
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

May 2014

ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR

EMBEDDED SMART CAMERAS: DESIGN, IMPLEMENTATION AND EMBEDDED SMART CAMERAS: DESIGN, IMPLEMENTATION AND

PERFORMANCE ANALYSIS PERFORMANCE ANALYSIS

Mauricio Casares
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Casares, Mauricio, "ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR EMBEDDED SMART CAMERAS:
DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS" (2014). Dissertations - ALL. 97.
https://surface.syr.edu/etd/97

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/97?utm_source=surface.syr.edu%2Fetd%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

An embedded smart camera is a stand-alone unit that not only captures images, but also includes

a processor, memory and communication interface. Battery-powered, embedded smart cameras

introduce many additional challenges since they have very limited resources, such as energy, pro-

cessing power and memory. When camera sensors are added to anembedded system, the problem

of limited resources becomes even more pronounced. Hence, computer vision algorithms running

on these camera boards should be light-weight and efficient.This thesis is about designing and

developing computer vision algorithms, which are aware andsuccessfully overcome the limita-

tions of embedded platforms (in terms of power consumption and memory usage). Particularly,

we are interested in object detection and tracking methodologies and the impact of them on the

performance and battery life of the CITRIC camera (embeddedsmart camera employed in this

research). This thesis aims to prolong the life time of the Embedded Smart platform, without

affecting the reliability of the system during surveillance tasks. Therefore, the reader is walked

through the whole designing process, from the development and simulation, followed by the im-

plementation and optimization, to the testing and performance analysis. The work presented in

this thesis carries out not only software optimization, butalso hardware-level operations during

the stages of object detection and tracking. The performance of the algorithms introduced in this

thesis are comparable to state-of-the-art object detection and tracking methods, such as Mixture

of Gaussians, Eigen segmentation, color and coordinate tracking. Unlike the traditional methods,

the newly-designed algorithms present notable reduction of the memory requirements, as well as

the reduction of memory accesses per pixel. To accomplish the proposed goals, this work attempts

to interconnect different levels of the embedded system architecture to make the platform more

efficient in terms of energy and resource savings. Thus, the algorithms proposed are optimized

at the API, middleware, and hardware levels to access the pixel information of the CMOS sensor

directly. Only the required pixels are acquired in order to reduce the unnecessary communications

overhead. Experimental results show that when exploiting the architecture capabilities of an em-

bedded platform,41.24% decrease in energy consumption, and107.2% increase in battery-life can

be accomplished. Compared to traditional object detectionand tracking methods, the proposed

work provides an additional 8 hours of continuous processing on 4 AA batteries, increasing the

lifetime of the camera to 15.5 hours.

ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR EMBEDDED SMART

CAMERAS: DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS

by

Mauricio Casares

Ph.D., Syracuse University, 2014

Dissertation

Submitted in partial fulfillment of the requirements for thedegree of

Doctor of Philosophy inElectrical and Computer Engineering.

Syracuse University

May 2014

Copyright c© Mauricio Casares 2014

All Rights Reserved

Dedicatoria

Dedicada a mis padres por todo el carino, amor e incazable esfuerzo de construir un hogar lleno de

alegria y harmonia, confiaza y apoyo, llevandome a sobresalir y sobrepasar cualquir obstaculo por

dificil que este fuese.

v

Acknowledgments

“Determine that the thing can and shall be done and then... find the way”

– Abraham Lincoln

After many years of hard, challenging, and yet fascinating work, Ive come to conquer one

of the most important goal towards ones self realization. Graduate school has given me different

perspectives of life, and has led me to understand and be morecurious about everyday experiences.

Despite all of my effort and determination during the pursueof my Doctorate Degree, it would not

have been possible without the support and guidance of the kindest and dearest people surrounding

me.

I want to give my most sincere thanks to my adviser Dr. Senem Velipasalar for bringing me

into a fascinating area of studies. I am really thankful for all her guidance and support during the

process of obtaining my degree. Her knowledge and teaching skills were very valuable throughout

the whole process, and more so in my first steps of becoming theresearcher I am now. She is

a vivid example of a great and strong mentor, who would alwayssupport and encourage me to

explore new possibilities in our area of research, and most importantly, whom with her example

would show that everything you are willing to achieve, can beaccomplished. Her high research

standards and quality of work led me to all the great accomplishments I had through my path as a

Doctorate student.

vi

Many thanks to my co-workers for all their help with the development and understanding of my

research, especially Youlu Wang. Thanks to the University of Nebraska-Lincoln, in particular to

the department of Electrical Engineering for giving me the chance to demonstrate my knowledge. I

would like to thank the faculty members who willingly answered every question I had, and cleared

any doubt regarding my research and studies. Special thanksto Dr. Gursoy, Dr. Vuran, Dr.

Hoffman and Dr. Boye.

Last but not least, I would like to thank Syracuse Universityfor taking me as part of their

academic community during the last year of my studies, as well as my co-workers in the Smart

Vision Systems Laboratory. Meeting new researchers, and getting new perspectives and ideas

from a new environment, was a great addition to my set of experiences that led me to obtaining

my degree. It was a very enriching experience to help Dr. Velipasalar set up a new laboratory,

and learn a whole new set of skills in the process. Many thanksto Akhan and Koray for their

contributions in the development of my last experiments andfor making the lab a great working

environment.

Thanks to God, family and friends. “A journey will always be more exciting when there is good

company involved.” I want to give my most profound thanks to my parents; without all their effort

and support, none of this would have been possible. To both ofmy brothers, Daniel and Diego,

who always made me laugh, event in situations of really high stress. Special thanks to my uncles

Juliana Cordero and Eduardo Gonzales, who helped and supported me every time I needed them.

With great appreciation I would like to thank all my friends,who share the challenge of living apart

from their families, and that are now part of mine, making this whole experience one of the best I

will remember in my life. Tomas Murtagh and Jorge Venegas, who always gave me encouraging

words to continue, Alvaro Pinto, Fabio Parigi, Andres Doblado, Tania Toruno, Rebbeca Duar and

Angelo Bee for their unconditional friendship. My dearest thanks to Maria Isabel Quintero who

gave me all her love and patience, and for being next to me helping me finish my thesis.

viii

Contents

Page

1 Introduction 1

1.1 Overview . 1

1.1.1 Embedded Smart Cameras: A short history 2

1.2 Thesis Contribution 9

1.3 Publications .. . 10

1.3.1 Peer-reviewed Published Journal Papers 11

1.3.2 Peer-reviewed Published Conference Papers 11

2 CITRIC camera: Architecture 15

2.1 The CITRIC Camera .15

2.2 The Microprocessor 16

2.3 The Image Sensor .. 17

2.4 The TelosB Mote .19

3 Lightweight salient foreground detection for embedded smart cameras 22

3.1 Introduction .. . 22

3.2 Proposed Method .. 26

3.2.1 Building the Background Model . 27

3.2.2 Updating the Counters . 29

3.2.3 Salient Foreground Detection. 31

3.2.4 Adaptive background model update 33

CONTENTS ix

3.2.5 Adaptive number of memory accesses and instructions 34

3.3 Experimental Results 38

3.4 Conclusions .. 46

4 Resource-Efficient Salient Foreground Detection in battery-Powered Embedded

smart cameras by feedback tracking 58

4.1 Introduction .. . 58

4.2 Wireless Embedded Smart Camera Platform 61

4.3 Motivation: Energy Consumption Analysis 62

4.4 FeedbackMethod: Resource-Efficient Salient Foreground Detection by Feedback

Tracking . 64

4.4.1 Determining the Search Regions 65

4.5 Experimental Results 69

4.5.1 Comparison of the Energy Consumptions of the Feedbackand Sequential

Methods . 69

4.6 Conclusions .. 71

5 Resource-Efficient Salient Foreground Detection in battery-Powered Embedded

smart cameras by adaptive tracking methodologies 72

5.1 Motivation: Adaptive methodologies 72

5.1.1 Empty-Scene Mode . 75

5.2 Fixed-Rate Tracking Mode 77

5.3 Adaptive Tracking Mode 80

5.4 Combined Method for Further Energy Efficiency 84

5.5 Experimental Results 85

5.5.1 Comparison of the Energy Consumptions of the AdaptiveMethodology

and the Sequential Method . 86

5.5.2 Energy Savings Provided by the Combined Method 87

CONTENTS x

5.5.3 Energy Consumption Analysis over a Longer Time Window. 89

5.5.4 Comparison of Battery Lives 91

5.5.5 Analysis of the Tracking Performance 93

5.6 Conclusions .. 96

6 Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-

level Optimization 97

6.1 Frame Capture Operation 97

6.1.1 CITRIC Middleware Interface 99

6.2 Hardware-Level Image Processing Tasks: Scaling and Cropping 102

6.3 Savings in Energy Consumption 105

6.3.1 Analysis of grabbing a QVGA frame 105

6.3.2 Analysis of hardware-Level image/video processing tasks: Object detec-

tion and tracking . 107

6.4 Longer Tracking Experiment 114

6.5 Outdoor experiments 115

6.5.1 Tracking multiple objects 118

6.6 Increase in Battery-Life 120

6.7 Conclusion .121

7 Conclusions 122

xi

List of Figures

1.1 Linux based embedded smart camera prototypes. 4

1.2 BlueLYNX camera mote. .. . 5

1.3 Embedded smart cameras running TinyOS. 6

1.4 Wireless camera architecture introduced by Kleihorst et al. [55] 6

1.5 Other embedded smart cameras examples. 7

1.6 CMUcam embedded smart cameras. 7

1.7 CMUcam3 featuring a SunSPOT wireless mote. 8

1.8 CITRIC embedded smart camera Mote 8

2.1 The CITRIC camera mote. .. . 15

2.2 The block diagram of the CITRIC camera. 16

2.3 Intel PXA270 block diagram. 18

2.4 OV9655-QCI interconnection 19

2.5 The TelosB mote .19

2.6 The TelosB architecture 20

3.1 Memory required for a pixel with the proposed method 26

3.2 Output of the temporal difference after applying a threshold. 29

3.3 The background model is gradually built as moving objects change their location. . 30

3.4 Illustration of howh(i, j) is computed. 31

3.5 Original frame and the plot of the counter valuesh(i, j) for different pixel loca-

tions (i, j). Higher values correspond to outer boundaries of multiple fountains,

indicating regions with low reliability and non-salient motion. 32

LIST OF FIGURES xii

3.6 Illustration of the behavior of a pixel’s location(i, j) in both reliable and unreliable

cases . 34

3.7 Illustration of unreliable areas due to swaying tress and sun reflections (circled).

Large peaks revel them reporting high counts kept inht
t−50

(i, j). 35

3.8 Video of a fountain: number of pixels withR(i, j) = 0 vs. the frame number plot. . 36

3.9 Traffic light sequence: number of pixels withR(i, j) = 0 vs. the frame number plot. 36

3.10 Rain sequence: number of pixels withR(i, j) = 0 vs. the frame number plot. . . . 37

3.11 Rain sequence: number of pixels withR(i, j) = 0 vs. the frame number plot. . . . 38

3.12 Per frame memory requirements of different backgroundsubtraction methods

when one color channel is used. 40

3.13 ROC curves of different background subtraction methods. 42

3.14 Processing time (ms) versus the frame number for two different versions of the

algorithm when there is a foreground object in the scene. 44

3.15 Processing time (ms) versus the frame number for two different versions of the

algorithm when there is a foreground object in the scene. 44

3.16 Camera setup ready to perform the required energy measurements. 45

3.17 Variations in the operating current during the processing of three consecutive

frames containing a foreground object. The method presented in this chapter (blue

plot) is faster than the method presented in [4] (red). (For interpretation of the ref-

erences to color in this figure legend, the reader is referredto the web version of

Casares et al. [4]) .45

3.18 Variations in the operating current during the processing of three consecutive

frames of an empty scene. The method presented in this chapter (blue plot) pro-

vides speed gaining at frame numbers that are multiple of 25.(For interpretation

of the references to color in this figure legend, the reader isreferred to the web

version of Casares et al. [4].) 46

LIST OF FIGURES xiii

3.19 Foreground detection results of different algorithmson a challenging indoor’s

video sequence with flickering lights. Outputs are obtainedwithout morpholog-

ical operations. .48

3.20 Foreground detection results of different algorithmson a challenging video of a

windy scene. Outputs are obtained without morphological operations. 49

3.21 Foreground detection results of different algorithmson a challenging video in a

windy day at the Airport. Outputs are obtained without morphological operations. . 50

3.22 Foreground detection results of different algorithmson a challenging video of an-

other windy scene in a parking lot. Outputs are obtained without morphological

operations. 51

3.23 Foreground detection results of different algorithmson a video of a rainy scene.

Outputs are obtained without morphological operations. 52

3.24 Foreground detection results of different algorithmson a video of another rainy

scene. Outputs are obtained without morphological operations. 53

3.25 Foreground detection results of different algorithmson a challenging video of a

lake. Compared to (eg), the proposed method can eliminate the non-salient motion

better. Although (d) has less noisy pixels, it misses the person and the dog. Outputs

are obtained without morphological operations. 54

3.26 Foreground detection results of different algorithmson a video of a street. Outputs

are obtained without morphological operations. 55

3.27 Foreground detection results of different algorithmson a video of a street. Outputs

are obtained without morphological operations. 56

3.28 Comparison of foreground detection results of different algorithms on a video of a

fountain with a significant lighting difference 57

4.1 Processing time in milliseconds when an object is at different distances from the

camera. 62

4.2 Illustration of the flow diagrams for sequential and feedback tracking methodologies. 64

LIST OF FIGURES xiv

4.3 Displacement in the horizontal and vertical directions. 66

4.4 Operating current of the camera board with the feedback and sequential methods

when tracking (a) one, (b) two, and (c) three remote-controlled cars. 68

5.1 Camera setup ready to perform the required energy measurements. 73

5.2 Operating current of the camera board during different tasks 74

5.3 Camera dropping frames to save energy as illustration ofthe main goal of the al-

gorithm. 74

5.4 Empty-scene mode: red and blue plots are the operating current values when cam-

era captures frame continuously, and when the microprocessor is put into idle state,

respectively. .76

5.5 (a) Detecting a speed change. (b) Overlapping bounding boxes for a faster car. . . . 78

5.6 Updating the idle state duration based on the fastest object in the scene. 79

5.7 Car increasing its speed. 82

5.8 Operating current waveform when the idle time is changedbased on the object speed. 83

5.9 Idle duration is increased in the combined method by employing the feedback

method and the adaptive methodology together. 84

5.10 Operating current of the camera when tracking one car with the adaptive method-

ology (blue) and the sequential method (red). 87

5.11 Operating current of the camera board when employing the feedback method by

itself and the combined method. 88

5.12 Operating current of the camera board when employing the adaptive methodology

and the combined method. .89

5.13 Output frames obtained while tracking one car. 90

5.14 Output frames obtained when tracking two targets. 90

5.15 Operating current of the camera board when tracking onecar with different algo-

rithms for 20 min. 91

5.16 Characteristic curves of the batteries. 92

LIST OF FIGURES xv

5.17 Scenario wherein the bounding boxes before and after the idle state do not overlap. 94

5.18 Tracking with a preventive mechanism that can handle the gradual increases in

speed and resolve the issue seen in Figure 5.17. 95

6.1 Timing diagram for grabbing a frame using the Quick Capture Interface. 98

6.2 Interconnection of OV9655 and the Intel Quick Capture Interface on ARM PXA270. 99

6.3 Camera Driver Internal architecture. 100

6.4 Software architecture handling the CITRIC camera board. 101

6.5 Hardware-Level Image processing tasks: Scaling and Cropping 102

6.6 Interaction among components used in the Software based-Feedback method

(Chapter 4.) . 103

6.7 Interaction among components used in the Hardware based-Feedback method. . . . 104

6.8 Area cropped (a) by software using the API libraries (b) by hardware using the

micro-controller of the OV9655, (c) background subtraction output on the cropped

region . 105

6.9 QVGA images captured by (a) using the API software library down-sampling

subroutines and (b) performing hardware–level down-sampling on the micro-

controller of the OV9655. .. . 106

6.10 Operating currents of the camera board while grabbing aQVGA frame using the

API sub-sampling subroutines and using the image micro-controller of the OV9655. 107

6.11 Illustration of saving gain by using hardware level operations. 108

6.12 Background subtraction output on a frame grabbed by using the API software li-

braries to down-sample to QVGA resolution (left column), and by using hardware

level down-sampling (right column). 109

6.13 Operating currents when grabbing/buffering a frame and performing background

segmentation using the API sub-sampling subroutines versus collaborating with

the OmniVision OV9655. .110

LIST OF FIGURES xvi

6.14 Operating currents when (i) obtaining QVGA images withsoftware-level down-

sampling, and performing all processing on the main microprocessor ; (ii) per-

forming down-sampling at hardwarelevel on the micro-controller of the OV9655

sensor, and performing foreground object detection and tracking at the main mi-

croprocessor. 111

6.15 (a) Last QVGA frame captured while computing pixel displacement of the tracked

object; (b) Search regions cropped at hardware level. 112

6.16 Operating currents when performing foreground objectdetection an tracking on

cropped search regions obtained by software versus hardware-level cropping. . . . 113

6.17 (a) Detecting a speed change. (b) Overlapping boundingboxes for a faster car. . . . 113

6.18 Operating currents when performing foreground objectdetection and tracking dur-

ing 1-second time interval. 115

6.19 Outdoor experiment: Detection and Tracking of a personby employing hardware

level operations. .117

6.20 Alternating BGS outputs from two objects being detected and tracked. 118

6.21 Alternating tracking of a person and a vehicle on hardware scaled and cropped

frame areas. 119

xvii

List of Tables

3.1 Salient foreground detection algorithm 28

3.2 Memory requirement for the data saved for each pixel for different background

subtraction methods (for one color channel) 39

4.1 Comparison of the Processing Times of the Proposed Feedback Method and the

Sequential Approach. .. 69

4.2 Energy Consumptions for the Feedback and the SequentialMethods When Track-

ing One Car Continuously .. 70

4.3 Energy Consumptions for the Feedback and the SequentialMethods When Track-

ing One and Then Two Cars . 70

4.4 Energy Consumptions for the Feedback and the SequentialMethods When a Car

Enters and Leaves Twice .70

5.1 Energy Analysis of the Empty-Scene Mode 76

5.2 Energy Analysis of the Fixed-Rate Tracking Mode 80

5.3 Energy Analysis of the Adaptive-Rate Tracking Mode 83

5.4 Energy Analysis .. . 84

5.5 Energy Consumption Comparison Between Adaptive and Sequential Methods . . . 86

5.6 Energy Consumption Comparison Between the Feedback, Adaptive and Combined

Methods . 87

5.7 Energy Consumption Comparison Between the Combined andSequential Methods 89

5.8 Energy Consumption and Savings Comparison When Tracking One Car 91

5.9 Battery lifetime projection 92

LIST OF TABLES xviii

6.1 Energy consumption when grabbing a QVGA frame using the API software li-

braries versus performing down-sampling at hardware-level. 107

6.2 Energy consumption when grabbing a QVGA frame at Software versus Hardware-

level, and performing detection at the main microprocessor. 110

6.3 Energy consumption when grabbing and cropping a search region (100x100) at

software versus hardware-level and performing detection at the main microprocessor.114

6.4 Energy Consumption when performing detection and tracking during a 3-second

time interval at software versus hardware level. 115

6.5 Battery life projection. 121

1

Chapter 1
Introduction

1.1 Overview

Computer vision has been a fast growing field of studies. In recent decades it is now viable to

accomplish demanding computer vision tasks in real time. Researchers in the field are developing

and testing complicated computer vision algorithms, and running them in real-time; tasks that

could not be accomplished in the near past. Yet, the faster and powerful the processor is, the

more energy it consumes. Thus, as the attention is being directed towards mobile applications and

mobile platforms with limited processing and energy resources, special attention has to be paid to

computational efficiency and energy consumption.

As opposed to general-purpose wall-powered computer systems, which have constant sources

of energy, embedded platforms such as cell phones, wirelesssensors, smart cameras, medical mon-

itoring devices, and tablets have limited energy provided by on-board battery packets. Relying on

a limited source of energy limits the design of the embedded devices. Special attention has to

be paid the size and number of components utilized to build the actual platform. It is even more

challenging when the embedded platform captures and processes image and video data, which

is the case with wireless smart cameras. Since battery-lifeis limited, and video processing tasks

consume considerable amount of energy, it is essential to have lightweight algorithms, and method-

ologies to increase the energy-efficiency of each camera. For instance, the design of algorithms to

be imported on the embedded platforms should take into account important issues such as energy

Introduction 2

consumption, memory usage and processing time. Designing algorithms that consider the energy

consumption as well as the memory usage on embedded smart cameras has not received much

attention until now.

An embedded smart camera can be summarized as a vision system, which not only captures

images, but also incorporates on-board processing and communication. As opposed to regular

cameras, an embedded smart camera, not only captures images, but also provides on-board com-

putation capabilities to extract useful information from the captured images, detect certain events

of interest and create alerts that are used in an intelligentand automated system. Thus, rather than

transferring all the data to a back-end server, they can process images, and extract data locally.

This thesis focuses on lightweight algorithm design for embedded smart cameras, and method-

ologies to increase the battery-life of the embedded smart camera. We focus on the performance

of the embedded smart cameras, and present the impact of designing and running well-suited

lightweight computer vision algorithms on the battery-life of the embedded platform. The the-

sis emphasizes the advantages of designing lightweight algorithms that are well integrated with

the cameras architecture, opposed to using algorithms designed for wall-powered platforms. The

goal of the algorithms and the methodologies is to prolong the lifetime of the embedded smart

platforms, without affecting the reliability of the systemduring surveillance tasks. The reader is

walked through the whole process, starting with the design and simulation, followed by implemen-

tation and optimization, ending with the testing and performance analysis.

1.1.1 Embedded Smart Cameras: A short history

Even though embedded smart cameras do not have a very long history, since the first time the

concept was introduced, they have been exposed to a series ofadaptations and changes in recent

decades. This section brings to the reader a brief summary onhow embedded cameras have been

developed during the past decade.

Wolf et al. [26] introduced one of the early examples of embedded smart cameras. Since then,

embedded smart cameras have received a lot of attention fromboth academia and industry due

1.1 Overview 3

to the wide range of applications for which they can be used. In recent years, embedded smart

cameras have grown popular not only for their small size and ease of deployment, but also for the

diverse applications that could not be accomplished on centralized, general purpose vision systems.

Consequently, they have become effective means of rapidly implementing simple machine-vision

systems due to their reliability, cost effectiveness and ease of integration. Additionally, since they

are self-contained units, embedded smart cameras can be used as a single unit as well as for network

applications. Furthermore, due to the growing variety and complexity of the vision algorithms,

research on embedded camera design and development needs tokeep up with the demanding pace

of computer vision applications. An embedded smart camera performs real-time analysis to extract

useful information from captured images. They are employedin a variety of applications including

surveillance, medicine, sports, industry and military applications. Embedded cameras are also

used for on-site data acquisition, and customer behavior analysis in marketing and advertisement.

Most of the effort to improve the performance of embedded smart cameras has been expended to

accomplish real-time processing tasks with acceptable levels of accuracy and reliability. In order to

achieve this goal embedded smart cameras are becoming powerful devices which require a better

management of their energy source. Common computing platforms for smart cameras are FPGAs

, digital signal processors (DSPs), and/or general purposemicroprocessors [60]. Many embedded

vision platforms, designed for wireless sensor networks, have been developed recently.

Due to compatibility issues, using dedicated micro-controllers without an underlying Operat-

ing System (OS) makes it difficult to create distributed network of embedded smart cameras that

operate in a plug and play fashion. During the Workshop on Embedded Middleware for Smart

Camera and Visual Sensor Networks (eMCAM), which was held atStanford University in 2008,

it was concluded that there is a need for having an OS running on the smart cameras as central

management unit. The idea of having embedded Linux running on the smart cameras has been

explored in recent years, and it is becoming more and more common. Bramberger et al. [48] along

with the Australian Research Centers (ARC) designed an innovative smart camera which consists

of a network processor and a variable number of DSPs (Figure 1.1 (a)). Their design is targeted for

Introduction 4

distributed embedded surveillance, focusing on power consumption, QoS management, and lim-

ited resources. Even though the platform provides sufficient capabilities for image processing with

a processing power of9600 MIPS and on-board memory of784 MB, it still requires an average

power consumption of35 Watts (Rinner et al. [61]).

(a) The board by Bramberger et al. [48] (b) The borad by Quaritsch et al [54]

Figure 1.1: Linux based embedded smart camera prototypes.

Quaritsch et al. [54] employed smart cameras with multiple DSP processors, as shown in Figure

1.1 (b), for data processing. Thus, having multiple DSP processors would require the use of an

Operating System on top of the design. Even though the authors did not report any information

regarding the power consumption of their prototype, the power consumption of using multiple

DSPs would be comparable to the analysis presented in Rinneret al. [61].

Fleck et al. [51] presented a network of smart cameras for tracking multiple people. They

used commercial IP-based cameras, which consist of a CCD image sensor, a Xilinx FPGA and a

Motorola PowerPC shown in Figure 1.2. Chalimbaud and Berry [52] presented a smart camera

based on FPGAs. Similar to Bramberger et al. [48], the hardware architecture introduced by Fleck

et al. [51] requires an operating system that reliably manages the software tasks among the multiple

processing units and their peripherals.
Even though running embedded Linux as a central management unit brought scalability as

well as flexibility to the design, and a wider range of algorithms could now be implemented on the

1.1 Overview 5

Figure 1.2: BlueLYNX camera mote.

smart cameras, the architectures of these platforms were still big in size and consumed significant

amount of energy. The advances in integrated micro-chips allowed embedded smart cameras to be

sizable and energy efficient.

Embracing the success in the field of sensor networks, along with the availability of low-cost

micro-sensors, applications involving multimedia visionsensor networks have drawn attention

from the research community. In the proposed architectures, vision capability was added to a host

mote which featured a dedicated micro-controller managed by a simpler Operating System called

TinyOS [47].

The Cyclops [43] (Figure 1.3 (a)) and Imote2 [62] (Figure 1.3(b)) are two examples of this

architectural trend. Even though these smart cameras were surprisingly small and yet powerful

with processors running at frequencies of7.3 MHz and12 MHz, respectively, their capabilities

were still very limited to support a more complex variety of algorithms.

Another type of embedded smart cameras involved platforms featuring dedicated microcon-

trollers, which instead of using an OS, employed their own custom API libraries. These plat-

forms were mostly application-dependent with some limitations in terms of scalability and ease

of deployment. Despite being limited to a specific range of applications, and designed to be wall-

powered, their APIs were optimal and reliable reaching highprocessing rates in the order of30 fps.

For instance, Kleihorst et al. [55], presented a smart camera mote with a Xetal-II high-performance,

yet low-power single-instruction multiple data processorshown in Figure 1.4. The camera’s pro-

cessor is equipped with dedicated peripherals for frame-based real-time video analysis. The pro-

Introduction 6

(a) Cyclops (b) Imote2

Figure 1.3: Embedded smart cameras running TinyOS.

cessor handles interrupts from the Data Input/Output processor (DIP/DOP), communicates with

the outside world and configures other blocks. The average power consumption of the processor is

600 mW when working at 84Mhz.

Figure 1.4: Wireless camera architecture introduced by Kleihorst et al. [55]

Others platforms following this type of architecture were the MeshEye [53], XYZ [44], and

Panoptes [39], shown in Figure 1.5 (a-c). These platforms have flexibility and scalability issues in

general. Moreover, they employ processors running at 206 Mhz, 55Mhz, and 56.7 Mhz (to control

demanding peripherals), with higher energy consumption.

With the advancement in semiconductors and RISC micro-controllers, a new era in the embed-

ded smart camera design started; smart cameras became smaller in size and more efficient in terms

1.1 Overview 7

(a) MeshEye (b) XYZ (c) Panoptes

Figure 1.5: Other embedded smart cameras examples.

of power consumption.

The CMUcam2 [46] shown in Figure 1.6 (a) is a low-cost embedded camera that could be cat-

egorized between the previous two classes. Having a 75MHz-RISC processor and384KB SRAM,

and being equipped with a wireless mote running tinyOS, theywere powerful enough to run a

larger set of applications. Additionally, they contain efficient computer vision API libraries.

(a) CMUcam 2 (b) CMUcam 3

Figure 1.6: CMUcam embedded smart cameras.

The camera was small, flexible and easy to deploy. Their design was intensively studied and

highly accepted in the sensor network community. However, due to the limited memory and pro-

cessing power, only low-level image processing could be performed. Later on, the CMUcam3 [56],

shown in Figure 1.6 (b), was introduced, but the design was still lacking processing power as re-

Introduction 8

ported by Casares et al. [64]. Consequently, they proposed an improvement to the existing design

by attaching a SunSPOT mote (from SUN [57]) as shown in Figure1.7. Hence, some of the pro-

cessing demand could be handled at the ARM micro-controllerin the mote. They proposed their

own middleware interface so the camera and the mote could efficiently communicate with each

other.

Figure 1.7: CMUcam3 featuring a SunSPOT wireless mote.

With the advancement in embedded micro-computing, embedded smart cameras have become

sophisticated Systems on Chip (SoCs), with dedicated hardware that support complex vision al-

gorithms and video/image analysis. In particular due to theremarkable improvements in ARM

(Advance Risc Micro-controllers) technology, the idea of having Linux running on the cameras

became feasible and scalable. The CITRIC camera [63], shownin Figure 1.8, is a great example

of an efficient low-power architecture, which contains enough resources to run demanding vision

algorithms on a real-time basis. We have used the CITRIC platform for our experiments.

Figure 1.8: CITRIC embedded smart camera Mote

1.2 Thesis Contribution 9

1.2 Thesis Contribution

The primary contributions of this thesis are (i) the design,implementation, and testing of

lightweight computer vision algorithms, which are aware and successfully overcome the limita-

tions of embedded platforms (in terms of power consumption and memory usage), (ii) the devel-

opment of adaptive methodologies to increase battery lifetime of the embedded smart cameras,

and (iii) development and implementation of hardware-level operations to increase the energy ef-

ficiency further. The contribution in this dissertation is divided into three parts.

The first part presents a background subtraction algorithm for an object detection system to

be imported into an ARM micro-controller. A lightweight andefficient algorithm for salient fore-

ground detection is presented; it is highly robust against lighting variations and non-static back-

grounds (i.e. scenes with swaying trees, water fountains, as well as strong lighting changes). The

performance of the algorithm is better than or comparable tostate-of-the-art background subtrac-

tion methods, such as mixture of Gaussians, Eigen- or Codebook-based background subtraction

methods while providing a notable reduction in the memory requirements, as well as the reduction

in the number of memory accesses per pixel.

The second part presents a feedback-based object detectionand tracking algorithm to decrease

the processing time of a frame. The algorithm estimates positions of the objects being tracked

and feeds this information to the background subtraction stage. Hence, the detection process in

the subsequent frames become localized, which leads to decrease in the processing time and the

energy consumption.

The third part is related to the optimization of the algorithm at different levels of the embedded

architecture. This algorithm is optimized at the API, middleware, and hardware levels to directly

access the pixel information of the CMOS sensor. Only the required pixels in the predicted area

(based on location prediction) are acquired in order to reduce the unnecessary communications

overhead.

The algorithms were initially designed and tested by using MATLAB. They were then coded

in C/C++ to be imported on to the ROM memory of the embedded smart camera. The execution of

Introduction 10

the algorithms rely on embedded Linux as central managementunit. The camera used for testing

is a CITRIC camera [63] shown in Figure 1.8.

Chapter 2 describes the hardware architecture of the cameraused in this project. It describes

different components of the CITRIC embedded smart camera. In addition, a brief description of

the wireless communication capabilities of the camera moteis provided in Chapter 2.

Chapter 3 presents our light-weight and efficient background modeling and foreground detec-

tion algorithm. This algorithm runs on the camera boards in order to detect and segment moving

objects (person, cars, etc.). It is highly robust against lighting variations and non-static back-

grounds. The memory requirement per pixel and the allocation of it is described. The number

of memory accesses and instructions are adaptive, and are decreased according to the amount of

activity in the scene and on a pixel’s history.

Chapter 4 describes the feedback-based background subtraction and tracking algorithm, which

provides significant savings in processing time. Then in chapter 5, an adaptive methodology is

presented that can send the camera to idle state not only whenthe scene is empty but also when

there are target objects. Subsequently, a combined method is introduced, that employs the feedback

method and the adaptive methodology together providing further savings in energy consumption.

Finally, a detailed comparison of these methods is presented along with the gains in processing

time as well as the significant savings in energy consumptionand battery life increase.

Hardware/software interactions are discussed in Chapter 6. Operations are performed at

hardware-level to (i) change the image resolution, and (ii)perform image cropping based on search

regions obtained from the tracking stage. Moreover, experimental results are presented to show the

advantages of implementing hardware operations.

1.3 Publications

I have received a third place award with my work titled “Energy-efficient Feedback Tracking on

Embedded Smart Cameras by Hardware-level Optimization” atthe fifth ACM/IEEE International

Conference on Distributed Smart Cameras in Gent Belgium, 2011.

1.3 Publications 11

My research work during my Ph.D. studies has resulted in the following articles published in

prestigious and peer-reviewed journals and conference proceedings.

1.3.1 Peer-reviewed Published Journal Papers

[J1] K. Ozcan, A. K. Mahabalagiri, M. Casares, and S. Velipasalar, “Automatic Fall Detection and

Activity Classification by a Wearable Embedded Smart Camera”, IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, pp. 125–136, June 2013

[J2] M. Casares and S. Velipasalar, “Adaptive Methodologies for Energy-efficient Object Detec-

tion and Tracking with Battery powered Embedded Smart Cameras,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 21, issue 10, pp. 1438–1452, October 2011.

[J3] A. Sharma, D. Bullock, S. Velipasalar, M. Casares, J. Schmitz, N. Burnett, “Improving

Safety and Mobility at High Speed Intersections with Innovations in Sensor Technology,”

Transportation Research Record, TRR 2259, Journal of the Transportation Research Board,

pp. 253–263, 2011.

[J4] Y. Wang, M. Casares, and S. Velipasalar, “Cooperative object tracking and composite event

detection with wireless embedded smart cameras,”IEEE Trans. Image Process., vol. 19,

no. 10, pp. 2614–2633, Oct. 2010.

[J5] M. Casares, S. Velipasalar, A. Pinto, “Light-weight Salient Foreground Detection for Em-

bedded Smart Cameras,”Computer Vision and Image Understanding, vol. 114, issue 11,

pp. 1223–1237, 2010.

1.3.2 Peer-reviewed Published Conference Papers

[C1] A. Almagambetov, M. Casares, S. Velipasalar, “Autonomous Tracking of Vehicle Rear Lights

and Detection of Breaks and Turn Signals,”Proc. of the IEEE Symposium on Computational

Intelligence for Security and Defense Applications (CISDA), July 2012.

Introduction 12

[C2] M. Casares, A. Almagambetov and S. Velipasalar, “A Robust Algorithm for the Detection of

Vehicle Turn Signals and Brake Lights,”Proc. of the IEEE Int’l Conf. on Advanced Video

and Signal Based Surveillance (AVSS), Sept. 2012.

[C3] M. Casares, K. Ozcan, A. Almagambetov and S. Velipasalar, “Automatic Fall Detection by

a Wearable Embedded Smart Camera,”Proc. of the ACM/IEEE International Conference on

Distributed Smart Cameras (ICDSC), Oct.30-Nov.2, 2012.

[C4] A. Almagambetov, M. Casares and S. Velipasalar, “Autonomous Tracking of Vehicle Tail-

lights from a Mobile Platform using an Embedded Smart Camera,” Proc. of the ACM/IEEE

International Conference on Distributed Smart Cameras (ICDSC), Oct.30-Nov.2, 2012.

[C5] A. Sharma, M. Casares, S. Velipasalar, D. Bullock, “ Wide Area Detection for Reducing

Dilemma Zone Incursions at Isolated High Speed Intersections: Opportunities and Chal-

lenges,”Proc. of the 18th World Congress on Intelligent Transportation Systems, 2011.

[C6] M. Casares, P. Santinelli, S. Velipasalar, R. Cucchiara, A. Prati, “Energy-efficient Feed-

back Tracking on Embedded Smart Cameras by Hardware-level Optimization”,Proc. of the

ACM/IEEE International Conference on Distributed Smart Cameras, August 2011 (received

the 3rd place paper award).

[C7] M. Casares, P. Santinelli, S. Velipasalar, A. Prati andR. Cucchiara, “Energy-efficient

Foreground Object Detection on Embedded Smart Cameras by Hardware-level Operations,”

Computer Vision and Pattern Recognition Workshops (CVPRW), June 2011.

[C8] A. Sharma, D. Bullock, S. Velipasalar, M. Casares, J. Schmitz, N. Burnett, “Improving Safety

and Mobility at High-Speed Intersection with Innovations in Sensor Technology,”Proc. of

the Transportation Research Board Annual Meeting, Jan. 2011

[C9] M. Casares and S. Velipasalar, “Resource-Efficient Salient Foreground Detection for Em-

bedded Smart Cameras by Tracking Feedback,Proc. of the IEEE International Conference

on Advanced Video and Signal-Based Surveillance (AVSS), 2010.

1.3 Publications 13

[C10] M. Casares and S. Velipasalar, “An Adaptive Method forEnergy-Efficiency in Battery-

Powered Embedded Smart Cameras,”Proc. of the ACM/IEEE International Conference on

Distributed Smart Cameras (ICDSC), September 2010.

[C11] Y. Wang, M. Casares and S. Velipasalar, “Cooperative Object Tracking and Event Detection

with Wireless Smart Cameras,”Proc. of the IEEE Int’l Conf. on Advanced Video and Signal

Based Surveillance, pp. 394–399, 2009.

[C12] M. Casares, A. Pinto, Y. Wang and S. Velipasalar, “Power Consumption and Performance

Analysis of Object Tracking and Event Detection with Wireless Embedded Smart Cameras,”

Proc. of the Int’l Conf. on Signal Processing and Communication Systems (ICSPCS), 2009.

[C13] M. Casares and S. Velipasalar, “Light-weight SalientForeground Detection for Embedded

Smart Cameras,“Proc. of the ACM/IEEE International Conference on Distributed Smart

Cameras (ICDSC), pp. 1–7, Sept. 2008.

[C14] M. Casares, M. C. Vuran and S. Velipasalar, “Design of aWireless Vision Sensor for

Object Tracking in Wireless Vision Sensor Networks,”Proc. of the ACM/IEEE International

Conference on Distributed Smart Cameras (ICDSC), Workshopon Embedded Middleware

for Smart Camera and Visual Sensor Networks (eMCAM), pp. 1–9, Sept. 2008.

[C15] Y. Zhao, M. Casares and S. Velipasalar, “Continuous Background Update and Object

Detection with Moving Cameras,”Proc. of the IEEE International Conference on Advanced

Video and Signal Based Surveillance, pp. 309–316, Sept. 2008.

Our work related to background subtraction presented in chapter 3, is published in part in [J2],

[J3], [C13]. Our foreground object detection algorithm is designed for embedded smart cameras.

The algorithm is implemented and imported to an embedded camera and the results are reported

at the end of chapter 3. This lightweight background subtraction is also utilized in chapters 4 5

6 as foreground detection stage for object tracking purposes. Our work on feedback tracking and

adaptive methodologies for increasing battery-life is published in [J4],[C9],[C10],[C12]. Finally

Introduction 14

the work related to hardware level optimization presented in chapter 6, is published in [C6] and

[C7].

15

Chapter 2
CITRIC camera: Architecture

This chapter presents the details of the architecture of theCITRIC embedded smart camera [63].

It provides an understanding the limitations and challenges involved when designing algorithms

to be imported on to embedded platforms. It will also introduce the terminology to be used in

the following chapters. Even though the majority of the components of the CITRIC camera are

described in this chapter, 6 is where the hardware/softwareinteractions are explained. Understand-

ing the camera’s architecture and its challenges provides further motivation to design lightweight

algorithms suitable for embedded image/video processing tasks.

2.1 The CITRIC Camera

Figure 2.1: The CITRIC camera mote.

The CITRIC camera depicted in Figure 2.1 is a fully programmable embedded platform with

communication capabilities. The CITRIC camera offers wireless communication using a Telos

B (wireless sensor mote) attached to it. The block diagram shown in Figure 2.2 represents the

CITRIC camera: Architecture 16

hardware architecture of the camera. The camera is equippedwith a general-purpose processor

running embedded Linux (see Section 2.2), an image sensor (see Section 2.3), external memories

and other supporting circuitry. The ARM PXA270 microprocessor is a fixed-point processor from

Marvell with a maximum speed of 624 MHz. The typical frequencies supported by the CITRIC

camera range from 208 to 520MHz. The board also incorporatesa wireless MMX co-processor to

accelerate multimedia operations. In terms of memory resources, the CITRIC camera comes with

256 KB of internal Synchronous RAM (SRAM) while the available external memory is composed

of 64 MB of SDRAM, and 16 MB of NOR FLASH. The latter has the capability to execute code

directly out of the non-volatile memory on bootstrap (eXecution-In-Place, XIP) and is natively

supported by the PXA270 processor.

Image Sensor
OmniVision

CMOS
1.3 Mpixel
OV9655

Processor
Intel

PXA270
624 MHz

Power Mgnt.
NXP PCF 50606

USB to UART
Silabs CP2102

Mobile SDRAM
Qimonda

HYB18L51260BF-7.5
512 Mb 1.8 V

NOR FLASH
Intel

PC28F128P30B85
128 Mb 1.8 V

Audio ADC
Wolfson WM8950

BATT

DC 5V

USB

USB

CTRL

Power

UART

CTRL

DATA

UART

IEEE 802.15.4 Mote

Microphone

Figure 2.2: The block diagram of the CITRIC camera.

2.2 The Microprocessor

The CITRIC camera platform is equipped with a general-purpose processor (Intel PXA270 proces-

sor [75]) running embedded Linux. This facilitates the development of software applications using

higher level programming languages such as C/C++. The PXA27x processor is a fixed point inte-

grated system-on-a-chip microprocessor for high-performance, low-power, portable, handheld and

handset devices. It incorporates the Intel XScale technology with on-the-fly voltage and frequency

scaling and sophisticated power management to provide industry-leading MIPs/mW performance.

2.3 The Image Sensor 17

The PXA27x processor complies with the ARM Architecture V5TE instruction set (excluding

floating point instructions). It also supports Intel Wireless MMX integer instructions to acceler-

ate applications involving audio and video processing. ThePXA27x processor memory interface

supports a variety of external memory types to allow design flexibility. The processor also pro-

vides four 64-Kbyte banks of on-chip SRAM, which can be used for program code or multimedia

data. Each bank can be configured to retain its contents when the processor enters a low-power

mode. An integrated LCD panel controller provides support for displays up to 800 x 600 pixels.

It permits 1, 2, and 4-bit gray scale and 8- or 16-bit color pixels. A 256-entry palette RAM pro-

vides flexibility in color mapping. A set of serial devices and general system resources provides

computational and connectivity capability for a variety ofapplications. The PXA27x processor in-

corporates a comprehensive set of system and peripheral functions that makes it useful in a variety

of low-power applications. Figure 2.3 the block diagram of the processor. The diagram shows a

primary system bus with the Intel XScale core attached, along with an LCD controller, USB host

controller, and 256 KB of internal memory. The system bus is connected to a memory controller

to allow communication with a variety of external memory or companion-chip devices, and it is

also connected to a DMA controller/bridge to allow communication with the on-chip peripherals.

Some of these peripheral functions provide the ability to handle directly the image sensor. In par-

ticular, the Quick Capture Interface (QCI) provides a connection between the processor and the

image sensor (as shown in Figure 2.4). The QCI is able to acquire data and control signals and per-

forms the appropriate data formatting before routing the data to the memory using direct memory

access (DMA). The I2C interface is directly connected to theSerial Camera Control Bus (SCCB)

interface of the image sensor, and it is used to access the configuration register set.

2.3 The Image Sensor

The image sensor on the CITRIC camera is a OmniVision OV9655 [76], which is a low voltage

SXGA CMOS image sensor with an image micro-controller on board. It supports image sizes

SXGA (1280 x 1024), VGA (640 x 480), CIF (352 x 288), and any size scaling down from CIF to

CITRIC camera: Architecture 18

Figure 2.3: Intel PXA270 block diagram.

40 x 30, and provides 8-bit/10-bit data formats [63]. It can operate up to 15 frames per second (f/s)

in SXGA mode and up to 30 fps working in VarioPixel(R)1 mode when performing sub-sampling.

Figure 2.4 shows the interconnection of OV9655 and the IntelQuick Capture Interface on ARM

PXA270. The image sensor offers the full functionality of a camera and image micro-controller on

a single chip. There is a complete control over image quality, formatting and output data transfer

and all required image processing functions are also programmable. The Serial Camera Control

Bus (SCCB) interface is used to program the sensor behavior by setting all the control registers in

the device. It is an Inter-Integrated Circuit (I2C) compatible hardware interface. The Digital Video

Port, used to capture images, provides a connection betweenthe sensor and the CITRIC camera

main processor PXA270. It is used to capture the image data. It is a unidirectional communication

bus transferring 10-bit data signals and the line and frame synchronization signals [75].

2.4 The TelosB Mote 19

OV9655
CMOS Image

Sensor

D
ig

ita
l
V

id
e
o

P
o
rt

S
C

C
B

10 Bits YCbCr (4:2:2)

HREF

VSYNC

PCLK

MCLK

SIO_D/SDA

SIO_C/SCL

PWDN

RESET

Q
u
ic

k
C

a
p
tu

re
In

te
rfa

c
e

I2C

GPIO

RESET

PXA270 processor

CITRIC camera main board

Image capture board

DMA
engine

SDRAM

DATA

Figure 2.4: Interconnection of OV9655 and the Intel Quick Capture Interface on ARM PXA 270.

Figure 2.5: The TelosB mote

2.4 The TelosB Mote

The CITRIC camera provides a Joint Test Action Group (JTAG) port offering serial and I2C com-

munications for data transferring to external devices. Theport in the embedded platform is used to

connect to a TelosB (wireless sensor mote) for wireless communication purposes. The TelosB is a

wireless mote from Crossbow Technology. It is an ultra low power wireless sensor module (mote)

developed by UC Berkeley.

The camera communicates with the mote using a dedicated asynchronous serial interface. The

main features of the mote are: minimal power consumption, easy to use, and software and hardware

robustness. TelosB [77] is based on the Texas Instruments MSP430 microcontroller, Chipcon

CC2420, IEEE 802.15.4-compliant radio, and USB. The maximum data rate of 802.15.4 is 250

kbps per frequency channel (16 channels available in the 2.4GHz band). Even though, the TelosB

is capable of frame streaming over the wireless channel, itsmaximum rate is too low to achieve

1VarioPixel: Newly Developing technology that uses multiple pixels acting as a single pixel in order to improve
the performance of the chips. Thus, significantly improvinglow light performance and enhance the video capture.

CITRIC camera: Architecture 20

Figure 2.6: The TelosB architecture

real-time image streaming from the camera back to the serverat high quality. On the other hand,

the existing rate is optimal for sending extracted featuresover the network if an event of interest

occurs. Since TinyOS [47] is the operating system running onthe mote, it offers the capability of

substituting different standard routing protocols to suite the particular needs of an application.

TinyOS is a component based operating system suitable for research in wireless embedded

systems for sensor networks. TinyOS was developed for tiny,low-power nodes, whose im-

ported applications operate with severe memory and power constraints. TinyOS is the current

platform of choice in the sensor network community. It helpsdevelopers face the challenges of

limited resources, low-power operation, and event-centric concurrent applications. TinyOS has a

component-based programming model, codified in NesC language [30], a dialect of C. It is not an

OS in the traditional sense; it is a programming framework for embedded systems, and a set of

components that enable the compilation of an application-specific OS into the user’s application.

The architecture of the system and composition of the components allow researchers to work at

any level, from details of link layer communication protocols up to the application semantics [78].

In TinyOS, the hardware primitives, such as register accessand module flags, are exposed

through a hardware presentation layer (HPL). A platform-dependent hardware abstraction layer

(HAL) exposes hardware module functionality so that the full power of the hardware may be used.

On top of the HAL abstraction, there is a platform independent radio stack (link protocol and

2.4 The TelosB Mote 21

physical layer access) for the CC2420 transceiver that provides register access to the radio device;

the radio stack then acts as a library that uses these primitives to control the radio.

22

Chapter 3
Lightweight salient foreground detection for
embedded smart cameras

3.1 Introduction

An embedded smart camera is a stand-alone unit that not only captures images, but also includes a

processor, memory and communication interface. With battery-powered and embedded smart cam-

eras, it has become viable to install many spatially-distributed cameras interconnected by wireless

links. However, wireless and battery-powered smart-camera networks introduce many additional

challenges since they have very limited resources, such as energy, processing power, memory and

bandwidth. The algorithms running on the camera boards should be lightweight and efficient. They

should require less memory for storage, and consume less power. In addition to the accuracy of an

algorithm, it is very important to consider its efficiency, memory requirements and portability to

an embedded processor during algorithm design.

This chapter presents a lightweight and efficient background modeling and salient foreground

detection algorithm that is highly robust against lightingvariations and non-static backgrounds

such as scenes with swaying trees, water fountains, rippling water effects and rain. The memory

requirement for the data saved for each pixel is very small inthe proposed algorithm, and this is

achieved without sacrificing accuracy. Moreover, the number of memory accesses and instructions

are adaptive, and are decreased even more depending on the amount of activity in the scene and on

a pixel’s history.

3.1 Introduction 23

Foreground detection is the first step in most of the object tracking applications. Existing

methods for foreground detection can be broadly classified into two categories: temporal difference

methods [2,3], and background subtraction methods [5–7,9,12,14,16,23,25,29,36,49]. Temporal

difference methods subtract two consecutive frames and then apply a threshold to the output. These

methods perform well when the background changes over time,however they cannot detect all the

pixels of a moving object. Background subtraction methods build a model of the background and

subtract this from the current image to detect objects in thescene. In order to adapt to changes in

the environment, the background model is usually updated over time [6, 12, 14, 16, 23, 25, 36, 49].

The method proposed in this chapter is a hybrid method, and itemploys temporal difference to

build the background model.

Horprasert et al. [8] obtain expected chromaticity by the arithmetic mean of the RGB values cal-

culated over a number of background images. By using severalthresholds, pixels are classified as

foreground, background, shadow and highlighted background. Hidden Markov Models (HMMs)

have been employed to represent the variations in the pixel intensity as discrete states [15, 22].

Nonparametric background models have been used in [12,28,38].

Oliver et al. [21] present an eigenbackground method, whereimages of a static background are

collected, and PCA is employed to reduce the dimensionalityof space. Input images are projected

onto the PCA subspace, and a threshold is applied to the difference between the projected and

current image to find the foreground regions.

Adaptive Mixture of Gaussians (MoG), introduced by Stauffer and Grimson [16], is one of

the most commonly used background subtraction methods to model complex and non-static back-

grounds. However, a few Gaussian distributions are usuallynot sufficient to accurately model

backgrounds having fast variations. Methods have been introduced later that are based on Gaussian

mixtures [24, 33, 35, 37]. Zivkovic [33] proposed an improved adaptive MoG model to constantly

update the parameters of a Gaussian mixture and to simultaneously select the appropriate number

of components for each pixel.

Kim et al. [32] proposed an algorithm for background modeling, where sample background

Lightweight salient foreground detection for embedded smart cameras 24

values at each pixel are quantized into codebooks during training, which represent a compressed

form of the background model. This algorithm performs well when background is non-static or

there are lighting variations. However, its performance ondifferent video sequences is dependent

on the choice of multiple threshold values.

Although many methods have been introduced for foreground object detection, much less at-

tention has been paid to the memory requirement and the portability of these algorithms to an

embedded processor. Lighting variations and non-static backgrounds make the foreground detec-

tion problem even more challenging, since we are interestedonly in salient motion in tracking

applications. We need to separate cases of uninteresting motion, such as swaying trees and wa-

ter fountains, from the salient motion regions. The necessity of handling these challenging cases

increases the algorithm complexity, and thus memory requirements.

In this chapter, we present a lightweight method that is highly robust against lighting variations

and non-static backgrounds. The memory requirement of the proposed method for the data saved

for each pixel is very small compared to many traditional background subtraction methods. For

instance, Stauffer and Grimson [16] use multiple (three to five) Gaussian distributions per pixel,

to model non-static backgrounds. Kim et al. [32] form codewords for each pixel to capture the

different values at that pixel location. Each codeword for each pixel has nine entries, and on the

average6.5 codewords are needed for a pixel. The MoG method requires23 to 32 bytes per pixel

if three Gaussian distributions and one color channel are used. The codebook method requires91

bytes on the average for one color channel. Whereas, in our method, at most6.25 bytes are needed

per pixel. We provide a detailed comparison of the memory requirements in Section 3.3.

The proposed algorithm differentiates between salient andnon-salient motion based on the his-

tory and reliability of a pixel’s location, and by considering neighborhood information. The con-

cept of reliability will be explained in detail below. The background model is selectively updated

with an automatically adaptive rate, thus can adapt to rapidchanges. For instance, if a location is

deduced to be very reliable based on its history, a reliability flag is set to1 for this location, and a

higher background update rate is used, i. e. this location isincorporated to the background faster.

3.1 Introduction 25

As opposed to existing methods, each pixel is treated differently based on their histories. Instead

of requiring the same number of memory accesses and instructions for every pixel, we require less

memory access and less instructions for stable background pixels, i.e. for pixels whose reliability

flag is set to1. If a car enters the scene, for example, then the reliabilityflags of the pixels occluded

by the car will be set back to0. Thus, if we plot the number of pixels with reliability bit0 versus

the frame number, the changes and peaks in this plot will indicate the portions of the video with

activity. Thus, this plot can serve as a tool for activity summary.

Unlike many traditional methods treating each pixel individually, in the proposed method, in-

formation is obtained from neighboring pixels and incorporated into decision making, which in-

creases accuracy and robustness. The algorithm can use onlyintensity, or one color channel, and

still provides very reliable results. The experimental results presented in Section 3.3 were obtained

by using the red color channel only. The experiments were performed on different video sequences,

with non-static backgrounds and varying levels of difficulty, and the same threshold values were

used for all of them. Thus, the dependency on the threshold values is low. The experimental results

also demonstrate the success of the proposed lightweight method in challenging situations such as

scenes with water fountains, swaying trees, and strong windand rain.

We presented an initial version of the proposed algorithm in[65]. In this previous version,

static foreground objects are not pushed into the background. In [4], we proposed a new version

with which static foreground objects can be pushed into the backgroundif desired. This version

also has less memory requirement as well as memory access. Ifthe functionality of incorporating

static objects into the background is added, the memory requirement of the previous version [65]

is 7.25 bytes per pixel, which is more than the6.25 required by the improved version [4].

We then modified and improved our previous work [4, 65] in terms of the number of memory

accesses, number of instructions, and thus speed. The decision about whether a pixel is a fore-

ground pixel is made differently and more efficiently. In addition, we implemented our previous

algorithm [4], and the version presented in this chapter on the microprocessor of an actual embed-

ded smart camera, and compared them in terms of processing speed, and the operating current of

Lightweight salient foreground detection for embedded smart cameras 26

the camera board. To measure the current, we used a precise oscilloscope and a 1-ohm resistor

configuration placed at the input of the supply source. Also,we compare the proposed method

in detail with other state-of-the-art background subtraction algorithms in terms of their memory

requirement, accuracy and processing time. We ran the presented algorithm and the other methods

on challenging outdoor and indoor video sequences, and hereshow the results obtained with nine

different videos. These video sequences include videos of two different windy scenes, two differ-

ent rainy scenes, a video of a fountain, a video of a lake and videos of two different streets. We also

present the Receiver Operation Characteristics (ROC) curves for different background subtraction

algorithms.

The rest of this chapter is organized as follows: The detailsof the proposed method is explained

in Section 3.2. Specifically, building of the background model, counters and how they are updated,

salient foreground detection, adaptive background model update, and adaptive number of memory

accesses and instructions are described in Sections 3.2.1 through 3.2.5, respectively. Experimental

results are presented in Section 3.3, and the chapter is concluded with a summary in Section 3.4.

3.2 Proposed Method

The proposed algorithm employs a temporal difference method until a complete background model

is built. It differentiates between salient and non-salient motion based on the history of a pixel’s

location, and by incorporating neighborhood information.At each frame, each pixel is classified

either as a background or a foreground pixel, and its state isset to be0 or 1, respectively. For a

Figure 3.1: Memory required for a pixel with the proposed method

3.2 Proposed Method 27

pixel at location(i, j), a counterh(i, j) holds the number of changes in the state of this pixel during

the last100 frames, i. e. the counterh(i, j) keeps the number of times a pixel’s state changes from

0 to 1 or vice versa. The stability of a pixel at location(i, j) is determined by this counterh(i, j).

The motivation is that the lower the value ofh(i, j), the more stable and reliable that location is, or

vice versa. Until a complete background model is built, the state of a pixel is determined by using

temporal difference.

The algorithm has an adaptive background model update rate.If a pixel location is determined

to be consistently stable and very reliable, then the value of this pixel is incorporated to the back-

ground model with a higher weight. Instead of treating each pixel independently, information from

neighboring pixels is used to differentiate between salient and non-salient motion, and in turn to

classify a pixel as a foreground or background pixel. The details of the proposed algorithm will be

explained by referring to the pseudo-code provided in Table3.1. Additionally, Figure 3.1 shows

the amount of memory required for a pixel with the proposed method.

3.2.1 Building the Background Model

A temporal difference-based method is used to build a complete background model,M . In order

to detect slow motions or stopping objects, a weighted accumulation, Iact , is used for temporal

difference. At pixel location(i, j), Iact is defined as:

Iact (i, j) = (1− wac)I
ac
t−1

(i, j) + wac|It(i, j)− It−1(i, j)| (3.1)

wheret is the current frame number,It is the current image frame, andwac is the weight.Iac
0

is set

to be an empty image, andwac is set to be0.5.

At the beginning, the background model is an empty array. In Table 3.1,M denotes the back-

ground model, ands(i, j) denotes the state of a pixel at location(i, j), which is defined as:

s(i, j) =











1 Idiff (i, j) > τ

0 Otherwise.
(3.2)

Lightweight salient foreground detection for embedded smart cameras 28

SetM(i, j) = −1 for all i, j; Sets(i, j) = 0, R(i, j) = 0 for all i, j;
SetI1 = first frame; Setmodel complete = false;
for every framet > 1

SetIt = tth frame, and setIoutp(i, j) = 0 for all i, j;
if ∃ i, j for whichM(i, j) = −1

computeIact ; setIdiff = Iact ; τ = τd;
else

setmodel complete = true;
computeImd

t = |It −M |; setIdiff = Imd
t ; τ = τm;

for all i, j
if Idiff > τ

if (s(i, j) == 0), sets(i, j) = 1; updateCCk, for k ∈ {1 . . . 4};
else

if (s(i, j) == 1), sets(i, j) = 0; updateCCk, for k ∈ {1 . . . 4};
if model complete == false

if M(i, j) is not equal to−1
M(i, j) = αIt(i, j) + (1− α)M(i, j);

else
M(i, j) = It(i, j);

if model complete == true

if Imd
t (i, j) > τ

if R(i, j) == 0
Computeh(i, j) =

∑

4

i=1
CCi ;

if h(i, j) < τp
SetIoutp(i, j) = 1; SetR(i, j) = 0;

else
Setneighb(i, j) to be3× 3 neighb. ofh(i, j)
if N > 0.7(2w + 1)2

Ioutp(i, j) = 1;R(i, j) = 0;
else
M(i, j) = αIt(i, j) + (1− α)M(i, j);

else
Ioutp(i, j) = 1;R(i, j) = 0;

else
ResetFG duration(i, j) = 0;
if t is a multiple of25

if R(i, j) == 0
Computehtt−50

(i, j);
if (htt−50

(i, j) ≤ 2), setR(i, j) = 1;
if R(i, j) == 1
M(i, j) = 0.5It(i, j) + 0.5M(i, j);

elseM(i, j) = αIt(i, j) + (1− α)M(i, j);
if Ioutp(i, j) == 1 andt is a multiple of100

Create and/or increaseFG duration(i, j);
if 100 × FG duration(i, j) > T

M(i, j) = 0.5× It(i, j) + 0.5×M(i, j);
if model complete == false

SetIt−1 = It;
returnIoutp

Table 3.1: Salient foreground detection algorithm

3.2 Proposed Method 29

During the model building period,Idiff (i, j) is set to beIact (i, j), andτ is set to beτd = 15.

After the background modelM is complete,τ is set to beτm = 25, andIdiff (i, j) is obtained by

using the modelM , as explained below. Since temporal difference is based on consecutive frames,

and tends to give smaller differences,τd has a smaller value thanτm.

Whens(i, j) = 1, i. e. when the pixel is classified as foreground, this pixel location in the model

(M(i, j)), is not updated/changed. On the other hand, ifs(i, j) is 0, the current value ofM(i, j) is

checked. IfM(i, j) is not filled yet,M(i, j) is set to beIt(i, j), which is the current pixel value. If

M(i, j) is already filled, its value is set to beM(i, j) = 0.95M(i, j) + 0.05It(i, j). Thresholded

temporal difference cannot detect all the pixels of a movingobject as depicted in Figure 3.2. Thus,

existing model is given a95% weight not to corrupt it by direct use of the values coming from

the internal region of a moving object. As moving objects in the scene change their location, the

M will gradually be filled as seen in Figure 3.3. The process of building the background model

ends when no empty location is left inM . WhenM is complete, temporal difference is not used

anymore.

Figure 3.2: Output of the temporal difference after applying a threshold.

3.2.2 Updating the Counters

As stated previously, the stability of a pixel at location(i, j) is determined by a counterh(i, j),

which keeps the number of times a pixel’s state changes from0 to 1, or vice versa, in the last100

Lightweight salient foreground detection for embedded smart cameras 30

Figure 3.3: The background model is gradually built as moving objects change their location.

frames. The motivation is that the lower the value ofh(i, j), the more stable and reliable that pixel

location is.

Although it may look like an implementation detail, the computation ofh(i, j) for each pixel at

each frame is worth emphasizing since we want fast processing, and we need to take the memory

requirements into account. At any framet, we want the number of changes in a pixel’s state be-

tween framest− 100 andt. This requires saving the frame number each time a change occurs in a

pixel’s state. For locations with non-salient motion, this, in turn, requires an array with potentially

high dimension for each pixel. Instead, we quantize the100-frame window into4 intervals, and

keep a counterCCk(i, j), k ∈ {1, . . . , 4}, for each interval for pixel(i, j). The approach is illus-

trated in Figure 3.4. Between frames1 and25, the counterCC1 is increased each time the pixel’s

state changes, between frames26 to 50 the counterCC2 is increased etc. At the end of the100-

frame period, the counterCC1 is reset and its value is increased until frame125 is reached, and the

other counters are updated similarly. This avoids saving the frame instances of each change. Then,

h(i, j) =

4
∑

k=1

CCk(i, j).

Countersh(i, j) are updated during the building of the model as well. Figure 3.5 shows a

3.2 Proposed Method 31

Figure 3.4: Illustration of howh(i, j) is computed.

frame from a video containing a fountain, and a plot of the counter valuesh(i, j) for different pixel

locations(i, j). As can be seen, the counters are higher around the outer boundaries of the multiple

fountains, where the water is constantly moving and splashing. The high counters indicate regions

with low reliability and non-salient motion.

It should be noted that this approach provides only an approximation of the number of changes

in a pixel’s state without having to save the frame numbers ofevery state change. For instance,

at frame101, it gives the number of changes that happened between frames25 and101. Other

approaches can be used, and have been tried, that can give better approximations. However, they

either require introducing additional variables, and/or additional instructions, and thus increase the

memory requirement and decrease the algorithm speed. The presented approach is adapted for

small memory requirement and better computational speed.

3.2.3 Salient Foreground Detection

As can be seen in Table 3.1, after the background model is built, then the difference image is set to

beIdiff = Imd
t = |It −M |.

If Imd
t (i, j) ≤ τ , then the pixel location(i, j) is classified as background. On the other hand,

as opposed to many traditional model-based background subtraction approaches, in the proposed

Lightweight salient foreground detection for embedded smart cameras 32

Figure 3.5: Original frame and the plot of the counter valuesh(i, j) for different pixel locations
(i, j). Higher values correspond to outer boundaries of multiple fountains, indicating regions with
low reliability and non-salient motion.

scheme, satisfyingImd
t (i, j) > τ is not enough for the pixel location(i, j) to be classified as

foreground. Instead, reliability constraints are employed to differentiate between salient and non-

salient motion. A pixel location satisfyingImd
t (i, j) > τ is classified as foreground only if its

counterh(i, j) satisfiesh(i, j) < τp, whereτp = 15 is the percentage threshold. The reasoning

is that if h(i, j) < 15, then it means that the state of the pixel at this location changed less than

15% of the time during the last100 frames making this location a reliable one. In other words, this

location is not likely to be in a non-salient motion region. Thus, the intensity difference greater

thanτ is caused by a salient motion with high probability.

If Imd
t (i, j) > τ and h(i, j) ≥ τp, then we do not classify this location as background right

away. We take a(2w + 1) × (2w + 1)-window neighborhood, wherew = 1, around location

(i, j) and check theh counter for all the neighbors. In Table 3.1,N is the number of neighbors

whose counterh is less thanτp. If the majority of the neighbors (more than70%) have a low

counter, i. e.h < τp, then location(i, j) is set to be a foreground pixel or vice versa. This way, we

take into account the fact that neighboring pixels are not independent from each other. We obtain

information from neighbors, which increases accuracy and robustness.

3.2 Proposed Method 33

3.2.4 Adaptive background model update

In order to adapt to changes in the environment, such as lighting changes, the background model

needs to be updated over time. We perform the update of the background modelM in a selective

way, and with an automatically adaptive rate. The motivation is that when a pixel’s location is

deduced to be consistently reliable and stable, then the value at that location is incorporated into

the background model with a higher weight.

If Imd
t (i, j) ≤ τ , then the algorithm concludes that it is safe to update the background model

at this location. However, by looking at the summary of the recent past of a pixel, a higher weight

can be given to the current pixel value, and better adapt to faster changes in the background. In

other words, the background update rate an automatically adaptive.

The very compactsummaryof a pixel’s history is formed as follows: Rather than savingmany

values for each pixel location, such as averages for three color values, multiple Gaussian distri-

bution means and variances, multiple codewords with multiple entries, we use two of the four

counters (CCk, k ∈ {1, . . . , 4}) corresponding to the last50 frames. Letht
t−50

(i, j) denote the

sum of these two counters. Thus,ht
t−50

(i, j) holds the number of state changes at pixel location

(i, j) during the last50 frames. Ifht
t−50

(i, j) ≤ 2, it means that the state of this pixel has changed

only two times or less during the last50 frames, i.e. this location is very reliable. We perform this

check every25 frames, and if the condition is satisfied, we set the boolean variableR(i, j), which

is a reliability flag, to be1. This location is then incorporated to the background modelwith a50%

weight.

On the other hand, ifImd
t (i, j) ≤ τ (Figure 3.6) andR(i, j) is equal to0, then95% and5%

weights are given to the existing model value and the currentpixel value, respectively. Figure 3.7

shows unreliable pixel locations in a parking lot area. Theyare produced due to swaying tress

and sun reflections on the buildings’ roofs. If a pixel at location (i, j) is classified as a foreground

pixel, thenM(i, j) is not updated, which prevents corrupting the existing model. However, if a

pixel location(i, j) is classified consecutively as foreground for a specified period of time (T) due

to a static foreground object, then we start to push this location to the background by giving it50%

Lightweight salient foreground detection for embedded smart cameras 34

Figure 3.6: Illustration of the behavior of a pixel’s location (i, j) in both reliable and unreliable
cases

weight.T is set by the user, and determines how much time a stopped object should be static to be

considered as part of the background.

3.2.5 Adaptive number of memory accesses and instructions

In Section 3.2.4, we described how we set the value ofR(i, j). If Imd
t ≤ τ , and currentR(i, j) is 0,

and the frame number is a multiple of25, we compute the value ofht
t−50

(i, j). A smallht
t−50

(i, j)

indicates that the pixel’s state has not changed much in the last50 frames, and thusR(i, j) is set to

be1.

At the beginning, for each pixel,1 byte is allocated for eachCCk, wherek ∈ {1, . . . , 4}, 1

byte for the value saved inM(i, j), 1 byte for the previous frame value,1 bit for the state variable

s(i, j), and1 bit for the reliability flagR(i, j) making the total memory allocation50 bits per pixel.

After the background model is built, the pixel values of the previous frame are no longer needed.

Instead, the memory allocated for the previous frame valuesis used for theFG duration variable.

If the value ofR(i, j) is 1, this indicates that this pixel is a very reliable and stablebackground

pixel. With the presented method, first type of saving occurswhen there is a foreground object in

the scene covering reliable background pixels. WhenImd
t (i, j) > τ , h(i, j) is not calculated for

very reliable background pixels, i.e. pixels for whichR(i, j) is 1. The reasoning is the following:

h(i, j) is employed to determine the stability of a pixel by looking at its state changes in the last100

3.2 Proposed Method 35

Figure 3.7: Illustration of unreliable areas due to swayingtress and sun reflections (circled). Large
peaks revel them reporting high counts kept inht

t−50
(i, j).

frames. IfR(i, j) is 1, it is already known that this location is very reliable, thus we do not need

to calculate and check the value ofh(i, j). In addition, we do not need to check the counters of

the neighboring pixels either. This provides significant savings in terms of the number of memory

accesses and instructions

The second type of savings occurs every25 frames. IfR(i, j) is currently1, then there is no

need to computeht
t−50

(i, j), which provides additional savings. The detailed comparison of the

method presented here and its previous version presented in[4], in terms of the processing speed,

Lightweight salient foreground detection for embedded smart cameras 36

will be presented in Section 3.3.

As described above, for very reliable and stable backgroundpixelsR(i, j) is set to1. Thus, the

plot of the number of pixels, whose reliability flagR(i, j) is 0, versus the frame number serves as

a tool for activity summary. The changes and peaks in this plot will indicate the portions of the

video with activity. Figures. 3.8 - 3.11 show these plots obtained for different video sequences.

Figure 3.8: Video of a fountain: number of pixels withR(i, j) = 0 vs. the frame number plot.

Figure 3.9: Traffic light sequence: number of pixels withR(i, j) = 0 vs. the frame number plot.

Figure 3.8 shows the number of pixels withR(i, j) = 0 for a video sequence of a fountain.

3.2 Proposed Method 37

Figure 3.10: Rain sequence: number of pixels withR(i, j) = 0 vs. the frame number plot.

Frames 1-100 correspond to the model building period, during whichR(i, j) = 0 for all the pixels.

After the model is built, and stable background pixels are determined, the number of pixels whose

R(i, j) is 0 drops significantly to about2500 pixels per frame, and it remains around this value

until some activity starts in the scene. For example, at frame 6800, there is a person walking in

front of the camera. This creates a peak in the plot. A similarsituation occurs at frame7935, where

the detected person is closer to the camera and thus its size is larger than the previous scenario. A

bigger object covers more pixels, and causes them to be classified as foreground pixels. Thus, the

R(i, j) is set back to zero for these affected pixels. This is why the peak at frame7935 is higher

than the one at frame6800.

The savings provided by the proposed method increases with increasing number of reliable

background pixels, i.e. pixels whoseR(i, j) is 1. In Figure 3.8, low values correspond to frames

with small number of unreliable pixels, and thus more numberof reliable background pixels. Thus,

in these portions of the video, the number of memory accesses, and the number of instructions will

be less with the proposed method. More speed analysis will beprovided in Section 3.3.

Another interesting video sequence captured at a traffic light shows a continuous flow of cars

going in the north–south direction. The number of pixels with R(i, j) = 0 vs. the frame number

Lightweight salient foreground detection for embedded smart cameras 38

Figure 3.11: Rain sequence: number of pixels withR(i, j) = 0 vs. the frame number plot.

plot for this sequence is displayed in Figure 3.9. At frame1950, there are two buses in the scene

occupying a larger area than the smaller sedans and trucks that are seen at frames2700 and2780.

The highest peak shown in the plot corresponds to this instance.

Figure 3.10 shows the number of pixels withR(i, j) = 0 for a rainy scenario in which a person

goes through the view of the camera twice. The first time, the individual was farther away from

the camera while in the second pass, he is closer to it resulting in a higher number of pixels with

reliability bit set to zero memory. A more extreme example ispresented in Figure 3.11, in which a

sudden lightning causes a complete intensity change in the whole image at frame369. As a result,

a large peak is observed in the plot. After this, the total number of pixels withR(i, j) = 0 drops

again.

3.3 Experimental Results

In this section, the proposed method is compared with five other background subtraction meth-

ods, including its previous version presented in [65], on 11different video sequences with varying

levels of difficulty. Henceforth, these algorithms will be referred to as follows: ALW: Adaptive

3.3 Experimental Results 39

CB Org-MoG EB LW [65] ALW
Bytes per pixel 91 32 28 7.25 6.25

Table 3.2: Memory requirement for the data saved for each pixel for different background subtrac-
tion methods (for one color channel)

lightweight algorithm (the method presented in this chapter), LW: lightweight algorithm [65], Org-

MoG: Original MoG [16], Impr-MoG: Improved MoG [33], CB: Codebook [32], EB: Eigenback-

ground [21]. In addition, we provide a detailed comparison of the proposed (ALW) method with

other state-of-the-art background subtraction algorithms in terms of their memory requirement, ac-

curacy and processing time. We also present the Receiver Operation Characteristics (ROC) curves

for different background subtraction algorithms.

Since embedded smart cameras have limited processing powerand memory, it is very important

to design lightweight algorithms that require less memory for storage. First, the proposed algorithm

is compared with others in terms of the memory requirement for the data saved for each pixel. The

algorithm was run on the red channel, and its memory requirement is detailed in Section 3.2.5. For

different background subtraction techniques, Table 3.2 lists the number of bytes necessary for the

data saved for each pixel, for one color channel.

The memory requirements for the other background subtraction methods are computed as fol-

lows. Letn denote the number of Gaussian distributions used in Org-MoG. Org-MoG requires two

floating point numbers per Gaussian distribution, per colorchannel, per pixel (one for the mean

and one for the variance of a Gaussian distribution). It alsorequiresn − 1 many floating point

numbers for the weights of distributions. Thus, ifn is picked to be3, eight floating point numbers

are needed per color channel. If three color channels are used the memory required per pixel is96

bytes. If one color channel is used, it is32 bytes. Even if the mean for each distribution is rounded

so that it can be represented by a byte, the memory requirement is still 23 bytes per color channel.

The codebook-based method (CB) uses3 floating point numbers for the means of the RGB

channels,2 bytes for the minimum and maximum brightness values that thecodeword accepted,1

integer for the frequency of the codeword,1 integer for the maximum negative run-length, and2

Lightweight salient foreground detection for embedded smart cameras 40

integers for the first and last access times. Thus, the total memory needed is22 bytes per codeword.

If only one color channel it is14 bytes per codeword. In [32], it is stated an average of6.5

codewords is needed per pixel codebook. Thus, the average memory requirement per pixel is91

bytes.

For the EB method, the memory requirement per pixel is the number of the best eigen-

backgrounds. During the training time the method requires allocation for all the training images.

In general, 7 floating point numbers are required per pixel. Thus, the memory needed is28 bytes.

The LW algorithm presented in [65] requires7.25 bytes per pixel when the functionality of

pushing the static foreground objects to the background is incorporated. For different methods,

Figure 3.12 shows a bar graph of the memory requirement (in bytes) per frame for a240 × 320

frame.

Figure 3.12: Per frame memory requirements of different background subtraction methods when
one color channel is used.

The proposed method was tested on 11 challenging video sequences, and compared it with

five other background subtraction methods including our previous work. It should be noted that

all the displayed outputs below are the images obtainedwithout applying anymorphological or

post-processing operations. All the results of our algorithm were obtained by using the same

threshold values for all videos, specifically,τd = 15, τm = 25, τp = 15, andα = 0.05. Overall,

3.3 Experimental Results 41

the proposed method requires the least amount of memory per pixel while providing better or

comparable outputs at the same time.

Figures 3.20 and 3.22 display the outputs obtained on videosof two different windy scenes.

All the algorithms were run on one channel except the CB and Impr-MoG. As can be seen, the

proposed method provides the least amount of noisy pixels, and good detection at the same time.

Figures 3.23 and 3.24 show the outputs for challenging videos of rainy scenes. Again, the

proposed method provides comparable if not better outputs compared to the other algorithms,

while requiring the least amount of memory at the same time.

Figure 3.25 shows the outputs for another challenging videoof a lake, where there are rippling

water effects on the lake, and swaying trees in the background. Compared to Impr-MoG, EB and

CB, the proposed method can differentiate the non-salient motion better. It gives the least amount

of noisy pixels. The Org-MoG, on the other hand, has less noisy pixels than the proposed method.

However, it misses the person and the dog, which should be detected as foreground objects. The

outputs obtained on two other outdoor videos showing two different streets are shown in Figures

3.26 and 3.27.

The results displayed in Figure 3.28 were obtained from a video of a scene with a fountain,

where the water level goes up and down. Moreover, during the video, lighting changes due to

moving clouds, as seen in Figure 3.28. As the figure illustrates, since the eigenbackground method

does not update the background model, it cannot handle the lighting change. The improved MoG

method cannot detect most of the foreground pixels. The proposed method provides good detec-

tion, and can eliminate most of the non-salient motion caused by the fountains.

Figure 3.19 displays the outputs obtained from an indoor sequence. Although the video was

captured indoors, the flickering of the overhead lights affects the performance of the algorithms.

Figures 3.21 and 3.22 present common surveillance scenarios. Figure 3.21 shows the output of

the algorithm on an airport video during regular daily activities while Figure 3.22 was captured at a

parking lot. The latter shows the robustness of the algorithm against non-salient motion introduced

by swaying trees.

Lightweight salient foreground detection for embedded smart cameras 42

Figure 3.13: ROC curves of different background subtraction methods.

We also compared the processing times of these algorithms ona PC. However, the codes for the

ALW, EB, CB and Org-MoG are written in MATLAB, whereas the code for Impr-MoG is written

in C. Also, these codes are not equally optimized. Hence, it is difficult to make a comparison of the

processing times. We will list the frames/sec rates to give the reader a general idea. The algorithms

were run on a video with240 × 320 frame size. ALW and EB run at35 frames/sec and49.5

frames/sec, respectively, in MATLAB. It should be noted that EB does not update the background

model. The Org-MoG and the CB run at0.2 frames/sec and0.24 frames/sec, respectively, in

MATLAB. The C++ version of the CB method runs at around55 frames/sec, and the Impr-MoG

runs at59 frames/sec in C.

In addition, we performed a comparison of the different algorithms in terms of their probability

of detection (Pd) and probability of false alarm (Pfa) rates, and plotted their Receiver Operation

Characteristics (ROC) curves [1, 10, 13, 31]. ROC curves areemployed often when comparing

background subtraction algorithms. Alongside the outputsobtained by different algorithms, ROC

analysis provides us with a quantitative comparison. We obtained the ground truth for the fore-

ground objects manually, and plotted the ROC curve for each algorithm. These curves are dis-

played in Figure 3.13. As can be seen, for the samePd rate, the proposed method has the leastPfa,

and for the samePfa rate it has the highestPd.

As described above, compared to the initial version presented in [4], the method presented here

provides more savings, in terms of number of memory accessesand number of instructions, and

3.3 Experimental Results 43

thus speed and efficiency, in two different ways. To demonstrate these savings, we performed three

different experiment

First two experiments compare the processing speed of two versions when a foreground object

is in the scene. As discussed in detail above, with the methodpresented here, first type of sav-

ings occurs when there is a foreground object in the scene covering reliable background pixels.

WhenImd
t (i, j) > τ andR(i, j) = 1, h(i, j) is not calculated for these reliable background pixels,

i.e. pixels for whichR(i, j) is 1. In addition, we do not need to check the counters of the neigh-

boring pixels either. This provides significant savings in terms of the number of memory accesses

and instructions. For these experiments, we imported and implemented the two versions of our

algorithm on an embedded smart camera node.

Figure 3.14 shows a plot of the processing time (in milliseconds on the microprocessor of the

camera) for two different versions during an interval when there is an object in the scene. The blue

and red plots correspond to the methods presented in this chapter and in [4], respectively. As can be

seen, on the average, the method presented here performs2.82 milliseconds faster per frame. Also,

the speed gain provided by this method increases with increasing object size and also increasing

number of objects in the scene as seen in Figure 3.15. Since the foreground object is larger the

proposed method runs4.5 milliseconds faster per frame on the average. This gain is obtained in

part by not accessingCCk, k ∈ {1, ..., 4}, and not performing
∑

4

k=1
CCk for reliable background

pixels.

Lightweight salient foreground detection for embedded smart cameras 44

Figure 3.14: Processing time (ms) versus the frame number for two different versions of the algo-

rithm when there is a foreground object in the scene.

Figure 3.15: Processing time (ms) versus the frame number for two different versions of the algo-

rithm when there is a foreground object in the scene.

In the second experiment, we ran the different versions on the embedded smart camera board,

and measured the operating current of the board. The operating current increases or decreases

based on the workload of the processor (number of instructions per task), the supply voltage source

and the frequency at which the processor is working. To measure the current, we used a precise

oscilloscope and a1-ohm resistor configuration placed at the input of the supplysource (battery

3.3 Experimental Results 45

pack) as shown in Figure 3.16.

Figure 3.16: Camera setup ready to perform the required energy measurements.

Figure 3.17 shows the variations in the current during the processing of three consecutive

frames containing a foreground object. As can be seen the proposed method (blue plot) finishes

processing the first frame8 milliseconds earlier than the method presented in [4]. It also finishes

processing the following two frames7 and8 milliseconds faster.

Figure 3.17: Variations in the operating current during theprocessing of three consecutive frames

containing a foreground object. The method presented in this chapter (blue plot) is faster than the

method presented in [4] (red). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of Casares et al. [4])

The proposed method provides second type of savings, over our previous work, every25

frames. As described before, ifR(i, j) is currently1, then there is no need to computeht
t−50

(i, j),

which provides additional savings. In order to demonstratethese savings, we performed another

experiment and measured the operating current of the cameraboard over time with an oscilloscope.

Lightweight salient foreground detection for embedded smart cameras 46

To measure the gain obtained only from not calculatinght
t−50

(i, j) at every25 frames, we used an

empty scene. Figure 3.18 shows the waveforms obtained. The blue and red plots correspond to the

methods presented in this chapter and in [4], respectively.As can be seen, when the frame number

is multiple of25, the proposed method performs5 milliseconds faster than the method in [4].

Figure 3.18: Variations in the operating current during theprocessing of three consecutive frames

of an empty scene. The method presented in this chapter (blueplot) provides speed gaining at

frame numbers that are multiple of 25. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of Casares et al. [4].)

3.4 Conclusions

We presented a lightweight salient foreground detection algorithm that is highly robust against

challenging non-static backgrounds. Contrary to many traditional methods, the memory require-

ment for the data saved for each pixel is very small in the proposed algorithm, which is very impor-

tant for portability to an embedded smart camera. Moreover,the number of memory accesses and

instructions are adaptive, and are decreased even more depending on the amount of activity in the

scene and on a pixel’s history. Each pixel is treated differently based on its history, and instead of

requiring the same number of memory accesses, and thus, instructions for every pixel, we require

less instructions for stable background pixels. This, in turn, increases the processing speed. The

algorithm achieves this without sacrificing accuracy. The plot of the number of unstable pixels at

3.4 Conclusions 47

each frame also serves as a tool to find the video portions withhigh activity.

The proposed method selectively updates the background model with an automatically adaptive

rate, thus can adapt to rapid changes. As opposed to traditional methods, pixels are not always

treated individually, and information about neighbors is incorporated into decision making, which

increases accuracy and robustness. The algorithm can use only intensity, or one color channel, and

still provides very reliable results. The results obtainedwith nine different challenging outdoor

and indoor sequences were presented, and compared with the results of different state-of-the-art

background subtraction methods. All the results of our algorithm were obtained by using the same

threshold values for all videos. The ROC curves of differentbackground subtraction methods are

also provided. The memory requirements of the different algorithms have been compared as well,

and it has been shown that the proposed method requires the least amount of memory per pixel. The

experimental results demonstrate the success of the proposed lightweight method in challenging

situations such as scenes with water fountains, swaying trees, and strong rain.

The method presented in this chapter modifies and optimizes our previous work [4] in terms of

the memory access, number of instructions, and thus, speed.The decision about whether a pixel

is a foreground pixel is made differently and more efficiently. These methods were compared in

terms of processing speed with three different experimentsperformed with an embedded smart

camera running these algorithms. It was shown that the presented method runs faster on the smart

camera nodes.

Lightweight salient foreground detection for embedded smart cameras 48

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.19: Foreground detection results of different algorithms on a challenging indoor’s video
sequence with flickering lights. Outputs are obtained without morphological operations.

3.4 Conclusions 49

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.20: Foreground detection results of different algorithms on a challenging video of a windy
scene. Outputs are obtained without morphological operations.

Lightweight salient foreground detection for embedded smart cameras 50

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.21: Foreground detection results of different algorithms on a challenging video in a windy
day at the Airport. Outputs are obtained without morphological operations.

3.4 Conclusions 51

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.22: Foreground detection results of different algorithms on a challenging video of another
windy scene in a parking lot. Outputs are obtained without morphological operations.

Lightweight salient foreground detection for embedded smart cameras 52

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.23: Foreground detection results of different algorithms on a video of a rainy scene.
Outputs are obtained without morphological operations.

3.4 Conclusions 53

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.24: Foreground detection results of different algorithms on a video of another rainy scene.
Outputs are obtained without morphological operations.

Lightweight salient foreground detection for embedded smart cameras 54

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.25: Foreground detection results of different algorithms on a challenging video of a lake.
Compared to (eg), the proposed method can eliminate the non-salient motion better. Although (d)
has less noisy pixels, it misses the person and the dog. Outputs are obtained without morphological
operations.

3.4 Conclusions 55

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.26: Foreground detection results of different algorithms on a video of a street. Outputs
are obtained without morphological operations.

Lightweight salient foreground detection for embedded smart cameras 56

(a) Sample Frame

(b) Proposed method (c) Previous method

(d) Mixture of Gaussians (e) Improved MoG

(f) Eigenbackground (g) CodeBook

Figure 3.27: Foreground detection results of different algorithms on a video of a street. Outputs
are obtained without morphological operations.

3.4 Conclusions 57

(a) Frame 6323 (b) Frame 7171

(c) Proposed method (d) Proposed method

(e) Previous method (f) Previous method

(g) Mixture of Gaus-
sians

(h) Mixture of Gaus-
sians

(i) Improved MoG (j) Improved MoG

(k) Eigenbackground (l) Eigenbackground

(m) Codebook (n) Codebook

Figure 3.28: Comparison of foreground detection results ofdifferent algorithms on a video of a
fountain with a significant lighting difference

58

Chapter 4
Resource-Efficient Salient Foreground

Detection in battery-Powered Embedded smart

cameras by feedback tracking

4.1 Introduction

Battery-powered wireless embedded smart cameras have limited processing power, memory, and

energy. Since video processing tasks consume a considerable amount of energy, it is essential to

have lightweight algorithms to increase the energy efficiency of camera nodes. Moreover, just

grabbing and buffering a frame requires a significant amountof energy. Thus, it is not sufficient to

only focus on the vision algorithms. Methodologies are needed to determine when and how long a

camera can be idle. This chapter introduces a feedback method for detection and tracking, which

provides significant savings in processing time. Experimental results are performed to show the

gains in processing time as well as the significant savings inenergy consumption and battery life

increase.

Wireless embedded smart cameras are stand-alone units thatcan capture images and perform

on-board computation and communication. Rather than transferring all the data to a back-end

server, they can process images, extract relevant data locally, and decrease communication band-

width requirements. They also provide flexibility in terms of quantities and placement of cameras.

On the other hand, battery-powered embedded smart cameras have limited computational power,

4.1 Introduction 59

memory, and energy. Since battery life is limited and video processing tasks, such as foreground

detection and tracking, consume a considerable amount of energy, it is essential to have efficient

algorithms to optimize the energy expenditure of each camera node and thus, the overall lifetime

of the network.

As shown below, even with no computer vision processing, only grabbing and buffering a

frame requires a significant amount of energy. Thus, it is notsufficient to only focus on vision

algorithms. Hence, there is the need for methodologies to adaptively reduce the processing time

per frame according to the number and size of the objects being tracked. Tracking multiple objects

is an important and challenging problem, which constituteswide-ranging application areas. Even

though many methods have been introduced for multi-object tracking , [18], [19], [20], [74], most

of the existing tracking systems do not focus on embedded platforms and energy efficiency.

As mentioned in Chapter 3, common computing platforms for smart cameras are field pro-

grammable gate arrays (FPGAs), digital signal processors (DSPs), and/or general purpose micro-

processors [60]. Additionally, in the sensor network community, detection and tracking methods

have been proposed, that focus on different types of sensorsother than cameras. Examples include

magnetic, acoustic, and radar sensors. Arora et al. [34] presented a wireless sensor network for

distributed intrusion detection, that employs magnetic and radar sensors. They studied the degra-

dation in application performance in sensor networks as a function of network unreliability. Dutta

et al. [42] presented a sensor network platform for detecting and classifying rare, random and

ephemeral events. They used infrared, magnetic, and acoustic sensors. The infrared and acous-

tic sensors are designed for low-power continuous operation and include asynchronous processor

wake up circuitry. Benbasat and Paradiso [58] presented a framework for power-efficient detection

in wearable sensors. They used accelerometers and gyroscopes in their test scenario. State de-

tection is structured as a decision tree classifier that dynamically orders the activation and adjusts

the sampling rate of the sensors, such that only the data necessary to determine the system state

is collected at any given time. Jiang et al. [59] presented a sleep scheduling algorithm for multi-

ple target tracking to improve energy efficiency. A target tracking algorithm for wireless acoustic

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by feedback tracking 60

sensor networks was introduced by Yu et al. [67]. Yet, systems based on scalar sensors can have

problems when tracking multiple targets. Moreover, the aforementioned studies do not focus on

camera sensors, on vision algorithms running on camera boards, nor in the energy consumption of

the embedded camera nodes.

Many traditional tracking systems perform foreground object detection and tracking at each

frame independently and in a sequential manner. On the otherhand, Quast and Kaup [74] presented

an object tracking system, wherein the object masks generated in the detection stage are used for

constructing asymmetric kernels for the mean-shift based tracking stage.

This chapter is mainly focused on the design of a tracking algorithm capable of reducing the

processing time per frame without affecting the performance and reliability of the overall fore-

ground detection and the tracking system. The goal of the lightweight algorithm is to increase the

energy efficiency and battery life of an embedded smart camera node.

A feedback method to increase the energy efficiency of the salient foreground detection and

tracking is presented. Instead of performing foreground detection and tracking independently and

sequentially at each frame, the feedback method incorporates the information from the tracking

stage into the foreground detection stage. This way, foreground detection is performed in smaller

regions as opposed to whole frame. The feedback method significantly reduces the processing time

of a frame. To take advantage of these savings the microprocessor is sent to idle state at the end

of processing a frame without causing tracking failure. This type of approaches were previously

introduced by Casares et al. in conference proceedings [70]and [71], respectively.

The additional and different contributions presented in this chapter are as follows: 1) the feed-

back method is analyzed in detail in terms of energy consumption and gain in battery life; 2) the

proposed method is compared with a sequential tracking approach; the way in which the proposed

methodologies can send the microprocessor to idle state while tracking objects, and preserve the

tracking performance will be shown.

The methodology presented in this Chapter is not intended for applications involving crowded

scenes. There are two main reasons. 1) In a crowded scene, there will be search regions around

4.2 Wireless Embedded Smart Camera Platform 61

every object, and the area that needs to be processed will be close to the whole image. Thus, there

may not be considerable savings in processing time. 2) Interactions, such as merges and splits, will

be more likely in crowded scenes. It is not preferable to sendthe camera to idle state just before

or during these interactions, since when the camera wakes up, there might be errors associating

trackers with correct targets. In addition, during these interactions, it may be beneficial to capture

more frames in case of an interesting event.

Intended applications include military surveillance, wildlife monitoring, elder care, and surveil-

lance of surroundings of facilities. The remainder of this chapter is organized as follows: Section

4.2 shortly describes the embedded smart camera platform used in our experiments, which was

introduced in more detail in chapter 2. Section 4.3 providesmotivation for designing methodolo-

gies that decrease the processing time as well as the energy consumption of the camera node. One

of the goals is to reduce the precessing time to send the camera to idle state, thus decreasing the

energy consumption. Idling of the camera is merely mentioned in this chapter. Later, Chapter 5

introduces a more in depth analysis of the advantages offered by ideling the camera node. The

feedback method is described in Section 4.4. Experimental results are presented in Section 4.5.

This chapter is concluded in Section 4.6.

4.2 Wireless Embedded Smart Camera Platform

The wireless embedded smart camera employed in our experiments is a CITRIC mote [63] which

runs embedded Linux Operating System. It consists of a camera board and a wireless mote. The

camera board is composed of an image sensor, a microprocessor, external memories, and other

supporting circuits. The image sensor is a Omni Vision OV9655, which is a low voltage SXGA

CMOS image sensor. It supports image sizes SXGA (1280 1024),VGA (640480), and any size

scaling down from VGA. The camera is capable of operating at 30 frames per second (f/s) in VGA

resolution. Attached to the camera board is a TelosB mote from Crossbow Technology with a

maximum data rate of 250 kb/s. The TelosB uses a Texas Instruments MSP430 microcontroller

and Chipcon CC2420 IEEE 802.15.4-compliant radio, both forlow-power operation [63]. Details

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by feedback tracking 62

on the camera architecture are introduced in chapter 2.

4.3 Motivation: Energy Consumption Analysis

In Casares et al. [73], there are analyzed cases related to the size of objects being tracked. Tracking

targets that are close to or far from the camera report different results in terms of processing time.

The bar graph in Figure 4.1 shows the frame processing times when tracking an object in a close,

middle and far range from the camera, together with the size of the object. The size of the bounding

box of the object is displayed inside the bars. As expected, the processing time increases when the

object is closer to the camera, since the object size, and thus, the area to be processed increases.

Figure 4.1: Processing time in milliseconds when an object is at different distances from the cam-
era.

Hence, focusing only on vision algorithms is not sufficient.There is a need for self-adapting

methodologies capable of increasing the overall life time of the camera mote.

The findings illustrated in Figure 4.1 encourage us to designmethodologies and efficient algo-

rithms to adaptively decrease the processing time of a framereducing the accesses to memory per

pixel. Moreover, preliminary results from section 4.4 willshow that sending the microprocessor of

the camera to idle state significantly reduces the overall energy consumption of the camera. Hence,

new important challenges are sending the microprocessor toidle state even when the scene is not

4.3 Motivation: Energy Consumption Analysis 63

empty, and determining adaptively how long the microprocessor can remain idle without affecting

the performance and reliability of the overall foreground detection and the tracking system. This

topic is fully covered in chapter 5.

As mention above, the main focus of this chapter is the designof a feedback method to increase

the energy efficiency of the foreground detection. Additionally, it aims to show the reduction in

terms of energy compared to the traditional ways to do tracking. This method significantly reduces

the processing time of a frame. To take advantage of these savings, after done processing a frame,

the microprocessor is reliably sent to idle state without causing tracking failure.

After grabbing and buffering a frame, the embedded smart camera performs foreground object

detection and tracking. Casares et al. [68] presented a lightweight and efficient algorithm for

salient foreground detection. This algorithm takes into account the memory requirements as well

as the computational complexity. It is highly robust against lighting variations and non-static

backgrounds including scenes with swaying trees, water fountains, and rain. The logic of the

algorithm is explained in detail in chapter 3. As opposed to state of the art background subtraction,

whose memory usages are ranged from32 to 91 bytes per pixel, the object segmentation employed

and described in Chapter 3 required6.25 bytes per pixel. Additionally, the number of memory

accesses and instructions per pixel are adaptive, and are decreased even more depending on the

amount of activity in the scene and on a pixel’s history.

A sequential term will be used throughout this chapter to refer to tracking methodology in

which at every frame, the above foreground detection algorithm runs on the whole image to detect

foreground pixels. The algorithm groups them together to form foreground blobs, and then match

the foreground blobs to existing trackers. Most traditional tracking algorithms operate in this

sequential manner.

The feedback method is described in Sections 4.4. As mentioned, Chapter 5 presents method-

ologies related to the idling of the embedded smart camera, which combined with the methodol-

ogy introduced in this Chapter, will bring a third energy efficient algorithm named the Combined

method, also explained in Chapter 5.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by feedback tracking 64

4.4 FeedbackMethod: Resource-Efficient Salient Foreground

Detection by Feedback Tracking

The method presented in this section will be referred to as the feedback method. Instead of per-

forming foreground detection and tracking independently at each frame, the feedback method in-

corporates the information from the tracking stage into theforeground detection stage that employs

our algorithm summarized above. The diagram presented in Figure 4.2 illustrates the flow diagram

followed by the feedback algorithm in comparison to the sequential one. Hence, foreground detec-

tion is performed in smaller regions as opposed to whole frame. Thus, significant savings in terms

of energy consumption are expected since the energy expenditure is proportional to the size of, not

only the object being tracked, but also the frame being captured and processed.

Figure 4.2: Illustration of the flow diagrams for sequentialand feedback tracking methodologies.

4.4 FeedbackMethod: Resource-Efficient Salient Foreground Detection by Feedback
Tracking 65

4.4.1 Determining the Search Regions

When a foreground blob is detected in the scene, a bounding box is formed around it, and a

new tracker is created. The intensity histogram of the foreground object is built and saved as

the model histogram of the tracker (intensity histogram is used to keep the computational com-

plexity low). The tracker also holds the coordinates of the bounding box of this object. Let

T = T 1(t1), T 2(t1)...T n(t1) denote the set of existing trackers at framet1. At framet, a detected

blobBi(t) will be matched to one of the trackers in the setT by using a matching criteria based

on bounding box intersection and the Bhattacharyya coefficient [18], [72]. The Bhattacharyya

coefficient is derived from the sample data by using

ρ̂(y) = ρ[p̂(y), q̂] =
m
∑

u=1

√

p̂u(y)q̂u (4.1)

Whereq̂ = q̂u=1...m, andp̂(y) = p̂u(y)u=1...m are the probabilities estimated from the m-bin

histogram of the model in the tracker and the candidate blobs, respectively. If the bounding box of a

blob intersects with that of the tracker, the Bhattacharyyacoefficient between the model histogram

of the tracker and the histogram of the foreground blob is calculated by using 4.1. The tracker is

assigned to the foreground blob which results in the highestBhattacharyya coefficient. After blob

Bi(t) is matched to trackerT j(t1) (which holds the bounding box location from framet1), the

displacement of the centroid of the tracker’s bounding box is calculated in x and y directions to

obtain∆x and∆y, respectively (Figure 4.3). At framet+1, for each foreground objecti, a search

regionRi(t + 1) is determined by using∆x, ∆y, W andH, whereW andH are the width and

height of the bounding box ofBi(t).

Then, the background subtraction and blob forming in the search regionsRi(t+1) is performed

as opposed to doing it on the whole frame. As shown in Table 4.1searching for and forming

foreground blobs in smaller regions significantly reduce the processing time. After the search

regions are determined, the bounding box of the trackerT j is updated to be the bounding box of

Bi(t).

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by feedback tracking 66

The center of the search regionRi(t+ 1) is found by using 4.2, whereBi
x(t) andBi

y(t) are the

x andy coordinates of the center of the blobBi at framet. ∆x(t) and∆y(t) are the displacements

in thex andy directions calculated between framest1 andt as shown in Figure 4.3.

Ri
x(t+ 1) = Bi

x(t) + ∆x(t) (4.2)

Ri
y(t+ 1) = Bi

y(t) + ∆y(t)

Figure 4.3: Displacement in the horizontal and vertical directions.

The boundaries of the search region are determined by using the equation 4.3. Foreground

detection at framet + 1 will be performed in the search regions formed around the estimated

locations of objects that were detected at framet.

4.4 FeedbackMethod: Resource-Efficient Salient Foreground Detection by Feedback
Tracking 67

Ri
x min(t+ 1) = Ri

x(t+ 1)−∆x(t)

Ri
x max(t+ 1) = Ri

x(t + 1) + ∆x(t) (4.3)

Ri
y min(t + 1) = Ri

y(t+ 1)−∆y(t)

Ri
y max(t+ 1) = Ri

y(t+ 1) + ∆y(t)

The camera’s capture rate is15 frames per second (f/s). Since, the algorithm becomes local-

ized around the regionsRi, the foreground detection runs on the whole frame every500 ms. In

this way,the system is able to detect new objects in the scene, and update the background model.

Compared to the sequential method, this mechanism reduces the processing time significantly. To

exploit the advantage of these savings the microprocessor is sent to idle state at the end of process-

ing a frame.

Both, the sequential and the feedback methods were run on embedded cameras to compare their

processing times. Experiments tracking one, two and three remote-controlled cars were conducted.

The blue and red plots in Figure 4.4(a) show the operating currents of the camera board when

running the feedback method and the sequential method, respectively. The grabbing and buffering

of a frame take49 ms. The feedback method and the sequential method finish the processing of

the frame in19.7 ms and38.5 ms, respectively, and the feedback method provides48.7% decrease

in the processing time. Figures 4.4(b) and 4.4(c) show operating currents when tracking two and

three cars, respectively. As expected, the gain in processing time decreases with increasing the

number of tracked objects. Though, the feedback method still outperforms the sequential method.

The processing times and the results of the comparison are summarized in Table 4.1. Additionally,

an experiment to measure the energy consumption when running the feedback and the sequential

methods was performed. The comparison is presented in Section 4.5.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by feedback tracking 68

0 10 20 30 40 50 60 70 80 90
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

time in mS

cu
rr

en
t i

n
A

Tracking 1 car

Sequential
Feedback

19.76 ms

49 ms

38.52 ms

(a)

0 10 20 30 40 50 60 70 80 90
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

time in mS

C
ur

re
nt

 in
 A

Tracking 2 cars

Sequential
Feedback

49 ms

40.01 ms

25.01 ms

(b)

0 10 20 30 40 50 60 70 80 90 100
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

time in mS

C
ur

re
nt

 in
 A

Tracking 3 cars

Sequential
Feedback

38.52 ms

49 ms

47,24 ms

(c)

Figure 4.4: Operating current of the camera board with the feedback and sequential methods when
tracking (a) one, (b) two, and (c) three remote-controlled cars.

4.5 Experimental Results 69

4.5 Experimental Results

As mentioned previously, in most traditional tracking algorithms, background subtraction and

tracking run independently, and operate in a sequential manner. In other words, background sub-

traction is performed first on the whole frame, and then trackers are matched to detected objects. In

Section 4.4, the feedback method was presented. In this section the sequential and feedback meth-

ods are compared, and the gain in processing time provided bythe feedback method showed. The

feedback method takes advantage of the savings in processing time by sending the microprocessor

to idle state at the end of processing a frame. Section 4.5.1 will compare the energy consumption

of the feedback and the sequential methods.

All the algorithms run on the microprocessor of the camera board. The image size used in all

the experiments is320× 240. The clock frequency of the microprocessor is520 MHz.

4.5.1 Comparison of the Energy Consumptions of the Feedbackand Se-

quential Methods

In this section, a set of experiments were conducted. Three different tracking scenarios to measure

the energy consumption of the camera were used to run the feedback and the sequential method.

In all three cases, remote-controlled cars are tracked for the same amount of time (5 min) so that

energy consumptions for different scenarios can be compared.

In the first scenario, a remote-controlled car is tracked continuously for 5 min. In other words,

the car is always in the field of view, and the scene is never empty. When tracking one car,

the feedback method finishes the processing of a frame, on theaverage,18 ms earlier than the

Method 1 Car (ms) 2 Cars (ms) 3 Cars (ms)
feedback (ms) 19.76 25.01 38.52
sequential (ms) 38.52 40.01 47.24
Savings 48.702% 37.49 % 18.45 %

Table 4.1: Comparison of the Processing Times of the Proposed Feedback Method and the Se-
quential Approach.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by feedback tracking 70

sequential method, and sends the microprocessor to idle state for 18 ms at the end of processing

each frame. This way, the two methods process about the same number of frames during the 5-min

period. It should also be noted that with the feedback method, the camera still processes the whole

frame every500 ms, to detect new objects and update the background model. Even in this case,

using the feedback method provides9.63% savings in energy consumption as seen in Table 4.2.

In the second scenario, the scene is empty for the first100 sec. Subsequently, a car enters

the scene, and is tracked for100 sec. Then, a second car enters the field of view of the camera,

and two cars are tracked for another100 sec. Table 4.3 shows the total energy consumptions while

running each method during the 5-min experiment. The feedback method provides17.34% savings

in energy consumption. Compared to the previous scenario, the savings in energy consumption

increase, since the scene is empty for the first100 sec.

Method Energy (J)
Feedback 304.25
Sequential 336.69
Savings 9.63%

Table 4.2: Energy Consumptions for the Feedback and the Sequential Methods When Tracking
One Car Continuously

Method Energy (J)
Feedback 274.7057
Sequential 332.3419
Savings 17.34%

Table 4.3: Energy Consumptions for the Feedback and the Sequential Methods When Tracking
One and Then Two Cars

Method Energy (J)
Feedback 242.6787
Sequential 330.8194
Savings 26.6%

Table 4.4: Energy Consumptions for the Feedback and the Sequential Methods When a Car Enters
and Leaves Twice

4.6 Conclusions 71

The third scenario is as follows. During the first100 sec the scene is empty. Then, a remote-

controlled car enters the scene, stays in the view of the camera for 50 sec, and leaves the field of

view. After 100 sec, the car enters the view again, and stays there50 more seconds. Table 4.4

shows the total energy consumption while running each method during the 5-min experiment. The

feedback method provides a26.6% decrease in energy consumption.

This chapter was dedicated to the introduction of a new methodology which can reduce the

processing time per frame required by the embedded camera. As shown in the results, it will have

an impact on the battery life of the camera due to the reduction in the energy consumption of the

embedded node. Chapter 5 will introduce two more new methodologies to increase even further

the battery life of the camera. Thus, a more comprehensive section of experiments, including the

Feedback method and two new algorithms with outdoors scenarios will be presented.

4.6 Conclusions

A lightweight algorithm to increase the energy efficiency ofan embedded smart camera node

was presented. The feedback method for detection and tracking provides significant savings in

processing time. We presented experimental results showing the gains in processing time as well

as the savings in energy consumption and the gain in battery life. In summary, the feedback

method provides48.7% decrease in the processing time of a frame, and10.44% savings in energy

consumption, compared to traditional sequential trackingwhen tracking one object. We show that

the presented methodology does not affect the tracking performance. On the other hand, strong

shadows can be a problem for the tracking algorithm, since they are also detected as foreground

regions. We are planning to design a shadow removal algorithm without significant increase in the

memory requirements.

72

Chapter 5
Resource-Efficient Salient Foreground

Detection in battery-Powered Embedded smart

cameras by adaptive tracking methodologies

As discussed in chapter 4 section 4.3, grabbing and buffering a frame require significant amount of

energy, even when no processing is performed. Hence, it is not sufficient to only focus on vision

algorithms. There is a need for effective and self-adaptingmethodologies to be able to drop frames

even when the scene is not empty.

The findings presented in chapter 4 motivate us to design and implement methodologies and

efficient algorithms to adaptively drop frames, decrease processing time of a frame, and increase

idle durations. This will bring new important challenges such as sending the microprocessor to

idle state even when the scene is not empty. Moreover, determining adaptively how long the

microprocessor can remain idle without affecting the performance and reliability of the overall

tracking is even more complex.

5.1 Motivation: Adaptive methodologies

This section presents the energy consumption analysis of anactual embedded smart camera at the

stages of grabbing, buffering, and processing a frame. Thisanalysis provides the motivation to

develop methodologies that will increase the battery life of the camera. The operating current of

5.1 Motivation: Adaptive methodologies 73

the embedded smart camera during the tasks of grabbing, buffering and processing a frame were

measured as follows. To measure the current, a500 MHz LeCroy oscilloscope was used, and a

1Ohm resistor was placed at the input of the supply source as shownin Figure 5.1

(a) 500 MHz LeCroy oscilloscope (b) 1Ohm shunt resistor

Figure 5.1: Camera setup ready to perform the required energy measurements.

The processing of a frame will refer to performing foreground detection and tracking, while the

grabbing and buffering of a frame are considered two separate actions requiring different energy

levels. For instance, Figure 5.2 shows the operating current of the camera board when running a

sequential tracking method (i.e., performing background subtraction on the whole frame, and then

tracking) to track one remote-controlled car. As can be seen, the grabbing and buffering take49

ms, and the processing of the frame takes38.5 ms. In addition, grabbing and buffering consume

54.1 mJ of energy while detection and tracking consume42.2 mJ. Thus, grabbing and buffering are

even costlier than processing, and demand a significant amount of energy even when no computer

vision processing task is performed. Thus, it motives us to develop methodologies that are capable

of grabbing, buffering and processing the optimal number offrames while still having a reliable

tracking system.

This chapter focuses on developing an adaptive tracking-based method that significantly de-

creases the energy consumption of the camera. The microprocessor of the camera can be sent to

idle state to save energy even when there are moving objects in the scene. The idle-state duration

is adaptively changed based on the amount of activity in the scene and speed of tracked objects.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 74

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.19

0.2

0.21

0.22

0.23

0.24

0.25

Time in Seconds

C
ur

re
nt

 in
 A

m
ps

Grabbing

Buffering

49 msec

Processing

Figure 5.2: Operating current of the camera board during different tasks

Instead of continuously capturing and processing every frame, the camera drops frames during idle

state, while preserving the tracking performance and thus system reliability at the same time. The

idea behind the algorithm is to save energy by processing theoptimal required number of captured

frames to reliably track objects. Figure 5.3 illustrates the process in which a car enters to the view

of the camera; the speed of the car is estimated, and then the camera only grabs the necessary

number of frames to reliably track the vehicle.

1

2

3

2
3

4
5

6

1

Dropped Frames

6 overlapping

frames

Speed EstimationAdapting frame rate

Figure 5.3: Camera dropping frames to save energy as illustration of the main goal of the algorithm.

This significantly prolongs the battery life. The experimental results including graphs of cam-

era’s operating current over time, and power and energy tables showing the energy-efficiency of

the proposed method as well as the gain in battery life are also presented in Section 5.5. In order

to increase energy-efficiency, the system puts the microprocessor in an idle state during which cer-

5.1 Motivation: Adaptive methodologies 75

tain number of frames are dropped. Since the processor is running embedded Linux, commands

such as “usleep()” and “nanosleep()” are available to suspend execution, and send the processor

in idle state. The function “usleep()” takes the number of desired microseconds as argument. The

important challenge is to determine how long the microprocessor can remain in the idle state with-

out affecting the performance and reliability of the overall foreground detection and the tracking

system. If the camera drops too many frames, then the tracking algorithm will most likely have

problems associating the currently detected object with the most recent model and location. To

increase energy-efficiency, three operation modes are developed: empty-scene mode, fixed-rate

tracking mode, and adaptive tracking mode. Henceforth, empty scene will refer to the case when

there are no foreground objects in the scene. To detect whether the scene is empty or not, the

lightweight salient foreground detection algorithm presented in chapter 3 introduced by in Casares

et. al [68] is used. The algorithm was implemented in C/C++ and imported on the microprocessor

of the cameras. After detecting foreground pixels, connected-component analysis is performed to

remove small pixel regions, and form object blobs. Then, we have used an efficient and robust

tracking algorithm for object tracking purposes.The tracking algorithm has also been imported to

the camera board, and the details of it are explained in chapter 4.4. Together, foreground detection

and tracking run at10.5 f/s on the microprocessor when there is one object in the scene.

5.1.1 Empty-Scene Mode

When no object is detected in the scene, since no tracking hasto be performed, the idle durations

can be longer, and thus more frames can be dropped. In the empty-scene mode, the algorithm

determines the idle duration so that the camera grabs2 f/s. The operating current values of the

camera board were measured when the camera was continuouslycapturing frames (no idle state)

and when the camera was sent to idle state for a fixed amount of time. Figure 5.4 shows a715 ms

segment from the current waveforms obtained during a 5-min experiment. The data was acquired

with a NI 6221 data acquisition card at a sampling rate of10 kHz. Red and blue plots are the

operating current values of the camera when it continuouslycaptures and processes frames, and

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 76

Duration (min) Energy (J)
Continuous frame capture 5 341.818
Empty-scene mode 5 223.855
Savings 34.5%

Table 5.1: Energy Analysis of the Empty-Scene Mode

when the microprocessor is sent into idle state, respectively.

Figure 5.4: Empty-scene mode: red and blue plots are the operating current values when camera
captures frame continuously, and when the microprocessor is put into idle state, respectively.

After a frame is grabbed, the background model is updated, and the elapsed time from grabbing

the frame to finishing model update is determined. As seen in the red plot in Figure 5.4, it takes

81 ms from grabbing the frame to finishing the update of the background model. Then, the idle

state duration is determined to bet = 50081 = 419 ms. At the end of the idle duration, the camera

performs foreground detection to determine whether the scene is still empty. If no foreground

objects are detected, the background model is updated, and the microprocessor is sent to idle state

again. Table 5.1 lists the computed energy consumptions during a 5-min interval. As can be seen,

the empty-scene mode provides34.5% savings in the energy consumption.

5.2 Fixed-Rate Tracking Mode 77

5.2 Fixed-Rate Tracking Mode

When foreground objects are detected, the tracking mode is employed. In the fixed-rate tracking

mode, idle state duration is determined based on the fastestmoving object in the scene, and the

same duration is used until a faster object enters the scene.The assumption is that the speed of

the objects does not change significantly. Section 5.3 will present an adaptive methodology, which

changes the idle state duration if a change in the object’s speed is detected.

When a new objectOi is detected in the scene, a new trackerT i is created, and the bounding

box (Bi
1
) formed around this object is saved in memory. Also, a counter (Noverlap) is set to1. In the

following frames, the objectOi is tracked. At each frame, it is checked if the bounding box ofthe

object at that frame overlaps withBi
1
. If they overlap,Noverlap is incremented by1. This process

is illustrated in Figure 5.5(a), where the first bounding boxisBi
1
. Blue regions are the overlapping

areas betweenBi
1

and bounding boxesBi
2

throughBi
5
. As seen in Figure 5.5(a), the last overlap

occurs betweenBi
1

andBi5 , i.e.,Bi
1

andBi
6

do not overlap. At this point, the value ofNoverlap

is 5, and this value is used to calculate the duration of the idle state without affecting the tracking

performance. To calculate the idle time,Tidle, equation 5.1 is used.

Tidle = 1000×
Noverlap

2
× Rcapture (5.1)

WhereRcapture is the camera’s capture time per frame. The camera captures15 f/s, thusRcapture

is 67 ms. In this case, after processing the first frame,
∑

k=25Pk
ms pass until the fifth frame is

processed, wherePk is the time it takes to capture and process thekth frame.Pk > Rcapture, and

at the fifth frame, overlapping still continues.

However, the time that has passed since the first frame is an upper bound for the idle duration,

since object pattern or speed may change. Thus, equation 5.1takes a conservative approach to

account for these changes while calculating the idle duration. First, it usesRcapture, instead of the

time it takes to process a frame, andRcapture is always less thanPk. Second,Noverlap/2 is used

instead ofNoverlap in the formula to address sudden speed increases, and make sure that overlap

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 78

continues at the end of the idle duration by assuming that theobject cannot more than double its

speed in order of milliseconds. In 5.1,1000 is used to convert milliseconds to microseconds so that

Tidle can be used as the argument of the function usleep(). Figure 5.6 shows the current waveform

while estimating the idle duration and during the idle states.

In Section 5.3, adaptive methodology is introduced, where the idle state duration is changed if

the object’s speed changes significantly. In Section 5.5.5,a detailed analysis of a scenario where

the object’s speed increases gradually and very slowly is presented. Consequently, in the scenario,

the bounding boxes do not overlap after coming back from idleduration. Thus, a solution of how

to overcome this problem is also presented.

(a) (b)

Figure 5.5: (a) Detecting a speed change. (b) Overlapping bounding boxes for a faster car.

To be able to successfully track every object, idle state duration has to be based on the fastest

object in the scene. If another object enters the scene,Tidle is calculated again, and if it is less than

the current value used, the idle state duration is changed. Figure 5.6 shows the operating current

waveform, obtained from a NI 6221 data acquisition card, fora scenario that involves two cars.

When the first car enters the scene, the computed value forTidle is 435.5 ms and the camera is sent

to idle state for this amount of time. About8 s later, a faster car enters the scene, and a newTidle is

calculated based on this new car. Since the new value,201 ms, is less than435.5 ms, the idle state

duration is changed, and the camera is sent to idle state for ashorter time period as seen in Figure

5.2 Fixed-Rate Tracking Mode 79

5.6.

Experiments were performed when there were one and/or two cars in the scene. The energy

consumption was measured over a100 sec window. In the first50 sec, there is one car in the scene.

When the car enters the scene,Noverlap is computed, and idle state duration is calculated. The value

obtained forNoverlap is 21. Applying equation 5.1, the idle state duration is obtainedto be703 ms.

After 50 sec, a second car enters the scene whose speed is higher. The new idle state duration is

134 ms. The idle state duration of the camera is shortened based on the fastest moving object in

the scene. Figure 5.5(b) illustrates the bounding boxes at different frames. For this case, the fifth

bounding box does not overlap with the first one.

Figure 5.6: Updating the idle state duration based on the fastest object in the scene.

Table 5.2 lists the computed average energy consumption when there is one and two cars in the

scene with and without using the fixed-rate tracking mode. Ascan be seen, the fixed rate tracking

mode provides36.5% and25.7% savings in the energy consumption for one car and two car cases,

respectively. Since the second car is faster, the idle stateduration becomes shorter, which explains

the decrease in savings.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 80

Continuous frame captureTime(s) Avg. Power (W) Energy (J)
1 car 50 1.1463 57.3141
2 cars 50 1.1448 57.2401
Fixed-rate method Time(s) Avg. Power (W) Energy (J)
1 car 50 0.7272 36.3616
2 cars 50 0.8502 42.5102

Table 5.2: Energy Analysis of the Fixed-Rate Tracking Mode

5.3 Adaptive Tracking Mode

Objects in the scene can continuously increase or decrease their speeds. When the object is first

detected, an idle state duration is calculated by using the method described in Section 5.2. Later

on, if the object slows down, using the same idle duration will not negatively affect the tracking

performance, i.e., it will not cause the tracker to lose the object. On the other hand, if the speed of

the object continuously increases, using the same idle state duration might cause tracking failure.

To handle these cases, a method that adapts the idle state duration is introduced, when a significant

change in the object’s speed detected. In the former case, where the object slows down, the idle

state duration can be increased accordingly to increase theenergy efficiency even further.

Detecting Speed Change

When an object enters the scene, an initialTidle is computed as described in Section 5.2. Consistent

with the notation in Section 5.2, letBi
1

denote the bounding box of objecti, when it is first detected,

and letBi
n denote the bounding box at thenth frame. In the scenario shown in Figure 5.5 (a),Bi

6
is

the first bounding box that does not overlap withBi
1
, thusNoverlap is 5. At this point,Bi

6
is saved

asBi
last, and the camera is sent to idle state forTidle microseconds. At the end of the idle state,

when camera captures and processes the seventh frame, the distanceDcurr between the centers of

Bi
last andBi

7
is calculated.Dcurr is saved asDprev, andBi

last is set to beBi
7
. Then, the camera is

sent to idle state again forTidle microsec. At the end of the idle duration, the camera captures and

processes the eighth frame, and calculates the distanceDcurr between the centers ofBlast andBi
8
.

The main idea is comparingDprev andDcurr to detect a speed change. However, the following

5.3 Adaptive Tracking Mode 81

scenarios need to be handled. When an object is moving towardthe camera, it is going to appear

larger, andDcurr can be greater thanDprev even if the object is moving with constant speed, or

when an object is moving away from the camera, it is going to appear smaller, andDcurr can be

smaller thanDprev even if the speed does not change. As a result, these situations could be mistaken

for a speed increase/decrease. To address these cases, equation 5.2 applies a normalization to the

center coordinates before calculating the distances.

(

x̄i
n, ȳ

i
n

)

=
(xi

n, y
i
n)

max {W i
n, H

i
n}

(5.2)

whereW i
n andH i

n are the width and height of the bounding boxBi
n, respectively, and̄xi

n andȳin

are the normalized coordinates of its center. After normalization, the distancēDcurr is calculated

by using

D̄curr =

√

|x̄i
n − x̄i

last|
2
+ |ȳin − ȳilast|

2 (5.3)

wherex̄i
last and ȳilast are the normalized center coordinates of the bounding boxBi

last. Then,

the ratioR = D̄curr/D̄prev which initially was equal to1 is calculated. IfR ≥ 1.25, then the idle

state duration is recalculated by using equation 5.4. Initial idle state duration is determined by

using equation 5.1. changing the idle state duration whenR ≥ 1.25 is going to handle cases of

increasing speed while avoiding tracking failure at the same time. Performing idle state duration

update only whenR ≥ 1.25 avoids recomputing a new duration when there is not a significant

speed change. In Section 5.5 the tracking performance for different scenarios when using the

adaptive methodology will be analyzed.

T new
idle =

1

R
× Tidle (5.4)

Different kind of experiments were performed to measure thegain in energy consumption when

using the adaptive methodology. In the first experiment, a car enters the scene, and then speeds up.

Figure 5.7 shows an example of consecutive frames processedby the camera. Between frames118

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 82

and119 the car increases its speed (the distance between the centers of bounding boxes is larger

than the previously computed distance between frames117 and118).

Figure 5.7: Car increasing its speed.

Figure 5.8 shows the operating current waveform obtained with the oscilloscope during this

experiment. When it is first detected,Noverlap is computed to be7. Then, the idle state duration

is calculated to be234.5 ms, by using equation 5.1, and the microprocessor of the camera is sent

to idle state. Betweent = 0.9s and t = 1.6s, the car follows a path that is not parallel to the

camera’s image plane, i.e., it either moves toward the camera or away from it, with approximately

constant speed. Thus, the movement pattern should not affect the idle state duration. This scenario

was successfully handled by the aforementioned normalization method. As seen in Figure 5.8,

betweent = 0.9s and t = 1.6s, the idle state duration does not change. At some point after

t = 1.6s, when the camera returns from idle state, the calculated distance ratio (R) is1.267, and

thus a new idle state duration is calculated by using equation 5.1. The value obtained forT new
idle

is 185 ms. As a result, the camera was sent to idle state for a shorterperiod of time, to handle

increasing object speed. As seen in Table 5.3, the presentedadaptive methodology provides37%

saving in terms of energy consumption.

5.3 Adaptive Tracking Mode 83

Figure 5.8: Operating current waveform when the idle time ischanged based on the object speed.

Time(ms) Power (W) Energy (J)
Cont. capture 3664 1.235 4.525
Adaptive-rate 3664 0.776 2.843
Savings 37.17%

Table 5.3: Energy Analysis of the Adaptive-Rate Tracking Mode

As mentioned above, when an object slows down, continuing touse the initially determined idle

state duration will not cause any tracking failure. However, with the same method described above,

the system can detect the speed decrease, and then increase the idle state duration to further increase

the energy efficiency and the battery life. Thus, ifR < 0.75, the idle duration can be recalculated

by using equation 5.4, and send the camera to idle state for a longer time period. In another

experiment, to analyze the energy savings, the fixed-rate tracking mode and the adaptive tracking

mode were compared in a scenario where the tracked object slows down. Since the adaptive

tracking method detects the decreasing speed, it increasesTidle, accordingly. The camera stays

in idle state longer (143 ms), and compared to the fixed-rate mode, this provides additional 7.8%

savings in the energy consumption as seen in Table 5.4.

In the rest of this chapter, the adaptive methodology will beused when analyzing the energy

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 84

Time(s) Avg. Power (W) Energy (J)
Cont. capture 1.6 1.1457 1.8333
Fixed-rate 1.6 0.8924 1.4279
Adaptive-rate 1.6 0.8226 1.3163

Table 5.4: Energy Analysis

savings, since the adaptive methodology is more robust compared to the fixed-rate method, and

provides more savings for objects slowing down.

5.4 Combined Method for Further Energy Efficiency

As discussed in chapter 4, the feedback method for salient foreground object detection provides

significant savings in processing time of a frame. On the other hand, the adaptive methodology

described in Section 5.3 allows us to send the microprocessor to idle state, even when the scene is

not empty, and also can increase/decrease the idle durationbased on object speed.

Figure 5.9: Idle duration is increased in the combined method by employing the feedback method
and the adaptive methodology together.

To leverage the advantages of both, the feedback method and the adaptive methodology, these

two methods were combined. First, when an object enters intothe view of the camera, the method

5.5 Experimental Results 85

described in Section 5.2 is employed to computeNoverlap and the initial idle duration,Tidle. Dur-

ing this period, the foreground detection is applied on the whole frame, and the average process-

ing time, Tavg, of a frame is computed. After the camera comes back from the first idle state,

the feedback method is employed, and the processing time of the frame,Tfeedb, is found. Then,

Tadd = Tavg − Tfeedb is computed, whereTadd is the extra idle duration gained. From this point

on, the microprocessor is sent to idle state forTidle + Tadd ms. These steps are illustrated in Figure

5.9, which shows the contribution of each method in an experiment wherein a car enters into the

view of the camera. After it is detected,Noverlap is computed to be13 frames, and by using 5.1,

the idle duration is calculated to be436 ms. The shaded region in Figure 5.9 shows the savings

in processing time of a frame provided by the feedback method. The idle duration is increased by

this amount, i.e., it is increased from436 ms to454 ms. In section 5.5, a detailed analysis and

comparison of the feedback method, the adaptive methodology, and the combined method in terms

of their energy consumptions and battery life of the camera board will be provided.

5.5 Experimental Results

As mentioned previously, in most traditional tracking algorithms, background subtraction and

tracking run independently, and operate in a sequential manner. In other words, background sub-

traction is performed first on the whole frame, and then trackers are matched to detected objects.

In the previous chapter, the feedback method was presented,the sequential and feedback methods

compared, and the gain in processing time provided by the feedback method was shown.

The adaptive methodology presented in Section 5.3 uses the sequential method for frame pro-

cessing, but can send the microprocessor to idle state even when the scene is not empty. The com-

bined method described in Section 5.4 employs the feedback method and the adaptive methodology

together. It uses the feedback method for frame processing,and allows to send the microprocessor

to idle state, even when there are moving objects in the scene, for longer periods of time. The en-

ergy consumption comparison of the adaptive methodology and the sequential method is presented

in Section 5.5.1. Section 5.5.2 presents the energy savingsprovided by the combined method.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 86

Method Time(ms) Power (W) Energy (J)
Adaptive 458 0.7213 0.3304
Sequential 458 1.1041 0.5057
Savings 34.7%

Table 5.5: Energy Consumption Comparison Between Adaptiveand Sequential Methods

All the algorithms run on the microprocessor of the camera board. The image size used in all the

experiments is320× 240. The clock frequency of the microprocessor is520 MHz.

As mentioned before in chapter 4, our work is not intended forapplications involving crowded

scenes. There are two main reasons. 1) In a crowded scene, there will be search regions around

every object, and the area that needs to be processed will be close to the whole image. Thus, there

may not be considerable savings in processing time. 2) Interactions, such as merges and splits, will

be more likely in crowded scenes. It is not preferable to sendthe camera to idle state just before

or during these interactions, since when the camera wakes up, there might be errors associating

trackers with correct targets. In addition, during these interactions, it may be beneficial to capture

more frames in case of an interesting event. For this reason,the system disables the function of

going idle when objects in the scene get close to each other.

5.5.1 Comparison of the Energy Consumptions of the AdaptiveMethodol-

ogy and the Sequential Method

The energy consumption of the adaptive methodology and the sequential method during458 ms

when tracking one remote-controlled car were calculated. In this experiment, after the car enters

into the view of the camera, the idle durationTidle is obtained as described in Section 5.2. The

number of overlapping frames (Noverlap) was11. By using equation 5.1,Tidle was computed to

be368.5 ms. Figure 5.10 shows the operating current of the camera board when running the two

methods. As can be seen, the adaptive method processes one frame, and then goes into idle state

for 368.5 ms. During the same time interval (458 ms) the adaptive method processes only one

frame, whereas the sequential method processes five frames.The adaptive methodology provides

34.7% savings in energy consumption as shown in Table 5.5.

5.5 Experimental Results 87

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Time in sec

C
ur

re
nt

 in
 A

Sequential method
Adaptive method

Grab + Buff

Processing

Idle state

Figure 5.10: Operating current of the camera when tracking one car with the adaptive methodology
(blue) and the sequential method (red).

Method Time(ms) Power (W) Energy (J)

Feedback 458 1.0216 0.4679
Adaptive 458 0.7213 0.3304
Combined 458 0.6986 0.3199

Table 5.6: Energy Consumption Comparison Between the Feedback, Adaptive and Combined
Methods

5.5.2 Energy Savings Provided by the Combined Method

The combined method described in Section 5.4 employs the feedback method and the adaptive

methodology together. It uses the feedback method for frameprocessing, and allows us to send the

microprocessor to idle state, even when there are moving objects in the scene, for longer periods

of time.

Figure 5.11 shows the operating current graphs of the cameraboard when running the feed-

back method only (green plot), and when running the combinedmethod (black plot). During this

experiment, the camera is tracking one remote-controlled car, and the feedback method finishes

processing a frame18 ms faster, on average, compared to the sequential method. Thus, the micro-

processor is sent to idle state for18 ms at the end of processing a frame. On the other hand, the idle

duration for the combined method is394 ms. During a458 ms time window, the feedback method

captures and processes five frames, whereas the combined method only captures and processes

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 88

Figure 5.11: Operating current of the camera board when employing the feedback method by itself
and the combined method.

one. The adaptive methodology was also employed for the samescenario. Figure 5.12 shows the

operating current of the camera board when using the adaptive methodology (red plot) and the

combined method (black plot). As can be seen, thanks to the additional idle duration provided by

the feedback method, the camera stays in the idle state18 ms longer in the combined method, com-

pared to the adaptive methodology that uses the sequential tracking for frame processing. Table

5.6 lists the power requirements and energy consumptions ofthe feedback, adaptive, and combined

methods.

Outdoor experiments were also performed with vehicles and people. Figures 5.13 and 5.14

show different output images obtained when tracking one car, and one person and one car, respec-

tively. Thus, the energy consumption of the combined methodand the sequential method were

computed on a 2-min segment to obtain the savings provided bythe combined method. In this

segment, a car enters the scene after one min., and stays in the scene for the following one min. As

seen in Table 5.7, the combined method provides39% savings in the energy consumption during

the period when the car is in the scene.

5.5 Experimental Results 89

Figure 5.12: Operating current of the camera board when employing the adaptive methodology
and the combined method.

Method Empty (60 s) 1 Car (60 s) Total (120 s)
Energy (J) Energy (J) Energy (J)

Sequential method 67.8688 65.867 133.7358
Combined method 40.3074 40.164 80.4714
Savings 40.61% 39.02% 39.83%

Table 5.7: Energy Consumption Comparison Between the Combined and Sequential Methods

5.5.3 Energy Consumption Analysis over a Longer Time Window

To further analyze the energy consumption, and better project the battery life, an experiment for a

longer period of time was conducted. The camera tracked an object for20 min. Figure 5.15 shows

a segment of the operating currents for all the algorithms/methods described in this chapter The

red and dark blue plots are the operating currents when running the sequential detection/tracking

and the feedback method, respectively. The light blue and green plots correspond to the adaptive

and combined methods, respectively. A zoomed in version of these operating current plots is also

shown in the same figure.

The pairwise energy savings for different combinations of these algorithms/methods over a

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 90

Figure 5.13: Output frames obtained while tracking one car.

Figure 5.14: Output frames obtained when tracking two targets.

20 min time window are listed in Table 5.8. The diagonal entriesare the energy consumption

of each method.36.89%, for instance, is the savings in energy provided by the combined method

compared to using sequential detection/tracking continuously (i.e., without dropping frames). Sim-

5.5 Experimental Results 91

Figure 5.15: Operating current of the camera board when tracking one car with different algorithms
for 20 min.

Sequential Feedback Adaptive Combined
Sequential 1329.5 J 10.44% 34.66% 36.89%
Feedback 1190.7 J 27.04% 29.54%
Adaptive 868.713 J 3.42%
Combined 839.0146 J

Table 5.8: Energy Consumption and Savings Comparison When Tracking One Car

ilarly, 27.04% is the energy savings provided by the adaptive methodology compared to the feed-

back method.

5.5.4 Comparison of Battery Lives

The battery life of the camera node when employing the algorithms described in this chapter has

also been estimated. The algorithms include the sequentialmethod, the feedback method, the

adaptive methodology, and the combined method. For this analysis, characteristic curves provided

by the manufacturer of the batteries were used. These curvesare shown in Figure 5.16. The

battery lifetimes were predicted for a scenario, where there are always two cars in the scene, i.e.,

the scene was never empty. When the sequential detection/tracking method is used, and the camera

continuously captures frames, the average current drawn is0.230 A, and the estimated lifetime is

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 92

7 h. For the feedback method, the average current drawn is0.2 A, and the estimated lifetime is

8.4 h. Since the scene is never empty, this gain is solely thanks to the savings in processing time.

The adaptive method confers the ability to send the camera toidle state, even when the scene is

not empty. Thus, the gain in battery life increases. The average current in this case is0.136 A,

and the battery life is15.58 h. Finally, if the combined method is employed, the average current

drawn is0.131 A, and the lifetime increases to16.17 h. It should be emphasized that the estimated

lifetimes are based on the scenario that there will always betwo objects to track in the scene. Table

5.9 summarizes the battery lifetimes when using the different algorithms.

Figure 5.16: Characteristic curves of the batteries.

Method Battery Lifetime (hours) Percentage gain(%)

Sequential 7 -
Feedback 8.4 20%
Adaptive 15.58 122%
Combined 16.17 131%

Table 5.9: Battery lifetime projection

5.5 Experimental Results 93

5.5.5 Analysis of the Tracking Performance

The adaptive methodology, and thus the combined method, depend on the tracking results to cal-

culate the idle durations. Assuming that the tracking algorithm performs well when the camera

continuously captures frames, one of the goals is to have no negative effect on the performance by

going idle. If the bounding boxes before and after the idle duration do not overlap, it is considered

as a failure caused by sending the camera to idle state. Below, a detailed analysis of the effect of

these methodologies on tracking performance is provided. Additionally, this section shows how

to handle objects that increase their speeds gradually, which is a very challenging scenario. In all

the performed experiments, both indoor and outdoor, the combined methodology did not affect the

tracking performance. Without dropping any frames, at a processing rate of12.2 f/s, the tracking

algorithm is highly robust and reliable with the car runningat full speed, i.e., the bounding boxes

of the car at consecutive frames always overlap. When dropping frames, the pixel displacement

between the last saved bounding box, and the one obtained when the camera comes back from the

idle state will be larger. If the camera drops too many frames, these boxes will not overlap.

In equation (4), Casares et al. [71] divideNoverlap by 2, so that when the camera comes back

from the idle state the bounding boxes can still overlap, even if pixel displacements of the object

increase during this duration. In order to analyze the tracking performance when adaptively drop-

ping frames, different scenarios were experimented. When atarget moves away from the camera,

the pixel displacements, on average, are smaller compared to the case where the target moves par-

allel to the camera. When the target moves toward the camera,the size of the bounding boxes gets

larger, allowing more overlapping between the current and previous bounding boxes of the target.

Thus, the most challenging scenario is when the target movesparallel to the camera, in which case

the pixel displacement is large and the bounding box size does not change much. Since it is hard to

increase or decrease the speed of a remote controlled car in aprecise way, simulations for tracking

performance analysis were performed. Thus, a worst case scenario in which bounding boxes do

not overlap when the camera comes back from the idle state wassimulated. After analyzing this

scenario in detail below, a solution is instructed to overcome this problem.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 94

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

Cumulative Travel distance = 27 pixels
 (from oeverlap frames)

2
3 3

4 4 4

14

17

20

23

26

29

33

2
3 3

4 4 4

14

17

20

22

24

26
27

2
3 3

4 4 4

14

17

20

23

26

29

2 2
3 3

4 4 4 5 5

14

17

20

Displacement in pixels between consecutive frames
Instance of failure (non preventive mechanism)
First non overlaping frame

Tracking failure

Figure 5.17: Scenario wherein the bounding boxes before andafter the idle state do not overlap.

In this scenario, a remote-controlled car travels parallelto the camera. The width of the bound-

ing box of the car is30 pixels. Figure 5.17 shows the pixel displacements of the carbetween

consecutive frames. The bounding boxes overlap for the firsteight frames, i.e.,Noverlap = 8. After

nine frames, the camera is sent to idle state, and when it comes back from it, the pixel displacement

D10 is 14 pixels. As expected, at the end of the idle duration, the pixel displacement is much larger,

compared to the displacements at the beginning when the camera is always on. Then, the camera

goes to idle state again, and when it comes back, the pixel displacementD11 is 17 pixels. Since

D11 is not greater than1.25 × D10, the algorithm keeps using the same idle state duration. As

shown in Figure 5.17, the same situation repeats between frames11 and12, 12 and13, and so on.

In other words, since the speed is gradually and very slowly increasing, the algorithm continues to

use the same idle duration. However, at frame16, the pixel displacementD16 between frames15

and16 becomes35 pixels. This causes a tracking failure since the bounding boxes do not overlap.

To address the cases of gradual increases in speed, the first pixel displacement is saved,Dinit,

which was calculated after the camera comes back from the first idle state. In Figure 5.17,Dinit

corresponds toD10 which is14 pixels. At the next frame, the algorithm compares the new obtained

5.5 Experimental Results 95

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

Cumulative Travel distance = 27 pixels
 (from oeverlap frames)

2
3 3

4 4 4
5

14

17

20

23

26

29

33

2
3 3

4 4 4
5

14

17

20

22

24

26
27

2
3 3

4 4 4
5

14

17

20

23

26

29

2 2
3 3

4 4 4 5 5

14

17

20
22

24

26

27

28
29

Displacement in pixels between consecutive frames
Instance of failure (non preventive mechanism)
Preventive mechanism
First non overlaping frame
Adjusting Idle time 1
Adjusting Idle time 2

Tracking failure

Figure 5.18: Tracking with a preventive mechanism that can handle the gradual increases in speed
and resolve the issue seen in Figure 5.17.

displacement withDinit. If a significant change is detected in pixel displacement (25% of Dinit),

the algorithm now adapts the idle time accordingly. Figure 5.18 illustrates how these cases are

handled and how the issue, shown in Figure 5.17, is resolved.At frame12, the pixel displacement

of the car isD12 = 20 pixels, which is grater than1.25 × Dinit. Thus, the camera reduces the

idle period, andD12 is saved as the newDinit. The reduction in idle duration is reflected in the

following frames as seen in Figure 5.18. For example, at frame 14, the pixel displacement is now

24 as opposed to26. At frame15, the pixel displacement of the car isD15 = 26 pixels which is

grater than1.25 × Dinit. Therefore, the idle duration is decreased again. At frame16, the pixel

displacement becomes27 as opposed to35, and the case of non-overlapping bounding boxes is

avoided. As mentioned above, when a target moves away from the camera, the pixel displacements,

on average, are smaller compared to the case where the targetmoves parallel to the camera. This

makes it less challenging in terms of overlapping of the bounding boxes. When the target moves

toward the camera, the size of the bounding boxes gets largerallowing more overlapping between

the current and previous bounding boxes of the target.

Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart
cameras by adaptive tracking methodologies 96

5.6 Conclusions

We presented lightweight algorithms and self-adapting methodologies to increase the energy effi-

ciency and battery life of an embedded smart camera node. Theproposed methodologies allow us

to send the microprocessor of the camera node to idle state even when there are tracked objects

in the scene. First, we presented results from a feedback method introduced in chapter 4 for de-

tection and tracking, which provides significant savings inprocessing time. We took advantage

of these savings by sending the microprocessor to idle stateat the end of processing a frame. We

also presented an adaptive methodology that significantly decreases the energy consumption of the

embedded smart camera. The camera can be sent to idle state not only when the scene is empty but

also when there are tracked objects in the scene. The amount of time the camera remains in idle

state is adaptively changed based on the amount of activity in the scene, and the speed of tracked

objects. Instead of continuously capturing and processingevery frame, the camera drops frames

during idle state while preserving the tracking performance, and thus, system reliability at the same

time. This significantly prolongs the battery life. We then presented a combined method that em-

ploys the feedback method and the adaptive methodology together, and provides further savings in

energy consumption. We presented experimental results showing the gains in processing time as

well as the savings in energy consumption and the gain in battery life. In summary, the feedback

method provides48.7% decrease in the processing time of a frame, and10.44% savings in energy

consumption, compared to traditional sequential tracking, when tracking one object. Employ-

ing the combination of the proposed feedback algorithm and the proposed adaptive methodology,

provides37% savings in energy consumption when tracking one car. In a scenario where there

are always two cars in the scene, the combined method provides 131% gain in battery life. The

proposed combined method depends on the tracking results tocalculate the idle durations. We

presented that, assuming the tracking algorithm performs well when the camera is always on, the

presented methodologies do not affect the tracking performance.

97

Chapter 6
Energy-efficient Feedback Tracking on

Embedded Smart Cameras by Hardware-level

Optimization

As in the previous chapters, decreasing the processing timeand energy consumption on the embed-

ded smart camera is the main goal in this chapter. To achieve this goal, two main operations have

been performed at hardware level: (i) the change of the imageresolution and (ii) image cropping

based on a search region obtained from the tracking stage. Tofully understand these two concepts,

explaining how the camera grabs a frame is important.

6.1 Frame Capture Operation

On the CITRIC camera platform, there is an interface called Quick Capture Interface or QCI. This

interface works in 10-bit Master Parallel mode. It requiresa parallel data bus interface, two control

signals for frame timing and a pixel clock for basic timing.

The Quick Capture Interface on the CITRIC camera operates in8-bit YCbCr 4:2:2 mode. Such

mode allows the image sensor to provide the line and frame synchronization signals; signals which

are also referred to as the Horizontal Reference signal and Vertical Synchronization signal, HREF

and VSYNC, respectively. The QCI provides a programmable master clock (MCLK) to interface

with the image sensor attached to the camera. Additionally,there is a Pixel Clock (PCLK) derived

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 98

from the MCLK. The PCLK is used to perform all operations associated to frame transferring. The

CITRIC camera is programmed to operate in YCbCr color space having a luminance channel (Y)

and two chrominance channels Cb and Cr. The 8-bit 4:2:2 format samples the captured frame by

transferring 16bits per pixel using two clock cycles from the PCLK.

The operation between sensor and the QCI on the CITRIC cameraboard is defined as the

Master mode. This refers to a mode of operation in which the image sensor provides the line and

frame synchronization signals, HREF (line valid) and VSYNC(frame valid) as shown in Figure

6.1. In the Intel PXA270 master mode, the line valid and framevalid signals are inputs to the quick

capture interface.

The sensor can be programmed for exposure, frame rate, and additional parameters. The pro-

gramming is done through a separate interface, namely the I2C serial control interface. Once

configured, the sensor begins providing data in addition to generating the frame and line synchro-

nization signals. The MCLK signal output for the sensor is programmable. The timing signals

VSYNC and HREF, provided by the sensor, activate and reset the quick capture interface that can

be configured to provide an interrupt at the end of each line and each frame as shown in Figure 6.1.

Figure 6.1: Timing diagram for grabbing a frame using the Quick Capture Interface.

6.1 Frame Capture Operation 99

6.1.1 CITRIC Middleware Interface

To adaptively modify the shape of the HREF and VSYNC signals,a set of 8-bit registers is altered

through the I2C interface of the main microprocessor at the camera board. The image sensor

configuration is performed at the Application Program Interface (API) level, where libraries are

developed using the Software Development Kit (SDK) provided by the CITRIC camera. A device

driver is designed to load the correct values to the registers according to the frame size required by

the user.

As previously mentioned, the CITRIC camera runs embedded Linux. The original kernel ver-

sion running on the CITRIC camera was an optimized and a patched kernel imported from the

original Linux kernel 2.6.9. The image sensor of the CITRIC camera is handled by a device

driver. The camera drive is obtained by customizing both the“Video-For-Linux-One” driver for

the OV9650 image sensor and ARM processor driver, so that thedriver can work for the newest

OV9655 image sensor. As previously described in Chapter 2, and detailed in the manufacturing

manual [76], the image sensor is equipped with two differentinterfaces as shown in Figure 6.2.

The first one, called the Serial Camera Control Bus (SCCB) interface, is used to program the sensor

behavior. The second interface, the Digital Video Port interface, provides a connection between

the sensor and the quick capture interface to acquire data and control signals, and performs the

appropriate data formatting prior to routing the data to memory.

OV9655
CMOS Image

Sensor

D
ig

ita
l
V

id
e
o

P
o
rt

S
C

C
B

10 Bits YCbCr (4:2:2)

HREF

VSYNC

PCLK

MCLK

SIO_D/SDA

SIO_C/SCL

PWDN

RESET

Q
u
ic

k
C

a
p
tu

re
In

te
rfa

c
e

I2C

GPIO

RESET

PXA270 processor

CITRIC camera main board

Image capture board

DMA
engine

SDRAM

DATA

Figure 6.2: Interconnection of OV9655 and the Intel Quick Capture Interface on ARM PXA270.

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 100

The software to perform (i) the change of the image resolution, and (ii) image cropping men-

tioned at the beginning of the section consists of several functions. These functions are used in

“live” or “run-time” mode, and some of them are employed to dynamically change the position

and the size of the cropped window inside the whole image. Thefunctions for the reconfiguration

of the quick capture interface and the control of the DynamicMemory Allocation engine (DMA)

are based on the Video 4 Linux Standard IOCTL (Input/Output-Control), which allows us to col-

lect the right amount of data sent by the image sensor. Additionally, some of these functions are

used to clean the frame circular buffer used by the device driver. Since the frame rate of the image

sensor can reach30 f/s, and the frame transferring works in FIFO mode, the circular buffer shown

in Figure 6.3 is to be reset to guarantee the grabbing of the latest available frame. In this way, all

the video processing tasks are assured to be performed on theframe carrying information of latest

location of the object being tracked.

Figure 6.3: Camera Driver Internal architecture.

The functions for reconfiguring the image sensor register set are used at user application in-

terface, and it has been added to the API library of the CITRICcamera SDK. The other functions

work at the kernel space, and they have been implemented as part of Embedded Linux OS device

drivers. In particular, most of the additions and modifications to handle the image sensor were

done on the API IOCTL originally provided by Linux OS. The implemented functions are listed

in Figure 6.3 to the right of the frame circular buffer. The tracking algorithm employs these func-

tions to achieve time synchronization capabilities permitting us to perform tracking in “run-time”.

6.1 Frame Capture Operation 101

The operating system architecture of the CITRIC camera is also presented in Figure 6.4. The

striped yellow boxes are the modules that have been modified to dynamically change the size of

the cropped window for tracking purposes. These boxes show where most of the work has been

performed to accomplish the hardware-level optimization.

Figure 6.4: Software architecture handling the CITRIC camera board.

The hardware subsystem composed of the image sensor and the quick capture interface (QCI)

is highly configurable. The flexible and configurable architecture of the CITRIC camera, which

allows us to perform functions at hardware level, provides areduction in the amount of transferred

data. This, in turn, leads to significant savings in energy consumption due to the better use of the

memory controller and the memory resources. Additionally,freeing the main microprocessor from

the tasks of performing image down-sampling and cropping atsoftware-level also contributes to

saving energy. Down- sampling, scaling and cropping operations are accomplished by changing

the hardware registers of the OV9655. The acquisition of data from the sensor is initiated by

transitions based on the state of the HREF and VSYNC signals (Figure 6.1), which are generated

internally as explained in the OV9655 operation manual [76], and described in section 6.1.

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 102

6.2 Hardware-Level Image Processing Tasks: Scaling and

Cropping

Figure 6.5: Hardware-Level Image processing tasks: Scaling and Cropping

The image cropping is the selection of an area inside the whole image. This area is named

“cropped window” and characterized by its position, width,and height. The position is the pixel

coordinates of its upper left corner inside the whole image.The synchronization signal VSYNC

indicates which sequence of lines has to be captured in a frame. Similarly, the signal HREF

indicates which sequence of pixels has to be captured in eachline as shown in Figure 6.5.

To perform down-sampling and grab a frame in QVGA resolution, the VSYNC and HREF

are set so that the whole information acquired by the sensor is used. Moreover, it is necessary to

select the zoom and scaling functionality. To set the horizontal and vertical scale down coefficients,

the image sensor register set are accessed and modified. As will be detailed in sections 6.3 and

6.6, hardware-level cropping provides significant savingsin energy consumption and increases the

battery lifetime of the camera. The localized foreground object detection and tracking algorithm

introduced in Casares et al. [70] and Chapter 4 is an application that takes advantage of hardware-

level cropping.

6.2 Hardware-Level Image Processing Tasks: Scaling and Cropping 103

Figure 6.6: Interaction among components used in the Software based-Feedback method (Chapter
4.)

In chapter 4 the concepts of sequential and feedback tracking were introduced. Performing

detection and tracking only on specific regions, instead of on the whole frame, was shown to

provide significant savings in processing time. Hence, it increases idle state duration of cameras

to increase the battery-life. Even though significant savings were reported, the algorithms and

methodologies presented in the previous chapters were entirely done by software-level as seen in

Figure 6.6. The diagram presented in Figure 6.7, compared toFigure 6.6, demonstrates the goal

to be accomplished in this chapter. It also shows the tasks handled by hardware as well as the

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 104

subroutines implemented by software.

Figure 6.7: Interaction among components used in the Hardware based-Feedback method.

The feedback method [70] explained in Chapter 4 is employed to determine a search region

in the following frame. Subsequently, the next image is cropped at hardware-level as described

above. After cropping, the detection and tracking are performed on the search areas as seen in

Figure 6.8. The experimental results showing the decrease in energy consumption and the increase

in battery-life will be presented in Sections 6.3 and 6.6, respectively.

To actually implement the tracking system, the original CITRIC-kernel-2.6.9 has been updated

to version 2.6.23, and the Linux device driver for the image sensor has been modified. The kernel of

the CITRIC camera was not capable of dynamically changing the size of the cropped regions from

frame to frame. Thus, to overcome this issue, the existing device driver of the OV9655, contained

in the CITRIC-kernel-2.6.23, has been customized so that itcan dynamically crop regions in run-

6.3 Savings in Energy Consumption 105

Figure 6.8: Area cropped (a) by software using the API libraries (b) by hardware using the micro-
controller of the OV9655, (c) background subtraction output on the cropped region

time.

6.3 Savings in Energy Consumption

In this section, a quantitative comparison is presented, which shows the advantages of performing

hardware-level down-sampling and cropping at the micro-controller of the OV9655 sensor for

tracking purposes. Rather than processing whole frames andperforming these tasks at software-

level on the main micro-processor of the camera board, the OV9655 micro-controller will be used.

Before immersing into the analysis of more complex vision tasks, such as object detection and

tracking, it is worth presenting the gains of exploiting hardware-level operations even at elemental

tasks such as the grabbing of a QVGA frame.

6.3.1 Analysis of grabbing a QVGA frame

Grabbing a frame in QVGA (320×240) resolution is the result of applying down-sampling to VGA

images. As mentioned above, this operation was being done atsoftware level on the main ARM

processor of the camera board. In this chapter, down-sampling have been performed at hardware-

level at the micro-controller of the OV9655 sensor has been performed. Figures 6.9(a) and (b)

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 106

show QVGA images captured by the CITRIC camera using software and hardware down-sampling

methods, respectively. At hardware-level, neighborhood averaging is used to down-sample. At

software–level, instead of averaging, the API library routines drop repetitive information during

the down-sampling. Thus, Figure 6.9(a) is slightly sharpercompared to Figure 6.9(b).

(a) (b)

Figure 6.9: QVGA images captured by (a) using the API software library down-sampling subrou-
tines and (b) performing hardware–level down-sampling on the micro-controller of the OV9655.

Figure 6.10 shows the operating currents of the camera boardwhile grabbing a QVGA frame.

By using (i) only the API software libraries, and (ii) the OV9655 and the quick capture interface at

hardware-level. The grabbing of a frame takes49.8 ms when using the API libraries, while it takes

30.78 ms when employing the hardware-level down-sampling at the micro-controller of the image

sensor. This corresponds to38.2% savings in grabbing time.

The solid and dashed lines in Figure 6.10 show the average current levels when using software-

level and hardware-level down-sampling, respectively. Ascan be seen, a36.27% reduction in the

average operating current is obtained when performing hardware-level down-sampling at the mi-

crocontroller of the OV9655 sensor. As shown in Table 6.1, this corresponds to24.47% decrease in

energy consumption. It should be noted that to compare the energy consumption in both scenarios,

the main ARM processor has been sent to idle state for19 ms, so the time window is the same

(49.8 ms) for both cases (Figure 6.10).

6.3 Savings in Energy Consumption 107

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0.1

0.15

0.2

0.25

time_1 = 0.03078 sec

time_2 = 0.0498 sec

Time (sec)

C
ur

re
nt

 (
A

m
ps

)

Operating currents for grabbing a QVGA frame

ov9655 − ARM
API libraries

Average Current = 228 mA

Average Curren = 155 mA

Figure 6.10: Operating currents of the camera board while grabbing a QVGA frame using the API
sub-sampling subroutines and using the image micro-controller of the OV9655.

6.3.2 Analysis of hardware-Level image/video processing tasks: Object de-

tection and tracking

In this section, savings in energy consumption are presented when performing hardware-level

down-sampling and cropping, while using the feedback method for object detection and tracking

(Casares et al. [70]) described in Chapter 4.

As stated in Casares et al. [70], the feedback method provides significant savings in processing

Down-sampling method Power (W) Energy (mJ)

Software 1.1655 57.2
Hardware 0.7493 43.2
Gain (%) 35.71% 24.47%

Table 6.1: Energy consumption when grabbing a QVGA frame using the API software libraries
versus performing down-sampling at hardware-level.

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 108

Figure 6.11: Illustration of saving gain by using hardware level operations.

time, and thus allows us to increase idle state durations of cameras to increase the battery-life. As

described in chapter 4 section 4.4, in the feedback method, information from the tracking stage is

used to determine search regions in the next frame, so that detection and tracking can be performed

only in those regions instead of the whole frame. Figure 6.11presents a diagram to illustrate the

process.

Object detection on a QVGA frame

In this section the following scenarios are compared: (i) obtaining QVGA images with software-

level down-sampling and performing all processing (down-sampling and foreground object detec-

tion) on the main microprocessor of the camera board; (ii) performing down-sampling at hardware-

level on the micro-controller of the OV9655 sensor, and performing foreground object detection at

the main microprocessor.

Figure 6.13 shows the operating current levels of the cameraboard when using these two ap-

proaches. As seen in this figure, collaborating with the image sensor, and using hardware-level

6.3 Savings in Energy Consumption 109

Figure 6.12: Background subtraction output on a frame grabbed by using the API software libraries
to down-sample to QVGA resolution (left column), and by using hardware level down-sampling
(right column).

operations, provides43.7% savings in processing time, as compared to the software-level down-

sampling relying on the API libraries. In addition, it provides27.98% savings in energy con-

sumption. As seen in Figure 6.12, the background subtraction output is slightly better when using

the hardware-level down-sampling, due to the slight blurring introduced by averaging neighboring

pixels, as discussed in section 6.3.1. This provides noise reduction, and thus better segmentation.

Object tracking on a QVGA frame

In this section, savings in energy consumption, when using the feedback method for object de-

tection and tracking, and performing hardware-level cropping, are presented. The aforementioned

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 110

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Time (sec)

C
ur

re
nt

 (
A

m
ps

)

Operating currents during BGS + Tracking

time_1 = 0.04658 sec

time_2 =
0.08276 sec

QVGA API libraries
QVGA ov9655−ARM

Figure 6.13: Operating currents when grabbing/buffering aframe and performing background
segmentation using the API sub-sampling subroutines versus collaborating with the OmniVision
OV9655.

scenarios analyzed for QVGA resolution, are now performed in a reduced search region cropped by

software or hardware-level operations. The software-based feedback method [70] grabs a frame in

VGA resolution, down-samples it, and crops the search regions all by software. On the other hand,

the hardware-level method uses the capabilities of the OV9655 to down-sample, and then crop the

search regions. Having the search regions, foreground detection and tracking tasks are performed

only in those regions at the main micro-processor of the CITRIC camera, as depicted in Figure

QVGA
Method Power (W) Energy (mJ) gain (%)

Software-level down-sampling 1.0415 112.5 −
Hardware-level down-sampling 0.751 81.7 27.38%

Table 6.2: Energy consumption when grabbing a QVGA frame at Software versus Hardware-level,
and performing detection at the main microprocessor.

6.3 Savings in Energy Consumption 111

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.1

0.15

0.2

0.25

Time (sec)

C
u

rr
en

t
(A

)
Feedback Software
Feedback Hardware

Reseting Circular
Buffer = 68.64 ms

Grab + process = 39.36
ms

Grab + process
= 49 ms

Porcessing time = 37 ms

Figure 6.14: Operating currents when (i) obtaining QVGA images with software-level down-
sampling, and performing all processing on the main microprocessor ; (ii) performing down-
sampling at hardwarelevel on the micro-controller of the OV9655 sensor, and performing fore-
ground object detection and tracking at the main microprocessor.

6.7. However, before presenting the energy consumption analysis during feedback-based tracking,

combined with hardware-level cropping, the following two scenarios are firstly compared on a

single QVGA size frame. To separately show the contributionof hardware-level down-sampling

in terms of savings, we first: (i) obtain QVGA images with software-level down-sampling, and

perform all processing (down-sampling, foreground objectdetection, and tracking) on the main

microprocessor of the camera board; (ii) perform down-sampling at hardware-level on the micro-

controller of the OV9655 sensor, and foreground object detection and tracking at the main micro-

processor. The operating currents of the camera board, while using these approaches, are presented

in Figure 6.14. Even though collaborating with the image sensor and hardware-level operations

slightly prolongs the processing time per frame by22 ms, they considerably decrease the energy

consumption of the camera by27.38% as presented in Table 6.2.

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 112

To continue the explanation of the proposed algorithm, Figure 6.12 shows the output of the

system when detecting and tracking an object. The reader cancompare side by the hardware-level

approach from this chapter against the software-level introduced in chapter 4.4.

Figure 6.15: (a) Last QVGA frame captured while computing pixel displacement of the tracked
object; (b) Search regions cropped at hardware level.

Figure 6.15 shows a sequence of frames in which a remote-controlled car is tracked. Figure

6.15(a) shows a QVGA frame grabbed during the tracking of theremote-controlled car. Whole

frames are grabbed until the displacement of the target is computed from two consecutive frames.

Then, the location of the target is estimated at the following frame. A search region of size2w×2h

is formed around this location, wherew andh are the width and height of the bounding box in the

current frame, respectively. The details can be found in Chapter 4. Then, the following frame is

cropped to the search region at hardware level, and the detection and tracking are performed only

in the cropped region as depicted in Figure 6.15(b). To show the movement of the car, and the

changing cropped window, a small red circular reference point is highlighted on the cropped frame

sequence. Figure 6.16 shows the operating current of the camera board when (i) using the feedback

method implemented entirely at software level; and (ii) applying hardware-level operations for

cropping and down-sampling.

6.3 Savings in Energy Consumption 113

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.1

0.15

0.2

0.25

Time (sec)

C
u

rr
en

t
(A

m
p

)

Feedback Hardware
Feedback Software

Porcessing
time =
17.2 ms

Reseting Circular
Buffer = 64.08 ms

Grab + process =
49.8 ms

Porcessing time
= 10.12 ms

Grab + process =
25.92 ms

grabbing time
= 15.8 ms

Figure 6.16: Operating currents when performing foreground object detection an tracking on

cropped search regions obtained by software versus hardware-level cropping.

(a) (b)

Figure 6.17: (a) Detecting a speed change. (b) Overlapping bounding boxes for a faster car.

Even though the processing time increases by23ms when cropping and processing a search re-

gion of100×100 pixels at hardware level, using the hardware capabilities of the OV9655 provides

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 114

100x100 Search Area
Method Power (W) Energy (mJ) gain (%)

Sequential software-level 1.0415 112.5 −
Feedback software-level 1 92.23 18.02%
Feedback hardware-level 0.719 66.1 41.24%

Table 6.3: Energy consumption when grabbing and cropping a search region (100x100) at software
versus hardware-level and performing detection at the mainmicroprocessor.

28.3% decrease in energy consumption, compared to software-level cropping and processing and

41.24% compared to a Sequential software tracking system. Different scenarios are summarized

in Table 6.3 presenting the energy consumption and savings when processing a single frame.

6.4 Longer Tracking Experiment

This section aims to present a detailed analysis of the tracking algorithm over a prolonged period of

time. Thus, rather than reporting results at the frame level, the estimation of the energy consumed

by the camera is calculated over a longer time interval.

In the following set of experiments, first, a remote-controlled car is tracked continuously for

3 seconds, and the size of the cropped window is changed once every second. The energy con-

sumption during this period of time is measured and reportedin Table 6.4. Figure 6.18 shows

the operating current of the camera board for different scenarios during 1-second portion of this

3-second experiment. As explained in Section 6.1.1, the circular buffer is reset when perform-

ing hardware-level cropping, which slightly increases theprocessing time of a frame. However,

the feedback method combined with hardware-level croppingprovides29.4% and37% decrease

in energy consumption, compared to the software-based feedback method and sequential method,

respectively. Table 6.4 summarizes the power and energy consumptions, and savings.

6.5 Outdoor experiments 115

Method Power (W) Energy (J) gain (%)

Sequential software-level 1.1422 3.4273 −

Feedback software-level 1.0203 3.0608 10.7%

Feedback hardware-level 0.7203 2.1609 37%

Table 6.4: Energy Consumption when performing detection and tracking during a 3-second time

interval at software versus hardware level.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Time (sec)

C
u

rr
en

t
(A

m
p

s)

Sequential
Feedback Software
Feedback Hardware

Figure 6.18: Operating currents when performing foreground object detection and tracking during

1-second time interval.

6.5 Outdoor experiments

Figure 6.19 shows an scenario in which a person enters to the FOV of the camera. The camera

built the background model of the scene employing the algorithm described in chapter 3. After

the foreground detection, the camera assigns a tracker number T10 to the person. As illustrated,

the the foreground object segmentation and tracking were performed in a reduced cropped region

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 116

around the person. The cropping was performed at the hardware level using the logistics from

chapter 4. We can also see that the camera processes the wholeframe twice a second looking for

new object that could have entered to the scene.

6.5 Outdoor experiments 117

Figure 6.19: Outdoor experiment: Detection and Tracking ofa person by employing hardware

level operations.

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 118

6.5.1 Tracking multiple objects

When there are multiple objects in the scene, it is required to form multiple search regions, and crop

multiple windows. In this case, hardware-level cropping can still be performed for one window

per frame, and different windows for different objects can be cropped at alternating frames. Figure

6.20 shows a real life scenario in which two objects are beingtracked. Figure 6.20(a) shows part of

the original QVGA frame illustrating both of the objects (a person and a car) to be tracked. Figure

6.20(b) shows the hardware-level cropping on alternating frames.

(a) (b)

Figure 6.20: Alternating BGS outputs from two objects beingdetected and tracked.

The person in Figure 6.20(b) is labeledT11 while the vehicle is assigned a tracker number

T10. Additionally, in Figure 6.20(a) the alternating background subtraction (BGS) outputs are

illustrated. The BGS outputs were obtained at the cropped areas. Thus, a frame alignment with

respect to the QVGA background model was required. Details on the building of the QVGA back-

ground model are described in chapter 3. The empty white bounding boxes represent where the

BGS is going to be performed in the next frame. Hence, it can beseen that there is no background

subtraction in the car region when analyzing the cropped frame corresponding to the person, and

vice versa. In the BGS output for the person in Figure 6.20(a), it can be seen two bounding boxes

are associated with trackerT11. Those bounding boxes correspond to the current and previous

6.5 Outdoor experiments 119

instances,t andt− 1, respectively.

(a) Detecting and tracking a vehicle

(b) Analyzing whole frame (person enters

FOV)

(c) Analyzing cropped frames alternatively

Figure 6.21: Alternating tracking of a person and a vehicle on hardware scaled and cropped frame

areas.

Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level
Optimization 120

A sequence of frames from the car-person experiment are illustrated in Figure 6.21 [a-c]. The

system tracks the objects alternatively according to the total number of objects in the FOV of the

camera. In Figure 6.21(a) the car entered to the FOV of the camera and a trackerT10 was created

and assigned to it. In Figure 6.21(b) when the camera processed the whole frame, a person is de-

tected and assigned a trackerT11. Finally, the alternating hardware cropped frames are presented

until the car left the scene, and the system continues tracking the person.

6.6 Increase in Battery-Life

This section is focused on analyzing the gain in battery-life of the camera mote. Thus, the battery-

life of the camera has been projected for the following scenarios: (i) Sequential method: perform-

ing down-sampling at software-level, and detecting and tracking objects in the whole frame; (ii)

Software-level feedback method: performing down-sampling and cropping at software-level, and

detecting and tracking objects in smaller search regions; (iii) Hardware-level feedback method:

performing down-sampling and cropping at hardware-level by exploiting the image sensor capa-

bilities, and detecting and tracking objects in smaller search regions. The battery characteristic

curves provided by the manufacturer of the batteries have been used for the estimation. When

there is one car in the scene, the average currents drawn are0.2162 A, 0.1926 A and 0.1345 A

for scenarios (i), (ii) and (iii), respectively. The projected battery lifetimes and energy savings are

summarized in Table 6.5. As can be seen, when the feedback method is combined with hardware-

level operations (scenario (iii)), the battery life increases to15.5 hours, and it provides84.52% and

107.2% increase in battery-life compared to scenarios (i) and (ii), respectively. It should be noted

that the projected battery lifetimes are based on the scenario, where there will always be an object

to track in the scene, i.e. the scene will never be empty.

6.7 Conclusion 121

Method Battery Lifetime (hours) gain (%)

Sequential method 7.48 −
Software-level Feedback Method 8.4 12.3%
Hardware-level Feedback Method 15.5 107.2%

Table 6.5: Battery life projection.

6.7 Conclusion

This chapter has presented two methodologies to increase the energy-efficiency and the battery-life

of an embedded smart camera by hardware-level operations when performing object detection and

tracking. First, instead of performing down-sampling at software-level at the main microprocessor

of the camera board, this operation was performed at hardware-level on the micro-controller of the

OV9655 image sensor of a CITRIC camera. Moreover, rather than performing object detection and

tracking on the whole frame, the location of the target in thenext frame was estimated. A search

region around it was formed and the next frame cropped by using the HREF and VSYNC signals

at the micro-controller of the OV9655. Detection and tracking was performed only in the cropped

search region. It was shown that significant savings in energy consumption and battery-life resulted

from reducing the amount of data that is moved from the image sensor to the main memory at each

frame. Also, better use of the memory resources, and not occupying the main microprocessor for

image down-sampling and cropping tasks significantly prolonged the battery life of the camera

node. Experimental results show that, compared to software-level cropping, performing hardware-

level cropping when tracking one object provides84.52% increase in battery-life, prolonging the

life of the camera up to15.5 hours. In addition, hardware level down-sampling and cropping,

and performing detection and tracking in cropped regions, provides41.24% decrease in energy

consumption and107.2% increase in battery-life compared to performing software-level down-

sampling and processing the whole frame.

122

Chapter 7
Conclusions

This thesis has focused on the importance and the benefits of designing lightweight computer

vision algorithms suitable for embedded smart cameras. Ourresearch has shown that running well-

suited algorithms has a significant impact on the battery life of the embedded platforms. We have

presented the gains of designing lightweight algorithms that are well integrated with the camera’s

architecture, as opposed to using algorithms designed for wall-powered platforms. We have shown

that it is feasible to design algorithms that can prolong thebattery life time of the embedded smart

cameras, without affecting the reliability of the system during surveillance tasks.

Our work spans the whole development process, starting withthe design and implementation

followed by the simulation and optimization, ending with the testing and performance analysis on

actual embedded cameras.

In Chapter 3 , a lightweight salient foreground detection algorithm, which is highly robust

against challenging non-static backgrounds has been presented. The memory requirement for the

data saved per pixel is very small, which is very important for portability to an embedded smart

camera. The number of memory accesses and instructions are adaptive, and are decreased even

more depending on the amount of activity in the scene and on a pixel’s history. Each pixel is treated

differently based on its history, and instead of requiring the same number of memory accesses, and

thus, instructions for every pixel, we require less instructions for stable background pixels.

In Chapter 4, we have presented a lightweight feedback-based detection and tracking algo-

123

rithm to increase the energy efficiency and battery life of anembedded smart camera node. The

algorithm provides significant savings in processing time.Experimental results showed the gains

in processing time as well as the savings in energy consumption and the gain in battery life. In

summary, the proposed algorithm in Chapter 4 provides48.7% decrease in the processing time of

a frame, and10.44% savings in energy consumption, compared to traditional sequential ways of

tracking objects.

In Chapter 5, self-adapting methodologies to increase the energy efficiency and battery life of

an embedded smart camera node have been presented. The proposed methodologies allow us to

send the microprocessor of the camera node to idle state evenwhen there are tracked objects in the

scene. The adaptive methodology significantly decreased the energy consumption of the embedded

smart camera used in the experiments. The camera can be sent to idle state not only when the

scene is empty but also when there are tracked objects in the FOV of the camera. Additionally,

an algorithm called combined method was introduced which provides further savings in energy

consumption. Experimental results have been presented showing the gains in processing time as

well as the savings in energy consumption and the gain in battery life. Up to131% gain in battery

life has been obtained compared to traditional ways of doingtracking.

In Chapter 6, We have presented two hardware-level methodologies that aim to increase the

energy-efficiency and the battery-life of an embedded smartcamera. The energy saving are ob-

tained by hardware-level operations when performing object detection and tracking. Instead of

performing down-sampling at software-level at the main microprocessor of the camera board, this

operation is performed at hardware-level on the micro-controller of the OV9655 image sensor of

a CITRIC camera. Moreover, rather than performing object detection and tracking on the whole

frame, the location of the target in the next frame is estimated and the object detection and track-

ing are performed only in the estimated areas. Employing hardware-level operations resulted in

an increase in battery life of107.2% compared to performing software-level down-sampling and

processing whole frame.

124

Bibliography

[1] R.O. Duda and P.E. Hart, “Pattern Classification and Scene Analysis”, New York, Wiley,

1973.

[2] C. H. Anderson, P. J. Burt, and G. S. V. D. Wal, “Change detection and tracking using pyra-

mid transform techniques,”Proceedings of SPIE Intelligent Robots and Computer Vision,

vol. 579, pp. 72-78, Cambridge, MA, Sept. 16–20, 1985.

[3] P. L. Rosin and T. Ellis, “Image difference threshold strategies and shadow detection,”Pro-

ceedings of British Machine Vision Conference, pp. 347–356, 1995.

[4] M. Casares and S. Velipasalar, “Light-weight salient foreground detection with adaptive

memory requirement,” Proceedings of the IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), 2009.

[5] N. Friedman and S. Russell, “Image segmentation in videosequences: A probabilistic ap-

proach,”Proceedings of the Thirteenth conference on Uncertainty inartificial intelligence,

pp. 175–181, 1997.

[6] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time tracking of

the human body,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,

no. 7, pp. 780-785, July 1997.

BIBLIOGRAPHY 125

[7] T. Kanade, R. T. Collins, A. J. Lipton, P. Burt and L. Wixson, “Advances in cooperative

multi-sensor video surveillance,”Proceedings of DARPA Image Understanding Workshop,

pp. 3–24, Monterey, CA, November 1998.

[8] T. Horprasert, D. Harwood and L. Davis, “A statistical approach for real-time robust back-

ground subtraction and shadow detection,”Proceedings of IEEE ICCV Frame-Rate Work-

shop, pp. 1–19, 1999.

[9] K. Toyama, J. Krumm, B. Brumitt and B. Meyers, “Wallflower: Principle and practice of

background maintenance”,The Proceedings of the Seventh IEEE International Conference

on Computer Vision, vol. 1, pp. 255-261, 1999.

[10] F. Oberti, A. Teschioni , C.S. Regazzoni, “ROC curves for performance evaluation of video

sequences processing systems for surveillance applications,” Proceedings of the IEEE Inter-

national Conference on Image Processing, vol. 2, pp. 949–953, 1999.

[11] N. Oliver, B. Rosario, and A. Pentland, “A bayesian computer vision system for model-

ing human interactions,”IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 831-834, 2000.

[12] A. Elgammal, D. Harwood and L. Davis, “Non-parametric model for background subtrac-

tion,” Proceedings of 6th European Conference on Computer Vision, pp. 751–767, June/July

2000.

[13] X. Gao, T. E. Boult, F. Coetzee, V. Ramesh, “Error analysis of background adaption,”

Proceedings of the International Conference on Computer Vision and Pattern Recognition,

pp. 503–510, 2000.

[14] I. Haritaoglu, D. Harwood and L. S. Davis, “W4: Real-time surveillance of people and their

activities,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8,

pp. 809-830, August 2000.

BIBLIOGRAPHY 126

[15] J. Rittscher, J. Kato, S. Joga and A. Blake, “A probabilistic background model for tracking,”

Proceedings of the European Conference on Computer Vision, vol. 2, pp. 336350, 2000.

[16] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time tracking,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747–757,

August 2000.

[17] W.-C. Feng, W.-C. Feng, and M. L. Baillif, “Panoptes: Scalable low-power video sensor

networking technologies,”Proceedings of the eleventh ACM international conference on

Multimedia, pp. 562–571, 2003.

[18] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects using mean

shift,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 142–149, vol. 2.

Jun. 2000.

[19] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer, “Multi-camera multi-

person tracking for EasyLiving,”Proceedings. Third IEEE International Workshop on Visual

Surveillance, pp. 3–10, Jul. 2000.

[20] L. Lee, R. Romano, and G. Stein, “Monitoring activitiesfrom multiple video streams: Estab-

lishing a common coordinate frame,”IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 758–768, Aug. 2000.

[21] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision system for modeling hu-

man interactions,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 8, pp. 831–834, Aug. 2000.

[22] B. Stenger, V. Ramesh, N. Paragios, F. Coetzee and J. Bouhman, “Topology free hidden

markov models: Application to background modeling,”Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 294-301, 2001.

BIBLIOGRAPHY 127

[23] I. Pavlidis, V. Morellas, P. Tsiamyrtzis and S. Harp, “Urban surveillance systems: from the

laboratory to the commercial world,”Proceedings of the IEEE, vol. 89, no. 10, pp. 1478–

1497, October 2001.

[24] P. KaewTraKulPong and R. Bowden, “An improved adaptivebackground mixture model

for real-time tracking with shadow detection,”Proceedings of the Workshop on Advances

in Vision-based Surveillance Systems, September 2001.

[25] M. Harville, “A framework for high-level feedback to adaptive, per-pixel, mixture-of-

gaussian background models,” Proceedings of European Conference on Computer Vision,

vol. 3, pp. 543-560, 2002.

[26] W. Wolf, B. Ozer, T. Lv, “Smart cameras as embedded systems,”Computer, vol. 35, pp. 48–

53, September 2002.

[27] A. Rowe, C. Rosenberg, and I. Nourbakhsh, “CMUcam: a lowoverhead vision system,”

Proceedings of the International Conference on Intelligent Robots and Systems, IROS 2002,

2002.

[28] A. Elgammal, R. Duraiswami, D. Harwood and L. Davis, “Background and foreground mod-

eling using nonparametric kernel density estimation for visual surveillance”,Proceedings of

the IEEE, 90(7), pp.1151–1163, July 2002.

[29] Nam T. Nguyen, S. Venkatesh, G. West and Hung H. Bui, “Multiple camera coordination in

a surveillance system,”ACTA Automatica Sinica, vol. 29 (3), pp. 408-422, 2003.

[30] D. Gay, L. Philip, R. Behren, M. Welsh, E. Brewer, D. Culler, “The nesC language: A

holistic approach to networked embedded systems,”Proceedings of the ACM SIGPLAN 2003

conference on Programming language design and implementation, 2003, pp. 1–11.

[31] T. H. Chalidabhongse, K. Kim, D. Harwood and L. Davis, “Aperturbation method for evalu-

ating background subtraction algorithms”,Proceedings of the Joint IEEE International Work-

BIBLIOGRAPHY 128

shop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, in

conjunction with ICCV, Oct. 2003.

[32] K. Kim, T. H. Chalidabhongse, D. Harwood and L. Davis, “Real-time foreground-

background segmentation using codebook model,”Real-time Imaging, vol. 11, no. 3,

pp. 172–185, June 2005.

[33] Z. Zivkovic, “Improved adaptive Gausian mixture modelfor background subtraction,”Pro-

ceedings of the International Conference on Pattern Recognition, pp. 28–31, 2004.

[34] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demir-

bas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and

M. Miyashita, “A line in the sand: A wireless sensor network for target detection, classifica-

tion, and tracking,”Computer Networks (Elsevier), vol. 46, no. 5, pp. 605–634, Dec. 2004.

[35] S. Bhandarkar and X. Luo, “Fast and robust background updating for real-time traffic surveil-

lance and monitoring”,Proceedings of the IEEE Workshop on Machine Vision for Intelligent

Vehicles, pp. 55, June 2005.

[36] D.-S. Lee, “Effective Gaussian mixture learning for video background subtraction”,IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(5), pp. 827832, 2005.

[37] X. Luo and S. Bhandarkar, “Real-time and robust background updating for video surveillance

and monitoring”,Springer Lecture Notes in Computer Science, 3656, pp. 1226–1233, 2005.

[38] Y. Sheikh and M. Shah, “Bayesian object detection in dynamic scenes,”Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 74–79, June 2005.

[39] W.-C. Feng, W.-C. Feng, and M. L. Baillif, “Panoptes: Scalable lowpower video sensor

networking technologies,”Proceedings of the eleventh ACM international conference on

Multimedia, 2003, pp. 562–571.

BIBLIOGRAPHY 129

[40] P. Kulkarni, D. Ganesan, and P. Shenoy, “The case for multi-tier camera sensor networks,”

Proceeding NOSSDAV’05 Proceedings of the international workshop on Network and oper-

ating systems support for digital audio and video, pp. 141–146, 2005.

[41] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground-

background segmentation using codebook model,”J. Real-time Imaging, vol. 11, no. 3,

pp. 172–185, Jun. 2005.

[42] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of a wireless sensor net-

work platform for detecting rare, random, and ephemeral events,” Fourth International Sym-

posium on Information Processing in Sensor Networks, 2005.IPSN 2005., pp. 497–502,

2005.

[43] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior, D. Estrin, and M. Srivastava,

“Cyclops: In situ image sensing and interpretation in wireless sensor networks,”Proceedings

of the International Conference on Embedded Networked Sensor Systems, pp. 192–204, 2005.

[44] D. Lymberopoulos, A. Savvides, “XYZ: a motion-enabled, power aware sensor node plat-

form for distributed sensor network applications,”Proceedings of the 4th International Sym-

posium on Information Processing in Sensor Networks, 2005.

[45] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay,J. Hill,M. Welsh,E. Brewer, D. Culler, W. Weber, J. Rabaey, E. Aarts, “Tinyos:

An operating system for sensor networks,”Ambient Intelligence, Springer-Verlag, 2004.

[46] A. Rowe, C. Rosenberg, and I. Nourbakhsh, “A second generation low cost embedded color

vision system,”Proceedings IEEE Embedded Computer Vision Workshop Conjunction with

IEEE Conference Computer Vision and Pattern Recognition, vol. 3, pp. 136, Jun. 2005.

[47] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay,J. Hill,M. Welsh,E. Brewer, D. Culler, W. Weber, J. Rabaey, E. Aarts, “Tinyos:

An operating system for sensor networks,”Ambient Intelligence, Springer-Verlag, 2004.

BIBLIOGRAPHY 130

[48] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H.Schwabach, “Distributed embed-

ded smart cameras for surveillance applications,”IEEE Computer, vol. 39, no. 2, pp. 68–75,

Feb. 2006.

[49] A. Shimada, D. Arita, R. Taniguchi, “Dynamic control ofadaptive Mixture-of-Gaussians

background model”,Proceedings of IEEE International Conference on Advanced Video and

Signal Based Surveillance, 2006.

[50] I. Downes, L. B. Rad, and H. Aghajan, “Development of a mote for wireless image sensor

networks,” Proceedings on Cognitive Systems Interactive Sensors, March. 2006.

[51] S. Fleck, F. Busch, P. Biber, and W. Strasser, “3-D surveillance: A distributed network of

smart cameras for real-time tracking and its visualizationin 3-D,” Proceedings Conference

on Computer Vision and Pattern. Workshop, Jun. 2006, p. 118.

[52] P. Chalimbaud, “Embedded active vision system based onan FPGA architecture,”EURASIP

Journal on Embedded Systems IDOTS, pp. 26 ,January 2006.

[53] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan, “Mesheye: A hybrid-resolution smart

camera mote for applications in distributed intelligent surveillance,” International Sympo-

sium on Information Processing in Sensor Networks, 2007, pp. 360–369.

[54] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and B. Strobl, “Autonomous mul-

ticamera tracking on embedded smart cameras,”EURASIP Journal on Embedded Systems,

vol. 2007, no. 92827, p. 10, 2007.

[55] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin, “Camera mote with a high-performance

parallel processor for real-time frame-based video processing,” in Proc. ACM/IEEE Int. Conf.

Distributed Smart Cameras, Sep. 2007, pp. 106–116.

[56] A. Rowe, A. Goode, “CMUcam3: an open programmable embedded vision sensor,”Confer-

ences on Intelligent, 2007.

BIBLIOGRAPHY 131

[57] R. Smith, “SPOTWorld and the Sun SPOT,”Information Processing in Sensor Networks,

2007.

[58] A. Y. Benbasat and J. A. Paradiso, “A framework for the automated generation of power-

efficient classifiers for embedded sensor nodes,”in Proc. Int. Conf. Embedded Networked

Sensor Syst., 2007, pp. 219–232.

[59] B. Jiang, B. Ravindran, and H. Cho, “Energy efficient sleep scheduling in sensor networks

for multiple target tracking,”in Proceedings IEEE International Conference on Distributed

Computer Sensor Systems, Sep. 2008, pp. 498509.

[60] B. Rinner and W. Wolf, “An introduction to distributed smart cameras,”IEEE proceedings,

vol. 96, no. 10, pp. 15651575, Oct. 2008.

[61] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W.Wolf, “The evolution from single

to pervasive smart cameras,”in Proceddings ACM/IEEE International Conference on Dis-

tributed Smart Cameras, Sep. 2008, pp. 1–10.

[62] L. Nachman, J. Huang, “Imote2: Serious computation at the edge,”2008. IWCMC’08, 2008.

[63] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Leon, E. Lobatonm, M. Meingast, S. Oh,

S. Wang, P. Yan, A. Y. Yang, C. Yeo, L.-C. Chang, J. D. Tygar, and S. S. Sastry, “CITRIC:

A low-bandwidth wireless camera network platform,”Proceddings ACM/IEEE International

Conference on Distributed Smart Cameras, Sep. 2008, pp. 1–10.

[64] M. Casares, M. C. Vuran and S. Velipasalar, “Design of a Wireless Vision Sensor for

Object Tracking in Wireless Vision Sensor Networks,”Proceddings ACM/IEEE International

Conference on Distributed Smart Cameras (ICDSC), Workshopon Embedded Middleware for

Smart Camera and Visual Sensor Networks (eMCAM), pp. 1–9, Sept. 2008.

BIBLIOGRAPHY 132

[65] M. Casares and S. Velipasalar,“Light-weight salient foreground detection for embedded

smart cameras”,Proceddings ACM/IEEE International Conference on Distributed Smart

Cameras, 2008, pp. 1–7.

[66] Y. Wang, M. Casares, and S. Velipasalar, “Detection of composite events spanning multi-

ple camera views with wireless embedded smart cameras,”Proceddings ACM/IEEE Interna-

tional Conference on Distributed Smart Cameras, Aug. Sep. 2009, pp. 1–8.

[67] Z.-J. Yu, J.-M. Wei, and H.-T. Liu, “Energy-efficient collaborative target tracking algo-

rithm using cost-reference particle filtering in wireless acoustic sensor networks,”J. China

Univ. Posts Telecommun., vol. 16, no. 1, pp. 9–15, Feb. 2009.

[68] M. Casares, V. Senem, P. Alvaro, “Light-weight salientforeground detection for embedded

smart cameras,”Computer Vision and Image Understanding, 2010, pp. 1223–1237.

[69] M. Casares and S. Velipasalar, “Light-weight salient foreground detection for embedded

smart cameras,”Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1223–

1237, 2010.

[70] M. Casares and S. Velipasalar, “Resource-efficient salient foreground detection for embedded

smart cameras,”in Proc. IEEE Int. Conf. AVSS, Aug. 2010, pp. 369–375.

[71] M. Casares and S. Velipasalar, “An adaptive method for energy efficiency in battery-powered

embedded smart cameras,”Proceddings ACM/IEEE International Conference on Distributed

Smart Cameras (ICDSC), 2010.

[72] Y. Wang, M. Casares, and S. Velipasalar, “Cooperative object tracking and composite event

detection with wireless embedded smart cameras,”IEEE Trans. Image Process., vol. 19,

no. 10, pp. 26142633, Oct. 2010.

BIBLIOGRAPHY 133

[73] M. Casares and S. Velipasalar, “Adaptive Methodologies for Energy-Efficient Object Detec-

tion and Tracking With Battery-Powered Embedded Smart Cameras,” IEEE Transactions on

Circuits and Systems for Video Technology, 2011, pp. 1430–1452.

[74] K. Quast and A. Kaup, “AUTO GMM-SAMT: An automatic object tracking system for video

surveillance in traffic scenarios,”EURASIP Journal on Image Video Processing, vol. 2011,

no. 814285, p. 14, 2011.

[75] Intel PXA27x Processor Familiy Developers Manual,

“http://www.balloonboard.org/hardware/300/ds/PXA270- dev-manual.pdf”.

[76] Omnivision Technologies Inc. OV9655 Color CMOS SXGA (1.3 MegaPixel) CAMER-

ACHIP with OmniPixel Technology Datasheet, 2006.

[77] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra- low power wireless re-

search”.In IPSN/SPOTS, 2005.

[78] Mats Skogholt Hansen, “Practical Evaluation of IEEE 802.15.4/ ZigBee Medical Sensor Net-

works”. NTNU Innovation and CreativityNorwegian University of Science and Technology.

June. 2006.

134

Vita

Mauricio Casares (M’08) holds a Doctorate degree in Electrical and Computer Engineering

from Syracuse University, Syracuse, NY. He received a B.Sc.degree in Electronics and Control

Engineering from National Polytechnic University, Quito,Ecuador, in 2005. In 2010, He graduated

from the University of Nebraska-Lincoln holding a master degree in Electrical Engineering with

a minor in Computer Science. Since 2011, He has been working for Schneider Electric USA,

Inc focused primarily on Machine vision, RFID technology, and Control systems. His research

has been on wireless embedded smart cameras and lightweightalgorithm design for embedded

platforms. His current research interests include computer vision, multi-camera systems, control

theory, and signal processing.

	ENERGY-EFFICIENT LIGHTWEIGHT ALGORITHMS FOR EMBEDDED SMART CAMERAS: DESIGN, IMPLEMENTATION AND PERFORMANCE ANALYSIS
	Recommended Citation

	Introduction
	Overview
	Embedded Smart Cameras: A short history

	Thesis Contribution
	Publications
	Peer-reviewed Published Journal Papers
	Peer-reviewed Published Conference Papers

	CITRIC camera: Architecture
	The CITRIC Camera
	The Microprocessor
	The Image Sensor
	The TelosB Mote

	Lightweight salient foreground detection for embedded smart cameras
	Introduction
	Proposed Method
	Building the Background Model
	Updating the Counters
	Salient Foreground Detection
	Adaptive background model update
	Adaptive number of memory accesses and instructions

	Experimental Results
	Conclusions

	Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart cameras by feedback tracking
	Introduction
	Wireless Embedded Smart Camera Platform
	Motivation: Energy Consumption Analysis
	FeedbackMethod: Resource-Efficient Salient Foreground Detection by Feedback Tracking
	Determining the Search Regions

	Experimental Results
	Comparison of the Energy Consumptions of the Feedback and Sequential Methods

	Conclusions

	Resource-Efficient Salient Foreground Detection in battery-Powered Embedded smart cameras by adaptive tracking methodologies
	Motivation: Adaptive methodologies
	Empty-Scene Mode

	Fixed-Rate Tracking Mode
	Adaptive Tracking Mode
	Combined Method for Further Energy Efficiency
	Experimental Results
	Comparison of the Energy Consumptions of the Adaptive Methodology and the Sequential Method
	Energy Savings Provided by the Combined Method
	Energy Consumption Analysis over a Longer Time Window
	Comparison of Battery Lives
	Analysis of the Tracking Performance

	Conclusions

	Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level Optimization
	Frame Capture Operation
	CITRIC Middleware Interface

	Hardware-Level Image Processing Tasks: Scaling and Cropping
	Savings in Energy Consumption
	Analysis of grabbing a QVGA frame
	Analysis of hardware-Level image/video processing tasks: Object detection and tracking

	Longer Tracking Experiment
	Outdoor experiments
	Tracking multiple objects

	Increase in Battery-Life
	Conclusion

	Conclusions

