Syracuse University

SURFACE

Dissertations - ALL SURFACE

May 2014

ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR
EMBEDDED SMART CAMERAS: DESIGN, IMPLEMENTATION AND
PERFORMANCE ANALYSIS

Mauricio Casares
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

b Part of the Engineering Commons

Recommended Citation

Casares, Mauricio, "ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR EMBEDDED SMART CAMERAS:
DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS" (2014). Dissertations - ALL. 97.
https://surface.syr.edu/etd/97

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.


https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/97?utm_source=surface.syr.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

An embedded smart camera is a stand-alone unit that not aplyies images, but also includes
a processor, memory and communication interface. Bafiewered, embedded smart cameras
introduce many additional challenges since they have werydd resources, such as energy, pro-
cessing power and memory. When camera sensors are addedntadded system, the problem
of limited resources becomes even more pronounced. Heocguter vision algorithms running
on these camera boards should be light-weight and efficiEhis thesis is about designing and
developing computer vision algorithms, which are aware sunctessfully overcome the limita-
tions of embedded platforms (in terms of power consumptimh @emory usage). Particularly,
we are interested in object detection and tracking metlogges and the impact of them on the
performance and battery life of the CITRIC camera (embeduedrt camera employed in this
research). This thesis aims to prolong the life time of thebEdded Smart platform, without
affecting the reliability of the system during surveillantasks. Therefore, the reader is walked
through the whole designing process, from the developmmhisanulation, followed by the im-
plementation and optimization, to the testing and perforceaanalysis. The work presented in
this thesis carries out not only software optimization, &lsb hardware-level operations during
the stages of object detection and tracking. The performahthe algorithms introduced in this
thesis are comparable to state-of-the-art object deteeti tracking methods, such as Mixture
of Gaussians, Eigen segmentation, color and coordinatkitiga Unlike the traditional methods,

the newly-designed algorithms present notable reductidheomemory requirements, as well as



the reduction of memory accesses per pixel. To accomplespribposed goals, this work attempts
to interconnect different levels of the embedded systernit@cture to make the platform more
efficient in terms of energy and resource savings. Thus, Itfeithms proposed are optimized
at the API, middleware, and hardware levels to access thed piformation of the CMOS sensor
directly. Only the required pixels are acquired in ordergduce the unnecessary communications
overhead. Experimental results show that when exploitiegarchitecture capabilities of an em-
bedded platformy1.24% decrease in energy consumption, d0d.2% increase in battery-life can
be accomplished. Compared to traditional object detedaiwh tracking methods, the proposed
work provides an additional 8 hours of continuous processim 4 AA batteries, increasing the

lifetime of the camera to 15.5 hours.
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Chapter 1

Introduction

1.1 Overview

Computer vision has been a fast growing field of studies. temedecades it is now viable to
accomplish demanding computer vision tasks in real timaseRechers in the field are developing
and testing complicated computer vision algorithms, anthing them in real-time; tasks that
could not be accomplished in the near past. Yet, the fastrmpawerful the processor is, the
more energy it consumes. Thus, as the attention is beingtddeowards mobile applications and
mobile platforms with limited processing and energy resesy special attention has to be paid to

computational efficiency and energy consumption.

As opposed to general-purpose wall-powered computermegstehich have constant sources
of energy, embedded platforms such as cell phones, wiredgs®ors, smart cameras, medical mon-
itoring devices, and tablets have limited energy providgdi-board battery packets. Relying on
a limited source of energy limits the design of the embeddmdcds. Special attention has to
be paid the size and number of components utilized to buédattiual platform. It is even more
challenging when the embedded platform captures and mesamage and video data, which
is the case with wireless smart cameras. Since batteryslifenited, and video processing tasks
consume considerable amount of energy, it is essentiabllggtweight algorithms, and method-
ologies to increase the energy-efficiency of each camenanbtance, the design of algorithms to

be imported on the embedded platforms should take into at¢oyortant issues such as energy
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consumption, memory usage and processing time. Desigfgogthms that consider the energy
consumption as well as the memory usage on embedded smastasahms not received much
attention until now.

An embedded smart camera can be summarized as a vision sygéch not only captures
images, but also incorporates on-board processing and comation. As opposed to regular
cameras, an embedded smart camera, not only captures inbagesso provides on-board com-
putation capabilities to extract useful information frone tcaptured images, detect certain events
of interest and create alerts that are used in an intelligetiautomated system. Thus, rather than
transferring all the data to a back-end server, they canegsoitnages, and extract data locally.

This thesis focuses on lightweight algorithm design for edded smart cameras, and method-
ologies to increase the battery-life of the embedded snaaneca. We focus on the performance
of the embedded smart cameras, and present the impact ghdegsiand running well-suited
lightweight computer vision algorithms on the battergldf the embedded platform. The the-
sis emphasizes the advantages of designing lightweigbtitigs that are well integrated with
the cameras architecture, opposed to using algorithmgrkssifor wall-powered platforms. The
goal of the algorithms and the methodologies is to prolomglifietime of the embedded smart
platforms, without affecting the reliability of the systedaring surveillance tasks. The reader is
walked through the whole process, starting with the desighsamulation, followed by implemen-

tation and optimization, ending with the testing and perfance analysis.

1.1.1 Embedded Smart Cameras: A short history

Even though embedded smart cameras do not have a very lalegyhsince the first time the
concept was introduced, they have been exposed to a serempfations and changes in recent
decades. This section brings to the reader a brief summanpwrembedded cameras have been
developed during the past decade.

Wolf et al. [26] introduced one of the early examples of endeeismart cameras. Since then,

embedded smart cameras have received a lot of attentionbatmacademia and industry due
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to the wide range of applications for which they can be use&dretent years, embedded smart
cameras have grown popular not only for their small size aseé ®f deployment, but also for the
diverse applications that could not be accomplished orrakzed, general purpose vision systems.
Consequently, they have become effective means of rapigtyeimenting simple machine-vision
systems due to their reliability, cost effectiveness arsted integration. Additionally, since they
are self-contained units, embedded smart cameras candbasiasingle unit as well as for network
applications. Furthermore, due to the growing variety aowohexity of the vision algorithms,
research on embedded camera design and development n&eég tap with the demanding pace
of computer vision applications. An embedded smart camenfapns real-time analysis to extract
useful information from captured images. They are emplayedvariety of applications including
surveillance, medicine, sports, industry and military laggpions. Embedded cameras are also
used for on-site data acquisition, and customer behavigysis in marketing and advertisement.
Most of the effort to improve the performance of embeddedrsoameras has been expended to
accomplish real-time processing tasks with acceptabédd@f accuracy and reliability. In order to
achieve this goal embedded smart cameras are becomingfpbdarices which require a better
management of their energy source. Common computing ptasféor smart cameras are FPGAS
, digital signal processors (DSPs), and/or general purposeprocessors [60]. Many embedded

vision platforms, designed for wireless sensor networgelbeen developed recently.

Due to compatibility issues, using dedicated micro-cdters without an underlying Operat-
ing System (OS) makes it difficult to create distributed retwof embedded smart cameras that
operate in a plug and play fashion. During the Workshop on é&tddbd Middleware for Smart
Camera and Visual Sensor Networks (eMCAM), which was hel8tahford University in 2008,
it was concluded that there is a need for having an OS runnintp® smart cameras as central
management unit. The idea of having embedded Linux runnmthe smart cameras has been
explored in recent years, and it is becoming more and moremcmomBramberger et al. [48] along
with the Australian Research Centers (ARC) designed anvatih@ smart camera which consists

of a network processor and a variable number of DSPs (Figdira)). Their design is targeted for
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distributed embedded surveillance, focusing on powerwmpsion, QoS management, and lim-
ited resources. Even though the platform provides suffiaapabilities for image processing with
a processing power ¢f600 MIPS and on-board memory G84 MB, it still requires an average

power consumption of5 Watts (Rinner et al[[61]).

N -

(a) The board by Bramberger et al. [48] (b) The borad by Quaritsch et al[54]
Figure 1.1: Linux based embedded smart camera prototypes.

Quaritsch et al[[54] employed smart cameras with multigi#processors, as shown in Figure
1.1 (b), for data processing. Thus, having multiple DSP @ssors would require the use of an
Operating System on top of the design. Even though the authidrnot report any information
regarding the power consumption of their prototype, the groeonsumption of using multiple
DSPs would be comparable to the analysis presented in Rétér[61].

Fleck et al. [[51] presented a network of smart cameras fakiing multiple people. They
used commercial IP-based cameras, which consist of a CCBeimansor, a Xilinx FPGA and a
Motorola PowerPC shown in Figute 1.2. Chalimbaud and Bé&g} presented a smart camera
based on FPGAs. Similar to Bramberger etlal! [48], the harelaechitecture introduced by Fleck
et al. [51] requires an operating system that reliably masdige software tasks among the multiple

processing units and their peripherals.
Even though running embedded Linux as a central managenménbrought scalability as

well as flexibility to the design, and a wider range of aldgarits could now be implemented on the
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Figure 1.2: BlueLYNX camera mote.

smart cameras, the architectures of these platforms wiéigigin size and consumed significant
amount of energy. The advances in integrated micro-chipwatl embedded smart cameras to be
sizable and energy efficient.

Embracing the success in the field of sensor networks, alatigtiae availability of low-cost
micro-sensors, applications involving multimedia visieensor networks have drawn attention
from the research community. In the proposed architectuisi®n capability was added to a host
mote which featured a dedicated micro-controller managea §impler Operating System called
TinyOS [47].

The Cyclops([43] (Figuré_113 (a)) and Imote2 [62] (Figlrel (bP are two examples of this
architectural trend. Even though these smart cameras wepeisngly small and yet powerful
with processors running at frequencies7af MHz and 12 MHz, respectively, their capabilities
were still very limited to support a more complex variety faithms.

Another type of embedded smart cameras involved platforatifing dedicated microcon-
trollers, which instead of using an OS, employed their owstaon API libraries. These plat-
forms were mostly application-dependent with some linota in terms of scalability and ease
of deployment. Despite being limited to a specific range @liaptions, and designed to be wall-
powered, their APIs were optimal and reliable reaching Ipigitessing rates in the order3if fps.
For instance, Kleihorst et al. [55], presented a smart camerte with a Xetal-1I high-performance,
yet low-power single-instruction multiple data processioown in Figuré 1]4. The camera’s pro-

cessor is equipped with dedicated peripherals for fransedbaeal-time video analysis. The pro-
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(a) Cyclops (b) Imote2

Figure 1.3: Embedded smart cameras running TinyOS.

cessor handles interrupts from the Data Input/Output msme(DIP/DOP), communicates with
the outside world and configures other blocks. The averageipoonsumption of the processor is

600 mW when working at 84Mhz.

WIRELESS

Figure 1.4: Wireless camera architecture introduced byhidlst et al. [[55]

Others platforms following this type of architecture wehe MeshEyel[53], XYZ[[44], and
Panoptes [39], shown in Figure 1.5 (a-c). These platforms Haxibility and scalability issues in
general. Moreover, they employ processors running at 2086 BHBMhz, and 56.7 Mhz (to control
demanding peripherals), with higher energy consumption.

With the advancement in semiconductors and RISC microrobets, a new era in the embed-

ded smart camera design started; smart cameras becamersmsite and more efficient in terms
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(a) MeshEye (b) XYZ. (c) Panoptes
Figure 1.5: Other embedded smart cameras examples.
of power consumption.
The CMUcam2[[46] shown in Figufte 1.6 (a) is a low-cost embedmmera that could be cat-
egorized between the previous two classes. Having a 75MIBZRrocessor ang’4dKB SRAM,
and being equipped with a wireless mote running tinyOS, thege powerful enough to run a

larger set of applications. Additionally, they contain@fint computer vision API libraries.

(a) CMUcam 2 (b) CMUcam 3

Figure 1.6: CMUcam embedded smart cameras.

The camera was small, flexible and easy to deploy. Their degas intensively studied and
highly accepted in the sensor network community. Howewveg, td the limited memory and pro-
cessing power, only low-level image processing could btopmed. Later on, the CMUcam3 [56],

shown in Figuré 116 (b), was introduced, but the design wilidastking processing power as re-
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ported by Casares et dl. [64]. Consequently, they propaséuarovement to the existing design
by attaching a SunSPOT mote (from SUNJ[57]) as shown in Fifulde Hence, some of the pro-
cessing demand could be handled at the ARM micro-contrillédre mote. They proposed their
own middleware interface so the camera and the mote couldegffiy communicate with each

other.

Figure 1.7: CMUcama3 featuring a SunSPOT wireless mote.

With the advancement in embedded micro-computing, emluksic@rt cameras have become
sophisticated Systems on Chip (SoCs), with dedicated ramlthat support complex vision al-
gorithms and video/image analysis. In particular due tordmearkable improvements in ARM
(Advance Risc Micro-controllers) technology, the idea a¥img Linux running on the cameras
became feasible and scalable. The CITRIC camera [63], simWwigure[1.8, is a great example
of an efficient low-power architecture, which contains ggtovesources to run demanding vision

algorithms on a real-time basis. We have used the CITRIGqutatfor our experiments.

Figure 1.8: CITRIC embedded smart camera Mote
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1.2 Thesis Contribution

The primary contributions of this thesis are (i) the designplementation, and testing of
lightweight computer vision algorithms, which are aware aaccessfully overcome the limita-
tions of embedded platforms (in terms of power consumptihraemory usage), (ii) the devel-
opment of adaptive methodologies to increase batteryimtebf the embedded smart cameras,
and (iii) development and implementation of hardwaredleyerations to increase the energy ef-
ficiency further. The contribution in this dissertation igided into three parts.

The first part presents a background subtraction algorithmam object detection system to
be imported into an ARM micro-controller. A lightweight aefficient algorithm for salient fore-
ground detection is presented; it is highly robust agaigsiting variations and non-static back-
grounds (i.e. scenes with swaying trees, water fountagsjedl as strong lighting changes). The
performance of the algorithm is better than or comparabiate-of-the-art background subtrac-
tion methods, such as mixture of Gaussians, Eigen- or Cadkebased background subtraction
methods while providing a notable reduction in the memogunements, as well as the reduction
in the number of memory accesses per pixel.

The second part presents a feedback-based object detantdracking algorithm to decrease
the processing time of a frame. The algorithm estimatetipasi of the objects being tracked
and feeds this information to the background subtractiagest Hence, the detection process in
the subsequent frames become localized, which leads teaiein the processing time and the
energy consumption.

The third part is related to the optimization of the algaritht different levels of the embedded
architecture. This algorithm is optimized at the API, medare, and hardware levels to directly
access the pixel information of the CMOS sensor. Only theired pixels in the predicted area
(based on location prediction) are acquired in order to cedhe unnecessary communications
overhead.

The algorithms were initially designed and tested by usirgTMAB. They were then coded

in C/C++ to be imported on to the ROM memory of the embeddedtstamera. The execution of
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the algorithms rely on embedded Linux as central manageorentThe camera used for testing
is a CITRIC camerd [63] shown in Figure11..8.

Chaptei 2 describes the hardware architecture of the camserhin this project. It describes
different components of the CITRIC embedded smart cameraddition, a brief description of
the wireless communication capabilities of the camera risgqteovided in Chapter 2.

Chaptei B presents our light-weight and efficient backgdaumodeling and foreground detec-
tion algorithm. This algorithm runs on the camera boardsrdeoto detect and segment moving
objects (person, cars, etc.). It is highly robust againgtting variations and non-static back-
grounds. The memory requirement per pixel and the allogatfat is described. The number
of memory accesses and instructions are adaptive, and areaded according to the amount of
activity in the scene and on a pixel’s history.

Chaptef # describes the feedback-based background didoirand tracking algorithm, which
provides significant savings in processing time. Then imptdd5, an adaptive methodology is
presented that can send the camera to idle state not only thbestene is empty but also when
there are target objects. Subsequently, a combined methatddduced, that employs the feedback
method and the adaptive methodology together providindpéursavings in energy consumption.
Finally, a detailed comparison of these methods is predeaiteng with the gains in processing
time as well as the significant savings in energy consumptiehbattery life increase.

Hardware/software interactions are discussed in ChapteiOferations are performed at
hardware-level to (i) change the image resolution, angh@rform image cropping based on search
regions obtained from the tracking stage. Moreover, erpenial results are presented to show the

advantages of implementing hardware operations.

1.3 Publications

| have received a third place award with my work titled “Enegdficient Feedback Tracking on
Embedded Smart Cameras by Hardware-level Optimizatiotiieafifth ACM/IEEE International

Conference on Distributed Smart Cameras in Gent Belgiurhl 20
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My research work during my Ph.D. studies has resulted indhewing articles published in

prestigious and peer-reviewed journals and conferenaseprbngs.

1.3.1 Peer-reviewed Published Journal Papers

[J1] K. Ozcan, A. K. Mahabalagiri, M. Casares, and S. Velgtas “Automatic Fall Detection and
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and Selected Topics in Circuits and Systepps 125-136, June 2013

[J2] M. Casares and S. Velipasalar, “Adaptive Methodolsdite Energy-efficient Object Detec-
tion and Tracking with Battery powered Embedded Smart CagfdEEE Transactions on
Circuits and Systems for Video Technolpgyl. 21, issue 10, pp. 1438-1452, October 2011.

[J3] A. Sharma, D. Bullock, S. Velipasalar, M. Casares, Janditz, N. Burnett, “Improving
Safety and Mobility at High Speed Intersections with Inrtavas in Sensor Technology,”
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pp. 253-263, 2011.

[J4] Y. Wang, M. Casares, and S. Velipasalar, “Cooperathjea tracking and composite event
detection with wireless embedded smart camerdEEE Trans. Image Processvol. 19,

no. 10, pp. 2614-2633, Oct. 2010.

[J5] M. Casares, S. Velipasalar, A. Pinto, “Light-weighti&at Foreground Detection for Em-
bedded Smart CameragZomputer Vision and Image Understandingl. 114, issue 11,

pp. 1223-1237, 2010.

1.3.2 Peer-reviewed Published Conference Papers

[C1] A. Almagambetov, M. Casares, S. Velipasalar, “Automas Tracking of Vehicle Rear Lights
and Detection of Breaks and Turn SignaRdc. of the IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CI$DAly 2012.
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A. Sharma, M. Casares, S. Velipasalar, D. Bullock, “ ¥idlrea Detection for Reducing
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lenges,”Proc. of the 18th World Congress on Intelligent TranspodiaSystems2011.

M. Casares, P. Santinelli, S. Velipasalar, R. Cucehi&. Prati, “Energy-efficient Feed-
back Tracking on Embedded Smart Cameras by Hardware-lgteh@2ation”, Proc. of the
ACM/IEEE International Conference on Distributed Smarh@aas August 2011 1eceived

the 3rd place paper awardg.

M. Casares, P. Santinelli, S. Velipasalar, A. Prati &dCucchiara, “Energy-efficient
Foreground Object Detection on Embedded Smart Cameras foidee-level Operations,”

Computer Vision and Pattern Recognition Workshops (CVERUve 2011.

A. Sharma, D. Bullock, S. Velipasalar, M. Casares, hrfitz, N. Burnett, “Improving Safety
and Mobility at High-Speed Intersection with InnovationsSensor TechnologyProc. of

the Transportation Research Board Annual Meetidan. 2011

M. Casares and S. \elipasalar, “Resource-Efficienieg8aForeground Detection for Em-
bedded Smart Cameras by Tracking FeedbRati¢c. of the IEEE International Conference

on Advanced Video and Signal-Based Surveillance (A\ZB3D.
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M. Casares and S. \elipasalar, “An Adaptive Method Emrergy-Efficiency in Battery-
Powered Embedded Smart Camer&sgc. of the ACM/IEEE International Conference on

Distributed Smart Cameras (ICDSCGeptember 2010.

Y. Wang, M. Casares and S. Velipasalar, “Cooperatilge€ Tracking and Event Detection
with Wireless Smart Camerag3ioc. of the IEEE Int'l Conf. on Advanced Video and Signal

Based Surveillanggp. 394-399, 2009.

M. Casares, A. Pinto, Y. Wang and S. Velipasalar, “Po@ensumption and Performance
Analysis of Object Tracking and Event Detection with Wisdd&Embedded Smart Cameras,”

Proc. of the Int’l Conf. on Signal Processing and Communaatystems (ICSPC009.

M. Casares and S. Velipasalar, “Light-weight Salieateground Detection for Embedded
Smart CamerasProc. of the ACM/IEEE International Conference on Distitidsth Smart

Cameras (ICDSG)pp. 1-7, Sept. 2008.

M. Casares, M. C. Vuran and S. Velipasalar, “Design &Vieeless Vision Sensor for
Object Tracking in Wireless Vision Sensor Networkrbc. of the ACM/IEEE International
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Y. Zhao, M. Casares and S. \elipasalar, “Continuouskieound Update and Object
Detection with Moving Cameragltoc. of the IEEE International Conference on Advanced

Video and Signal Based Surveillanpp. 309-316, Sept. 2008.

Our work related to background subtraction presented ipteh@, is published in part in [J2],

[J3], [C13]. Our foreground object detection algorithm esdjned for embedded smart cameras.

The algorithm is implemented and imported to an embeddeaand the results are reported

at the end of chaptéd 3. This lightweight background subitrads also utilized in chaptefts[4 5

as foreground detection stage for object tracking pugpo®eir work on feedback tracking and

adaptive methodologies for increasing battery-life islged in [J4],[C9],[C10],[C12]. Finally
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the work related to hardware level optimization presentedhaptet b, is published in [C6] and

[C7].
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Chapter 2

CITRIC camera: Architecture

This chapter presents the details of the architecture o€th&®IC embedded smart camera [63].
It provides an understanding the limitations and challerigeolved when designing algorithms
to be imported on to embedded platforms. It will also introglthe terminology to be used in
the following chapters. Even though the majority of the comgnts of the CITRIC camera are
described in this chaptér, 6 is where the hardware/softimggeactions are explained. Understand-
ing the camera’s architecture and its challenges provigiglsdr motivation to design lightweight

algorithms suitable for embedded image/video processiskgt

2.1 The CITRIC Camera

Figure 2.1: The CITRIC camera mote.

The CITRIC camera depicted in Figure 2.1 is a fully prograrale@&mbedded platform with
communication capabilities. The CITRIC camera offers {gge communication using a Telos

B (wireless sensor mote) attached to it. The block diagranwshin Figure[ 2.2 represents the
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hardware architecture of the camera. The camera is equipjteda general-purpose processor
running embedded Linux (see Section|2.2), an image sens®iS@action 2]3), external memories
and other supporting circuitry. The ARM PXA270 microprasasis a fixed-point processor from
Marvell with a maximum speed of 624 MHz. The typical frequescsupported by the CITRIC
camera range from 208 to 520MHz. The board also incorpoeatéseless MMX co-processor to
accelerate multimedia operations. In terms of memory ness the CITRIC camera comes with
256 KB of internal Synchronous RAM (SRAM) while the availatexternal memory is composed
of 64 MB of SDRAM, and 16 MB of NOR FLASH. The latter has the chitity to execute code
directly out of the non-volatile memory on bootstrap (eXemuIn-Place, XIP) and is natively

supported by the PXA270 processor.

|IEEE 802.15.4 Mote

|
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Figure 2.2: The block diagram of the CITRIC camera.

2.2 The Microprocessor

The CITRIC camera platform is equipped with a general-psegmocessor (Intel PXA270 proces-
sor [75]) running embedded Linux. This facilitates the degenent of software applications using
higher level programming languages such as C/C++. The PXARdcessor is a fixed point inte-
grated system-on-a-chip microprocessor for high-perémoe, low-power, portable, handheld and
handset devices. It incorporates the Intel XScale teclyyalath on-the-fly voltage and frequency

scaling and sophisticated power management to provideingieading MIPs/mW performance.
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The PXA27x processor complies with the ARM Architecture \E&inhstruction set (excluding
floating point instructions). It also supports Intel WikdeMMX integer instructions to acceler-
ate applications involving audio and video processing. FKA27x processor memory interface
supports a variety of external memory types to allow desigxilfility. The processor also pro-
vides four 64-Kbyte banks of on-chip SRAM, which can be usedgfogram code or multimedia
data. Each bank can be configured to retain its contents wigeprbcessor enters a low-power
mode. An integrated LCD panel controller provides suppartdisplays up to 800 x 600 pixels.
It permits 1, 2, and 4-bit gray scale and 8- or 16-bit coloretsx A 256-entry palette RAM pro-
vides flexibility in color mapping. A set of serial devicesdageneral system resources provides
computational and connectivity capability for a varietyapplications. The PXA27x processor in-
corporates a comprehensive set of system and peripherdidoa that makes it useful in a variety
of low-power applications. Figufe 2.3 the block diagramtaf processor. The diagram shows a
primary system bus with the Intel XScale core attached,gioith an LCD controller, USB host
controller, and 256 KB of internal memory. The system busisnected to a memory controller
to allow communication with a variety of external memory ompanion-chip devices, and it is
also connected to a DMA controller/bridge to allow commaitien with the on-chip peripherals.
Some of these peripheral functions provide the ability todia directly the image sensor. In par-
ticular, the Quick Capture Interface (QCI) provides a catioe between the processor and the
image sensor (as shown in Figlrel2.4). The QCl is able to exdata and control signals and per-
forms the appropriate data formatting before routing tha tlathe memory using direct memory
access (DMA). The 12C interface is directly connected toSkeal Camera Control Bus (SCCB)

interface of the image sensor, and it is used to access tligeation register set.

2.3 The Image Sensor

The image sensor on the CITRIC camera is a OmniVision OV988% which is a low voltage
SXGA CMOS image sensor with an image micro-controller onrdodt supports image sizes

SXGA (1280 x 1024), VGA (640 x 480), CIF (352 x 288), and anyszaling down from CIF to



CITRIC camera: Architecture 18

RTC /N
08 Timers
4 xPWM f E
Interrupt : Memory
Controller Quick Controller 3
Capture ||Internal LCD F]
S Interface || SRAM ||Controller A‘ﬁrsss =
&
HOI Data ”§
s é
AC o7 Variable B
- e P Latency I/O ASIC
= UART 2 DMA / Control ™1
§ EpRinean] |3 Contr:ller System Bus S
2 ¥ an /
> [ Ee | F | Brige pCoud M
o CompactFlash |[% PEXCVR s
L | |Fastinfrared - ocket 1
o 2 E Control
g | [ 5
S | ["usB Ciient = Intel USB
O || Controlier 2 XScale® tiost Dynamic SDRAM/
2 o Controller Mo Pl oot
£ Control = Rom
% Debug e
£ | Controller Static 4—pF ROM/
A Memory jmfl Flash/
Power 13 32.768 Control SRAM
Management/ MHz kHz
Clock Control Osc Osc
Primary GPIO J { J
y _lm "

JTAG

Figure 2.3: Intel PXA270 block diagram.

40 x 30, and provides 8-bit/10-bit data formats|[63]. It cpe@te up to 15 frames per second (f/s)
in SXGA mode and up to 30 fps working in VarioPierH:mode when performing sub-sampling.
Figure[2.4 shows the interconnection of OV9655 and the IQtétk Capture Interface on ARM
PXA270. The image sensor offers the full functionality ofsarera and image micro-controller on
a single chip. There is a complete control over image qudbtynatting and output data transfer
and all required image processing functions are also pnogpable. The Serial Camera Control
Bus (SCCB) interface is used to program the sensor behayisetting all the control registers in
the device. Itis an Inter-Integrated Circuit (12C) compkdihardware interface. The Digital Video
Port, used to capture images, provides a connection bettheesensor and the CITRIC camera
main processor PXA270. Itis used to capture the image data lunidirectional communication

bus transferring 10-bit data signals and the line and frametgonization signals [75].
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Figure 2.4: Interconnection of OV9655 and the Intel Quiclptee Interface on ARM PXA 270.

Figure 2.5: The TelosB mote

2.4 The TelosB Mote

The CITRIC camera provides a Joint Test Action Group (JTAG®] pffering serial and 12C com-
munications for data transferring to external devices. gdr¢in the embedded platform is used to
connect to a TelosB (wireless sensor mote) for wireless comication purposes. The TelosB is a
wireless mote from Crossbow Technology. It is an ultra loweowireless sensor module (mote)
developed by UC Berkeley.

The camera communicates with the mote using a dedicatedt@syrous serial interface. The
main features of the mote are: minimal power consumptimy, &ause, and software and hardware
robustness. TelosB [77] is based on the Texas Instrumenf48IE microcontroller, Chipcon
CC2420, IEEE 802.15.4-compliant radio, and USB. The marinaata rate of 802.15.4 is 250
kbps per frequency channel (16 channels available in th&RZband). Even though, the TelosB

is capable of frame streaming over the wireless channeamhdsmum rate is too low to achieve

lvarioPixel: Newly Developing technology that uses muktipixels acting as a single pixel in order to improve
the performance of the chips. Thus, significantly improJawg light performance and enhance the video capture.
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Figure 2.6: The TelosB architecture

real-time image streaming from the camera back to the setvgigh quality. On the other hand,
the existing rate is optimal for sending extracted featores the network if an event of interest
occurs. Since TinyOS$ [47] is the operating system runninthermote, it offers the capability of

substituting different standard routing protocols toetiite particular needs of an application.

TinyOS is a component based operating system suitable $sareh in wireless embedded
systems for sensor networks. TinyOS was developed for tow;power nodes, whose im-
ported applications operate with severe memory and powestents. TinyOS is the current
platform of choice in the sensor network community. It hedigselopers face the challenges of
limited resources, low-power operation, and event-cemmncurrent applications. TinyOS has a
component-based programming model, codified in NesC laggg[&0], a dialect of C. It is not an
OS in the traditional sense; it is a programming frameworkeimbedded systems, and a set of
components that enable the compilation of an applicatpetific OS into the user’s application.
The architecture of the system and composition of the compisnallow researchers to work at

any level, from details of link layer communication protécaop to the application semantics [78].

In TinyOS, the hardware primitives, such as register acaessmodule flags, are exposed
through a hardware presentation layer (HPL). A platformpedwlent hardware abstraction layer
(HAL) exposes hardware module functionality so that thedalver of the hardware may be used.

On top of the HAL abstraction, there is a platform independadio stack (link protocol and
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physical layer access) for the CC2420 transceiver thatigeswegister access to the radio device;

the radio stack then acts as a library that uses these pa@®iid control the radio.
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Chapter 3

Lightweight salient foreground detection for
embedded smart cameras

3.1 Introduction

An embedded smart camera is a stand-alone unit that not aptyies images, but also includes a
processor, memory and communication interface. With bafgtewered and embedded smart cam-
eras, it has become viable to install many spatially-dsted cameras interconnected by wireless
links. However, wireless and battery-powered smart-cametworks introduce many additional
challenges since they have very limited resources, sucheage processing power, memory and
bandwidth. The algorithms running on the camera boardsligdlv@dightweight and efficient. They
should require less memory for storage, and consume lessrpbwaddition to the accuracy of an
algorithm, it is very important to consider its efficiencyemory requirements and portability to
an embedded processor during algorithm design.

This chapter presents a lightweight and efficient backgidauodeling and salient foreground
detection algorithm that is highly robust against lightwayiations and non-static backgrounds
such as scenes with swaying trees, water fountains, ripmater effects and rain. The memory
requirement for the data saved for each pixel is very smaténproposed algorithm, and this is
achieved without sacrificing accuracy. Moreover, the nunolbenemory accesses and instructions
are adaptive, and are decreased even more depending ondbatarhactivity in the scene and on

a pixel’s history.
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Foreground detection is the first step in most of the objextking applications. Existing
methods for foreground detection can be broadly classiiiedwo categories: temporal difference
methods([Z,33], and background subtraction methiods [522,94,16,23,25,29, 36,49]. Temporal
difference methods subtract two consecutive frames amdapely a threshold to the output. These
methods perform well when the background changes over tioveever they cannot detect all the
pixels of a moving object. Background subtraction methadklta model of the background and
subtract this from the current image to detect objects irsteme. In order to adapt to changes in
the environment, the background model is usually updated towe [6] 12, 14, 16, 23, 25, 36,/49].
The method proposed in this chapter is a hybrid method, aaohtloys temporal difference to

build the background model.

Horprasert et al| [8] obtain expected chromaticity by th#haeretic mean of the RGB values cal-
culated over a number of background images. By using setreesholds, pixels are classified as
foreground, background, shadow and highlighted backgtottidden Markov Models (HMMS)
have been employed to represent the variations in the pitehsity as discrete states [15| 22].

Nonparametric background models have been used in [128P8, 3

Oliver et al. [21] present an eigenbackground method, wimeages of a static background are
collected, and PCA is employed to reduce the dimensionafispace. Input images are projected
onto the PCA subspace, and a threshold is applied to theetife between the projected and

current image to find the foreground regions.

Adaptive Mixture of Gaussians (MoG), introduced by Stau#iad Grimsonl[[16], is one of
the most commonly used background subtraction methods tehcomplex and non-static back-
grounds. However, a few Gaussian distributions are usumltysufficient to accurately model
backgrounds having fast variations. Methods have beeodnted later that are based on Gaussian
mixtures [24], 33, 35, 37]. Zivkovic [33] proposed an imprdadaptive MoG model to constantly
update the parameters of a Gaussian mixture and to simalialyeselect the appropriate number

of components for each pixel.

Kim et al. [32] proposed an algorithm for background modgliwhere sample background
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values at each pixel are quantized into codebooks durimgiricga which represent a compressed
form of the background model. This algorithm performs wetlen background is non-static or
there are lighting variations. However, its performancelferent video sequences is dependent

on the choice of multiple threshold values.

Although many methods have been introduced for foregrounpelcd detection, much less at-
tention has been paid to the memory requirement and theljldstaof these algorithms to an
embedded processor. Lighting variations and non-stattkgraunds make the foreground detec-
tion problem even more challenging, since we are interestéyl in salientmotion in tracking
applications. We need to separate cases of uninterestitignmsuch as swaying trees and wa-
ter fountains, from the salient motion regions. The netgsdihandling these challenging cases

increases the algorithm complexity, and thus memory requants.

In this chapter, we present a lightweight method that is llgighbust against lighting variations
and non-static backgrounds. The memory requirement ofribygaged method for the data saved
for each pixel is very small compared to many traditionalkgmound subtraction methods. For
instance, Stauffer and Grimsadn [16] use multiple (threeue)fGaussian distributions per pixel,
to model non-static backgrounds. Kim et al.|[32] form codedgdfor each pixel to capture the
different values at that pixel location. Each codeword factepixel has nine entries, and on the
averages.5 codewords are needed for a pixel. The MoG method reqaés 32 bytes per pixel
if three Gaussian distributions and one color channel aed.uShe codebook method requirss
bytes on the average for one color channel. Whereas, in otlnoaheat mos6.25 bytes are needed

per pixel. We provide a detailed comparison of the memoruiregqents in Section 3.3.

The proposed algorithm differentiates between salient@mdsalient motion based on the his-
tory and reliability of a pixel's location, and by considagineighborhood information. The con-
cept of reliability will be explained in detail below. Thedaround model is selectively updated
with an automatically adaptive rate, thus can adapt to relpeghges. For instance, if a location is
deduced to be very reliable based on its history, a religitflag is set tal for this location, and a

higher background update rate is used, i. e. this locatiarc@porated to the background faster.
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As opposed to existing methods, each pixel is treated diffity based on their histories. Instead
of requiring the same number of memory accesses and instmador every pixel, we require less
memory access and less instructions for stable backgrowetspi.e. for pixels whose reliability
flag is set tal. If a car enters the scene, for example, then the relialfidigs of the pixels occluded
by the car will be set back t0. Thus, if we plot the number of pixels with reliability Hitversus
the frame number, the changes and peaks in this plot wiltatdithe portions of the video with

activity. Thus, this plot can serve as a tool for activity soary.

Unlike many traditional methods treating each pixel indially, in the proposed method, in-
formation is obtained from neighboring pixels and incogied into decision making, which in-
creases accuracy and robustness. The algorithm can usetanigity, or one color channel, and
still provides very reliable results. The experimentalitsspresented in Sectién 8.3 were obtained
by using the red color channel only. The experiments wer®paed on different video sequences,
with non-static backgrounds and varying levels of diffigulind the same threshold values were
used for all of them. Thus, the dependency on the threshble@s s low. The experimental results
also demonstrate the success of the proposed lightweighbehéen challenging situations such as

scenes with water fountains, swaying trees, and strong amaldrain.

We presented an initial version of the proposed algorithrf65j. In this previous version,
static foreground objects are not pushed into the backgrolm|4], we proposed a new version
with which static foreground objects can be pushed into tekgroundf desired. This version
also has less memory requirement as well as memory accehs.fifnctionality of incorporating
static objects into the background is added, the memoryinegent of the previous version [65]

is 7.25 bytes per pixel, which is more than tie5 required by the improved version [4].

We then modified and improved our previous wark [4, 65] in tewhthe number of memory
accesses, number of instructions, and thus speed. Theaealsout whether a pixel is a fore-
ground pixel is made differently and more efficiently. In &ash, we implemented our previous
algorithm [4], and the version presented in this chaptethemticroprocessor of an actual embed-

ded smart camera, and compared them in terms of processed,sand the operating current of
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the camera board. To measure the current, we used a precifeseepe and a 1-ohm resistor
configuration placed at the input of the supply source. Alge,compare the proposed method
in detail with other state-of-the-art background subtaactalgorithms in terms of their memory
requirement, accuracy and processing time. We ran themgesbsalgorithm and the other methods
on challenging outdoor and indoor video sequences, andsherg the results obtained with nine
different videos. These video sequences include videosmflifferent windy scenes, two differ-
entrainy scenes, a video of a fountain, a video of a lake asheba of two different streets. We also
present the Receiver Operation Characteristics (ROCesuir different background subtraction
algorithms.

The rest of this chapter is organized as follows: The detédillse proposed method is explained
in Sectiori 3.2. Specifically, building of the background mipdounters and how they are updated,
salient foreground detection, adaptive background mooehte, and adaptive number of memory
accesses and instructions are described in Se¢tion$ Braugti 3.2.5, respectively. Experimental
results are presented in Section 3.3, and the chapter isuctmtbwith a summary in Sectign 3.4.

3.2 Proposed Method

The proposed algorithm employs a temporal difference nuetimbil a complete background model
is built. It differentiates between salient and non-sdlieotion based on the history of a pixel’s
location, and by incorporating neighborhood informatiét.each frame, each pixel is classified

either as a background or a foreground pixel, and its stegetiso be0 or 1, respectively. For a

Pixel (i.j)

Gary Level Intensity Model (1 byte)
M

¥
CC1 - Counter1 (1 byte) State Bit (1 bit) )r;g
)
v

CC2 - Counter2 (1 byte) S

CC3 - Counter3 (1 byte)

Memory Bit (1 bit)
R

CC4 - Counter4 (1 byte)

Figure 3.1: Memory required for a pixel with the proposedmoet
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pixel at location(s, j), a counteh(i, j) holds the number of changes in the state of this pixel during
the lastl00 frames, i. e. the counté(i, j) keeps the number of times a pixel's state changes from
0 to 1 or vice versa. The stability of a pixel at locati¢n j) is determined by this countéxi, ;).

The motivation is that the lower the value/d{i, j), the more stable and reliable that location is, or
vice versa. Until a complete background model is built, tfa¢esof a pixel is determined by using

temporal difference.

The algorithm has an adaptive background model updatelfat@ixel location is determined
to be consistently stable and very reliable, then the valuki® pixel is incorporated to the back-
ground model with a higher weight. Instead of treating earblindependently, information from
neighboring pixels is used to differentiate between sakr non-salient motion, and in turn to
classify a pixel as a foreground or background pixel. Thaitgedf the proposed algorithm will be
explained by referring to the pseudo-code provided in T&hle Additionally, Figuré 3]1 shows

the amount of memory required for a pixel with the proposethiod:

3.2.1 Building the Background Model

A temporal difference-based method is used to build a camplackground model\/. In order
to detect slow motions or stopping objects, a weighted actation, /¢, is used for temporal

difference. At pixel locatiorii, 7), I is defined as:
Itac(imj) = (1 - waC)Ita—cl(i?.j> + wac‘lt(iaj) - It—1<7:7j)| (31)

wheret is the current frame numbef, is the current image frame, ang. is the weight./{° is set
to be an empty image, and,. is set to be).5.

At the beginning, the background model is an empty array.alé3.1,M denotes the back-

ground model, and(, j) denotes the state of a pixel at locati@n;j), which is defined as:

. L yigp(iyg) > 7
s(i,j) = (3.2)
0 Otherwise.
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SetM (i,j) = —1foralli,j; Sets(i,j) =0, R(i,7) = 0for all 4, j;

Setly =first frame; Setnodel_complete = false;
for every framet > 1
Setl, = t'" frame, and sel,., (i, j) = 0 for all 4, 5;
if 34,7 for which M (i,j) = —1
computel; setly;rp = I, 7 = 714,
else
setmodel_complete = true;
computel;"d = |I, — M|; setlyrr = I" 7 = 75

forall 4, j
if [diff >T
if (s(i,7) == 0), sets(i,j) = 1; updateCCy, for k € {1...4};
else
if (s(i,j) ==1), sets(i,j) = 0; updateCCy, fork € {1...4};

if model_complete == false
if M(i,7) is not equal to-1
M(i, j) = ali(i, j) + (1 — )M (i, j);
else
if model_complete == true
if I"4(i,5) >
if R(i,7)==0
Computeh(i,j) = Y& CCy ;
if h(i,j) <7
Setl (i, j) =1, SetR(i, j) = 0;
else
Setneighb(i, j) to be3 x 3 neighb. ofh(i, j)
if N > 0.7(2w + 1)?
Ioutp(iaj) = 17R(Z7]) =0;
else
M(Zaj) = O‘It(iaj) +(1- Q)M(Zaj)'
else
[outp(iaj) = 17R(Z7]) =0,
else
ResetF'G_duration(i,j) = 0;
if tis a multiple of25
if R(i,7)==0
Computeh! -, (i, 5);
if (h§—50(i>j) < 2)’ SetR(i>j) =1
if R(i,7)==1
M(i,5) = 0.51;(i, 7) + 0.5M i, 5);
elseM (i, ) = al(i,j) + (1 — a)M (i, j);
if Ioutp(i,j) == 1 andt is a multiple 0f100
Create and/or increadeéG_duration(i, j);
if 100 x FG_duration(i,j) > T
M(i,5) = 0.5 x Ii(i,5) + 0.5 x M(i,7);

if model_complete == false
Setl;_1 = I;
returnZ,ysp

Table 3.1: Salient foreground detection algorithm
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During the model building periody; (i, 7) is set to bel“(i, j), andr is set to ber; = 15.
After the background modél/ is complete; is set to ber,, = 25, andly; /(¢ j) is obtained by
using the model, as explained below. Since temporal difference is basedosecutive frames,
and tends to give smaller differenceghas a smaller value that),.

Whens(i, j) = 1, i. e. when the pixel is classified as foreground, this piaehtion in the model
(M(3, 7)), is not updated/changed. On the other hanslifj) is 0, the current value o#/ (i, j) is
checked. IfM (i, j) is not filled yet,M (i, j) is set to be, (i, j), which is the current pixel value. If
M(i, j) is already filled, its value is set to b (i, j) = 0.95M (7, 5) 4+ 0.051,(7, ). Thresholded
temporal difference cannot detect all the pixels of a moabgct as depicted in Figure 8.2. Thus,
existing model is given 85% weight not to corrupt it by direct use of the values comingrfro
the internal region of a moving object. As moving objectshia scene change their location, the
M will gradually be filled as seen in Figure 8.3. The processuiiding the background model
ends when no empty location is left M. When M is complete, temporal difference is not used

anymore.

Temporal
Differencing output

Frame 170 Frame 169

Figure 3.2: Output of the temporal difference after apmyathreshold.

3.2.2 Updating the Counters

As stated previously, the stability of a pixel at locati@nj) is determined by a countér(i, j),

which keeps the number of times a pixel’s state changes fréon, or vice versa, in the lagin0
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Frame 250

Resulting Built Model

Training Period

Figure 3.3: The background model is gradually built as mgwhjects change their location.

frames. The motivation is that the lower the valué.@f, j), the more stable and reliable that pixel

location is.

Although it may look like an implementation detail, the camgttion ofh (i, j) for each pixel at
each frame is worth emphasizing since we want fast proagsaimd we need to take the memory
requirements into account. At any frarhenve want the number of changes in a pixel’s state be-
tween frameg — 100 andt¢. This requires saving the frame number each time a changeicca
pixel's state. For locations with non-salient motion, thisturn, requires an array with potentially
high dimension for each pixel. Instead, we quantizelibi@frame window into4 intervals, and
keep a counte€'Cy(i,7), k € {1,...,4}, for each interval for pixe{i, 7). The approach is illus-
trated in Figuré 3]4. Between framésnd25, the countel”’'C; is increased each time the pixel's
state changes, between fran26sto 50 the counteilC'C; is increased etc. At the end of theo-
frame period, the count&rC is reset and its value is increased until framé is reached, and the

other counters are updated similarly. This avoids saviedrdme instances of each change. Then,

h(i,j) =Y CCy(i, j).
k=1

Countersh(i, j) are updated during the building of the model as well. Figuishows a
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COU nte r An a |ySiS The counterh(i; j) keeps the

number of timesa pixel’s state

Counter Changes = CC changes from O to 1 or vice versa.

hange was
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The reliability of a pixel at location (i; j) is - . _— .
determined by a counter h(i; j), which holds the counter CC2 counterCC3 | counlerGO4 | | countar CC
number of changes in the state of this pixel. The

state of a pixel is set to be 1 or 0, depending on the

value of the difference image Idiff at location (i; j)

Figure 3.4: lllustration of howk (i, 7) is computed.

frame from a video containing a fountain, and a plot of thenteuvalues: (i, j) for different pixel
locations(i, 7). As can be seen, the counters are higher around the outedéaes of the multiple
fountains, where the water is constantly moving and sptashiihe high counters indicate regions
with low reliability and non-salient motion.

It should be noted that this approach provides only an apma&tion of the number of changes
in a pixel's state without having to save the frame numberevefy state change. For instance,
at frame101, it gives the number of changes that happened between frainasd 101. Other
approaches can be used, and have been tried, that can dgimedpdroximations. However, they
either require introducing additional variables, andfigtiional instructions, and thus increase the
memory requirement and decrease the algorithm speed. Hsenied approach is adapted for

small memory requirement and better computational speed.

3.2.3 Salient Foreground Detection

As can be seen in Talle 8.1, after the background model i theh the difference image is set to
be]diff = Itmd = |]t — M|
If I"(i, 7) < 7, then the pixel locatiori, j) is classified as background. On the other hand,

as opposed to many traditional model-based backgroundastion approaches, in the proposed
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Counter h at frame 6800

Frame 6800

Figure 3.5: Original frame and the plot of the counter valug@s;) for different pixel locations
(1, 7). Higher values correspond to outer boundaries of multiplefains, indicating regions with
low reliability and non-salient motion.

scheme, satisfyind™(i, j) > 7 is not enough for the pixel locatiofi, j) to be classified as
foreground. Instead, reliability constraints are emptbieedifferentiate between salient and non-
salient motion. A pixel location satisfyingf"¢(i, j) > 7 is classified as foreground only if its
counterh(i, j) satisfiesh(i,j) < 7,, wherer, = 15 is the percentage threshold. The reasoning
is that if h(7, j) < 15, then it means that the state of the pixel at this locatiomghkd less than
15% of the time during the lasto0 frames making this location a reliable one. In other wordis, t
location is not likely to be in a non-salient motion regionusg, the intensity difference greater

thanr is caused by a salient motion with high probability.

If 1"4(i,5) > 7 and h(i,j) > 7,, then we do not classify this location as background right
away. We take 42w + 1) x (2w + 1)-window neighborhood, where = 1, around location
(i, 7) and check thé counter for all the neighbors. In Table B, is the number of neighbors
whose counter is less thanr,. If the majority of the neighbors (more than%) have a low
counter, i. eh < 7, then location(s, j) is set to be a foreground pixel or vice versa. This way, we
take into account the fact that neighboring pixels are nd¢jpendent from each other. We obtain

information from neighbors, which increases accuracy abdstness.



3.2 Proposed Method 33

3.2.4 Adaptive background model update

In order to adapt to changes in the environment, such asrglhanges, the background model
needs to be updated over time. We perform the update of thelmamnd modell/ in a selective
way, and with an automatically adaptive rate. The motivatithat when a pixel’s location is
deduced to be consistently reliable and stable, then thee\atlthat location is incorporated into
the background model with a higher weight.

If 1'4(i, j) < 7, then the algorithm concludes that it is safe to update tiekdraund model
at this location. However, by looking at the summary of theerd past of a pixel, a higher weight
can be given to the current pixel value, and better adaptsterfahanges in the background. In
other words, the background update rate an automaticadiytat.

The very compacsummaryof a pixel’s history is formed as follows: Rather than savngny
values for each pixel location, such as averages for thrke galues, multiple Gaussian distri-
bution means and variances, multiple codewords with nieltgmtries, we use two of the four
counters CCy, k € {1,...,4}) corresponding to the lasb frames. Leth! (i, ;) denote the
sum of these two counters. Thug, (i, j) holds the number of state changes at pixel location
(i, j) during the last0 frames. Ifhl_.,(i, j) < 2, it means that the state of this pixel has changed
only two times or less during the lash frames, i.e. this location is very reliable. We perform this
check every5 frames, and if the condition is satisfied, we set the booleaiableR(i, j), which
is a reliability flag, to bel. This location is then incorporated to the background mudldl a 50%
weight.

On the other hand, if™(i, j) < = (Figure[3.6) andR(s, j) is equal to0, then95% and5%
weights are given to the existing model value and the cupixet value, respectively. Figure 3.7
shows unreliable pixel locations in a parking lot area. They produced due to swaying tress
and sun reflections on the buildings’ roofs. If a pixel at kiwa(:, j) is classified as a foreground
pixel, thenM (i, j) is not updated, which prevents corrupting the existing rholiewever, if a
pixel location(i, j) is classified consecutively as foreground for a specifietbdaf time (') due

to a static foreground object, then we start to push thigioedo the background by giving #0%
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Figure 3.6: lllustration of the behavior of a pixel’s loaati(i, j) in both reliable and unreliable
cases

weight. T" is set by the user, and determines how much time a stoppect sbjeuld be static to be

considered as part of the background.

3.2.5 Adaptive number of memory accesses and instructions

In Sectio3.214, we described how we set the valug(@f;). If I*¢ < 7, and currenfz(i, j) is 0,
and the frame number is a multiple &if, we compute the value @f_.,(i, 7). A smallhl_.,(4, j)
indicates that the pixel's state has not changed much iragtéd frames, and thu&(z, j) is set to
bel.

At the beginning, for each pixel, byte is allocated for eact'C, wherek € {1,...,4}, 1
byte for the value saved i/ (i, j), 1 byte for the previous frame valugé bit for the state variable
s(i, 7), andl bit for the reliability flagR(z, j) making the total memory allocatidit bits per pixel.
After the background model is built, the pixel values of tleyous frame are no longer needed.
Instead, the memory allocated for the previous frame vatuaesed for the"'G_duration variable.

If the value ofR(i, j) is 1, this indicates that this pixel is a very reliable and stddalekground
pixel. With the presented method, first type of saving ocehren there is a foreground object in
the scene covering reliable background pixels. WHe&f(i, j) > 7, h(i, j) is not calculated for
very reliable background pixels, i.e. pixels for whigtt:, j) is 1. The reasoning is the following:

h(i, j) is employed to determine the stability of a pixel by lookingsstate changes in the last)
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Figure 3.7: lllustration of unreliable areas due to swaymegs and sun reflections (circled). Large
peaks revel them reporting high counts kepkin, (7, j).

frames. IfR(i, j) is 1, it is already known that this location is very reliable, $hwe do not need
to calculate and check the value ifi, 7). In addition, we do not need to check the counters of
the neighboring pixels either. This provides significamisgs in terms of the number of memory
accesses and instructions

The second type of savings occurs evebyframes. IfR(i, j) is currentlyl, then there is no
need to computé!_.,(i, j), which provides additional savings. The detailed comparisf the

method presented here and its previous version presenfél] in terms of the processing speed,



Lightweight salient foreground detection for embedded sme cameras 36

will be presented in Sectidn 3.3.

As described above, for very reliable and stable backgrgixeds R (i, j) is set tol. Thus, the
plot of the number of pixels, whose reliability fldgi, j) is 0, versus the frame number serves as
a tool for activity summary. The changes and peaks in thisilh indicate the portions of the

video with activity. Figured._318[- 3.11 show these plotsagted for different video sequences.

ax10°
1 T T T

Number of Pixels for which R(i,j) is
equal to zero

35

3

Figure 3.8: Video of a fountain: number of pixels wilt{i, j) = 0 vs. the frame number plot.
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Figure 3.9: Traffic light sequence: number of pixels witfi, j) = 0 vs. the frame number plot.

Figure[3.8 shows the number of pixels wiit{i, j) = 0 for a video sequence of a fountain.
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Figure 3.10: Rain sequence: number of pixels Wi, j) = 0 vs. the frame number plot.

Frames 1-100 correspond to the model building period, dwinich R(, j) = 0 for all the pixels.
After the model is built, and stable background pixels artemieined, the number of pixels whose
R(i,7) is 0 drops significantly to about500 pixels per frame, and it remains around this value
until some activity starts in the scene. For example, at &&&00, there is a person walking in
front of the camera. This creates a peak in the plot. A sirsitaation occurs at franig@35, where
the detected person is closer to the camera and thus itsderger than the previous scenario. A
bigger object covers more pixels, and causes them to bafedsas foreground pixels. Thus, the
R(i,7) is set back to zero for these affected pixels. This is why gkt framer935 is higher
than the one at framgs00.

The savings provided by the proposed method increases mgtkeasing number of reliable
background pixels, i.e. pixels who#¥i, j) is 1. In Figure[3.8, low values correspond to frames
with small number of unreliable pixels, and thus more nunabeeliable background pixels. Thus,
in these portions of the video, the number of memory acceaseshe number of instructions will

be less with the proposed method. More speed analysis witddéded in Sectiof 313.

Another interesting video sequence captured at a traffit Bgows a continuous flow of cars

going in the north—south direction. The number of pixelshwit(i, j) = 0 vs. the frame number
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Figure 3.11: Rain sequence: number of pixels Wi, j) = 0 vs. the frame number plot.

plot for this sequence is displayed in Figlre]3.9. At frarg0, there are two buses in the scene
occupying a larger area than the smaller sedans and truakardseen at fram&300 and2780.
The highest peak shown in the plot corresponds to this instan

Figure[3.10 shows the number of pixels wilii, j) = 0 for a rainy scenario in which a person
goes through the view of the camera twice. The first time, tloévidual was farther away from
the camera while in the second pass, he is closer to it reguttia higher number of pixels with
reliability bit set to zero memory. A more extreme examplprissented in Figufe 3.111, in which a
sudden lightning causes a complete intensity change in tiodanmage at frama69. As a result,
a large peak is observed in the plot. After this, the total benof pixels withR (i, j) = 0 drops

again.

3.3 Experimental Results

In this section, the proposed method is compared with fiveratiackground subtraction meth-
ods, including its previous version presented in [65], owifferent video sequences with varying

levels of difficulty. Henceforth, these algorithms will beferred to as follows: ALW: Adaptive
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CB | Org-MoG | EB | LW [65] | ALW
Bytes per pixell 91 32 28 7.25 6.25

Table 3.2: Memory requirement for the data saved for eacdl fox different background subtrac-
tion methods (for one color channel)

lightweight algorithm (the method presented in this chgpt&V: lightweight algorithm|[[65], Org-
MoG: Original MoG [16], Impr-MoG: Improved MoG [33], CB: Catbook [32], EB: Eigenback-
ground [21]. In addition, we provide a detailed comparisbthe proposed (ALW) method with
other state-of-the-art background subtraction algoriimierms of their memory requirement, ac-
curacy and processing time. We also present the ReceiveatipeCharacteristics (ROC) curves

for different background subtraction algorithms.

Since embedded smart cameras have limited processing pod@nemory, it is very important
to design lightweight algorithms that require less memongtorage. First, the proposed algorithm
is compared with others in terms of the memory requiremarthi®data saved for each pixel. The
algorithm was run on the red channel, and its memory req@ntiis detailed in Sectidn 3.2.5. For
different background subtraction techniques, Table 3t2 the number of bytes necessary for the

data saved for each pixel, for one color channel.

The memory requirements for the other background subtractiethods are computed as fol-
lows. Letn denote the number of Gaussian distributions used in Org-MyG-MoG requires two
floating point numbers per Gaussian distribution, per col@nnel, per pixel (one for the mean
and one for the variance of a Gaussian distribution). It aéspiresn — 1 many floating point
numbers for the weights of distributions. Thusyifs picked to bes, eight floating point numbers
are needed per color channel. If three color channels acktheememory required per pixel 96
bytes. If one color channel is used, iB bytes. Even if the mean for each distribution is rounded

so that it can be represented by a byte, the memory requitesnstill 23 bytes per color channel.

The codebook-based method (CB) useffoating point numbers for the means of the RGB
channels? bytes for the minimum and maximum brightness values thatdideword accepted,

integer for the frequency of the codewoidinteger for the maximum negative run-length, and
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integers for the first and last access times. Thus, the taaiony needed 22 bytes per codeword.
If only one color channel it i94 bytes per codeword. In [32], it is stated an averagée.of
codewords is needed per pixel codebook. Thus, the averagmmeequirement per pixel 81
bytes.

For the EB method, the memory requirement per pixel is the baimof the best eigen-
backgrounds. During the training time the method requitesation for all the training images.
In general, 7 floating point numbers are required per pixeusl the memory neededa8 bytes.

The LW algorithm presented in [65] requir@5 bytes per pixel when the functionality of
pushing the static foreground objects to the backgroundasrporated. For different methods,
Figure[3.12 shows a bar graph of the memory requirement (ieshpyer frame for 240 x 320
frame.

Memory requirement in bytes per frame
6988800

2457800 5150400

556800 480000

o |

CB  Org-MoG  EB LW ALW

Figure 3.12: Per frame memory requirements of differenkbemund subtraction methods when
one color channel is used.

The proposed method was tested on 11 challenging video seegieand compared it with
five other background subtraction methods including ouviptes work. It should be noted that
all the displayed outputs below are the images obtaimigdout applying anymorphological or
post-processing operations. All the results of our alpamitwere obtained by using the same

threshold values for all videos, specificalty, = 15, 7,,, = 25, 7, = 15, anda = 0.05. Overall,
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the proposed method requires the least amount of memoryiyelrwhile providing better or

comparable outputs at the same time.

Figured 3.2D and 3.22 display the outputs obtained on vidétso different windy scenes.
All the algorithms were run on one channel except the CB anatHMhoG. As can be seen, the

proposed method provides the least amount of noisy pixetsgaod detection at the same time.

Figures 3.2B anf 3.24 show the outputs for challenging @ddaainy scenes. Again, the
proposed method provides comparable if not better outputspared to the other algorithms,

while requiring the least amount of memory at the same time.

Figure3.2b shows the outputs for another challenging vateolake, where there are rippling
water effects on the lake, and swaying trees in the backgroGompared to Impr-MoG, EB and
CB, the proposed method can differentiate the non-salientitom better. It gives the least amount
of noisy pixels. The Org-MoG, on the other hand, has lessyrmuiels than the proposed method.
However, it misses the person and the dog, which should leetdet as foreground objects. The
outputs obtained on two other outdoor videos showing twizidiht streets are shown in Figures
[3.26 and3.27.

The results displayed in Figure 3128 were obtained from awiof a scene with a fountain,
where the water level goes up and down. Moreover, during itieoy lighting changes due to
moving clouds, as seen in Figlre 3.28. As the figure illussiagince the eigenbackground method
does not update the background model, it cannot handleghtrlg change. The improved MoG
method cannot detect most of the foreground pixels. Theqs®egh method provides good detec-

tion, and can eliminate most of the non-salient motion cdisethe fountains.

Figure[3.19 displays the outputs obtained from an indooueece. Although the video was

captured indoors, the flickering of the overhead lightsa#f¢he performance of the algorithms.

Figure$3.211 and 3.22 present common surveillance scendiigurd 3.211 shows the output of
the algorithm on an airport video during regular daily aitiéas while Figuré 3.22 was captured at a
parking lot. The latter shows the robustness of the algordyainst non-salient motion introduced

by swaying trees.
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ROC Curves
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Figure 3.13: ROC curves of different background subtraatrethods.

We also compared the processing times of these algorithra$@h However, the codes for the
ALW, EB, CB and Org-MoG are written in MATLAB, whereas the @fibr Impr-MoG is written
in C. Also, these codes are not equally optimized. Hencedifficult to make a comparison of the
processing times. We will list the frames/sec rates to dieaéader a general idea. The algorithms
were run on a video witl240 x 320 frame size. ALW and EB run &b frames/sec and9.5
frames/sec, respectively, in MATLAB. It should be notedttBB does not update the background
model. The Org-MoG and the CB run @ frames/sec an@.24 frames/sec, respectively, in
MATLAB. The C++ version of the CB method runs at arousidframes/sec, and the Impr-MoG

runs ath9 frames/sec in C.

In addition, we performed a comparison of the different athms in terms of their probability
of detection £;) and probability of false alarmH;,) rates, and plotted their Receiver Operation
Characteristics (ROC) curves|[1,/10] 13, 31]. ROC curveseanployed often when comparing
background subtraction algorithms. Alongside the outpbtained by different algorithms, ROC
analysis provides us with a quantitative comparison. Weiakt the ground truth for the fore-
ground objects manually, and plotted the ROC curve for edgbrithm. These curves are dis-
played in Figuré 3.13. As can be seen, for the s&nete, the proposed method has the lé3st

and for the samé’;,, rate it has the highest,.

As described above, compared to the initial version presknt[4], the method presented here

provides more savings, in terms of number of memory accessgsiumber of instructions, and
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thus speed and efficiency, in two different ways. To demaitsthese savings, we performed three

different experiment

First two experiments compare the processing speed of tvgoves when a foreground object
is in the scene. As discussed in detail above, with the mephesented here, first type of sav-
ings occurs when there is a foreground object in the scenericmyreliable background pixels.
WhenI™(i, j) > 7 andR(i, j) = 1, h(i, j) is not calculated for these reliable background pixels,
i.e. pixels for whichR(i, j) is 1. In addition, we do not need to check the counters of the reigh
boring pixels either. This provides significant savingsamis of the number of memory accesses
and instructions. For these experiments, we imported amdeimented the two versions of our

algorithm on an embedded smart camera node.

Figure[3.14 shows a plot of the processing time (in millisetzoon the microprocessor of the
camera) for two different versions during an interval whegré is an object in the scene. The blue
and red plots correspond to the methods presented in thagestend in([4], respectively. As can be
seen, on the average, the method presented here petf@g2mailliseconds faster per frame. Also,
the speed gain provided by this method increases with istrgabject size and also increasing
number of objects in the scene as seen in Figure 3.15. Sieclitbground object is larger the
proposed method runs5 milliseconds faster per frame on the average. This gaintisimodd in
part by not accessingCy, k € {1, ..., 4}, and not performingZi:l CC,, for reliable background

pixels.
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Version

(ms) Processing time —ALW —& proposed in [4]
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Figure 3.14: Processing time (ms) versus the frame numbéwéodifferent versions of the algo-
rithm when there is a foreground object in the scene.

Processing time ; .
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S5 ALW: 2157143 ms (In Blue)
D\ﬂ\smnoe 4. 5 ms (\n Black)

i5; L
121 123 125 127 129 131 133 135 137 139 141 143 145
Frame number

Figure 3.15: Processing time (ms) versus the frame numbéwtodifferent versions of the algo-
rithm when there is a foreground object in the scene.

In the second experiment, we ran the different versions erethbedded smart camera board,
and measured the operating current of the board. The opgratirrent increases or decreases
based on the workload of the processor (humber of instnusper task), the supply voltage source
and the frequency at which the processor is working. To nrease current, we used a precise

oscilloscope and a-ohm resistor configuration placed at the input of the sugplyrce (battery
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pack) as shown in Figufe 3]16.

Figure 3.16: Camera setup ready to perform the requiredjgmeeasurements.

Figure[3.1V shows the variations in the current during trecgssing of three consecutive
frames containing a foreground object. As can be seen th@peal method (blue plot) finishes
processing the first framgemilliseconds earlier than the method presentedin [4]. dbdinishes

processing the following two framé&sand8 milliseconds faster.

mA
10802

Grabbing next  Grabbing next
frar fran !

Frame not multiple of 25 took 85 ms
for ALW and 83 ms for [4] p— P e i
279 mA 279 mA )—:(
|
I
1

n 2
for ALW for [4] H

~| Frame multiple of 25 took 89 ms for
ALW and 96 ms for [4]

Figure 3.17: Variations in the operating current duringgh@cessing of three consecutive frames
containing a foreground object. The method presented sncthapter (blue plot) is faster than the
method presented inl[4] (red). (For interpretation of tHfemences to color in this figure legend,

the reader is referred to the web version of Casares ét @l. [4]

The proposed method provides second type of savings, ovepremious work, everys
frames. As described before,Af(i, j) is currentlyl, then there is no need to compuite -, (i, j),
which provides additional savings. In order to demonstifa¢se savings, we performed another

experiment and measured the operating current of the cdroard over time with an oscilloscope.
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To measure the gain obtained only from not calculatihg, (i, j) at every25 frames, we used an
empty scene. Figufe 318 shows the waveforms obtained. [Tkeahd red plots correspond to the
methods presented in this chapter and in [4], respecti¥edyan be seen, when the frame number

is multiple of25, the proposed method performsnilliseconds faster than the methodlin [4].

mA

Frame nat multiple of 25
took 78 ms in both
methods

Frame multiple of 25 taok 79 ms for
ALW and 84 ms for [4]

Figure 3.18: Variations in the operating current duringgh@cessing of three consecutive frames
of an empty scene. The method presented in this chapter fidtleprovides speed gaining at
frame numbers that are multiple of 25. (For interpretatibthe references to color in this figure
legend, the reader is referred to the web version of Casaets|4].)

3.4 Conclusions

We presented a lightweight salient foreground detectigorihm that is highly robust against
challenging non-static backgrounds. Contrary to manyiticathl methods, the memory require-
ment for the data saved for each pixel is very small in the @sed algorithm, which is very impor-
tant for portability to an embedded smart camera. Moredkiernumber of memory accesses and
instructions are adaptive, and are decreased even moradiegen the amount of activity in the
scene and on a pixel’s history. Each pixel is treated diffdyebased on its history, and instead of
requiring the same number of memory accesses, and thusidtishs for every pixel, we require
less instructions for stable background pixels. This, mmtincreases the processing speed. The

algorithm achieves this without sacrificing accuracy. Tlo pf the number of unstable pixels at
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each frame also serves as a tool to find the video portionshigtinactivity.

The proposed method selectively updates the backgroundimitt an automatically adaptive
rate, thus can adapt to rapid changes. As opposed to traalitioethods, pixels are not always
treated individually, and information about neighborsisarporated into decision making, which
increases accuracy and robustness. The algorithm can lysetemsity, or one color channel, and
still provides very reliable results. The results obtaiméth nine different challenging outdoor
and indoor sequences were presented, and compared witasikésrof different state-of-the-art
background subtraction methods. All the results of our g were obtained by using the same
threshold values for all videos. The ROC curves of diffeteatkground subtraction methods are
also provided. The memory requirements of the differenbitigms have been compared as well,
and it has been shown that the proposed method requireast@alaount of memory per pixel. The
experimental results demonstrate the success of the mdpightweight method in challenging
situations such as scenes with water fountains, swayieg,tesd strong rain.

The method presented in this chapter modifies and optimizegrevious work([4] in terms of
the memory access, number of instructions, and thus, spgdexidecision about whether a pixel
is a foreground pixel is made differently and more efficignThese methods were compared in
terms of processing speed with three different experimpatformed with an embedded smart
camera running these algorithms. It was shown that the ptedenethod runs faster on the smart

camera nodes.
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.

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.19: Foreground detection results of differenbatgms on a challenging indoor’s video
sequence with flickering lights. Outputs are obtained withmorphological operations.
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(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.20: Foreground detection results of differenbatgms on a challenging video of a windy
scene. Outputs are obtained without morphological operati
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(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.21: Foreground detection results of differenbatgms on a challenging video in a windy
day at the Airport. Outputs are obtained without morphatatjoperations.
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(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.22: Foreground detection results of differenbatgms on a challenging video of another
windy scene in a parking lot. Outputs are obtained withoutghological operations.
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(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.23: Foreground detection results of differenbatgms on a video of a rainy scene.
Outputs are obtained without morphological operations.
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(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.24: Foreground detection results of differenbatgms on a video of another rainy scene.
Outputs are obtained without morphological operations.
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(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.25: Foreground detection results of differenbatgms on a challenging video of a lake.
Compared to (eg), the proposed method can eliminate thesaltgrat motion better. Although (d)
has less noisy pixels, it misses the person and the dog. @uwpmiobtained without morphological

operations.
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(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.26: Foreground detection results of differenbatgms on a video of a street. Outputs
are obtained without morphological operations.
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(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.27: Foreground detection results of differenbatgms on a video of a street. Outputs
are obtained without morphological operations.
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Figure 3.28: Comparison of foreground detection resultdiéérent algorithms on a video of a
fountain with a significant lighting difference
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Chapter |

Resource-Efficient Salient Foreground
Detection in battery-Powered Embedded smairt
cameras by feedback tracking

4.1 Introduction

Battery-powered wireless embedded smart cameras havedimiocessing power, memory, and
energy. Since video processing tasks consume a considemadgunt of energy, it is essential to
have lightweight algorithms to increase the energy effyeof camera nodes. Moreover, just
grabbing and buffering a frame requires a significant amotiahergy. Thus, it is not sufficient to
only focus on the vision algorithms. Methodologies are eeld determine when and how long a
camera can be idle. This chapter introduces a feedback ch&thdetection and tracking, which
provides significant savings in processing time. Experiaersults are performed to show the
gains in processing time as well as the significant savingmergy consumption and battery life
increase.

Wireless embedded smart cameras are stand-alone unitsathaapture images and perform
on-board computation and communication. Rather than feeensg all the data to a back-end
server, they can process images, extract relevant datlylaoad decrease communication band-
width requirements. They also provide flexibility in ternfgjoantities and placement of cameras.

On the other hand, battery-powered embedded smart canmradiimited computational power,
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memory, and energy. Since battery life is limited and videmcpssing tasks, such as foreground
detection and tracking, consume a considerable amountesfjgnit is essential to have efficient
algorithms to optimize the energy expenditure of each camede and thus, the overall lifetime

of the network.

As shown below, even with no computer vision processingy gnabbing and buffering a
frame requires a significant amount of energy. Thus, it issudficient to only focus on vision
algorithms. Hence, there is the need for methodologies aptactly reduce the processing time
per frame according to the number and size of the objectglrinked. Tracking multiple objects
is an important and challenging problem, which constitwigke-ranging application areas. Even
though many methods have been introduced for multi-objacking , [18], [19], [20], [74], most

of the existing tracking systems do not focus on embeddetbptas and energy efficiency.

As mentioned in Chaptér 3, common computing platforms foarsroameras are field pro-
grammable gate arrays (FPGAS), digital signal proces§aB#§), and/or general purpose micro-
processord [60]. Additionally, in the sensor network comityy detection and tracking methods
have been proposed, that focus on different types of senfmesthan cameras. Examples include
magnetic, acoustic, and radar sensors. Arora et al. [34fepted a wireless sensor network for
distributed intrusion detection, that employs magnetd etar sensors. They studied the degra-
dation in application performance in sensor networks asetion of network unreliability. Dutta
et al. [42] presented a sensor network platform for detgcéind classifying rare, random and
ephemeral events. They used infrared, magnetic, and acsesisors. The infrared and acous-
tic sensors are designed for low-power continuous operatil include asynchronous processor
wake up circuitry. Benbasat and Paradisd [58] presentezhaeiivork for power-efficient detection
in wearable sensors. They used accelerometers and gyessoogtheir test scenario. State de-
tection is structured as a decision tree classifier thatmyeelly orders the activation and adjusts
the sampling rate of the sensors, such that only the datss@geto determine the system state
is collected at any given time. Jiang et al.|[59] presentel@e@psscheduling algorithm for multi-

ple target tracking to improve energy efficiency. A targatking algorithm for wireless acoustic
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sensor networks was introduced by Yu etlal. [67]. Yet, systbased on scalar sensors can have
problems when tracking multiple targets. Moreover, theaftentioned studies do not focus on
camera sensors, on vision algorithms running on cameralboaor in the energy consumption of

the embedded camera nodes.

Many traditional tracking systems perform foreground obpetection and tracking at each
frame independently and in a sequential manner. On the bémet, Quast and Kaup [74] presented
an object tracking system, wherein the object masks gestematthe detection stage are used for

constructing asymmetric kernels for the mean-shift basserking stage.

This chapter is mainly focused on the design of a trackingrélymn capable of reducing the
processing time per frame without affecting the perforneaand reliability of the overall fore-
ground detection and the tracking system. The goal of thevigight algorithm is to increase the

energy efficiency and battery life of an embedded smart camede.

A feedback method to increase the energy efficiency of tHergdloreground detection and
tracking is presented. Instead of performing foregrountdaten and tracking independently and
sequentially at each frame, the feedback method incom®tae information from the tracking
stage into the foreground detection stage. This way, foregt detection is performed in smaller
regions as opposed to whole frame. The feedback methodisanly reduces the processing time
of a frame. To take advantage of these savings the microggocés sent to idle state at the end
of processing a frame without causing tracking failure.sTigpe of approaches were previously

introduced by Casares et al. in conference proceedingsfwD[71], respectively.

The additional and different contributions presented is thapter are as follows: 1) the feed-
back method is analyzed in detail in terms of energy consiamaind gain in battery life; 2) the
proposed method is compared with a sequential trackingoappr the way in which the proposed
methodologies can send the microprocessor to idle statie whtking objects, and preserve the

tracking performance will be shown.

The methodology presented in this Chapter is not intendeddplications involving crowded

scenes. There are two main reasons. 1) In a crowded scenewtiebe search regions around
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every object, and the area that needs to be processed witheeto the whole image. Thus, there
may not be considerable savings in processing time. 2)datiens, such as merges and splits, will
be more likely in crowded scenes. It is not preferable to dbedcamera to idle state just before
or during these interactions, since when the camera wakethepe might be errors associating
trackers with correct targets. In addition, during thederactions, it may be beneficial to capture
more frames in case of an interesting event.

Intended applications include military surveillance,diifie monitoring, elder care, and surveil-
lance of surroundings of facilities. The remainder of tthauter is organized as follows: Section
4.2 shortly describes the embedded smart camera platfoech insour experiments, which was
introduced in more detail in chapter 2. Section 4.3 providesivation for designing methodolo-
gies that decrease the processing time as well as the ermrgyraption of the camera node. One
of the goals is to reduce the precessing time to send the eaimédle state, thus decreasing the
energy consumption. Idling of the camera is merely mentlanehis chapter. Later, Chapter 5
introduces a more in depth analysis of the advantages dffeyedeling the camera node. The
feedback method is described in Secfion 4.4. Experimeetallis are presented in Sectlon|4.5.
This chapter is concluded in Sectionl4.6.

4.2 Wireless Embedded Smart Camera Platform

The wireless embedded smart camera employed in our exp@snsea CITRIC mote [63] which
runs embedded Linux Operating System. It consists of a Gaivaard and a wireless mote. The
camera board is composed of an image sensor, a microprocessgrnal memories, and other
supporting circuits. The image sensor is a Omni Vision O\®a&hich is a low voltage SXGA
CMOS image sensor. It supports image sizes SXGA (1280 108234 (640480), and any size
scaling down from VGA. The camera is capable of operatin@dta@nes per second (f/s) in VGA
resolution. Attached to the camera board is a TelosB mota f@wossbow Technology with a
maximum data rate of 250 kb/s. The TelosB uses a Texas InstisnMSP430 microcontroller

and Chipcon CC2420 IEEE 802.15.4-compliant radio, bothdarpower operation [63]. Details
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on the camera architecture are introduced in chapter 2.

4.3 Motivation: Energy Consumption Analysis

In Casares et al. [73], there are analyzed cases related siz#nof objects being tracked. Tracking
targets that are close to or far from the camera report éiffieresults in terms of processing time.
The bar graph in Figurfie 4.1 shows the frame processing tirhes wacking an object in a close,
middle and far range from the camera, together with the siteembject. The size of the bounding
box of the object is displayed inside the bars. As expechedptocessing time increases when the

object is closer to the camera, since the object size, arg] the area to be processed increases.

Processing Time in msec for the Combined method
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Figure 4.1: Processing time in milliseconds when an obgeat different distances from the cam-
era.

Hence, focusing only on vision algorithms is not sufficiehhere is a need for self-adapting
methodologies capable of increasing the overall life tirhéhe camera mote.

The findings illustrated in Figufe 4.1 encourage us to desigthodologies and efficient algo-
rithms to adaptively decrease the processing time of a frahgcing the accesses to memory per
pixel. Moreover, preliminary results from sectionl4.4 wgitlow that sending the microprocessor of
the camera to idle state significantly reduces the overaliggnconsumption of the camera. Hence,

new important challenges are sending the microprocessdletgtate even when the scene is not
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empty, and determining adaptively how long the micropreoesan remain idle without affecting
the performance and reliability of the overall foregrouredettion and the tracking system. This

topic is fully covered in chaptér 5.

As mention above, the main focus of this chapter is the desfigrieedback method to increase
the energy efficiency of the foreground detection. Addiiby) it aims to show the reduction in
terms of energy compared to the traditional ways to do tragKT his method significantly reduces
the processing time of a frame. To take advantage of thesegsawafter done processing a frame,

the microprocessor is reliably sent to idle state withoutsaag tracking failure.

After grabbing and buffering a frame, the embedded smarecamerforms foreground object
detection and tracking. Casares et al.| [68] presented anMabht and efficient algorithm for
salient foreground detection. This algorithm takes intcoanit the memory requirements as well
as the computational complexity. It is highly robust agtiighting variations and non-static
backgrounds including scenes with swaying trees, watentéons, and rain. The logic of the
algorithm is explained in detail in chapiér 3. As opposedatesof the art background subtraction,
whose memory usages are ranged f&amo 91 bytes per pixel, the object segmentation employed
and described in Chaptel 3 requireé@5 bytes per pixel. Additionally, the number of memory
accesses and instructions per pixel are adaptive, and areaded even more depending on the

amount of activity in the scene and on a pixel’s history.

A sequentialterm will be used throughout this chapter to refer to tragkimethodology in
which at every frame, the above foreground detection algorruns on the whole image to detect
foreground pixels. The algorithm groups them together tmforeground blobs, and then match
the foreground blobs to existing trackers. Most traditiamacking algorithms operate in this

sequential manner.

The feedback method is described in Sectlonk 4.4. As meattiddhaptel |5 presents method-
ologies related to the idling of the embedded smart camenghacombined with the methodol-
ogy introduced in this Chapter, will bring a third energy @ént algorithm named the Combined

method, also explained in Chapfér 5.
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4.4 FeedbackMethod: Resource-Efficient Salient Foregrouh
Detection by Feedback Tracking

The method presented in this section will be referred to adébdback method. Instead of per-
forming foreground detection and tracking independerttlgaeh frame, the feedback method in-
corporates the information from the tracking stage intddineground detection stage that employs
our algorithm summarized above. The diagram presentedjur&#.2 illustrates the flow diagram
followed by the feedback algorithm in comparison to the sedjal one. Hence, foreground detec-
tion is performed in smaller regions as opposed to wholedrahimus, significant savings in terms
of energy consumption are expected since the energy expeadi proportional to the size of, not

only the object being tracked, but also the frame being cadtand processed.
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Figure 4.2: lllustration of the flow diagrams for sequendiatl feedback tracking methodologies.
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4.4.1 Determining the Search Regions

When a foreground blob is detected in the scene, a boundirgsbformed around it, and a
new tracker is created. The intensity histogram of the fiaregd object is built and saved as
the model histogram of the tracker (intensity histogramssdito keep the computational com-
plexity low). The tracker also holds the coordinates of tleiriming box of this object. Let
T =T't1), T%(t1)..T"(¢1) denote the set of existing trackers at frarheAt framet, a detected
blob B‘(t) will be matched to one of the trackers in the $eby using a matching criteria based
on bounding box intersection and the Bhattacharyya coeffidil8], [72]. The Bhattacharyya

coefficient is derived from the sample data by using

ply) = plD(y). &l = > Vpu(¥)du 4.1)

Whereq = Gu=1..m, andp(y) = pu(y),—, ,, are the probabilities estimated from the m-bin
histogram of the model in the tracker and the candidate blespectively. If the bounding box of a
blob intersects with that of the tracker, the Bhattachagefficient between the model histogram
of the tracker and the histogram of the foreground blob iswdated by using 411. The tracker is
assigned to the foreground blob which results in the higBhattacharyya coefficient. After blob
B'(t) is matched to trackef’(¢1) (which holds the bounding box location from franig, the
displacement of the centroid of the tracker’s bounding ogailculated in x and y directions to
obtainAxz andAy, respectively (Figure 413). At framtet- 1, for each foreground objeéta search
region R'(t + 1) is determined by using\z, Ay, W and H, whereW and H are the width and
height of the bounding box aB’(¢).

Then, the background subtraction and blob forming in thecke@gions’ (¢ +1) is performed
as opposed to doing it on the whole frame. As shown in Tablesddkching for and forming
foreground blobs in smaller regions significantly reduce pinocessing time. After the search
regions are determined, the bounding box of the tra@kes updated to be the bounding box of

B(t).
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The center of the search regié( + 1) is found by using 412, wherB;(t) and B} (t) are the
x andy coordinates of the center of the blab at framet. Ax(t) andAy(t) are the displacements

in thex andy directions calculated between framésandt as shown in Figure 41.3.

R.(t+1) = B.(t) + Az(t) (4.2)

R, (t+1) = B;(t) + Ay(t)

Tracker ( )
at time t-1
Blob (i) at
time t
(Tix.Tiy) 4
+ g
n
T
\J

- =

Width = W

Figure 4.3: Displacement in the horizontal and verticaddlions.

The boundaries of the search region are determined by useg@duation_4/3. Foreground
detection at frame + 1 will be performed in the search regions formed around thenes¢d

locations of objects that were detected at frame
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%
Rx _min

(t+1)=R.(t+1) — Ax(t)
R (t+1)=R.(t+1)+ Ax(t) (4.3)

R;_mm(t +1) = R;(t +1) — Ay(t)

R;_max(t +1) = R;(t +1) + Ay(t)

The camera’s capture rate i5 frames per second (f/s). Since, the algorithm becomes-local
ized around the regiong’, the foreground detection runs on the whole frame e%éfyms. In
this way,the system is able to detect new objects in the segrkupdate the background model.
Compared to the sequential method, this mechanism redoegsdcessing time significantly. To
exploit the advantage of these savings the microprocessent to idle state at the end of process-

ing a frame.

Both, the sequential and the feedback methods were run oaeddetd cameras to compare their
processing times. Experiments tracking one, two and tleeete-controlled cars were conducted.
The blue and red plots in Figufte 4.4(a) show the operatingents of the camera board when
running the feedback method and the sequential methodatreply. The grabbing and buffering
of a frame takel9 ms. The feedback method and the sequential method finishrdicegsing of
the frame in19.7 ms and38.5 ms, respectively, and the feedback method provideg); decrease
in the processing time. Figures #.4(b) 4.4(c) show operaurrents when tracking two and
three cars, respectively. As expected, the gain in pracggsne decreases with increasing the
number of tracked objects. Though, the feedback methdaatperforms the sequential method.
The processing times and the results of the comparison ammatized in Tablge 4]11. Additionally,
an experiment to measure the energy consumption when mitimenfeedback and the sequential

methods was performed. The comparison is presented ino8eEH.
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Figure 4.4: Operating current of the camera board with tedlfack and sequential methods when
tracking (a) one, (b) two, and (c) three remote-controliad c
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4.5 Experimental Results

As mentioned previously, in most traditional tracking altfons, background subtraction and
tracking run independently, and operate in a sequentiaherarin other words, background sub-
traction is performed first on the whole frame, and then geslare matched to detected objects. In
Sectiorl 4.4, the feedback method was presented. In thisselbe sequential and feedback meth-
ods are compared, and the gain in processing time providéagdgedback method showed. The
feedback method takes advantage of the savings in progdssie by sending the microprocessor
to idle state at the end of processing a frame. Settion|4.l.tampare the energy consumption
of the feedback and the sequential methods.

All the algorithms run on the microprocessor of the camer@toThe image size used in all

the experiments i820 x 240. The clock frequency of the microprocessob® MHz.

4.5.1 Comparison of the Energy Consumptions of the Feedbacand Se-
guential Methods

In this section, a set of experiments were conducted. Thffseeht tracking scenarios to measure
the energy consumption of the camera were used to run thedekand the sequential method.
In all three cases, remote-controlled cars are trackechibosame amount of time (5 min) so that
energy consumptions for different scenarios can be cordpare

In the first scenario, a remote-controlled car is trackedinanusly for 5 min. In other words,
the car is always in the field of view, and the scene is nevertgm@hen tracking one car,

the feedback method finishes the processing of a frame, oavitrage,18 ms earlier than the

Method 1 Car (ms)| 2 Cars (ms)| 3 Cars (ms)
feedback (ms) 19.76 25.01 38.52
sequential (ms) 38.52 40.01 47.24
Savings 48.702% | 37.49% 18.45 %

Table 4.1: Comparison of the Processing Times of the Prapbsedback Method and the Se-
guential Approach.
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sequential method, and sends the microprocessor to ideefstal 8 ms at the end of processing
each frame. This way, the two methods process about the samigen of frames during the 5-min
period. It should also be noted that with the feedback mettih@dcamera still processes the whole
frame everyb00 ms, to detect new objects and update the background modeh iBwthis case,
using the feedback method provideg3% savings in energy consumption as seen in Table 4.2.

In the second scenario, the scene is empty for the firgtsec. Subsequently, a car enters
the scene, and is tracked fod0 sec. Then, a second car enters the field of view of the camera,
and two cars are tracked for anothéf sec. Tablé 4]3 shows the total energy consumptions while
running each method during the 5-min experiment. The fegddbeethod provide$7.34% savings
in energy consumption. Compared to the previous scendmgosavings in energy consumption

increase, since the scene is empty for the figstsec.

Method | Energy (J)
Feedback| 304.25
Sequential 336.69

Savings 9.63%

Table 4.2: Energy Consumptions for the Feedback and theeBéguMethods When Tracking
One Car Continuously

Method
Feedback
Sequential

Savings

Energy (J)

274.7057

332.3419
17.34%

Table 4.3: Energy Consumptions for the Feedback and theeftglMethods When Tracking
One and Then Two Cars

Method

Energy (J)

Feedback
Sequential
Savings

242.6787
330.8194
26.6%

Table 4.4: Energy Consumptions for the Feedback and theeBdguMethods When a Car Enters
and Leaves Twice
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The third scenario is as follows. During the fii$t) sec the scene is empty. Then, a remote-
controlled car enters the scene, stays in the view of the afoe50 sec, and leaves the field of
view. After 100 sec, the car enters the view again, and stays th@more seconds. Table 4.4
shows the total energy consumption while running each naedlioing the 5-min experiment. The
feedback method provides26.6% decrease in energy consumption.

This chapter was dedicated to the introduction of a new nuetlogy which can reduce the
processing time per frame required by the embedded camershdwn in the results, it will have
an impact on the battery life of the camera due to the redudatidhe energy consumption of the
embedded node. Chaptér 5 will introduce two more new metlgdes to increase even further
the battery life of the camera. Thus, a more comprehenst@éseof experiments, including the

Feedback method and two new algorithms with outdoors smenaill be presented.

4.6 Conclusions

A lightweight algorithm to increase the energy efficiencyaof embedded smart camera node
was presented. The feedback method for detection and miagkbvides significant savings in
processing time. We presented experimental results slgaWwengains in processing time as well
as the savings in energy consumption and the gain in battery In summary, the feedback
method provided8.7% decrease in the processing time of a frame, Bhd4% savings in energy
consumption, compared to traditional sequential trackvhgn tracking one object. We show that
the presented methodology does not affect the trackingppeence. On the other hand, strong
shadows can be a problem for the tracking algorithm, sineg #ine also detected as foreground
regions. We are planning to design a shadow removal algosthhout significant increase in the

memory requirements.
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Chapter 5

Resource-Efficient Salient Foreground
Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies

As discussed in chapter 4 sectionl4.3, grabbing and bufferfnrame require significant amount of
energy, even when no processing is performed. Hence, ittisufficient to only focus on vision
algorithms. There is a need for effective and self-adapthethodologies to be able to drop frames
even when the scene is not empty.

The findings presented in chaplér 4 motivate us to designraptéiment methodologies and
efficient algorithms to adaptively drop frames, decreasegssing time of a frame, and increase
idle durations. This will bring new important challengeslsias sending the microprocessor to
idle state even when the scene is not empty. Moreover, detegnadaptively how long the
microprocessor can remain idle without affecting the penfance and reliability of the overall

tracking is even more complex.

5.1 Motivation: Adaptive methodologies

This section presents the energy consumption analysis aftalal embedded smart camera at the
stages of grabbing, buffering, and processing a frame. dimdysis provides the motivation to

develop methodologies that will increase the battery lifehe camera. The operating current of
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the embedded smart camera during the tasks of grabbingrimgffand processing a frame were
measured as follows. To measure the currerit)(aMHz LeCroy oscilloscope was used, and a

10hm resistor was placed at the input of the supply source as shoRigure[5.1

(a) 500 MHz LeCroy oscilloscope (b) 10hm shunt resistor

Figure 5.1: Camera setup ready to perform the required gmeegisurements.

The processing of a frame will refer to performing foregrdaietection and tracking, while the
grabbing and buffering of a frame are considered two sepaetions requiring different energy
levels. For instance, Figufe 5.2 shows the operating cuafeine camera board when running a
sequential tracking method (i.e., performing backgrounratraction on the whole frame, and then
tracking) to track one remote-controlled car. As can be séengrabbing and buffering taki®
ms, and the processing of the frame tak8$ ms. In addition, grabbing and buffering consume
54.1 mJ of energy while detection and tracking consurh@ mJ. Thus, grabbing and buffering are
even costlier than processing, and demand a significantatnedenergy even when no computer
vision processing task is performed. Thus, it motives usietbp methodologies that are capable
of grabbing, buffering and processing the optimal numberarhes while still having a reliable
tracking system.

This chapter focuses on developing an adaptive trackisgédaethod that significantly de-
creases the energy consumption of the camera. The micegsocof the camera can be sent to
idle state to save energy even when there are moving objetite iscene. The idle-state duration

is adaptively changed based on the amount of activity in teae and speed of tracked objects.
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Figure 5.2: Operating current of the camera board durirfgrdift tasks

Instead of continuously capturing and processing evergdrahe camera drops frames during idle
state, while preserving the tracking performance and tistem reliability at the same time. The
idea behind the algorithm is to save energy by processinggtimal required number of captured
frames to reliably track objects. Figureb.3 illustrates pinocess in which a car enters to the view
of the camera; the speed of the car is estimated, and therathera only grabs the necessary

number of frames to reliably track the vehicle.

Adapting frame rate Speed Estimation

6 overlapping
frames

Figure 5.3: Camera dropping frames to save energy as ahistrof the main goal of the algorithm.

This significantly prolongs the battery life. The experitamesults including graphs of cam-
era’s operating current over time, and power and energgsatiiowing the energy-efficiency of
the proposed method as well as the gain in battery life ae@issented in Sectidn 5.5. In order

to increase energy-efficiency, the system puts the micogssor in an idle state during which cer-
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tain number of frames are dropped. Since the processor mngiembedded Linux, commands
such as “usleep()” and “nanosleep()” are available to su$gxecution, and send the processor
in idle state. The function “usleep()” takes the number cfig®l microseconds as argument. The
important challenge is to determine how long the micropssoecan remain in the idle state with-
out affecting the performance and reliability of the ovefateground detection and the tracking
system. If the camera drops too many frames, then the trg@tgorithm will most likely have
problems associating the currently detected object wighntiost recent model and location. To
increase energy-efficiency, three operation modes ardapma: empty-scene mode, fixed-rate
tracking mode, and adaptive tracking mode. Henceforth tesgene will refer to the case when
there are no foreground objects in the scene. To detect wh#ik scene is empty or not, the
lightweight salient foreground detection algorithm prése in chaptdr]3 introduced by in Casares
et. al [68] is used. The algorithm was implemented in C/C+¢ iamported on the microprocessor
of the cameras. After detecting foreground pixels, corececomponent analysis is performed to
remove small pixel regions, and form object blobs. Then, aeehused an efficient and robust
tracking algorithm for object tracking purposes.The traglkalgorithm has also been imported to
the camera board, and the details of it are explained in endpt. Together, foreground detection

and tracking run at0.5 f/s on the microprocessor when there is one object in theescen

5.1.1 Empty-Scene Mode

When no object is detected in the scene, since no trackingphaes performed, the idle durations
can be longer, and thus more frames can be dropped. In the/aogrte mode, the algorithm
determines the idle duration so that the camera geatts. The operating current values of the
camera board were measured when the camera was contingapslying frames (no idle state)
and when the camera was sent to idle state for a fixed amouimef Figurd 5.4 showsal5 ms

segment from the current waveforms obtained during a 5-xye®ment. The data was acquired
with a NI 6221 data acquisition card at a sampling raté(bkHz. Red and blue plots are the

operating current values of the camera when it continuocatures and processes frames, and
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Duration (min) Energy (J
Continuous frame capture 5 341.818
Empty-scene mode 5 223.855
Savings 34.5%

Table 5.1: Energy Analysis of the Empty-Scene Mode

when the microprocessor is sent into idle state, respégtive
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Figure 5.4: Empty-scene mode: red and blue plots are thetpgrcurrent values when camera
captures frame continuously, and when the microprocesgaitiinto idle state, respectively.

After a frame is grabbed, the background model is updatetitranelapsed time from grabbing
the frame to finishing model update is determined. As seehdrréd plot in Figuré 514, it takes
81 ms from grabbing the frame to finishing the update of the bamkyd model. Then, the idle
state duration is determined to be- 50081 = 419 ms. At the end of the idle duration, the camera
performs foreground detection to determine whether thaesce still empty. If no foreground
objects are detected, the background model is updatedhamditroprocessor is sent to idle state
again. Tabl€ 5]1 lists the computed energy consumptionisglar5-min interval. As can be seen,

the empty-scene mode provides5% savings in the energy consumption.
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5.2 Fixed-Rate Tracking Mode

When foreground objects are detected, the tracking mod@jdayed. In the fixed-rate tracking

mode, idle state duration is determined based on the fasi®ghg object in the scene, and the
same duration is used until a faster object enters the scEme.assumption is that the speed of
the objects does not change significantly. Sedtioh 5.3 wélent an adaptive methodology, which

changes the idle state duration if a change in the objeat'sd[s detected.

When a new objead’ is detected in the scene, a new trackéiis created, and the bounding
box (B;) formed around this object is saved in memory. Also, a caui¥g,....,) is set tol. In the
following frames, the objead’ is tracked. At each frame, it is checked if the bounding bothef
object at that frame overlaps with;. If they overlap,Nyyeriqp 1S iIncremented by. This process
is illustrated in Figur€515(a), where the first bounding Bo&:. Blue regions are the overlapping
areas betweem! and bounding boxe®; throughB.. As seen in Figure5l5(a), the last overlap
occurs betwee3; and Bi5 , i.e., Bi and B do not overlap. At this point, the value &f,c;i;,
is 5, and this value is used to calculate the duration of the i@ ithout affecting the tracking

performance. To calculate the idle tin¥y;., equatiod 5.J1 is used.

Nover a
Edle = 1000 x Tlp X Rcapture (51)

WhereR, ... IS the camera’s capture time per frame. The camera captbifés thusR .qpture
is 67 ms. In this case, after processing the first framg, .;, ms pass until the fifth frame is
processed, wherg; is the time it takes to capture and processiheframe. P, > Rqpture, @and

at the fifth frame, overlapping still continues.

However, the time that has passed since the first frame is ger lppund for the idle duration,
since object pattern or speed may change. Thus, equatiiakes a conservative approach to
account for these changes while calculating the idle demaffirst, it usesR ..., instead of the
time it takes to process a frame, afig,,..,. iS always less that,. Second,N,,,1q,/2 IS used

instead ofN,,.,q, iN the formula to address sudden speed increases, and nrakthatioverlap
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continues at the end of the idle duration by assuming thapliject cannot more than double its
speed in order of milliseconds. [[n 5100 is used to convert milliseconds to microseconds so that
T;a. can be used as the argument of the function usleep(). Hig8Ehbws the current waveform
while estimating the idle duration and during the idle state

In Sectior[ 5.8, adaptive methodology is introduced, whieeddle state duration is changed if
the object’s speed changes significantly. In Sedtion b&bdetailed analysis of a scenario where
the object’s speed increases gradually and very slowlyeisgited. Consequently, in the scenario,
the bounding boxes do not overlap after coming back fromddi&tion. Thus, a solution of how

to overcome this problem is also presented.

Speed
estimation

Ad Centroid

Distance

(a) (b)

Figure 5.5: (a) Detecting a speed change. (b) Overlappingdiag boxes for a faster car.

To be able to successfully track every object, idle statatitum has to be based on the fastest
object in the scene. If another object enters the scEpeis calculated again, and if it is less than
the current value used, the idle state duration is changggirdf5.6 shows the operating current
waveform, obtained from a NI 6221 data acquisition card,af@cenario that involves two cars.
When the first car enters the scene, the computed valug fois 435.5 ms and the camera is sent
to idle state for this amount of time. Abogis later, a faster car enters the scene, and aljgwis
calculated based on this new car. Since the new valuems, is less than35.5 ms, the idle state

duration is changed, and the camera is sent to idle statesiooréer time period as seen in Figure
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5.6.

Experiments were performed when there were one and/or tvgilcdhe scene. The energy
consumption was measured oveil sec window. In the firsi0 sec, there is one car in the scene.
When the car enters the sceng,.,.., is computed, and idle state duration is calculated. Thesvalu
obtained forN,..qp is 21. Applying equation 5J1, the idle state duration is obtaittebe703 ms.
After 50 sec, a second car enters the scene whose speed is higherew#ienstate duration is
134 ms. The idle state duration of the camera is shortened bas#tedastest moving object in
the scene. Figufle 3.5(b) illustrates the bounding boxesfateht frames. For this case, the fifth

bounding box does not overlap with the first one.

Jmuw T
E:.:d.f' “.u’ M :'

. Il |
"1 m_mmmmw mh%h iy

Figure 5.6: Updating the idle state duration based on thtedaebject in the scene.

Table5.2 lists the computed average energy consumption tieee is one and two cars in the
scene with and without using the fixed-rate tracking modeca@sbe seen, the fixed rate tracking
mode provides6.5% and25.7% savings in the energy consumption for one car and two cascase
respectively. Since the second car is faster, the idle dtatgion becomes shorter, which explains

the decrease in savings.
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Continuous frame captureTime(s) Avg. Power (W) Energy (J)
1 car 50 1.1463 57.3141
2 cars 50 1.1448 57.2401
Fixed-rate method Time(s) Avg. Power (W) Energy (J)
1 car 50 0.7272 36.3616
2 cars 50 0.8502 42.5102

Table 5.2: Energy Analysis of the Fixed-Rate Tracking Mode

5.3 Adaptive Tracking Mode

Objects in the scene can continuously increase or decreasespeeds. When the object is first
detected, an idle state duration is calculated by using thoa described in Section 5.2. Later
on, if the object slows down, using the same idle duratioh mat negatively affect the tracking

performance, i.e., it will not cause the tracker to lose thiect. On the other hand, if the speed of
the object continuously increases, using the same idle dtatition might cause tracking failure.
To handle these cases, a method that adapts the idle statedus introduced, when a significant
change in the object’s speed detected. In the former caserevthe object slows down, the idle

state duration can be increased accordingly to increasenrgy efficiency even further.

Detecting Speed Change

When an object enters the scene, an inifial is computed as described in Section 5.2. Consistent
with the notation in Sectidn 5.2, Ié&t: denote the bounding box of objectvhen it is first detected,
and letB! denote the bounding box at thg, frame. In the scenario shown in Figlrel5.5 (@),is

the first bounding box that does not overlap with, thus Noyeriqp 1S 5. At this point, B is saved

as B, ., and the camera is sent to idle state Ty, microseconds. At the end of the idle state,
when camera captures and processes the seventh framesttoecdD..,,.. between the centers of

Bi

las

., and B! is calculated.D..,, is saved a®,,.,, and B;

las

. is set to beB:. Then, the camera is
sent to idle state again fdr,;. microsec. At the end of the idle duration, the camera captanel
processes the eighth frame, and calculates the disfangebetween the centers &, and BL.

The main idea is comparing,,., andD.,,, to detect a speed change. However, the following
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scenarios need to be handled. When an object is moving talarchmera, it is going to appear
larger, andD,,,, can be greater thab,,., even if the object is moving with constant speed, or
when an object is moving away from the camera, it is going fweap smaller, and..,,., can be
smaller tharD,,.., even if the speed does not change. As aresult, these sitsabald be mistaken
for a speed increase/decrease. To address these casd¢mrdfiZaapplies a normalization to the
center coordinates before calculating the distances.

=i =1\ __ (l’iwyiz)

whereV! and H! are the width and height of the bounding bBY%, respectively, and’ andy’
are the normalized coordinates of its center. After normadilon, the distanc®,,,, is calculated

by using

D =\ 18, — &aef? + 15 — T (5.3)

where 7l and i, are the normalized center coordinates of the boundingBjgx Then,
the ratioR = Dgyr/ Dprey Which initially was equal td is calculated. IfR > 1.25, then the idle
state duration is recalculated by using equatioh 5.4. alnitile state duration is determined by
using equation 5]1. changing the idle state duration wRen 1.25 is going to handle cases of
increasing speed while avoiding tracking failure at the saime. Performing idle state duration
update only wherkR > 1.25 avoids recomputing a new duration when there is not a sigmific
speed change. In Section 5.5 the tracking performance ffareit scenarios when using the

adaptive methodology will be analyzed.

1
e, = = X Tidle (5.4)

Different kind of experiments were performed to measurgtie in energy consumption when
using the adaptive methodology. In the first experimenty&oters the scene, and then speeds up.

Figurel5.7 shows an example of consecutive frames proceysbe camera. Between frameks
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and 119 the car increases its speed (the distance between thesehtasunding boxes is larger

than the previously computed distance between frarmesnd118).

Frame 117 i Frame 118

Frame 118 Frame 119

© Distance between frames 117 and 118
€—> Distance between frames 118 and 119

Figure 5.7: Car increasing its speed.

Figure[5.8 shows the operating current waveform obtainéh thie oscilloscope during this
experiment. When it is first detected,,,., IS cOmputed to b&. Then, the idle state duration
is calculated to b@34.5 ms, by using equatidn 5.1, and the microprocessor of the maimsent
to idle state. Betweeh = 0.9s andt = 1.6s, the car follows a path that is not parallel to the
camera’s image plane, i.e., it either moves toward the cammeaway from it, with approximately
constant speed. Thus, the movement pattern should not tféeitlle state duration. This scenario
was successfully handled by the aforementioned normalizabethod. As seen in Figufe 5.8,
betweent = 0.9s andt = 1.6s, the idle state duration does not change. At some point after
t = 1.6s, when the camera returns from idle state, the calculatedrdis ratio (R) is.267, and
thus a new idle state duration is calculated by using equiiid. The value obtained far >
is 185 ms. As a result, the camera was sent to idle state for a sheteyd of time, to handle
increasing object speed. As seen in Tablé 5.3, the presadtaative methodology providés%

saving in terms of energy consumption.
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Figure 5.8: Operating current waveform when the idle timehisnged based on the object speed.

Time(ms) Power (W) Energy (J)
Cont. captureg 3664 1.235 4.525
Adaptive-rate] 3664 0.776 2.843
Savings 37.17%

Table 5.3: Energy Analysis of the Adaptive-Rate Trackingddo

As mentioned above, when an object slows down, continuingédhe initially determined idle
state duration will not cause any tracking failure. Howewgth the same method described above,
the system can detect the speed decrease, and then intiealle state duration to further increase
the energy efficiency and the battery life. ThusRik 0.75, the idle duration can be recalculated
by using equation 514, and send the camera to idle state fongel time period. In another
experiment, to analyze the energy savings, the fixed-ratkittg mode and the adaptive tracking
mode were compared in a scenario where the tracked objegs glown. Since the adaptive
tracking method detects the decreasing speed, it incrdaggsaccordingly. The camera stays
in idle state longeri43 ms), and compared to the fixed-rate mode, this providesiaddltr.8%

savings in the energy consumption as seen in Table 5.4.

In the rest of this chapter, the adaptive methodology wilubed when analyzing the energy
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Time(s) Avg. Power (W) Energy (J)
Cont. capturg 1.6 1.1457 1.8333
Fixed-rate 1.6 0.8924 1.4279
Adaptive-rate] 1.6 0.8226 1.3163

Table 5.4: Energy Analysis
savings, since the adaptive methodology is more robust aoedpto the fixed-rate method, and

provides more savings for objects slowing down.

5.4 Combined Method for Further Energy Efficiency

As discussed in chapter 4, the feedback method for salieagjfound object detection provides
significant savings in processing time of a frame. On therdtlaed, the adaptive methodology
described in Sectidn 5.3 allows us to send the microprocéssdle state, even when the scene is

not empty, and also can increase/decrease the idle dutss®ad on object speed.
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Figure 5.9: Idle duration is increased in the combined nethoemploying the feedback method
and the adaptive methodology together.

To leverage the advantages of both, the feedback methodharatiaptive methodology, these

two methods were combined. First, when an object enterghet@iew of the camera, the method
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described in Sectidn 5.2 is employed to compdite..., @and the initial idle duration];.. Dur-

ing this period, the foreground detection is applied on tihel frame, and the average process-
ing time, 7,,,,,, of a frame is computed. After the camera comes back from theidile state,
the feedback method is employed, and the processing timeedfame,T..q, is found. Then,
Tadd = Thwg — Treear 1S cOMputed, wheré,,, is the extra idle duration gained. From this point
on, the microprocessor is sent to idle state€fgy. + 7,44 Ms. These steps are illustrated in Figure
5.9, which shows the contribution of each method in an erpent wherein a car enters into the
view of the camera. After it is detectedl],,.,.., IS computed to bé3 frames, and by using 5.1,
the idle duration is calculated to B86 ms. The shaded region in Figure]5.9 shows the savings
in processing time of a frame provided by the feedback metfbéd idle duration is increased by
this amount, i.e., it is increased frof36 ms to454 ms. In section 515, a detailed analysis and
comparison of the feedback method, the adaptive methogaog the combined method in terms

of their energy consumptions and battery life of the camesad will be provided.

5.5 Experimental Results

As mentioned previously, in most traditional tracking altjoms, background subtraction and
tracking run independently, and operate in a sequentiaherarin other words, background sub-
traction is performed first on the whole frame, and then eeslare matched to detected objects.
In the previous chapter, the feedback method was presghtedequential and feedback methods
compared, and the gain in processing time provided by trabfeek method was shown.

The adaptive methodology presented in Sedtioh 5.3 useethestial method for frame pro-
cessing, but can send the microprocessor to idle state even tlie scene is not empty. The com-
bined method described in Sectlonl5.4 employs the feedbattkad and the adaptive methodology
together. It uses the feedback method for frame procesaintjallows to send the microprocessor
to idle state, even when there are moving objects in the séennger periods of time. The en-
ergy consumption comparison of the adaptive methodologytlamsequential method is presented

in Section[5.5.11. Sectidn 5.5.2 presents the energy sayirmsded by the combined method.
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Method Time(ms) Power (W) Energy (J)
Adaptive 458 0.7213 0.3304
Sequential 458 1.1041 0.5057
Savings 34.7%

Table 5.5: Energy Consumption Comparison Between AdaptideSequential Methods

All the algorithms run on the microprocessor of the camet@toThe image size used in all the
experiments i820 x 240. The clock frequency of the microprocessob2¥ MHz.

As mentioned before in chaptér 4, our work is not intended@fiplications involving crowded
scenes. There are two main reasons. 1) In a crowded scenewtiebe search regions around
every object, and the area that needs to be processed wibhéeto the whole image. Thus, there
may not be considerable savings in processing time. 2)datiens, such as merges and splits, will
be more likely in crowded scenes. It is not preferable to saercdcamera to idle state just before
or during these interactions, since when the camera wakethere might be errors associating
trackers with correct targets. In addition, during thegeractions, it may be beneficial to capture
more frames in case of an interesting event. For this redhersystem disables the function of

going idle when objects in the scene get close to each other.

5.5.1 Comparison of the Energy Consumptions of the Adaptivéethodol-
ogy and the Sequential Method

The energy consumption of the adaptive methodology andeafeential method durings8 ms
when tracking one remote-controlled car were calculatedhis experiment, after the car enters
into the view of the camera, the idle durati@hy,. is obtained as described in Sectlonl5.2. The
number of overlapping frames\V(,...,,) Was11l. By using equation 5117}, was computed to
be 368.5 ms. Figuré 5.10 shows the operating current of the camenallvd@en running the two
methods. As can be seen, the adaptive method processesore &nd then goes into idle state
for 368.5 ms. During the same time interval58 ms) the adaptive method processes only one
frame, whereas the sequential method processes five frathesaadaptive methodology provides

34.7% savings in energy consumption as shown in Table 5.5.
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Figure 5.10: Operating current of the camera when trackimegoar with the adaptive methodology
(blue) and the sequential method (red).

| Method | Time(ms) Power (W) Energy (J)

Feedback 458 1.0216 0.4679
Adaptive 458 0.7213 0.3304
Combined 458 0.6986 0.3199

Table 5.6: Energy Consumption Comparison Between the Re#dAdaptive and Combined
Methods

5.5.2 Energy Savings Provided by the Combined Method

The combined method described in Secfiod 5.4 employs thdb&d method and the adaptive
methodology together. It uses the feedback method for fianmeessing, and allows us to send the
microprocessor to idle state, even when there are movingctsbjn the scene, for longer periods

of time.

Figure[5.11 shows the operating current graphs of the cabmasd when running the feed-
back method only (green plot), and when running the combmethod (black plot). During this
experiment, the camera is tracking one remote-controldedand the feedback method finishes
processing a fram&8 ms faster, on average, compared to the sequential method, e micro-
processor is sent to idle state ity ms at the end of processing a frame. On the other hand, the idle
duration for the combined methodd84 ms. During a158 ms time window, the feedback method

captures and processes five frames, whereas the combinbddratly captures and processes
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Figure 5.11: Operating current of the camera board whena&yimg the feedback method by itself
and the combined method.

one. The adaptive methodology was also employed for the saarario. Figure 5.12 shows the
operating current of the camera board when using the adaptethodology (red plot) and the
combined method (black plot). As can be seen, thanks to ttiéi@aial idle duration provided by
the feedback method, the camera stays in the idle skates longer in the combined method, com-
pared to the adaptive methodology that uses the sequemaiikinig for frame processing. Table
lists the power requirements and energy consumpticthedéedback, adaptive, and combined

methods.

Outdoor experiments were also performed with vehicles auple. Figure§ 5.13 arid 5114
show different output images obtained when tracking ongacat one person and one car, respec-
tively. Thus, the energy consumption of the combined methradl the sequential method were
computed on a 2-min segment to obtain the savings providetidogombined method. In this
segment, a car enters the scene after one min., and stayssoghe for the following one min. As
seen in Tablé 517, the combined method provigi¥g savings in the energy consumption during

the period when the car is in the scene.
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Figure 5.12: Operating current of the camera board when @&yimg the adaptive methodology
and the combined method.

Method Empty (60 s)| 1 Car (60 s)| Total (120 s)
Energy (J) | Energy (J) | Energy (J)
Sequential method 67.8688 65.867 133.7358
Combined method 40.3074 40.164 80.4714
Savings 40.61% 39.02% 39.83%

Table 5.7: Energy Consumption Comparison Between the Quedand Sequential Methods

5.5.3 Energy Consumption Analysis over a Longer Time Window

To further analyze the energy consumption, and better girdje battery life, an experiment for a
longer period of time was conducted. The camera tracked jetdor 20 min. Figure 5.1b shows

a segment of the operating currents for all the algorithretiiads described in this chapter The
red and dark blue plots are the operating currents whenmgrthe sequential detection/tracking
and the feedback method, respectively. The light blue aadrgplots correspond to the adaptive
and combined methods, respectively. A zoomed in versiohedd operating current plots is also

shown in the same figure.

The pairwise energy savings for different combinationshafse algorithms/methods over a
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Last Overlapping Frame

Figure 5.13: Output frames obtained while tracking one car.

Figure 5.14: Output frames obtained when tracking two targe

20 min time window are listed in Table 5.8. The diagonal entaes the energy consumption
of each method36.89%, for instance, is the savings in energy provided by the caethimethod

compared to using sequential detection/tracking contislyd(i.e., without dropping frames). Sim-
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Figure 5.15: Operating current of the camera board whehitrgone car with different algorithms
for 20 min.

Sequential Feedback Adaptive | Combined
Sequential 1329.5J | 10.44% | 34.66% | 36.89%

Feedback 1190.7J| 27.04% 29.54%
Adaptive 868.713J 3.42%
Combined 839.0146 J

Table 5.8: Energy Consumption and Savings Comparison Whasrkihg One Car

ilarly, 27.04% is the energy savings provided by the adaptive methodologypared to the feed-

back method.

5.5.4 Comparison of Battery Lives

The battery life of the camera node when employing the algms described in this chapter has
also been estimated. The algorithms include the sequeng#tiod, the feedback method, the
adaptive methodology, and the combined method. For thigsisacharacteristic curves provided
by the manufacturer of the batteries were used. These careeshown in Figuré 5.16. The
battery lifetimes were predicted for a scenario, whereetlage always two cars in the scene, i.e.,
the scene was never empty. When the sequential detectickifig method is used, and the camera

continuously captures frames, the average current drads A, and the estimated lifetime is
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7 h. For the feedback method, the average current drawr2ig, and the estimated lifetime is
8.4 h. Since the scene is never empty, this gain is solely thanksetsavings in processing time.
The adaptive method confers the ability to send the cameidldstate, even when the scene is
not empty. Thus, the gain in battery life increases. Theameicurrent in this case 5136 A,

and the battery life i85.58 h. Finally, if the combined method is employed, the averageenit
drawn is0.131 A, and the lifetime increases i@.17 h. 1t should be emphasized that the estimated
lifetimes are based on the scenario that there will alwayts/bebjects to track in the scene. Table

summarizes the battery lifetimes when using the diffeaggorithms.
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Figure 5.16: Characteristic curves of the batteries.

| Method | Battery Lifetime (hours) Percentage gain(%)

Sequential 7 -
Feedback 8.4 20%
Adaptive 15.58 122%
Combined 16.17 131%

Table 5.9: Battery lifetime projection
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5.5.5 Analysis of the Tracking Performance

The adaptive methodology, and thus the combined metho@ndiepn the tracking results to cal-
culate the idle durations. Assuming that the tracking atgor performs well when the camera
continuously captures frames, one of the goals is to havegative effect on the performance by
going idle. If the bounding boxes before and after the idletian do not overlap, it is considered
as a failure caused by sending the camera to idle state. Baldetailed analysis of the effect of
these methodologies on tracking performance is provideddithonally, this section shows how
to handle objects that increase their speeds graduallghwhia very challenging scenario. In all
the performed experiments, both indoor and outdoor, thebaoed methodology did not affect the
tracking performance. Without dropping any frames, at &@ssing rate of2.2 f/s, the tracking
algorithm is highly robust and reliable with the car runnatdgull speed, i.e., the bounding boxes
of the car at consecutive frames always overlap. When dngpipames, the pixel displacement
between the last saved bounding box, and the one obtainadtiwbeamera comes back from the

idle state will be larger. If the camera drops too many frarttesse boxes will not overlap.

In equation (4), Casares et al. [71] dividg,.,.., by 2, so that when the camera comes back
from the idle state the bounding boxes can still overlapne¥pixel displacements of the object
increase during this duration. In order to analyze the tragkerformance when adaptively drop-
ping frames, different scenarios were experimented. Whangat moves away from the camera,
the pixel displacements, on average, are smaller compaitbe tase where the target moves par-
allel to the camera. When the target moves toward the caitterajze of the bounding boxes gets
larger, allowing more overlapping between the current aregtipus bounding boxes of the target.
Thus, the most challenging scenario is when the target njmm@dlel to the camera, in which case
the pixel displacement is large and the bounding box size doechange much. Since it is hard to
increase or decrease the speed of a remote controlled carétiae way, simulations for tracking
performance analysis were performed. Thus, a worst caseigoean which bounding boxes do
not overlap when the camera comes back from the idle stateswagdated. After analyzing this

scenario in detail below, a solution is instructed to ovaredhis problem.
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Figure 5.17: Scenario wherein the bounding boxes beforatiadthe idle state do not overlap.

In this scenario, a remote-controlled car travels partdléhe camera. The width of the bound-
ing box of the car is30 pixels. Figure 5.17 shows the pixel displacements of thebetwveen
consecutive frames. The bounding boxes overlap for thesfigit frames, i.€ Nyye,10p = 8. After
nine frames, the camera is sent to idle state, and when itgbaek from it, the pixel displacement
Dy is 14 pixels. As expected, at the end of the idle duration, thelpilsplacement is much larger,
compared to the displacements at the beginning when theraamalways on. Then, the camera
goes to idle state again, and when it comes back, the pixgladismentD; is 17 pixels. Since
Dy is not greater than.25 x Dy, the algorithm keeps using the same idle state duration. As
shown in Figuré 5.17, the same situation repeats betwesrefal and12, 12 and13, and so on.
In other words, since the speed is gradually and very slawdseiasing, the algorithm continues to
use the same idle duration. However, at frarfiethe pixel displacemenb;s between frames$5
and16 becomes5 pixels. This causes a tracking failure since the boundingbalo not overlap.

To address the cases of gradual increases in speed, theXaistlisplacement is saved);,.;:,
which was calculated after the camera comes back from thediesstate. In Figuré 5.17);,.::

corresponds t®,, which is14 pixels. At the next frame, the algorithm compares the newwiokt
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Figure 5.18: Tracking with a preventive mechanism that Gamdke the gradual increases in speed
and resolve the issue seen in Figure .17.

displacement withD,,,;;. If a significant change is detected in pixel displacemesfy of D;,.;),
the algorithm now adapts the idle time accordingly. FigurBS5llustrates how these cases are
handled and how the issue, shown in Fidure 5.17, is resoAeflame 12, the pixel displacement
of the car isD,; = 20 pixels, which is grater thah.25 x D,,;;. Thus, the camera reduces the
idle period, andD, is saved as the new;,;;. The reduction in idle duration is reflected in the
following frames as seen in Figure 5118. For example, atdéamthe pixel displacement is now
24 as opposed t@6. At frame 15, the pixel displacement of the car i%; = 26 pixels which is
grater thanl.25 x D;,;;. Therefore, the idle duration is decreased again. At frafpehe pixel
displacement becomes as opposed t85, and the case of non-overlapping bounding boxes is
avoided. As mentioned above, when a target moves away frecetimera, the pixel displacements,
on average, are smaller compared to the case where the tiaoges parallel to the camera. This
makes it less challenging in terms of overlapping of the lokingn boxes. When the target moves
toward the camera, the size of the bounding boxes gets laligering more overlapping between

the current and previous bounding boxes of the target.
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5.6 Conclusions

We presented lightweight algorithms and self-adaptinghogblogies to increase the energy effi-
ciency and battery life of an embedded smart camera nodeprbpesed methodologies allow us
to send the microprocessor of the camera node to idle statewlien there are tracked objects
in the scene. First, we presented results from a feedbadkaaéntroduced in chaptét 4 for de-
tection and tracking, which provides significant savingpiacessing time. We took advantage
of these savings by sending the microprocessor to idle atatee end of processing a frame. We
also presented an adaptive methodology that significaetlyedises the energy consumption of the
embedded smart camera. The camera can be sent to idle dtatdynvhen the scene is empty but
also when there are tracked objects in the scene. The ambtimteothe camera remains in idle
state is adaptively changed based on the amount of activitye scene, and the speed of tracked
objects. Instead of continuously capturing and processiuggy frame, the camera drops frames
during idle state while preserving the tracking perfornggrand thus, system reliability at the same
time. This significantly prolongs the battery life. We theegented a combined method that em-
ploys the feedback method and the adaptive methodologytegand provides further savings in
energy consumption. We presented experimental resultgisgdhe gains in processing time as
well as the savings in energy consumption and the gain ietyalife. In summary, the feedback
method provided8.7% decrease in the processing time of a frame, BEhdd% savings in energy
consumption, compared to traditional sequential trackimgen tracking one object. Employ-
ing the combination of the proposed feedback algorithm aegtoposed adaptive methodology,
provides37% savings in energy consumption when tracking one car. In aastewhere there
are always two cars in the scene, the combined method pVdé: gain in battery life. The
proposed combined method depends on the tracking resuttsdolate the idle durations. We
presented that, assuming the tracking algorithm perforeibwhen the camera is always on, the

presented methodologies do not affect the tracking pedaonoa.
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Chapter 6

Energy-efficient Feedback Tracking on
Embedded Smart Cameras by Hardware-level
Optimization

As in the previous chapters, decreasing the processingathenergy consumption on the embed-
ded smart camera is the main goal in this chapter. To achiesgoal, two main operations have
been performed at hardware level: (i) the change of the imag@ution and (ii) image cropping
based on a search region obtained from the tracking stagellffanderstand these two concepts,

explaining how the camera grabs a frame is important.

6.1 Frame Capture Operation

On the CITRIC camera platform, there is an interface callactkCapture Interface or QCI. This
interface works in 10-bit Master Parallel mode. It requagsarallel data bus interface, two control
signals for frame timing and a pixel clock for basic timing.

The Quick Capture Interface on the CITRIC camera operat8sib’YCbCr 4:2:2 mode. Such
mode allows the image sensor to provide the line and framehsgnization signals; signals which
are also referred to as the Horizontal Reference signal aniic®l Synchronization signal, HREF
and VSYNC, respectively. The QCI provides a programmablstenalock (MCLK) to interface

with the image sensor attached to the camera. Additiorthlye is a Pixel Clock (PCLK) derived
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from the MCLK. The PCLK is used to perform all operations asated to frame transferring. The
CITRIC camera is programmed to operate in YCbCr color spagéng a luminance channel (Y)
and two chrominance channels Cb and Cr. The 8-bit 4:2:2 fosa@ples the captured frame by

transferring 16bits per pixel using two clock cycles frore ICLK.

The operation between sensor and the QCI on the CITRIC cabwaal is defined as the
Master mode. This refers to a mode of operation in which thegiensensor provides the line and
frame synchronization signals, HREF (line valid) and VSY@me valid) as shown in Figure
6.1. In the Intel PXA270 master mode, the line valid and framdé signals are inputs to the quick

capture interface.

The sensor can be programmed for exposure, frame rate, dittbadl parameters. The pro-
gramming is done through a separate interface, namely Bes&ial control interface. Once
configured, the sensor begins providing data in additiorettegating the frame and line synchro-
nization signals. The MCLK signal output for the sensor isgpammable. The timing signals
VSYNC and HREF, provided by the sensor, activate and resajuitk capture interface that can

be configured to provide an interrupt at the end of each limeeach frame as shown in Figlirel6.1.

Valid Frame

PCLK I"_'"__'ﬂlUU_Iﬁ LU UL UIUg Uy ULH_D_FI_'_;_._ 1
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HREF ‘ _ L ; (
A E ‘x—\ MY ,'— Vs
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Figure 6.1: Timing diagram for grabbing a frame using thedR@apture Interface.
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6.1.1 CITRIC Middleware Interface

To adaptively modify the shape of the HREF and VSYNC sigraatset of 8-bit registers is altered
through the 12C interface of the main microprocessor at tnaera board. The image sensor
configuration is performed at the Application Program Ifstee (API) level, where libraries are
developed using the Software Development Kit (SDK) progibg the CITRIC camera. A device

driver is designed to load the correct values to the registecording to the frame size required by

the user.

As previously mentioned, the CITRIC camera runs embeddedXx.iThe original kernel ver-
sion running on the CITRIC camera was an optimized and a pdtk&krnel imported from the
original Linux kernel 2.6.9. The image sensor of the CITREnera is handled by a device
driver. The camera drive is obtained by customizing both“thdeo-For-Linux-One” driver for
the OV9650 image sensor and ARM processor driver, so thadrilier can work for the newest
OV9655 image sensor. As previously described in Chdpten@ detailed in the manufacturing
manual [76], the image sensor is equipped with two differeterfaces as shown in Figure 5.2.
The first one, called the Serial Camera Control Bus (SCCRY)fate, is used to program the sensor
behavior. The second interface, the Digital Video Portriiatee, provides a connection between
the sensor and the quick capture interface to acquire daaa@mtrol signals, and performs the

appropriate data formatting prior to routing the data to mgm

CITRIC camera main board

Image capture board
PXA270 processor
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Figure 6.2: Interconnection of OV9655 and the Intel Quickthee Interface on ARM PXA270.
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The software to perform (i) the change of the image resatygmd (ii) image cropping men-
tioned at the beginning of the section consists of severaitions. These functions are used in
“live” or “run-time” mode, and some of them are employed tadsnically change the position
and the size of the cropped window inside the whole image.fihetions for the reconfiguration
of the quick capture interface and the control of the Dynalémory Allocation engine (DMA)
are based on the Video 4 Linux Standard IOCTL (Input/Outpattrol), which allows us to col-
lect the right amount of data sent by the image sensor. Axtditly, some of these functions are
used to clean the frame circular buffer used by the deviaedrsince the frame rate of the image
sensor can reach? f/s, and the frame transferring works in FIFO mode, the ¢achuffer shown
in Figure[6.3 is to be reset to guarantee the grabbing of testlavailable frame. In this way, all
the video processing tasks are assured to be performed @nathe carrying information of latest

location of the object being tracked.
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Figure 6.3: Camera Driver Internal architecture.

The functions for reconfiguring the image sensor registeamseused at user application in-
terface, and it has been added to the API library of the CIT&fdera SDK. The other functions
work at the kernel space, and they have been implementedtasf lanbedded Linux OS device
drivers. In particular, most of the additions and modificasi to handle the image sensor were
done on the API IOCTL originally provided by Linux OS. The ilemented functions are listed
in Figurel6.38 to the right of the frame circular buffer. Thadking algorithm employs these func-

tions to achieve time synchronization capabilities peingtus to perform tracking in “run-time”.
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The operating system architecture of the CITRIC camerass ptesented in Figufe 6.4. The
striped yellow boxes are the modules that have been moddiégriamically change the size of
the cropped window for tracking purposes. These boxes shogrevmost of the work has been

performed to accomplish the hardware-level optimization.

-
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2 [ [ 7
E [ System Call Interface J
I I > Kernel
Embedded Linux Kemel Space
G
S g e e e e =as
[Ou’ick Capture Interface ]
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[ Digtal video Port | FHandane
OV9655 Image Sensor )

Figure 6.4: Software architecture handling the CITRIC canimard.

The hardware subsystem composed of the image sensor anditkecgpture interface (QCI)
is highly configurable. The flexible and configurable arattitee of the CITRIC camera, which
allows us to perform functions at hardware level, providesdaiction in the amount of transferred
data. This, in turn, leads to significant savings in energysamption due to the better use of the
memory controller and the memory resources. Addition&ieing the main microprocessor from
the tasks of performing image down-sampling and croppirgpéttvare-level also contributes to
saving energy. Down- sampling, scaling and cropping opmratare accomplished by changing
the hardware registers of the OV9655. The acquisition o& dietm the sensor is initiated by
transitions based on the state of the HREF and VSYNC sigRaisie[6.1), which are generated

internally as explained in the OV9655 operation manual,[26f described in section 6.1.
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6.2 Hardware-Level Image Processing Tasks: Scaling and

Cropping
The transferred image
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Figure 6.5: Hardware-Level Image processing tasks: Sgalivd Cropping

The image cropping is the selection of an area inside the evimohge. This area is named
“cropped window” and characterized by its position, wicdhd height. The position is the pixel
coordinates of its upper left corner inside the whole imafee synchronization signal VSYNC
indicates which sequence of lines has to be captured in aefraBimilarly, the signal HREF
indicates which sequence of pixels has to be captured inleschs shown in Figurie 8.5.

To perform down-sampling and grab a frame in QVGA resoluytibie VSYNC and HREF
are set so that the whole information acquired by the sessasad. Moreover, it is necessary to
select the zoom and scaling functionality. To set the hotiaiand vertical scale down coefficients,
the image sensor register set are accessed and modified. llA= wietailed in sectioris 8.3 and
[6.6, hardware-level cropping provides significant savingesnergy consumption and increases the
battery lifetime of the camera. The localized foregroungeobdetection and tracking algorithm
introduced in Casares et al. [70] and Chapter 4 is an apjic#iat takes advantage of hardware-

level cropping.
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Figure 6.6: Interaction among components used in the Soétivased-Feedback method (Chapter
[4.)

In chaptef 4 the concepts of sequential and feedback trgakare introduced. Performing
detection and tracking only on specific regions, insteadroth® whole frame, was shown to
provide significant savings in processing time. Hence,dtéases idle state duration of cameras
to increase the battery-life. Even though significant sg&iwere reported, the algorithms and
methodologies presented in the previous chapters wenelgrdione by software-level as seen in
Figure[6.6. The diagram presented in Figuré 6.7, comparé&ibtore[6.6, demonstrates the goal

to be accomplished in this chapter. It also shows the taskdléad by hardware as well as the
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subroutines implemented by software.
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Figure 6.7: Interaction among components used in the Hambased-Feedback method.

The feedback method [70] explained in Chapter 4 is emplogedetermine a search region
in the following frame. Subsequently, the next image is pexpat hardware-level as described
above. After cropping, the detection and tracking are parénl on the search areas as seen in
Figurel6.8. The experimental results showing the decreesedargy consumption and the increase
in battery-life will be presented in Sectionsi6.3 6.6pextively.

To actually implement the tracking system, the original RIC-kernel-2.6.9 has been updated
to version 2.6.23, and the Linux device driver for the imageser has been modified. The kernel of
the CITRIC camera was not capable of dynamically changiagike of the cropped regions from
frame to frame. Thus, to overcome this issue, the existingcdariver of the OV9655, contained

in the CITRIC-kernel-2.6.23, has been customized so thantdynamically crop regions in run-
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(@)

Figure 6.8: Area cropped (a) by software using the API liesa(b) by hardware using the micro-
controller of the OV9655, (c) background subtraction otiputhe cropped region

time.

6.3 Savings in Energy Consumption

In this section, a quantitative comparison is presented;mwshows the advantages of performing
hardware-level down-sampling and cropping at the micnot@dler of the OV9655 sensor for
tracking purposes. Rather than processing whole framegearfidrming these tasks at software-
level on the main micro-processor of the camera board, th@85% micro-controller will be used.
Before immersing into the analysis of more complex visi@ksasuch as object detection and
tracking, it is worth presenting the gains of exploitingdwaare-level operations even at elemental

tasks such as the grabbing of a QVGA frame.

6.3.1 Analysis of grabbing a QVGA frame

Grabbing a frame in QVGA3Q0 x 240) resolution is the result of applying down-sampling to VGA
images. As mentioned above, this operation was being doseftatare level on the main ARM
processor of the camera board. In this chapter, down-sagpéve been performed at hardware-

level at the micro-controller of the OV9655 sensor has bemfopmed. Figures 619(a) and (b)
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show QVGA images captured by the CITRIC camera using soffaad hardware down-sampling
methods, respectively. At hardware-level, neighborhogetaging is used to down-sample. At
software—level, instead of averaging, the API library noes drop repetitive information during

the down-sampling. Thus, Figure 6.9(a) is slightly shaguenpared to Figurle 6.9(b).

() (b)

Figure 6.9: QVGA images captured by (a) using the API soféwidarary down-sampling subrou-
tines and (b) performing hardware—level down-samplingr@icro-controller of the OV9655.

Figure[6.10 shows the operating currents of the camera haaitd grabbing a QVGA frame.
By using (i) only the API software libraries, and (ii) the O8%6 and the quick capture interface at
hardware-level. The grabbing of a frame takéss ms when using the API libraries, while it takes
30.78 ms when employing the hardware-level down-sampling at tioeascontroller of the image
sensor. This correspondsd8.2% savings in grabbing time.

The solid and dashed lines in Figlre 6.10 show the averagertuevels when using software-
level and hardware-level down-sampling, respectivelycas be seen, 36.27% reduction in the
average operating current is obtained when performingwenetlevel down-sampling at the mi-
crocontroller of the OV9655 sensor. As shown in Tablé 6.i5,¢brresponds t24.47% decrease in
energy consumption. It should be noted that to compare thggrronsumption in both scenarios,
the main ARM processor has been sent to idle statd 9ans, so the time window is the same

(49.8 ms) for both cases (Figure 6]10).
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Operating currents for grabbing a QVGA frame
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Figure 6.10: Operating currents of the camera board whiblgng a QVGA frame using the API
sub-sampling subroutines and using the image micro-clertiaf the OV9655.

6.3.2 Analysis of hardware-Level image/video processingsks: Object de-
tection and tracking

In this section, savings in energy consumption are predewteen performing hardware-level
down-sampling and cropping, while using the feedback nwtboobject detection and tracking

(Casares et al. [70]) described in Chapier 4.

As stated in Casares et al. [70], the feedback method pregidaificant savings in processing

| Down-sampling methodl Power (W) Energy (mJ)

Software 1.1655 57.2
Hardware 0.7493 43.2
Gain 0) 35.71% 24 .47

Table 6.1: Energy consumption when grabbing a QVGA framagutie API software libraries
versus performing down-sampling at hardware-level.
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MAIN CITRIC CAMERA
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ENERGY SAVINGS

Reduction in processing time
during background subtraction
and tracking

Figure 6.11: lllustration of saving gain by using hardwaeel operations.

time, and thus allows us to increase idle state durationamiecas to increase the battery-life. As
described in chaptél 4 sectionl4.4, in the feedback methéarnation from the tracking stage is
used to determine search regions in the next frame, so tteattoa and tracking can be performed
only in those regions instead of the whole frame. Figurel@resents a diagram to illustrate the

process.

Object detection on a QVGA frame

In this section the following scenarios are compared: (tawting QVGA images with software-
level down-sampling and performing all processing (doampling and foreground object detec-
tion) on the main microprocessor of the camera board; (ifgpeing down-sampling at hardware-
level on the micro-controller of the OV9655 sensor, andgrening foreground object detection at
the main microprocessor.

Figure[6.18 shows the operating current levels of the caimeaad when using these two ap-

proaches. As seen in this figure, collaborating with the iensgnsor, and using hardware-level
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Scenario

Tracker

Background
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Figure 6.12: Background subtraction output on a frame grdltily using the API software libraries
to down-sample to QVGA resolution (left column), and by gsirardware level down-sampling
(right column).

operations, provide$3.7% savings in processing time, as compared to the softwaed-twn-
sampling relying on the API libraries. In addition, it prdeis27.98% savings in energy con-
sumption. As seen in Figuke 6]12, the background subtractitput is slightly better when using
the hardware-level down-sampling, due to the slight bihgrintroduced by averaging neighboring

pixels, as discussed in section 613.1. This provides neidaation, and thus better segmentation.

Object tracking on a QVGA frame

In this section, savings in energy consumption, when udiegféedback method for object de-

tection and tracking, and performing hardware-level chogpare presented. The aforementioned
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Figure 6.13: Operating currents when grabbing/bufferinigasne and performing background
segmentation using the API sub-sampling subroutines searsllaborating with the OmniVision

OV9655.

scenarios analyzed for QVGA resolution, are now performedreduced search region cropped by

software or hardware-level operations. The softwaredb&ssdback method [70] grabs a frame in

VGA resolution, down-samples it, and crops the search regidi by software. On the other hand,

the hardware-level method uses the capabilities of the G996 down-sample, and then crop the

search regions. Having the search regions, foregroundtiteieand tracking tasks are performed

only in those regions at the main micro-processor of the @CTBamera, as depicted in Figure

QVGA

Method

Power (W) Energy (mJ) gaini)

Software-level down-sampling

1.0415

112.5

Hardware-level down-sampling 0.751

81.7

27.38

Table 6.2: Energy consumption when grabbing a QVGA frameét@are versus Hardware-level,
and performing detection at the main microprocessor.
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Figure 6.14: Operating currents when (i) obtaining QVGA gresa with software-level down-
sampling, and performing all processing on the main miaogssor ; (ii) performing down-
sampling at hardwarelevel on the micro-controller of the9®%5 sensor, and performing fore-
ground object detection and tracking at the main micromsoe

[6.4. However, before presenting the energy consumptiolysiealuring feedback-based tracking,
combined with hardware-level cropping, the following twaesarios are firstly compared on a
single QVGA size frame. To separately show the contributibhardware-level down-sampling

in terms of savings, we first: (i) obtain QVGA images with sadte-level down-sampling, and
perform all processing (down-sampling, foreground obgeatection, and tracking) on the main
microprocessor of the camera board; (ii) perform down-darmgmt hardware-level on the micro-
controller of the OV9655 sensor, and foreground objectaliete and tracking at the main micro-
processor. The operating currents of the camera boardg whiihg these approaches, are presented
in Figure[6.14. Even though collaborating with the imagesserand hardware-level operations
slightly prolongs the processing time per frame22yms, they considerably decrease the energy

consumption of the camera By.38% as presented in Talle 6.2.



Energy-efficient Feedback Tracking on Embedded Smart Cameas by Hardware-level
Optimization 112

To continue the explanation of the proposed algorithm, @12 shows the output of the
system when detecting and tracking an object. The readerarapare side by the hardware-level

approach from this chapter against the software-levebihtced in chaptér 4.4.

b) Search Areas Cropped

a) Displacement estimation

Figure 6.15: (a) Last QVGA frame captured while computingepdisplacement of the tracked
object; (b) Search regions cropped at hardware level.

Figure[6.15 shows a sequence of frames in which a remoteetiect car is tracked. Figure
[6.15(a) shows a QVGA frame grabbed during the tracking ofréimeote-controlled car. Whole
frames are grabbed until the displacement of the targetgated from two consecutive frames.
Then, the location of the target is estimated at the follgtame. A search region of si2ev x 2h
is formed around this location, whereandh are the width and height of the bounding box in the
current frame, respectively. The details can be found inp@&2. Then, the following frame is
cropped to the search region at hardware level, and thetietemnd tracking are performed only
in the cropped region as depicted in Figlre 6.15(b). To stmwmovement of the car, and the
changing cropped window, a small red circular referencatpsihighlighted on the cropped frame
sequence. Figufe 6.116 shows the operating current of theredmard when (i) using the feedback
method implemented entirely at software level; and (ii) lgimg hardware-level operations for

cropping and down-sampling.
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Figure 6.16: Operating currents when performing foregdoobject detection an tracking on
cropped search regions obtained by software versus hazdewl cropping.
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Figure 6.17: (a) Detecting a speed change. (b) Overlapmuogding boxes for a faster car.

Even though the processing time increase8dys when cropping and processing a search re-

gion of 100 x 100 pixels at hardware level, using the hardware capabilitiéseoOV9655 provides
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100x100 Search Area
Method Power (W) Energy (mJ) gaini)
Sequential software-level 1.0415 112.5 —
Feedback software-leve 1 92.23 18.0%
Feedback hardware-level 0.719 66.1 41.2%

Table 6.3: Energy consumption when grabbing and croppirgech region (100x100) at software
versus hardware-level and performing detection at the mé&noprocessor.

28.3% decrease in energy consumption, compared to softwarédeygping and processing and
41.24% compared to a Sequential software tracking system. Diffeseenarios are summarized

in Table[6.3 presenting the energy consumption and savihgs wrocessing a single frame.

6.4 Longer Tracking Experiment

This section aims to present a detailed analysis of theitryg@tgorithm over a prolonged period of
time. Thus, rather than reporting results at the frame Jelkielestimation of the energy consumed

by the camera is calculated over a longer time interval.

In the following set of experiments, first, a remote-coné&wlcar is tracked continuously for
3 seconds, and the size of the cropped window is changed orecg gvcond. The energy con-
sumption during this period of time is measured and reparethble[6.4. Figuré 6.18 shows
the operating current of the camera board for different adesa during 1-second portion of this
3-second experiment. As explained in Secfion 6.1.1, treuler buffer is reset when perform-
ing hardware-level cropping, which slightly increases pihecessing time of a frame. However,
the feedback method combined with hardware-level cropphogides29.4% and37% decrease
in energy consumption, compared to the software-basedhdbdnethod and sequential method,

respectively. Table 614 summarizes the power and energguooptions, and savings.
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Method Power (W) Energy (J) gairfq)
Sequential software-level 1.1422 3.4273 —
Feedback software-leve| 1.0203 3.0608 10%
Feedback hardware-level 0.7203 2.1609 3%

Table 6.4: Energy Consumption when performing detectiahteacking during a 3-second time
interval at software versus hardware level.
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Figure 6.18: Operating currents when performing foregdooinject detection and tracking during
1-second time interval.

6.5 Outdoor experiments

Figure[6.19 shows an scenario in which a person enters to@hedf the camera. The camera
built the background model of the scene employing the algaridescribed in chaptéf 3. After
the foreground detection, the camera assigns a trackerenifiib to the person. As illustrated,

the the foreground object segmentation and tracking werfenpeed in a reduced cropped region
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around the person. The cropping was performed at the haedwael using the logistics from
chaptef #. We can also see that the camera processes thefranodetwice a second looking for

new object that could have entered to the scene.
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Figure 6.19: Outdoor experiment: Detection and Tracking @erson by employing hardware
level operations.
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6.5.1 Tracking multiple objects

When there are multiple objects in the scene, itis requoédrim multiple search regions, and crop
multiple windows. In this case, hardware-level cropping séll be performed for one window

per frame, and different windows for different objects carcbopped at alternating frames. Figure
shows a real life scenario in which two objects are beaked. Figuré 6.20(a) shows part of
the original QVGA frame illustrating both of the objects @ gon and a car) to be tracked. Figure

[6.20(b) shows the hardware-level cropping on alternatiagés.

(@) (b)

Figure 6.20: Alternating BGS outputs from two objects bailetected and tracked.

The person in Figure_6.20(b) is labeléd 1 while the vehicle is assigned a tracker number
T10. Additionally, in Figure[6.20(a) the alternating backgndusubtraction (BGS) outputs are
illustrated. The BGS outputs were obtained at the croppedsarThus, a frame alignment with
respect to the QVGA background model was required. Detaithe building of the QVGA back-
ground model are described in chagter 3. The empty white dingrboxes represent where the
BGS is going to be performed in the next frame. Hence, it caseled that there is no background
subtraction in the car region when analyzing the croppeddraorresponding to the person, and
vice versa. In the BGS output for the person in Figurel6.20(aan be seen two bounding boxes

are associated with tracké&il1l. Those bounding boxes correspond to the current and prviou



6.5 Outdoor experiments

119

instancest andt — 1, respectively.

Detecting and tracking
a person
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Processing whole frame
(checking for new objects
in the FOV)

&

(b) Analyzing whole frame (person enters
FOV)

(c) Analyzing cropped frames alternatively

Figure 6.21: Alternating tracking of a person and a vehidé&ardware scaled and cropped frame

areas.
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A sequence of frames from the car-person experiment agrifited in Figuré 6.21 [a-c]. The
system tracks the objects alternatively according to tted tumber of objects in the FOV of the
camera. In Figure 6.21(a) the car entered to the FOV of theecaand a tracker10 was created
and assigned to it. In Figure 6121(b) when the camera preddbg whole frame, a person is de-
tected and assigned a trackér1. Finally, the alternating hardware cropped frames aregpitesl

until the car left the scene, and the system continues tmgakie person.

6.6 Increase in Battery-Life

This section is focused on analyzing the gain in battegydiftthe camera mote. Thus, the battery-
life of the camera has been projected for the following sdesa(i) Sequential method: perform-
ing down-sampling at software-level, and detecting anckiray objects in the whole frame; (i)
Software-level feedback method: performing down-sangpdind cropping at software-level, and
detecting and tracking objects in smaller search regiansHardware-level feedback method:
performing down-sampling and cropping at hardware-leye¢xploiting the image sensor capa-
bilities, and detecting and tracking objects in smallerdeaegions. The battery characteristic
curves provided by the manufacturer of the batteries haea lsed for the estimation. When
there is one car in the scene, the average currents drawn2d@ A, 0.1926 A and0.1345 A

for scenarios (i), (ii) and (iii), respectively. The projed battery lifetimes and energy savings are
summarized in Table 8.5. As can be seen, when the feedbatiochistcombined with hardware-
level operations (scenario (iii)), the battery life incsea tol 5.5 hours, and it provide®4.52% and
107.2% increase in battery-life compared to scenarios (i) andré8pectively. It should be noted
that the projected battery lifetimes are based on the sicendnere there will always be an object

to track in the scene, i.e. the scene will never be empty.
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| Method | Battery Lifetime (hours) gairi) |
Sequential method 7.48 —
Software-level Feedback Method 8.4 12.3%
Hardware-level Feedback Methad 155 107.2%

Table 6.5: Battery life projection.

6.7 Conclusion

This chapter has presented two methodologies to increasmtrgy-efficiency and the battery-life
of an embedded smart camera by hardware-level operatioas pdrforming object detection and
tracking. First, instead of performing down-sampling dtware-level at the main microprocessor
of the camera board, this operation was performed at haedlgael on the micro-controller of the
0OV9655 image sensor of a CITRIC camera. Moreover, ratherpleaforming object detection and
tracking on the whole frame, the location of the target inribgt frame was estimated. A search
region around it was formed and the next frame cropped byguki@ HREF and VSYNC signals
at the micro-controller of the OV9655. Detection and tragkivas performed only in the cropped
search region. It was shown that significant savings in gn@gsumption and battery-life resulted
from reducing the amount of data that is moved from the imagear to the main memory at each
frame. Also, better use of the memory resources, and nofpgyawoy the main microprocessor for
image down-sampling and cropping tasks significantly prgéx the battery life of the camera
node. Experimental results show that, compared to softleasd cropping, performing hardware-
level cropping when tracking one object providds52% increase in battery-life, prolonging the
life of the camera up td5.5 hours. In addition, hardware level down-sampling and ciogp
and performing detection and tracking in cropped regionsyiges41.24% decrease in energy
consumption and07.2% increase in battery-life compared to performing softwlare! down-

sampling and processing the whole frame.
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Chapter ;

Conclusions

This thesis has focused on the importance and the benefitesifrdng lightweight computer
vision algorithms suitable for embedded smart camerasr&3earch has shown that running well-
suited algorithms has a significant impact on the batteeydffthe embedded platforms. We have
presented the gains of designing lightweight algorithnas &éne well integrated with the camera’s
architecture, as opposed to using algorithms designeddthipewered platforms. We have shown
that it is feasible to design algorithms that can prolongahgery life time of the embedded smart
cameras, without affecting the reliability of the systemidg surveillance tasks.

Our work spans the whole development process, startingtivitfdesign and implementation
followed by the simulation and optimization, ending witle ttesting and performance analysis on

actual embedded cameras.

In Chapte B , a lightweight salient foreground detectiagoathm, which is highly robust
against challenging non-static backgrounds has beenmiegseThe memory requirement for the
data saved per pixel is very small, which is very importamtdortability to an embedded smart
camera. The number of memory accesses and instructionslapéivee, and are decreased even
more depending on the amount of activity in the scene and oreighistory. Each pixel is treated
differently based on its history, and instead of requirimg $ame number of memory accesses, and

thus, instructions for every pixel, we require less indinres for stable background pixels.

In Chapter 4, we have presented a lightweight feedbackebdstection and tracking algo-
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rithm to increase the energy efficiency and battery life obarbedded smart camera node. The
algorithm provides significant savings in processing tifagperimental results showed the gains
in processing time as well as the savings in energy consompiid the gain in battery life. In
summary, the proposed algorithm in Chapier 4 provites) decrease in the processing time of
a frame, and 0.44% savings in energy consumption, compared to traditionalesetgl ways of

tracking objects.

In Chaptei b, self-adapting methodologies to increaseregg efficiency and battery life of
an embedded smart camera node have been presented. Theguropethodologies allow us to
send the microprocessor of the camera node to idle staterdvemthere are tracked objects in the
scene. The adaptive methodology significantly decreaseeitbrgy consumption of the embedded
smart camera used in the experiments. The camera can beosdtd state not only when the
scene is empty but also when there are tracked objects in@hvedf the camera. Additionally,
an algorithm called combined method was introduced whidviges further savings in energy
consumption. Experimental results have been presentedrsipthe gains in processing time as
well as the savings in energy consumption and the gain ietyaife. Up to131% gain in battery

life has been obtained compared to traditional ways of dtvecking.

In Chaptei .6, We have presented two hardware-level metbgas that aim to increase the
energy-efficiency and the battery-life of an embedded sewrtera. The energy saving are ob-
tained by hardware-level operations when performing dbjetection and tracking. Instead of
performing down-sampling at software-level at the mainropcocessor of the camera board, this
operation is performed at hardware-level on the micro+cdietr of the OV9655 image sensor of
a CITRIC camera. Moreover, rather than performing objet¢c®n and tracking on the whole
frame, the location of the target in the next frame is estti@nd the object detection and track-
ing are performed only in the estimated areas. Employingvare-level operations resulted in
an increase in battery life af07.2% compared to performing software-level down-sampling and

processing whole frame.
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