
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

12-1990 

Balancing a Pipeline by Folding Balancing a Pipeline by Folding 

Per Brinch Hansen 
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Hansen, Per Brinch, "Balancing a Pipeline by Folding" (1990). Electrical Engineering and Computer 
Science - Technical Reports. 76. 
https://surface.syr.edu/eecs_techreports/76 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/76?utm_source=surface.syr.edu%2Feecs_techreports%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


SU-CIS-90-41 

Balancing A Pipeline By Folding 

Per Brinch Hansen 

December 1990 

School of Computer and Information Science 
Syracuse University 

Suite 4-116, Center for Science and Technology 
Syracuse, New York 13244-4100 



SU-CIS-90-41 

BALANCING A PIPELINE BY FOLDING 

PER BRINCH HANSEN 

December 1990 

School of Computer and Information Science 
Suite 4-116 

Center for Science and Technology 
Syracuse, New York 13244-4100 

(315) 443-2368 



BALANCING A PIPELINE BY FOLDING1 

PER BRINCH HANSEN 

School of Computer and Information Science 
Syracuse University 

Syracuse, New York 13244 

December 1990 

A pipeline for Householder reduction is folded several times across an array of 
processors to achieve approximate load balancing. The performance of the folded 
pipeline is analyzed and measured on a Computing Surface. 

1. INTRODUCTION 

Reduction of a matrix to triangular form plays a crucial role in the solution of 
linear equations. In this paper we analyze a pipeline algorithm for Householder 
reduction [1]. The pipeline is folded several times across an array of processors to 
achieve approximate load balancing. 

The pipeline inputs, transforms, and outputs a matrix, column by column. During 
the computation, the columns are distributed evenly among the processors. The 
computing time per column decreases rapidly from the first to the last column. So 
the performance of the algorithm is limited mainly by the order in which the columns 
are distributed among the processors. 

The simplest idea is to store a block of columns with consecutive indices in 
each processor [2]. Block storage performs poorly because it assigns the most time
consuming columns to a single processor and leaves much less work for other proces
sors. 

It is much better to distribute the columns cyclically among the processors, so 
that each processor holds a similar mixture of columns. This storage pattern is called 
wrapped mapping [2] or scattered decomposition [3]. 

A third method is reflection storage where the columns are distributed one at a 
time by going back and forth across the processors several times [2]. 

The folded pipeline combines block and reflection storage. On a Computing Sur
face with 25 transputers the Householder pipeline achieves an efficiency of 81% for a 
1250 x 1250 real matrix. 

1Copyright@1990 Per Brinch Hansen 



BALANCING A PIPELINE BY FOLDING 2 

The performance analysis applies not only to Householder reduction, but also to 
Gaussian elimination and Givens reduction. 

2. PIPELINE NODES 

Figure 1 shows a pipeline which transforms ann x n matrix inn- 1 steps. Each 
node of the pipeline holds q columns of the matrix and performs q of the n - 1 steps. 
The number of nodes is (n- 1)/q assuming that n -1 is divisible by q. We are not 
yet making any assumptions about how the pipeline nodes are distributed among the 
available processors. 

(n- 1)/q 2 1 

q q 

Fig. 1 Pipeline 

Initially we will concentrate on the computing time of the parallel algorithm and 
ignore communication between the nodes. It is convenient to number the steps and 
nodes in reverse order as follows 

step numbers n - 1 ... , 2, 1 

node numbers (n- 1)/q, ... , 2,1 

For Householder reduction, the computing time of the ith step is approximately 

where c is a system-dependent constant. 
The computing time T( k) of the kth node is the sum of the computing times of 

steps (k- 1)q + 1 through kq. For q ~ 2, the sum is approximately equal to the 
integral 

fkq cx2dx = -31 cq3(3k2 - 3k + 1) 
J(k-l)q 

This formula can be rewritten as follows 

(1) 

where a = c/3. The performance analysis is valid for any pipeline algorithm which 
satisfies Eq. (1). 



BALANCING A PIPELINE BY FOLDING 3 

When a matrix is reduced by a pipeline of 50 nodes the computing times of the 
first and last nodes differ by a factor of 7350. This enormous variation creates a load
balancing problem when we attempt to distribute the computation evenly among the 
processors. 

3. A SIMPLE PIPELINE 

Our goal is to predict the parallel computing time Tp when the pipeline is executed 
by p processors. We are still ignoring communication. 

First we will consider block storage with each node running on a separate proces
sor. For n ~ 1, the block length (n- 1)/p is approximately nfp. 

Due to the computational imbalance, the first processor has more work to do than 
any other processor. So it determines the parallel computing time. Using Eq. (1) we 
find for q ~ nfp 

Tp T(p) 

which can be rewritten as 

where 

Notice that 0 ::::; f < 2. 

a(nfp)3(3p2 - 3p + 1) 

a(nfp?(P2 + (p- 1)(2p- 1)) 

Tp = a(1 + f)n3 fp 

f = (1- 1/p)(2- 1/p) 

(2) 

(3) 

If the pipeline runs on a single processor (where p = 1 and f = 0), the computing 
time is 

(4) 

The speedup 
(5) 

shows how much faster the computation runs on p processors compared to a single 
processor. 

The efficiency of the parallel computation is 

Ep = Spfp 

For the simple pipeline we use Eqs. (2) and (4) to obtain 

Ep = 1/(1 +f) 

(6) 

(7) 

f is a measure of the load imbalance which reduces the processor efficiency below 
100%. 

Table I shows how Ep approaches 0.33 for p ~ 1. The load imbalance wastes two 
thirds of the processing capacity! 



BALANCING A PIPELINE BY FOLDING 

p 
1 
5 

10 
20 
30 

TABLE I 

f 
0.00 
1.44 
1.71 
1.85 
1.90 

1.00 
0.41 
0.37 
0.35 
0.34 

4. A FOLDED PIPELINE 

4 

To reduce the load imbalance we fold the pipeline an odd number of times m as 
shown in Fig. 2. 

p 2 1 

m+1 --{]--··· q 

m r-0-···- q 

2 L[J--···- q 

1 --{]--···- q 

Fig. 2 Folded pipeline 

The pipeline now consists of (m + 1)p nodes. Every processor executes m + 1 nodes, 
each holding q columns where q = (n- 1)/(m + 1)p. For n » 1, the block length is 
approximately 

n 
q ~ (m + l)p (8) 

The idea is to reduce the computing time of the first node by reducing the block 
length q by a factor of m + 1. 



BALANCING A PIPELINE BY FOLDING 5 

In the appendix we show that the parallel computing time T11 is 

(9) 

where Eq. (3) is replaced by 

f = (1 - 1/p)(2- 1/p)/(m + 1)2 (10) 

Notice how folding reduces the load imbalance f. 
The processor efficiency is 

E, = 1/(1 +f) (11) 

Table II shows f and Ep for various values of m, assuming that p ~ 1. 

TABLE II 

m f Ep 
0 2.00 0.33 
1 0.50 0.67 
3 0.13 0.89 
5 0.06 0.95 
7 0.03 0.97 
9 0.02 0.98 

5. THE EFFECT OF COMMUNICATION 

The remaining task is to consider how communication affects the performance of 
the folded pipeline. 

In the single-processor case, the n X n matrix passes through m + 1 pipeline nodes. 
The sequential run time is the sum of the computing and communication times. 

(12) 

where a and bare system dependent constants. This replaces Eq. (4). 
For a sufficiently large matrix the communication time is negligible compared to 

the computing time and we have approximately 

T1 = an3 for n ~ (bja)(m + 1) (13) 

If we use several processors, each of them must still transmit the matrix through 
m + 1 nodes of the pipeline. The parallel run time determined by the first processor 
IS 

T, = a(1 + f)n3 jp + b(m + 1)n2 

This is a refinement of Eq. (9). 

{14) 



BALANCING A PIPELINE BY FOLDING 6 

The grain size of a parallel computation is the ratio of the computing time to the 
communication time. In the appendix we show that 

g = (ajb)(l + f)q (15) 

According to Eq. (10), f becomes constant when p ~ 1. This makes the grain size 
proportional to the block length q. 

The processor efficiency is 

Ep = (1 + f)t1 + 1/ g) (16) 

(see the appendix). 
Since communication decreases the efficiency we would like to make it negligible 

in the parallel case as well. Equation (16) shows that this can be done only by making 
the algorithm coarse-grained (g ~ 1). This, in turn, means that the blocks must be 
large. 

The efficiency approaches 

Ep ~ 1/ ( 1 + f) for g ~ 1 (17) 

From Eqs. (8) and (15) we conclude that if 

n b 
---·-~-
(m+1)p a 

then g ~ 1 +f. Since f ~ 0 this implies that g ~ 1. In other words, the problem 
size n must be large compared to the pipe length (m + 1)p. This is an example of the 
necessity of scaling both the problem and the parallel computer to maintain constant 
efficiency [4]. 

6. PERFORMANCE MEASUREMENTS 

The Householder pipeline was programmed in occam for a Computing Surface with 
45 transputers. Each transputer is connected to its two neighbors by four bidirectional 
channels. The channels make it possible to fold the pipeline three times. 

For 64-bit real matrices, measurements show that 

a= 2.8J.Ls b = 4.2J.LS 

According to Table II and Eq. (17) it should be possible to obtain a processor 
efficiency close to 0.89 for m = 3, provided njp ~ 6. 

The first experiment is Householder reduction of a 1000 x 1000 matrix. Table 
III shows the values of Tt, Tp, Sp, and Ep predicted by Eqs. (13) and (14). The 
measured run times are shown in parentheses. As the number of processors increases 
from 20 to 45, communication reduces the efficiency from 0.81 to 0. 72. 



BALANCING A PIPELINE BY FOLDING 7 

TABLE III 

p n T1(s) Tp (s) Sp Ep 
20 1000 2800 173 (171) 16 0.81 
25 1000 2800 142 (141) 20 0.79 
30 1000 2800 121 (120) 23 0.77 
35 1000 2800 106 (105) 26 0.75 
40 1000 2800 95 (95) 29 0.74 
45 1000 2800 87 (87) 32 0.72 

In the second experiment we let njp =50 to maintain an efficiency of 0.81 which 
is independent of the number of processors. (With the available memory the compu
tation can be scaled only for p ~ 25. See Table IV.) 

TABLE IV 

p n T1(s) T, (s) s, E, 
10 500 350 43 (42) 8 0.81 
15 750 1181 97 (96) 12 0.81 
20 1000 2800 173 (171) 16 0.81 
25 1250 5469 271 (268) 20 0.81 

7. FINAL REMARKS 

We have analyzed a pipeline for Householder reduction. The algorithm illustrates 
the subtleties of distributing a large computation evenly among parallel processors. 
Load balancing is achieved by folding the pipeline several times across the array of 
processors. The predicted efficiency has been confirmed by experiments on a Com
puting Surface. 

ACKNOWLEDGEMENTS 

The paper has been improved in presentation by valuable advice from N awal 
Copty and Jonathan Greenfield. 



BALANCING A PIPELINE BY FOLDING 8 

REFERENCES 

1. Brinch Hansen, P. The All-Pairs Pipeline. School of Computer and Information 
Science, Syracuse University, 1990. 

2. Ortega, J. M. Introduction to Parallel and Vector Solution of Linear Systems. 
Plenum Press, NY, 1988. 

3. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker, D. Solving 
Problems on Concurrent Processors, Vol. I, Prentice-Hall, Englewood Cliffs, NJ, 
1988. 

4. Gustafson, J. L. Reevaluating Amdahl's Law, Comm. ACJ\1 31 (1988), 532-
533. 

APPENDIX 

When the Householder pipeline is folded as shown in Fig. 2, the ith processor 
from the right executes the m + 1 nodes with indices 

mp+i 
mp-i+1 

3p + i 
3p- i + 1 
p+i 
p-i+1 

The processor executes ( m + 1) /2 pairs of nodes. The kth pair has the indices 

(2k- 1)p + i (2k- 1)p- i + 1 

for 1 :::; i < p and 1 :::; k:::; (m + 1)/2 

From Eq. (1) we have 

T( (2k- l)p + i) 

= aq3(3((2k- 1)p + i) 2 - 3((2k- 1)p + i) + 1) 

= aq3(3(2k- 1)2p2 + 3(2k- 1)(2i- 1)p + 3i2 - 3i + 1) 



BALANCING A PIPELINE BY FOLDING 

and 
T( (2k - 1 )p - i + 1) 

= aq3 (3((2k- 1)p- i + 1)2- 3((2k- 1)p- i + 1) + 1) 

= aq3(3(2k- 1)2p2 - 3(2k- 1)(2i- 1)p + 3i2 - 3i + 1) 

The combined computing time of the kth pair of nodes is 

Tpair(i, k) = T((2k- 1)p + i) + T((2k- 1)p- i + 1) 

The total computing time of processor i is 

(m+l)/2 

Ti = L Tpair(i, k) 
k=l 

We use the standard formulas 
n n 

L k = n(n + 1)/2 L k2 = n(n + 1/2)(n + 1)/3 
k=l k=l 

to find the previous sum 

Ti = aq3(p2(m + 1)(m + 2)(m + 3)- 3p2 (m + 1)(m + 3) 

+ (3p2 + 3i2 - 3i + 1)(m + 1)) 

which can be reduced to 

9 

Ti is an increasing function of the processor index i. It reaches its maximum value 
fori= p: 

Tp = aq3(m + 1)(p2 (m2 +2m)+ 3p2 - 3p + 1) 

= aq3 (m + 1)(p2(m + 1)2 + 2p2 - 3p + 1) 

= aq3 (m + 1)3(p2 + (p- 1)(2p -1)/(m + 1?) 

= an3 jp(1 + (1- 1/p)(2- 1/p)j(m + 1)2) 

= an3 jp(1 +f) 

by (8) 

by (10) 



BALANCING A PIPELINE BY FOLDING 10 

Tp is the computing time of the whole pipeline. 
The time grain g is the ratio of the computing time and the communication time 

a(1 + f)n 3 fp 
g = 

b(m + 1)n2 

a(1 + f)n 
-

b(m + 1)p 

by (14) 

- (ajb)(1 + f)q by (8) 

The efficiency Ep is derived as follows 

= p(a(1 + J)n3 fp + b(m + l)n2)/(an3 ) 

= a(l + J)n3 (1 + ~~7: ;;:) j (an3 ) 

= (1 + !)(1 + 1/g) 

by (5), (6) 

by (13), (14) 


	Balancing a Pipeline by Folding
	Recommended Citation

	SU-CIS-90-41_001c
	SU-CIS-90-41_002c
	SU-CIS-90-41_003c
	SU-CIS-90-41_004c
	SU-CIS-90-41_005c
	SU-CIS-90-41_006c
	SU-CIS-90-41_007c
	SU-CIS-90-41_008c
	SU-CIS-90-41_009c
	SU-CIS-90-41_010c
	SU-CIS-90-41_011c
	SU-CIS-90-41_012c

