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ABSTRACT 
Performance of a novel gas-driven, electricity-producing heating, ventilation, and air 
conditioning (HVAC) system with no vapor compression and no hydrofluorocarbon (HFC) 
refrigerant shall be discussed in the paper. The prototype was evaluated at ORNL under a Small 
Business Voucher (SBV) Cooperative Research and Development (CRADA) program. The 
target market is commercial buildings in the United States. The goal is to mitigate or eliminate 
grid-power for building air conditioning, coincident peak demand and associated spinning 
reserves, aiding in flattening of the “duck curve”. The technical goal is to transform the common 
packaged rooftop unit into a cost-effective distributed energy resource, opening a new range of 
small applications and broad markets for micro-combined cycle cooling, heating, and power 
with integral thermal energy storage. The test results indicate the prototype would be 
competitive with natural gas distributed power plants with average electrical production ranging 
from 45% to 60% natural gas to electricity conversion efficiency. The technology has a Primary 
Energy Savings Potential of 4.4 Quads, higher than any other air conditioning and heating 
technology. 
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INTRODUCTION 
The first integrated electricity-producing heating, ventilation, dehumidification, and air 
conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop 
unit that also produces base-load electricity was evaluated1. For convenience throughout this 
document we will call this integrated system Electricity-Production HVAC or EP-HVAC. The 
EP-HVAC unit represents a distributed energy resource with energy storage that eliminates the 
tremendous peak electricity demand associated with commonly used electricity-powered vapor 
compression air conditioning systems. 

The objective is to enable the proliferation of renewable resources into the electric grid, reduce 
greenhouse gas emissions, eliminate the use of refrigerants used for air conditioning, and 
provide significant cost savings for utilities and ratepayers. This technology eliminates grid-
powered electricity for building air conditioning, coincident peak demand and associated 
spinning reserves, aiding in the flattening of the “duck curve.” The technology is scalable from 
2 to 20 tons and is applicable to 98% of US commercial buildings.  

The results of the evaluation indicated that the technology, as tested would be competitive with 
natural gas distributed powerplants with average electrical power efficiency ranging from 45% 
to 60%. Test results indicate that the technology has a Primary Energy Savings Potential of 1.3 
x 1012 kWh (4.4 Quads); higher than any other air conditioning and heating technology. 

1 Natural Gas Powered HVAC System for Commercial and Residential Buildings, ORNL/TM-2017/211, 
CRADA/NFE-16-016126,  https://resolution.ornl.gov/pub/preview/74419 
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The project goal was to test and evaluate the performance metrics of a unit that provided 5 kW 
cooling capacity and generates electricity from burning natural gas using a commercially 
available solid oxide fuel cell (SOFC). 

TECHNOLOGY DESCRIPTION  
Principle of operation of the prototype: 
A simplified description of the prototype is shown in Figure 1 and consists of three main 
sections: natural gas driven fuel cell for producing electricity; liquid desiccant regeneration; and 
dehumidification and air conditioning. 

Figure 1 Schematic of the prototype EP-HVAC with three discrete sections: electricity Generation; LD 
regeneration; and Cooling and Dehumidification. 

The prototype operates using a fuel cell and a burner to transform natural gas into electricity 
and heat. The heat generated is used to increase the concentration of a LiCl solution to 42% 
(mass fraction). This process occurs within a heat and mass exchanger (HMX) for liquid 
desiccant regeneration (HMX1). The concentrated LiCl is stored in a tank. When air 
conditioning is required, the concentrated LiCl is used to dehumidify process air (PA) within a 
dehumidifier (HMX2). PA for this prototype system is generally composed of a mixture of 
30%–40% outdoor air (OA) with the remainder being return air (RA). The HMX2 is composed 
of a series of plates designed so that PA and high concentration LiCl flow on one surface. The 
LiCl is separated from the PA by a selectively permeable membrane that enables the interaction 
of water (in vapor form) with the air but prevents the flow of LiCl into the air. Because the 
liquid desiccant is at a high concentration, it will remove water from the air to reach water vapor 
pressure equilibrium with the air. This process, if adiabatic, would be isenthalpic 
dehumidification, resulting in a significant temperature increase of the process air. To mitigate 
this temperature rise, OA flows on the opposite side of the HMX2 plates, in cross-flow to the 
PA. The plate prevents both streams from mixing but enables heat transfer between the two 
flows. Water is also flown on the surface of the OA side of the plate. The OA in HMX2 absorbs 
the water, and this evaporation process (as well as sensible heat exchange with the air) cools 
the liquid desiccant dehumidification process on the other side of the plate. Consequently, the 
PA leaving HMX2 has a humidity that corresponds to a design dew point temperature, and a 
dry bulb temperature that is sometimes higher than the inlet air temperature but far lower than 
it would be if the dehumidification was isenthalpic (the exit temperature can be slightly lower 
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than inlet temperature if the outdoor conditions are very dry, which yields high-powered 
evaporative cooling).  

To reduce the temperature of the PA down to supply air (SA) conditions, the stream is subjected 
to dew point-style indirect evaporative cooling (IEC) in a heat and mass exchanger (HMX3). 
HMX3 is composed of a series of plates. The entire PA flows over the plate’s surface. However, 
at the exit of the plate approximately 30%–40% of the PA is redirected to flow counter to the 
bulk PA flow through HMX3, on the opposite side of the plates as the bulk PA flow. On this 
side of the plate water is flown, causing the redirected flow to cool to its wet bulb temperature. 
The redirected air flow leaves at close to 100% relative humidity (RH) and is exhausted. This 
reverse flow both cools the bulk flow, and is derived from the bulk flow, which means the 
lowest temperature achievable is the incoming air’s dew point temperature, instead of its wet 
bulb temperature. At the outlet end of HMX3 plates, where a portion of the flow reverses its 
path, the exhaust air will indirectly cool the bulk air toward the exhaust air’s wet bulb 
temperature. The cooler bulk air now has a lower wet bulb temperature, and it subsequently 
becomes the next batch of exhaust air, lowering the achievable temperature further. This 
continues until it cannot continue further, which (in theory) is when the dry bulb temperature 
of the bulk air equals the wet bulb temperature of the exhaust air, which, since they are the same 
stream, occurs when the bulk process air is exiting at its dew point. The bulk PA exiting HMX3 
is the supply air (SA) to the building. 

A more effective cooling process: 
The air conditioning/dehumidification process is referred to as enhanced liquid desiccant air 
conditioning (ELD-AC). ELD-AC typically removes the latent heat duty of the air prior to 
cooling it down to as near the theoretical limit of the dew point temperature as possible. 
Compared to conventional VCC, the ELD-AC process is more energy efficient.  

The ELD-AC process removes the more energy intensive latent first, followed by sensible 
indirect evaporative cooling using water extracted from the air. The change in enthalpy is 
typically roughly 30% lower than vapor compression (Figure 2). Most VCC systems introduce 
air into the space at near 100% RH and at a temperature much lower than for human comfort. 
VCC systems rely on heat from occupants and from building equipment (and sometimes supply 
their own reheat) to heat the air up to a comfortable temperature. Consequently, the prevailing 
method of air conditioning, VCC, is energy intensive. 

In contrast, the ELD-AC dehumidification process is achieved through diffusion of water vapor 
from humid air across a semipermeable membrane into a flowing concentrated liquid desiccant. 
Liquids cannot penetrate the membrane, keeping the desiccant isolated from the conditioned 
air stream. This process of dehumidification is actively cooled using outside air so that it does 
not increase the DA temperature (however, even if it did, this would not increase the overall 
maximum enthalpy change, as long is the dehumidification process remains close to being 
isothermal). Air dehumidification, due to latent loads, is energy intensive and its removal by 
the above technique is more efficient than a VCC process. After removal of sufficient latent 
loads, further cooling in the ELD-AC process is achieved with indirect evaporative cooling. 

RESULTS 
The evaluation consisted of 29 data sets with varying conditions in the outdoor air chamber 
(Figure 3 and Error! Reference source not found.). The test showed a 1st law efficiency that 
ranged from 0.6 to 1.2. The average 1st law efficiency for all runs was 0.9, with a standard 
deviation of ±0.15. Supply air temperature varied from 15.4°C to 19.4°C, with an average SA 
temperature of 17.3°C and a standard deviation of ±0.9°C. SA average RH was 55%, and it 
ranged from 48% to 62%. Note that the 1st law efficiency in this case can be greater than 1 
because the heat of water vaporization is not included in this calculation. 
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The first law efficiency is defined in Eq.(1) as, 

𝜂𝜂1𝑠𝑠𝑠𝑠 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶+𝐸𝐸
𝐹𝐹

 (1) 

C is the air cooling is instantaneous steady state rate of enthalpy removed from air, corrected to 
eliminate liquid desiccant energy storage effects; E is the electrical power produced by the 
system; and F is the rate of chemical energy of the fuel provided to the system during a day. In 
this report, F is calculated using the lower heating value of the fuel. 

Figure 2 Difference in air conditioning and dehumidification processes between conventional vapor 
compression cycle (VCC) and the enhanced liquid desiccant evaporative cooling air conditioner (ELD/AC) 
cycle.  

The testing was conducted at constant simulated outdoor and indoor air conditions. In other 
words, it did not take into account the daily varying requirements for air conditioning, which 
might have resulted in the air conditioning not being operated while the fuel cell continued to 
provide electrical power and regenerating liquid desiccant for later use. Under these test 
conditions, the heat supplied by the fuel cell was not sufficient to provide the heat required to 
sustain the air conditioning process, since these isolated tests could not rely on storage from 
daily continuous regeneration. For this reason, the supplemental natural gas burner was used to 
supply the extra heat required. Fuel cell performance was very predictable and repeatable. On 
average the fuel cell electrochemical efficiency was 47% (lower heating value based) with a 
combined heat and power efficiency of 90%, when producing 2.5 kWe. Certain tests were 
performed without the fuel cell (burner only), in which case, for consistency, the expected 
power output and total natural gas input were calculated via the stable observed fuel cell 
electrical and combined heat and power efficiencies and included in the 1st law efficiency. 

To provide a more insightful and comparative evaluation of the performance of the EP-HVAC, 
we define a distributed power efficiency (ηDG), as shown in Equation (2), where Ė is the 
electrical power produced by the fuel cell system as a function of time, Ċ is the rate of cooling 
provided by the system as a function of time, COPVCC is the coefficient of performance of an 
equivalent vapor compression system, �̇�𝐹𝐹𝐹𝐶𝐶is the rate of fuel energy consumed by the fuel cell 
system as a function of time on a lower heating value basis, and �̇�𝐹𝐵𝐵 is the rate of fuel energy 
consumed by the auxiliary burner as a function of time on a lower heating value basis. Note that 
�̇�𝐹𝐵𝐵 is only required when the fuel cell is unable to produce enough excess heat to drive the air 
conditioning process. The heat required to run the air conditioning process can be calculated 
using the quantified η1st Law in Equation 1. τ is the operating time period under which the 
efficiency is calculated, and t is time. Equation 2 converts the air cooling produced into an 
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electrical equivalent output of the system. This efficiency definition enables the comparison of 
the EP-HVAC with a power plant that is providing both electrical power to the building and to 
run an air conditioning unit with equivalent output performance as the EP-HVAC. 

𝜂𝜂𝐷𝐷𝐷𝐷 =
∫ 𝐸𝐸�̇�𝐸𝑠𝑠𝜏𝜏
0 +∫ �̇�𝐶

𝐶𝐶𝐶𝐶𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶
𝐸𝐸𝑠𝑠𝜏𝜏

0

∫ �̇�𝐹𝐹𝐹𝐶𝐶
𝜏𝜏
0 𝐸𝐸𝑠𝑠+∫ �̇�𝐹𝐵𝐵

𝜏𝜏
0 𝐸𝐸𝑠𝑠

 (2) 

Figure 3. Psychrometric chart showing summary of outdoor air test points and η1st Law achieved (represented 
by point color and referenced to color bar on left) with the prototype unit. Comfort zone region is shown in 
dashed line polygon.  

For illustration and simplicity, we have evaluated ηDG assuming the outdoor and indoor air 
conditions do not change during a day and that the air conditioning portion of the system 
operates in on/off operation (as most air conditioners do). Given this, a duty cycle can be defined 
as a ratio of the time the system spent cooling (air conditioner on) and the time the system 
produced electrical power. Also, for simplicity, we maintained the fuel cell power output 
constant during the day.   

The tested conditions had two extremes: hot and humid (H&H), and hot and dry (H&D) 
conditions. These conditions are summarized in Table 1. Using the collected data and the 
simplifying assumptions previously described, where the power to cooling capacity ratio  of the 
EP-HVAC is 1kW/RT, and a COPVCC of 4.1 (EER = 14), which would correspond to a very 
high efficiency vapor compression cycle system, ηDG as a function of duty cycle was evaluated 
and the result is shown in Figure .  

The results indicate that initially, ηDG increases as duty cycle increases, as the excess heat 
generated by the fuel cell is more than the heat required to drive the increasing air conditioning 
loads. In this regime, the excess heat from the fuel cell is better utilized and efficiency increases. 
As the duty cycle increases further, the fuel cell excess heat becomes insufficient to drive the 
cooling load, leading to increasing use of the auxiliary burner. This increases fuel consumption 
and decreases ηDG. For both H&H and H&D cases ηDG is higher than most distributed generation 
systems, ranging between 65% and 52% for the H&D case, and between 59% and 37% for the 
H&H case.  
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Table 1. Hot and Humid (H&H), and Hot and Dry (H&D) conditions tested 

Hot and Humid Conditions 
First Law Efficiency: 90% DG Efficiency Range: 37% to 57% 

Dry Bulb Temp. (oC) Relative Humidity (%) 
Outdoor Air 31.8 72% 
Return Air 25.2 56% 
Hot and Dry Conditions 
First Law Efficiency 126% DG Efficiency Range: 52% to 65% 

Dry Bulb Temp. (oC) Relative Humidity (%) 
Outdoor Air 37.4 30% 
Return Air 25.5 55% 

Figure 4. Distributed power efficiency of tested EP-HVAC as a function of duty cycle for constant return 
air and outdoor air conditions H&H and H&D. The COPVCC is 4.1 and fuel cell power to air conditioner 
cooling capacity is 1kW/RT. 

DISCUSSIONS 
The EP-HVAC tested was the first prototype of its kind tested under varying outdoor air 
conditions. While the performance of the system measured in terms of η1sr Law is generally high, 
with improvements to the design it could be significantly higher.  

EP-HVAC is an enhanced power generator and the most relevant comparative performance 
indicator is ηDG. The analysis of ηDG presented is sensitive to the assumptions made. In 
particular, COPVCC and the power to cooling ratio. COPVCC depends on outdoor air conditions 
and humidity, an effect that is not captured in the results presented. A COPVCC of 4.1, the value 
used in our analysis, corresponds to the peak value found in the literature for high efficiency 
roof-top units.  

Fuel cell electrical efficiency and CHP efficiency also play an important role and affect the 
optimization of the power to cooling design point in different weather conditions.  

Further work is needed to complete a full evaluation of the EP-HVAC. This includes improving 
design of the system to reduce size and increase η1sr Law in all weather conditions. Additionally, 
there is a lot of room for system optimization for a particular building and weather conditions. 
To explore this, further dynamic, yearlong, location specific models should be developed.   

CONCLUSIONS 
The building and testing of this 1st EP-HVAC demonstrates that this is a technology with 
enormous potential to reduce energy consumption associated with electricity generation and 
powering air conditioners in buildings.   
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