds for this class of functions also.

Before proceeding to the proof of Theorem 3.2, we need some preliminary results which may be

of independent interest. We begin with a corollary to a result of Erickson [13]. In it we allow for

the possibility of a killed subordinator Y, that is, a process obtained from a proper subordinator Y

by killing at an independent exponential time e(q) with mean q−1; thus

Yt =





Yt, if t < e(q),

∂, if t ≥ e(q),

where ∂ is a cemetery state. The extension from proper to killed subordinators is trivial, but is

needed below.

Proposition 4.2 Let Y be a (possibly killed) subordinator, then

lim
t→0

Yt−

Yt
= 1 a.s. iff dY > 0.

Proof of Proposition 4.2. Since killing does not affect the drift, it suffices to prove the result for

proper subordinators. If dY > 0 then Yt/t → dY a.s. by Proposition 3.8 of [1]. This is easily seen
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to imply Yt−/t → dY a.s., and so

lim
t→0

Yt−

Yt
= 1 a.s. (4.35)

Conversely, assume (4.35) holds and by way of contradiction assume dY = 0. Clearly (4.35)

implies that Y can not be compound Poisson. Since dY = 0, and σY = 0 since Y is a subordinator,

it must be the case that Π(R) = ∞. We may now apply Theorem 2 of [13]. In the terminology of

[13], under (4.35), the function h(x) = x is not a small gap function, and hence

∫ 1

0

xΠ(dx)∫ x
0 Π(y)dy

< ∞; (4.36)

see Theorem 2 and the first paragraph of page 459 in [13]. Thus

∫ z
0 xΠ(dx)∫ z
0 Π(y)dy

≤
∫ z

0

xΠ(dx)∫ x
0 Π(y)dy

→ 0 as z → 0.

Since ∫ x

0
Π(y)dy = xΠ(x) +

∫ x

0
yΠ(dy),

(4.36) then implies that ∫ 1

0

Π(dx)

Π(x)
< ∞. (4.37)

But this is a contradiction since Π(R) = ∞. ⊔⊓

Remark: Let ∆Yt = Yt − Yt−. Then Proposition 4.2 can be rephrased as

lim
t→0

∆Yt

Yt−
= 0 a.s. iff dY > 0.

By a similar argument, one can check that if Y is not a compound Poisson subordinator, then

lim sup
t→0

∆Yt

Yt−
= ∞ a.s. iff dY = 0.
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At this point we need to introduce a little fluctuation theory for which we refer to [1], [5] or

[17]. Let Lt denote the local time of X at its maximum and (L−1
t ,Ht)t≥0 the bivariate ascending

ladder process of X. If Xt → −∞ a.s then (L−1,H) may be obtained from a proper bivariate

subordinator by exponential killing. Let κ(·, ·) denote the Laplace exponent of (L−1,H). Then

κ(α, β) = k + dL−1α+ dHβ +

∫

t≥0

∫

h≥0

(
1− e−αt−βh

)
ΠL−1,H(dt,dh), α, β ≥ 0, (4.38)

where dL−1 ≥ 0 and dH ≥ 0 are drift constants, ΠL−1,H is the Lévy measure of (L−1,H) and k ≥ 0

is the killing rate.

Lemma 4.6 For any Lévy process X,

X is of bounded variation and dX > 0 iff dL−1 > 0 and dH > 0.

In that case dX = dH/dL−1.

Proof of Lemma 4.6. By Theorem 2.2(b)(ii) of [14], X is of bounded variation and dX > 0 iff

σ = 0, dL−1 > 0 and dH > 0, in which case dX = dH/dL−1 . Thus it suffices to show that if dL−1 > 0

and dH > 0, then σ = 0. If X is compound Poisson then so is H, and consequently dH = 0. But

dH > 0, and so X can not be compound Poisson. Thus by Corollary 4.4(v) of [5], since dL−1 > 0,

the downward ladder height process Ĥ is compound Poisson. Hence d
Ĥ

= 0, and so by Corollary

4.4(i) of [5], σ = 0. ⊔⊓

The following result is a companion to Theorem 4.2 in [9].

Proposition 4.3 Assume that

lim
t→0

X t

B(t)
= 1 a.s. (4.39)

for some function B(t) > 0, then X is of bounded variation with dX > 0.

Proof of Proposition 4.3. Since X t/B(t)
P−→ 1 as t → 0, it follows from Lemma 2.1 that

Xt/B(t)
P−→ 1 as t → 0. Hence by Proposition 2.1 we may assume that B is increasing, continuous
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and regularly varying with index 1. By continuity of B it follows easily from (4.39) that

lim
t→0

Xt−

B(t)
= 1 a.s. (4.40)

Fix t < L∞. If L−1
t− < L−1

t , then XL−1
t−

= X(L−1
t )− since X does not increase on the interval

(L−1
t− , L−1

t ). Hence by (4.39) and (4.40),

B(L−1
t− )

B(L−1
t )

= I(L−1
t− = L−1

t ) + I(L−1
t− < L−1

t )
B(L−1

t− )

XL−1
t−

X(L−1
t )−

B(L−1
t )

→ 1 a.s. (4.41)

Consequently, by regular variation of B,

lim
t→0

L−1
t−

L−1
t

= 1 a.s.

Thus dL−1 > 0 by Proposition 4.2. Further

lim
t→0

Ht−

Ht
= lim

t→0

X(L−1
t− )−

XL−1
t

= 1 a.s.

by (4.39)-(4.41). Hence dH > 0, again by Proposition 4.2. The result now follows from Lemma 4.6.

⊔⊓

Proof of Theorem 3.2. (a) Assume that X has bounded variation with drift dX 6= 0. Then by

Theorem 4.2 of [9]

lim
t→0

Xt

t
= dX a.s. (4.42)

This is easily seen to imply t−1Xt− → dX a.s., and so

lim
t→0

∆Xt

t
= 0 a.s. (4.43)

where ∆Xt = Xt −Xt−. Now

r(T ∗
b (r))

b ≤ |XT ∗

b (r)
| ≤ r(T ∗

b (r))
b + |∆XT ∗

b (r)
|,
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so dividing through by T ∗
b (r) and using (4.42) and (4.43) we obtain

lim
r→0

r(T ∗
b (r))

b−1 = |dX | a.s., (4.44)

or equivalently

lim
r→0

T ∗
b (r)

r1/(1−b)
=

1

|dX |1/(1−b)
a.s. (4.45)

Conversely, assume T ∗
b (r)/C(r) → 1 a.s. as r → 0. Then by Theorem 3.1, we may assume C is

regularly varying with index 1/(1− b), continuous, strictly increasing and C(r) → 0 as r → 0. Let

B(t) = tbC−1(t) and fix η < 1 < λ. Then a.s. for small t, we have ηt < T ∗
b (C

−1(t)) < λt. For such

t

X∗
λt ≥ X∗

T ∗

b (C
−1(t)) ≥ C−1(t)(T ∗

b (C
−1(t)))b > C−1(t)(ηt)b = ηbB(t) (4.46)

and

X∗
ηt ≤ X∗

T ∗

b (C
−1(t))− ≤ C−1(t)(T ∗

b (C
−1(t)))b < C−1(t)(λt)b = λbB(t). (4.47)

Since B(t) is regularly varying with index 1 as t → 0, it then easily follows from (4.46) and (4.47)

that limt→0 X
∗
t /B(t) = 1 a.s. An examination of the proof of Theorem 4.2 in [9], shows that from

this we may conclude that X has bounded variation with dX 6= 0.

(b) Now assume that X has bounded variation with drift dX > 0. Then limt→0 t
−1Xt = dX > 0

a.s., and so P (T b(r) = T ∗
b (r) for all small r) = 1. Consequently, from part (a),

lim
r→0

T b(r)

r1/(1−b)
=

1

d
1/(1−b)
X

a.s. (4.48)

The proof of the converse for T b(r) is virtually the same as for T ∗
b (r). Arguing as above, first

show limt→0X t/B(t) = 1 a.s., and then use Proposition 4.3 to complete the proof. ⊔⊓

Proof of Theorem 3.3.

(a) Assume the first condition fails. Fix ξ > 1 so that, with

Ar =
{
XT b(r)

> ξr(T b(r))
b
}
,
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we have lim supr→0 P (Ar) > 0. Now T b(r) = T b(ξr) on Ar, and by Theorem 3.1, for arbitrary

δ ∈ (0, 1), T b(r) ≤ (1 + δ)C(r) and T b(ξr) ≥ (1 − δ)C(ξr) hold WPA1 as r → 0, hence

lim sup
r→0

P
(
Ar ∩ {T b(r) ≤ (1 + δ)C(r), T b(ξr) ≥ (1− δ)C(ξr)}

)
> 0. (4.49)

Thus

lim inf
r→0

C(ξr)

C(r)
≤ 1 + δ

1− δ
.

Letting δ ↓ 0 we get a contradiction, since by Theorem 3.1, C(r) is regularly varying with index

1/(1 − b). Hence
XT b(r)

r(T b(r))b
P−→ 1, as r → 0.

Then, since B is regularly varying with index 1, B(C(r)) = rC(r)b and T b(r)/C(r)
P−→ 1, the

remaining relationships in Theorem 3.3 follow.

(b) Assume |Xt|/B(t)
P−→ 1 as t → 0. By Proposition 2.1, there is no loss of generality in

assuming Xt/B(t)
P−→ 1. The result then follows from Corollary 3.1 and part (a). ⊔⊓

Proof of Theorem 3.4. (a) Assume that X has bounded variation with drift dX > 0. Then by

Theorem 3.2, for every ε > 0,

T b(r) ∧ ε

(r/dX)1/(1−b)
→ 1 a.s. as r → 0.

Hence by Fatou’s Lemma,

lim inf
r→0

E(T b(r) ∧ ε)

(r/dX)1/(1−b)
≥ 1. (4.50)

Letting ε → 0 proves a lower bound for (3.2).

For the upper bound, we first prove the result for b = 0. Recall the bivariate ascending ladder

process (L−1,H) of X, and its Laplace exponent κ(·, ·) given by (4.38). Clearly

lim
q→∞

κ(q, 0)

q
= dL−1 ,
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and by Lemma 4.6, we have dL−1 > 0, dH > 0 and dX = dH/dL−1 . For q > 0, let e(q) be indepen-

dent of X and have exponential distribution with mean q−1. Then a straightforward calculation

shows that for any ε ∈ (0,∞] (with the obvious interpretation when ε = ∞),

E(T 0(r) ∧ ε ∧ e(q)) =

∫ ∞

0
e−qsP (T 0(r) ∧ ε > s)ds = q−1P (T 0(r) ∧ ε > e(q)). (4.51)

Hence by (8) on p.174 of [1],

E(T 0(r) ∧ e(q)) =
κ(q, 0)

q
V q(r),

where

V q(r) =

∫ ∞

0
E(e−qL−1

t ;Ht ≤ r)dt.

Now the Laplace transform of V q is given by

V̂ q(λ) := λ

∫ ∞

0
e−λrV q(r)dr =

1

κ(q, λ)
, λ > 0,

and so

λV̂ q(λ) =
λ

κ(q, λ)
→ 1

dH
as λ → ∞.

Thus

V q(r)

r
→ 1

dH
as r → 0,

by Karamata’s Tauberian Theorem; see Theorem 1.7.1′ in [3]. Hence

lim
q→∞

lim
r→0

E(T 0(r) ∧ e(q))

r
= lim

q→∞
lim
r→0

κ(q, 0)V q(r)

qr
=

dL−1

dH
=

1

dX
. (4.52)
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Next fix ε > 0 and q ∈ (0,∞). Then

E(T 0(r) ∧ ε) = E(T 0(r) ∧ ε;T 0(r) ∧ ε ≤ e(q)) + E(T 0(r) ∧ ε;T 0(r) ∧ ε > e(q))

≤ E(T 0(r) ∧ e(q)) + εP (T 0(r) ∧ ε > e(q))

= E(T 0(r) ∧ e(q)) + εqE(T 0(r) ∧ ε ∧ e(q)) (by (4.51))

≤ (1 + εq)E(T 0(r) ∧ e(q)).

Thus for every q ∈ (0,∞),

lim
ε→0

lim
r→0

E(T 0(r) ∧ ε)

r
≤ lim

r→0

E(T 0(r) ∧ e(q))

r
.

Letting q → ∞ and using (4.52), proves the upper bound in (3.2) for b = 0.

To deal with the upper bound when 0 < b < 1, introduce

Yt =
Xt

dX
− bt, t ≥ 0.

Then Y has bounded variation with drift dY = 1− b > 0. Take r > 0 and let λr = r/dX . Consider

the function

f(t) := λrt
b − bt, t ≥ 0.

This increases from 0 at t = 0 to a maximum of λ
1/(1−b)
r (1 − b) at t = λ

1/(1−b)
r , then decreases to

0 at t = (λr/b)
1/(1−b). Hence it is non-negative for t ∈ [0, (λr/b)

1/(1−b)] and lies entirely below the

horizontal line of height λ
1/(1−b)
r (1− b) for t ≥ 0. Thus with T

Y
0 (λ) = inf{t ≥ 0 : Yt > λ}, we have

T b(r) ≤ T
Y
0 (λ

1/(1−b)
r (1− b)).

Thus invoking the b = 0 result just proved, for Y , we have

lim
ε→0

lim
r→0

E(T 0(r) ∧ ε)

(r/dX)1/(1−b)
≤ (1− b) lim

ε→0
lim
r→0

E(T
Y
0 (λ

1/(1−b)
r (1− b)) ∧ ε)

λ
1/(1−b)
r (1− b)

=
1− b

dY
= 1.
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(b) Assume T ∗
b (r)/C(r)

P−→ 1, and fix p > 0 and ε > 0. By Proposition 2.1 and Theorem 3.1,

A(r) is slowly varying at 0, and we may assume without loss of generality that A(r) > 0 for small

r. It then follows from [19] (see also (4.3) of [7]), when translated to the current notation, that for

every r > 0, t > 0 and m ≥ 1,

P (T ∗
b (r) ≥ t) ≤ P (T ∗

0 (rt
b) ≥ t) ≤

(
cmr

t1−bA(rtb)

)m

, (4.53)

where c ∈ (0,∞) denotes an unimportant constant that may change from one usage to the next.

Furthermore, again by Proposition 2.1 and Theorem 3.1, we may assume that C−1(t) = t−bB(t)

where tA(B(t))/B(t) → 1 as t → 0. Setting t = C(r), and using B(C(r)) = rC(r)b, this gives

lim
r→0

C(r)A(rC(r)b)

rC(r)b
= 1. (4.54)

Choose ξ > 0 sufficiently small that 1 − b − bξ > 0. Since A is slowly varying at 0, there is a

function Â such that A(r) ∼ Â(r) as r → 0, and rξÂ(r) is increasing on (0, a] for some a ∈ (0, ε].

For any p > 0, write

E(T ∗
b (r) ∧ ε)p =

∫ ε

0
ptp−1P (T ∗

b (r) ≥ t)dt

≤
∫ C(r)

0
ptp−1dt+

∫ a

C(r)
ptp−1

(
cmr

t1−bA(rtb)

)m

dt+

∫ ε

a
ptp−1P (T ∗

b (r) ≥ a)dt

= I + II + III.

(4.55)

Clearly I = C(r)p, while by (4.53)

III ≤ εp
(

cmr

a1−bA(rab)

)m

∼ εp
(

cmr

a1−bA(r)

)m

= o(r(1−η)m), as r → 0,

for any η > 0, since A is slowly varying. Now C(r) is regularly varying with exponent 1/(1 − b),

thus by choosing m sufficiently large we see that III = o(C(r)p). Finally for II we observe that if

C(r) ≤ t ≤ a, then

tbξÂ(rtb) ≥ C(r)bξÂ(rC(r)b).

41



Hence

tp−1

(
r

t1−bÂ(rtb)

)m

≤ tp−1−m(1−b−bξ)C(r)m(1−b−bξ)

(
rC(r)b

C(r)Â(rC(r)b)

)m

.

Recalling that 1− b− bξ > 0, we see that if m is sufficiently large that m(1− b− bξ) > p, then

∫ a

C(r)
tp−1

(
r

t1−bÂ(rtb)

)m

dt ≤ cC(r)p

for small r by (4.54). Hence by (4.55)

lim sup
r→0

E(T ∗
b (r) ∧ ε)p

C(r)p
< ∞.

Thus (T ∗
b (r) ∧ ε)/C(r) is bounded in Lp for every p > 0, which together with T ∗

b (r)/C(r)
P−→ 1

proves convergence in Lp. The converse direction is trivial. ⊔⊓

Remark: If Xt → ∞ a.s. as t → ∞, then ET 0(r) < ∞ for some (every) r > 0. In that case, if in

addition EL−1
1 < ∞ and dH > 0, then by Theorem 2.3 of [14]

lim
r→0

ET 0(r)

r
=

EL−1
1

dH
.

If 0 ≤ b < 1/2 then ET ∗
b (r)

p < ∞ for every r > 0, p > 0, and the proof of (3.3) can be modified to

show

lim
r→0

ET ∗
b (r)

p

C(r)p
= 1.

5 Relative Stability of T b(r) and T
∗
b (r) for Large Times

In this section we briefly summarise relative stability of T b(r) and T ∗
b (r) for large times. All proofs

are omitted. In many cases they parallel the proofs given for small times although in some cases

there are nontrivial differences. We must first discuss the definitions of T b(r) and T ∗
b (r). It is

possible for X to cross the tb boundary for small t, but not for large t. For example, when σ2 > 0
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we have by [18] that

lim sup
t↓0

Xt√
2σ2t log | log t|

= 1 a.s.,

thus lim supt↓0 Xt/
√
t = +∞ a.s., while we can have in addition that Xt drifts to −∞ a.s. as

t → ∞. If we took the infimum in (1.1) over all t > 0, we may have that T 1/2(r) is finite, in fact,

takes value 0, for all r > 0, even though lim supt→∞Xt/
√
t < ∞ a.s. Since we are interested in the

behaviour of X for large t, we prevent this kind of behaviour by taking the inf in (1.1) over t ≥ 1.

Thus we define

T b(r) = inf{t ≥ 1 : Xt > rtb}, r ≥ 0, (5.1)

and

T ∗
b (r) = inf{t ≥ 1 : |Xt| > rtb}, r ≥ 0. (5.2)

We always assume, unless explicitly stated otherwise, that 0 ≤ b < 1. The results up to Theorem

5.4 below, parallel those for small times if r → 0 is replaced by r → ∞ and the drift dX is replaced

by the mean EX1 at the appropriate points.

Theorem 5.1 (a) Assume Xt/B(t)
P−→ 1 as t → ∞, where B(t) > 0. Then B(t)/tb may be chosen

to be continuous and strictly increasing, in which case T b(r)/C(r)
P−→ 1 as r → ∞, where C(r) is

the inverse to B(t)/tb.

Conversely, assume T b(r)/C(r)
P−→ 1 as r → ∞, where C(r) > 0. Then C(r) may be taken to

be continuous and strictly increasing with inverse C−1, in which case Xt/B(t)
P−→ 1 as t → ∞,

where B(t) = tbC−1(t).

(b) The same result holds if X and T b(r) are replaced by |X| and T ∗
b (r) respectively in (a).

In either case, (a) or (b), the function C(r) is regularly varying with index 1/(1 − b) as r → ∞.

Corollary 5.1 Assume Xt/B(t)
P−→ 1 as t → ∞, where B(t) > 0. Then P (T b(r) = T ∗

b (r)) → 1

as r → ∞.

Proposition 5.1 Suppose b ≥ 1. Then neither T b(r) nor T ∗
b (r) can be relatively stable, in proba-

bility, as r → ∞.
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Theorem 5.2 (a) T ∗
b (r) is almost surely (a.s.) relatively stable, i.e., T ∗

b (r)/C(r) → 1, a.s., as

r → ∞, for a finite function C(r) > 0, iff E|X1| < ∞ and µ := EX1 6= 0.

(b) T b(r) is almost surely relatively stable, i.e., T b(r)/C(r) → 1, a.s., as r → ∞, for a finite

function C(r) > 0, iff E|X1| < ∞ and µ = EX1 > 0.

In either case, (a) or (b), the function C(r) may be chosen as C(r) = (r/|µ|)1/(1−b).

Theorem 5.3 (a) Suppose Xt/B(t)
P−→ 1 as t → ∞, where B(t) > 0 satisfies the regularity

conditions of Theorem 5.1. Let C be the inverse of B(t)/tb. Then, as r → ∞,

XT b(r)

r(T b(r))b
P−→ 1,

XT b(r)

B(T b(r))

P−→ 1,
XT b(r)

B(C(r))

P−→ 1, and
XT b(r)

r(C(r))b
P−→ 1. (5.3)

(b) Suppose |Xt|/B(t)
P−→ 1 as t → ∞. Then (5.3) holds with |X| and T ∗

b (r) in place of X and

T b(r) respectively.

Remark: The analogous result to Theorem 5.3 holds when
P−→ is replaced by a.s. convergence

throughout.

For the large time version of Theorem 3.4, it is no longer appropriate to truncate the passage

times since C(r) → ∞ as r → ∞.

Theorem 5.4 (a) Suppose E|X1| < ∞ and µ = EX1 > 0. Then

lim
r→∞

ET b(r)

C(r)
= 1. (5.4)

where C(r) = (r/µ)1/(1−b).

(b) Fix a function C(r); then T ∗
b (r)/C(r)

P−→ 1 iff T ∗
b (r)/C(r) → 1 in Lp for some (all) p > 0. In

particular, if T ∗
b (r)/C(r)

P−→ 1, then for every p > 0

lim
r→∞

ET ∗
b (r)

p

C(r)p
= 1. (5.5)

Remarks: (i) Suppose EX2
1 < ∞ and EX1 = 0. Then X cannot be relatively stable, so neither
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can T b(r) or T
∗
b (r). If Π(x0) = 0 for some x0 > 0, then EX2

1 < ∞, and so relative stability of T b(r)

or T ∗
b (r) hinges on whether EX1 = 0 or not.

(ii) In addition to covering one-sided passage times and also dealing with the important case b = 1/2,

omitted in [6], [7], [8], Theorem 5.1 and associated results provide a more general approach than

that of [8], where the norming functions are assumed a priori to have strong regularity properties,

such as regular variation, whereas we make no such assumptions.

(iii) Siegmund [20] contains the random walk version of (5.4). He mentions extensions of his result

and possible applications to sequential confidence intervals and hypothesis tests. We expect that

similar extensions can be carried out in the general Lévy case.
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