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NPAC Technical Report SCCS-662To appear in: Concurrency:Practice and ExperienceBenchmarking the Computation and CommunicationPerformance of the CM-5 1Kivanc Dincer Zeki Bozkus Sanjay Ranka Geo�rey FoxNortheast Parallel Architectures Center111 College Place, Room 3-217Syracuse UniversitySyracuse, NY 13244-4100fdincer, zbozkus, ranka, gcfg@npac.syr.eduFirst Draft:September 1992Revised: January 10, 1995AbstractThinking Machines' CM-5 machine is a distributed-memory, message-passing computer.In this paper we devise a performance benchmark for the base and vector units and the datacommunication networks of the CM-5 machine. We model the communication characteristicssuch as communication latency and bandwidths of point-to-point and global communicationprimitives. We show, on a simple Gaussian elimination code, that an accurate static perfor-mance estimation of parallel algorithms is possible by using those basic machine propertiesconnected with computation, vectorization, communication, and synchronization. Further-more, we describe the embedding of meshes or hypercubes on the CM-5 fat-tree topologyand illustrate the performance results of their basic communication primitives.1This work was supported in part by NSF under CCR-9110812 and by DARPA under contract# DABT63-91-C-0028. This work was also supported in part by a grant of HPC time from the DoDHPC Shared Resource Center, Army High-Performance Computer Center at University of Minnesota CM-5machine. The contents do not necessarily reect the position or the policy of the U.S.Government, and noo�cial endorsement should be inferred.



1 IntroductionThe CM-5 is a parallel distributed-memory machine that can scale up to 16,384 processingnodes. Each node contains a SPARC microprocessor, a custom network interface, a localmemory up to 128 MBytes, and either a memory controller or vector controller units. Theprocessing nodes are connected by three networks: the diagnostics network which identi�esand isolates errors throughout the system; the high speed data network, which communicatesbulk data; and the control network, which is mainly responsible for the operations requiringthe participation of all nodes simultaneously, such as broadcasting and synchronization. Asdata communication between two nodes can be performed by using either the data networkor the control network, we restrict our analysis to these two.In making this study we have two objectives. The �rst includes evaluating the computationand communication performance of the CM-5 and modeling the system parameters suchas computational processing rate, communication start-up time, and the latency and datatransfer bandwidth. The fundamental measurement made in our benchmark programs is theelapsed time for completing some speci�c tasks or for completing a communication operation.All other performance �gures are derived from this basic timing measurement.Second, we want to investigate the feasibility and e�ciency of embedding other kinds ofnetwork topologies into the CM-5 fat-tree topology and to devise a benchmark for the basiccommunication primitives of those topologies on the CM-5. There is an enormous numberof parallel algorithms for di�erent types of network topologies in the literature [8, 17]. Weaddress the problem of e�ciently embedding meshes and hypercubes into the fat-tree topol-ogy, and we present timings for basic mesh and hypercube primitives. Our benchmarkingstudy shows that these embeddings give e�cient results and that many algorithms can betransported to the CM-5 with little or no change.The results of our study make it possible to predict the performance of parallel algorithmswithout actually running them on the CM-5. We present a Gaussian elimination code andgive the corresponding real and estimated execution times in order to show the accuracy ofthe estimated performance �gures.Related WorkThere are numerous articles in the literature about benchmarking di�erent aspects of recentparallel architectures or supercomputers [3, 4, 11, 12, 13, 14, 16]. There are also severalbenchmark suits specially developed to provide a common ground to test the performance ofdi�erent high-performance computers [1, 2, 10, 15]. Some of them investigate the use of realapplication programs, while others employ short kernel codes to evaluate the performance,just as we do here. 2



OverviewThe rest of this paper is organized as follows. Section 2 gives a brief description of the CM-5architecture. Section 3 introduces the test con�gurations and the message-passing librarythat were used to perform our experiments. Section 4 gives the computational performanceof the SPARC processor and the vector units. Section 5 presents the benchmarks to measurecommunication performance from one node to another. Section 6 addresses the global opera-tions provided by the CM-5. Sections 7 shows how meshes and hypercubes can be simulatedon the fat-tree network topology. Section 8 presents the estimation of the performance for aGaussian elimination kernel code on the CM-5.2 CM-5 System OverviewThe CM-5 is a scalable distributed-memory computer system which can e�ciently support upto 16,384 computation nodes. Each node contains a SPARC microprocessor and a portion ofthe global memory connected to the rest of the system through a network interface. Everynode in the CM-5 is connected to two inter-processor communication networks, the datanetwork and the control network. This section gives a brief overview of the CM-5 processingnodes, data, and control networks, which have a remarkable importance in our study.2.1 Processing NodesEach CM-5 computation node consists of a SPARCmicroprocessor, a custom network interfacethat connects the node to the rest of the system through data and control networks, a localmemory up to 128 Mbytes, and an associated memory controller unit (Figure 1-a.)SPARC has a clock rate of 33 MHz. It has 64 KB cache that is used for both instructionsand data. The SPARC is also responsible for managing the communication with other systemcomponents via the network interface.Node memory is allocated as 8 MB chunks and controlled by a special memory controller.Optionally, this memory controller can be replaced by up to four vector units (Figure 1-b.)In this con�guration, size of each memory unit may be either 8 or 32 MB. The scalar multi-processor is able to issue vector instructions to any subset of vector units. Each vector unithas a vector instruction decoder, a pipelined ALU, and 64 64-bit registers like a conventionalvector processor (Figure 2). The 16 MHz vector unit allows one memory operation and onearithmetic operation per clock cycle which gives 16 Mops peak performance for single arith-metic operations like add or multiply. On the other hand, it can perform a multiply-and-addoperation in only one cycle which increases the peak performance to 32 Mops for this oper-ation. To summarize, a node with four vector units has 256 _64-bit data registers, 32 to 128MB of DRAM memory, and 64 to 128 Mops peak performance for oating-point arithmeticoperations.All the components inside a node are connected via a 64-bit bus. The bandwidth of thelocal memory can go up to 512 MBytes per second when vector units are attached.3
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0, 0  0, 1 1, 0 1, 1 2, 0 3, 0 3, 12, 1Figure 3: CM-5 Data network's fat-tree topology with 16 nodes (including network switches.)2.2 The Control NetworkThe CM-5 control network provides high bandwidth and low latency for global operations,such as broadcast, reduction, parallel pre�x and barrier synchronizations, where all the nodesare involved.CM-5 control network has three subnetworks responsible for handling the global oper-ations; a broadcast subnetwork which is responsible for broadcast operations, a combiningsubnetwork which supports global operations like reduction or parallel pre�x, and a globalsubnetwork which takes care of the synchronization.2.3 The Data NetworkThe data network is a high bandwidth network optimized for bulk transfers where eachmessage has one source and one destination. It is a message-passing-based point-to-pointrouting network that guarantees delivery. In addition, it is deadlock free and has fair conictarbitration.The network architecture is based on fat-tree (quad-tree) topology with a network interfaceat all the leaf nodes. Each internal node of the fat-tree is implemented by a set of switches.The number of switches per node doubles for each higher layer until level 3, and from thereon it quadruples. Figure 3 illustrates a data network having 16 nodes. The communicationswitches are labeled as (i,j), where i shows the number of the child switch and j thenumber of the parent switch.The CM-5 is designed to provide a point-to-point peak transfer bandwidth of 5 MBytes/secbetween any two nodes in the system. However, if the destination node is within the same4-node cluster or 16-node cluster, it can reach to a peak bandwidth of 20 MBytes/sec and10 MBytes/sec, respectively. 5



3 Test SystemOur experiments were performed on a 32-node CM-5 at the Northeast Parallel ArchitectureCenter at Syracuse University and on a 864-node CM-5 (recently upgraded to 896 nodes) atthe Army High Performance Research Center at the University of Minnesota. Both machinesare timeshared and run under CMOST version 7.2. There were no one else using the systemswhile we were running our benchmarking programs.The CM-5 processing nodes can be grouped into one or more logical partitions, each ofwhich is controlled by a partition manager. Each partition uses separate processors andnetwork resources and has equal access to the shared system resources. For example, Min-nesota's 864-node CM-5 machine is divided into 32-, 64-, 256- and 512-node partitions.Most of the values reported in this paper were measured by using a set of short benchmarkcodes written in C with calls to the CM message-passing library (CMMD Version 3.0 Final).The codes were compiled by using the Gnu C compiler with all the optimizations turnedon in order to bene�t the full potential of the hardware. The precision of the CM-5 clockis one microsecond. The timings were estimated by recording the CM node busy-time foran average of 100 repetitions of the experiment and dividing the total time by the numberof repetitions. CM node busy-time is the duration in which the user code is executed on acertain node within its own operating system time-sharing slice. We used the CM Fortranlanguage [5] (Version 2.1.1.2), which partitions and stores the vectors directly into the vectorunit memories, to measure the vector unit performance.As might be expected, testing the hardware system by using high-level software (e.g., CMFortran or C compilers and CMMD message-passing software) inuences the performancenegatively. Performance is bounded by the software's ability to exploit the capabilities ofthe hardware.3.1 CM-5 Message-Passing Library: CMMDCMMD [6] provides facilities for cooperative message passing between processing nodes. Weused the nodeless model of programming, where all the processing nodes execute the sameSPMD (Single-Program Multiple-Data) program and the partition manager acts simply asan I/O server.At the lowest layer, CMMD implements active messages [19], which provide fast packet-based communication and simple low-latency array transfer. When a message is to be sentacross the data network, the data message is divided into a group of packets of size 20 bytes;16 bytes of this packet is used for the user data, and the remaining 4 bytes contain controlinformation such as the destination and the message size [7].
6



Operation Operator short int long int single-precision double-precisionadd 0.23 0.24 0.24 0.24subtract 0.23 0.24 0.24 0.24a[i] & s1 & s2 multiply 0.24 0.24 0.23 0.23a[i][l] & s1 & s2 divide 0.24 0.24 0.24 0.24add & multiply 0.23 0.24 0.24 0.24add 0.36 0.37 0.43 0.52subtract 0.37 0.37 0.43 0.52a[i] & b[j] & c[k] multiply 0.91 0.92 0.43 0.55a[i][l] & b[j] & c[k] divide 1.76 1.77 0.94 1.37add & multiply 0.44 0.45 0.79 0.58add 0.31 0.31 0.36 0.41subtract 0.31 0.31 0.36 0.41a[i] & b[i] & s multiply 0.70 0.71 0.36 0.44a[i][l] & b[j] & s divide 1.56 1.56 0.90 1.03add & multiply 0.36 0.36 0.74 0.64Table 1: Execution times of various arithmetic operations on SPARC microprocessor. (Timeis given in microseconds.)4 Computation Benchmarks4.1 SPARC PerformanceWe run a set of benchmark programs to measure the computational speed of the SPARCmicroprocessor for basic integer and oating-point operations. Execution times for any ofthe basic arithmetic operations were the same when all the operands were stored in theregisters. We obtained a peak performance of 22 Mips for integer add-multiply and 11 Mipsfor other integer operations. Floating-point performance was 22 Mops for add-multiply and11 Mops for other operations.When the operands are not in registers but available in the on-board cache, computationperformance drops sharply because of the overhead of accessing the cache. The executiontimes for various arithmetic operations when the operands are initially stored in the cache aregiven in Table 1. In the \operation" column an entity like x&y&z indicates any combinationof these three operands in an arithmetic statement, e.g., x = y � z, y = x � z, and so on,where � indicates an arithmetic operator. 7
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A = s*B + C
A = B*C+D*E
A = B + s  
A = B * s  
A = B + C  
A = B * C  Figure 4: Performance of vector units in one node for double-precision data.One Node Performance Peak Rate (GFLOPS)# Operation R1 N1=2 Nv 64-node 256-node 512-node1 A(I) = B(I) + s 19.51 327 22 1.26 4.77 9.252 A(I) = B(I) + C(I) 13.53 202 18 0.88 3.42 6.843 A(I) = B(I) � s 19.51 324 22 1.26 4.77 9.254 A(I) = B(I) � C(I) 13.49 200 16 0.88 3.42 6.845 A(I) = s � B(I) + C(I) 27.31 318 18 1.76 6.84 13.596 A(I) = B(I) � C(I) + D(I) � E(I) 25.23 190 16 1.64 6.55 12.84Table 2: Length-related measures of vector performance for double-precision data.4.2 Vector PerformanceThe performance of vector processing performance on the CM-5 can be characterized by threelength-related parameters;R1, N1=2, and Nv [9]. R1 is the asymptotic performance obtainedas the vector length tends to in�nity, N1=2 corresponds to the vector length needed to reachone-half of the R1, and Nv is the vector length needed to make the vector mode faster thanthe scalar mode. The values of these three parameters will depend on the operations beingperformed.To evaluate the performance of the CM-5 vector units, we �rst measured the executiontimes of some vector operations which are frequently used in scienti�c application codes.The execution rates for each operation is shown in Figure 4 for vector lengths of up to 32KB. Then we derived the length-related performance parameters for each vector operation.The results for double-precision and single-precision data are illustrated in Tables 2 and 3,8



One Node Performance Peak Rate (Gops)# Operation R1 N1=2 Nv 64-node 256-node 512-node1 A(I) = B(I) + s 11.17 214 20 0.71 2.86 5.522 A(I) = B(I) + C(I) 9.10 171 18 0.57 2.28 4.563 A(I) = B(I) � s 11.15 212 22 0.71 2.86 5.524 A(I) = B(I) � C(I) 9.05 170 20 0.58 2.28 4.775 A(I) = s � B(I) + C(I) 18.20 168 28 1.15 4.56 9.536 A(I) = B(I) � C(I) + D(I) � E(I) 19.82 160 20 1.25 4.92 9.83Table 3: Length-related measures of vector performance for single-precision data.respectively.R1 is important for estimating the peak performance. Double-precision operations arealways faster than the single-precision ones, since vector unit registers are con�gured as64-bit registers, and all the internal buses are of 64-bit. Manipulating a scalar operand(operations 1 and 3) is faster compared to manipulating a vector operand (operations 2 and4). This is because the scalar operand comes free, while the vector operands in operations2 and 4 require a memory or cache access to load the corresponding vector into the vectorregisters.Additions and multiplications give us about the same timings. Although addition is ex-pected to be faster, cycle time is stretched to handle one addition, one multiplication, or oneadd-multiply operation in a clock cycle. Therefore, a multiply-add operation gives twice theMops rate of a single add or multiply operation.N1=2 is a good measure of the impact of overhead. For �nite vector lengths, a start-uptime is associated with each vector operation. N1=2 parameterizes this start-up time. Theuse of vector units for processing of vectors shorter than the N1=2 will result in signi�cantloss in performance. We obtained large values for N1=2 which indicate that e�cient use ofvector units begins at large vector lengths on the CM-5. N1=2 is longer for single-precisiondata than for double-precision data. This is, in fact, related to the higher Mops rating ofthe double-precision data, as explained above.Nv measures both the overhead and the speed of scalars relative to vectors. The nodeprocessor can manipulate vectors of up to about 20 data items faster than the vector unitscan.Table 2 and 3 also show the achievable peak rate in Gigaops when the vectors are dis-tributed across all the vector units. Peak performance �gures indicate that, even for 512nodes, the peak performance is close to the multiplication of the number of processors withthe peak speed of a single node. This is a good indication of the scalability of vector process-ing capability. For these kinds of simple loops there is an insigni�cant amount of overhead,but it should not be forgotten that the overhead penalties encountered in real case problemsmay be much larger. 9



5 Point-to-Point Communication BenchmarksIn distributed-memory machines like the CM-5, data items are physically distributed amongthe node memories. Thus the performance of the communication primitives used to accessnon-local data is crucial. Point-to-point communication benchmarks measure basic commu-nication properties of the CM-5 data network by performing the ping-pong test between apair of nodes. The transmission time is recorded as half of the time of a round-trip messagein the ping-pong test.We used blocking sends and receives that transfer varying sizes of data blocks between twonodes. Both the source and the destination nodes take active parts in this exchange process,and the receiving node waits until it receives the last data byte from the data network.Regression analysis of the transmission time allows the calculation of the start-up time andthe asymptotic bandwidth between a pair of nodes. The total transmission time T betweentwo nodes can be formulated as T (l) = tstart�up + l� tsend;where l is the message length in bytes, tstart�up is the time to set up the communicationrequirements, and tsend is the transfer time for one unit (byte) of data.The asymptotic data transfer rate can be found approximately by taking the reciprocal ofthe transmission time (i.e., 1=tsend.)5.1 Nearest-Neighbor CommunicationIn this experimentwe studied the communication time for sending a single message to anothernode in the same cluster of four nodes for di�erent message sizes. This represents the shortestpossible distance a message can travel. Figure 5 shows the communication time for messagesof size 0-10 KB between two neighboring nodes on a 32-node CM-5. The communicationtime increases linearly with the increasing message size. To establish a communication linkbetween two nodes, a preliminary handshake is required. This start-up time is observed tobe 84.65 microseconds. Using a linear chi-square �t, we can model the communication timefor aligned messages within a cluster of four processors as a function of message size:T (l) = 84:65 + 0:117 � l microseconds: (1)The thick appearance of the curve in Figure 5 is because of the sawtooth e�ect causedby data alignment patterns. Figure 6 shows a smaller section (for message sizes of 320{576 bytes) of the previous graph to magnify this sawtooth e�ect. As indicated by dipsin the curve, when the message length is a multiple of the byte size, the communicationtime goes down to a local minimum. On the CM-5, the unaligned message transfer is morecostly than aligned message transfers, but the communication time di�erences between byte-aligned, word-aligned, and double-word-aligned data are negligible. As stated earlier, eachdata packet contains 16 bytes of user data. Misalignment causes hardware complicationssince the memory is typically aligned on a word boundary. A misaligned memory access will10
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The transmission time di�erence between the nearest neighbor and the neighbor at themaximum distance is less than 5 microseconds on a 512-node CM-5. The results are consis-tent for both short (16 bytes) and long messages (1 Kilobyte.)6 Global Communication BenchmarksThe CM-5 hardware supports a rich set of global (cooperative) operations. Global oper-ations involve any data transfer among processors, possibly with an arithmetic or logicalcomputation on the data while it is being transferred. Collective communication patterns,such as reduction, broadcast, concatenation or synchronization, are very important in theimplementation of high-level language constructs for distributed-memory machines.We measured the performance of the communication networks by using a set of benchmarkprograms employing the global operations provided by the CM-5 hardware.6.1 ScansA scan (parallel pre�x) operation creates a running tally of results in each processor in theorder of the processor identi�er. Assuming that the A[j] represents the element A in thejth processor and R[j] represents the result R in the jth processor, an inclusive scan witha summation operator performs the following operation:R[i] = iXj=0A[j]; 0 � i < Number of Processors � 1:Table 4 summarizes the performance of scan operations using di�erent data types on a32-node CM-5. Integer scan operations take about 6 microseconds. On the other hand, thedouble-precision minimum/maximumscans and add scans are about 3 to 5 times slower thanthe integer scans.In a segmented scan, independent scans are computed simultaneously on di�erent sub-groups ( or segments) of the nodes. The beginning of segments are determined at run-timeby an argument called the segment-bit. Table 4 shows the performance of the segmentedscan operations on a 32-node CM-5, assuming the segment-bit of a processor is turned onwith a probability of 10%. Computation of integer-segmented scans takes slightly longerthan regular scans, primarily because of testing the extra condition at run-time. Timings forthe double-precision maximum or minimum segmented scans are almost equal to those forregular scans, but the time for a double-precision segmented add scan operation is almosttwice that of a corresponding regular scan operation.The CM-5 control network has integer arithmetic hardware that can compute variousforms of scan operations. Integer minimum, maximum, and logical segmented scans are alsosupported by the hardware. On the other hand, single- and double-precison oating-pointscan operations are handled partially by software, which results in a much longer time. Whilethe oating-point minimum and maximum scans take advantage of the hardware partially,14



Operation type add max min ior xor andscan integer 6.33 6.41 5.47 6.08 6.06 5.17scan unsigned int. 6.30 5.54 5.50 6.06 6.06 5.16scan double-precision 33.70 21.28 20.37 - - -segmented scan integer 6.95 6.80 6.13 6.77 6.77 5.89segmented scan unsigned int. 6.96 6.24 6.15 6.76 6.73 5.85segmented scan double-precision 57.35 19.93 20.31 - - -reduction integer 4.62 4.36 4.03 4.35 4.38 3.71reduction unsigned int. 4.61 3.98 4.00 4.33 4.34 3.70reduction double-precision 28.38 14.24 17.32 - - -Table 4: Execution times of global operations on a 32-node CM-5. Time is in microseconds.(`-' represents an unde�ned operation.)oating-point add scan is performed almost completely by the software. This is the reasonadd scans and segmented scans are so costly.6.2 ReductionsA reduction operation takes an input value from each node, applies a global operation suchas summation, minimum or bitwise xor on all the values, and returns the result to all othernodes.We measured the speed of combining subnetworks for various types of reduction operations(Table 4). Double-precision reduction operations take 4 to 6 times longer than integerreductions. Again, this can be explained by the same reasons described above.6.3 ConcatenationSome computations on distributed data structures require that each processor receive datafrom all the other processors. For example, in the classical N -body algorithm, every particleinteracts with every other particle. Concatenation is a cumulative operation that appends avalue from each processor to the values of all the preceding processors in processor identi�erorder.Assume that there are P processors, and B = N=P data elements of a large vector are dis-tributed among these processors so that processor p contains a vector Vp[p.B� � �(p+1)B-1].The global concatenate operation stores the resultant vector V[0 � � � N-1] in every node.We tested the e�ects of message size and number of processors on the concatenationoperation execution time. Figure 10 shows the time required for the concatenation operationusing 32-, 64-, 256-, and 512-node partitions. We can derive the following equation for the15
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Figure 10: Execution time for concatenation operation using 32, 64, 256 and 512 nodes.concatenation operation.T (l; P ) = 23:44 + 0:975 � (P � l) microseconds;where p is the number of processors in that partition and l is the size of the local portionof the data to be concatenated. Note that time for concatenation depends only on P for itscontribution to the message size, and the the operation is itself independent of P.From Figure 10 it is clear that the time for concatenation on 512 nodes is about 16 timeslarger than the time on 32 nodes, which may be surprising when compared to scan operations.The amount of data sent by each node is about N data items which leads to N � P dataitems in the network and may cause congestion in the network, especially for large messages.Therefore, as the message length and number of processes increase, the horizontal distancebetween the lines increases.6.4 One-to-All BroadcastWhen we use SPMD style programming, one of the basic types of communication is tobroadcast a value from one node to all the other nodes. For example, spreading a row toall other rows is a common operation in LU Decomposition and many other linear algebracomputations. On the CM-5 any node can broadcast a bu�er of a speci�ed length to allother nodes within the partition.We measured the performance of the broadcast subnetwork using CMMD broadcast in-trinsics. The results for 32-, 64-, 256- and 512-node partitions are shown in Figure 11.We can derive Equations 3 and 4 for a 32- and a 512-node CM-5, respectively.T (l) = 6:96 + 1:15 � l microseconds: (2)16
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Figure 11: One-to-all broadcast timings on 32-, 64-, 256- and 512-node partitions.T (l) = 7:40 + 1:24 � l microseconds: (3)The broadcast time is almost the same for 32- and 64-node partitions, and for 256- and512-node partitions. Since the broadcast is implemented in the network in a spanning treefashion, the number of hops (or switches traversed) slightly a�ects the timings. Since valuescan be reduced in 3 hops in 32- and 64-node partitions (which can communicate via thethird level of the fat-tree), it is faster than using 256- and 512-node partitions, which require4 and 5 hops, respectively. Moreover, the initial setup times for di�erent sized partitionsslightly di�er, as seen in the above equations.6.5 SynchronizationSynchronization is very important in MIMD machines since they are fundamentally asyn-chronous and must be synchronized prior to most communication steps. Many machines,also use the common communication network also for synchronization, causing signi�cantperformance degradation. The CM-5 uses a separate barrier synchronization network (thecontrol network) to carry out synchronization e�ciently. We measured the delay to do aglobal synchronization on CM-5and found that it takes 5 microseconds, independent of thenumber of nodes in the partition.
17
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Logical_ProcNum_TO_Coordinate(L_PNum, row, col)

 * row = L_PNum / NUM_COL;

}

{

 * col = L_PNum % NUM_COL;

 

for ( pos = intlog2(NUM_COL)-1; pos >= 0; pos--) {
result = (result << 1) | getbit(row, pos);

result = (result << 1) | getbit(col, pos);
}

*PNum = result; 

result = 0; 
{

Coordinate_TO_Physical_ProcNum(row, col, PNum)

}Figure 13: Two main functions used for address calculation for the mapping of a mesh ontothe CM-5 fat-tree topology.7 Embedding of other topologies into CM-5 fat-tree7.1 Embedding of a mesh into fat-treeA wrap-around mesh (torus) can be embedded into the CM-5 fat-tree-based architecture byusing the shu�e row-major mapping [17]. The physical node number corresponding to alogical mesh point is found by shu�ing the row and column binary numbers of that point inthe mesh topology. If a processor's location is row=abcd and col=efgh, then bitwise shu�ingof row and col gives the bit string aebfcgdh. This kind of mapping preserves the locality of2� 2, 4 � 4, etc. submeshes. A representative example for this is illustrated in Figure 12.Logical ProcNum TO Coordinate() and Coordinate TO Physical ProcNum() are two ba-sic routines used for mapping a point on an m�n mesh to a node of the fat-tree. The formeris used to calculate the coordinate location of a point on the mesh. It is also useful for deter-mining the neighbors of a point on the mesh. The latter is used to transform a given locationon the mesh to a physical node number on the fat-tree. getbit() returns the correspondingbit of the string at the speci�ed position. These routines are listed in Figure 13 for reference.Table 5 displays the timings for shift operations in a given direction which are very commonin mesh topologies. We simulated 16 � 32, 8 � 64, 4 � 128, and 2 � 256 meshes mapped tothe fat-tree topology on a 512-node CM-5. 18



Mesh Message NORTH EAST WEST SOUTHSize Length max min max min max min max min16x32 16 KB 3.83 3.58 4.21 4.01 3.86 3.62 3.84 3.5616x32 32 KB 8.29 7.96 7.34 7.12 7.34 7.10 7.55 7.0316x32 64 KB 16.55 15.99 16.16 15.56 17.47 16.78 16.24 15.568x64 16 KB 5.05 4.69 3.86 3.60 3.91 3.59 3.85 3.558x64 32 KB 7.87 7.53 7.24 7.00 7.26 6.98 7.31 6.928x64 64 KB 14.92 14.48 15.65 15.25 16.26 15.86 16.80 16.274x128 16 KB 3.92 3.73 4.74 4.50 4.54 3.58 3.92 3.714x128 32 KB 7.51 7.13 7.43 6.96 7.81 6.94 7.51 7.114x128 64 KB 15.69 13.60 14.18 13.63 15.74 15.17 16.48 16.012x256 16 KB 3.93 3.41 4.79 4.52 3.89 3.60 3.93 3.392x256 32 KB 8.53 7.63 7.45 6.97 9.26 6.92 7.60 7.382x256 64 KB 16.24 15.70 16.18 15.67 15.68 15.21 15.07 14.45Table 5: The timings for 16�32, 8�64, 4�128 and 2�256 mesh simulations on a 512-nodeCM-5 (time is in milliseconds).We can deduce from Table 5 that mesh bandwidths are at about 4 Mbytes per second,which is less than the expected 5 Mbytes/sec bandwidth between any arbitrary nodes. Themain reason for that is the contention happening in the data network when all the nodessend long data messages at the same time.7.2 Embedding of a hypercube into fat-treeFor many computations, the required communication pattern is similar to the connectionsof a hypercube architecture. These include bitonic sort, the Fast Fourier Transform, andmany divide-and-conquer strategies [17]. This section discusses the time requirements forsuch types of communication patterns.A d-dimensional hypercube network connects 2d processing elements (PEs). Each PE hasa unique index in the range of [0,2d-1]. Let (bd�1bd�2 : : : b0) be the binary representation ofthe PE index p and bk be the complement of bit bk. A hypercube network directly connectspairs of processors whose indices di�er in exactly one bit; i.e., processor (bd�1bd�2 : : : b0)is connected to processors (bd�1 : : : bk : : :b0), 0 � k � d-1. We use the notation p(k) torepresent the number that di�ers from p in exactly bit k.Node p of a logical hypercube is mapped onto node p of the CM-5 (Figure 14). We considercommunication patterns in which data may be transmitted from one processor to another ifit is logically connected along one dimension. At a given time, data is transferred from PEp to PE p(k) and from PE p(k) to PE p.The communication patterns performed for a logical hypercube on the CM-5 using this19
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Figure 14: Embedding of a 4-cube into a 16-node fat-tree.
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mapping are shown in Figure 15. The �rst two dimensions of the cube require the �rstlevel of the fat-tree to be traced, and the 8th dimension needs �ve levels to be traced on a512-node CM-5. We observe that all six plots are almost horizontal, from which we concludethat the time required for swapping data along di�erent dimensions is approximately thesame for all dimensions and that it scales linearly with the size of the message.Having more switches at higher levels is one reason for being able to achieve this perfor-mance. More bandwidth can therefore be handled as we go up in the network connectiontree. The rate of transfer is between 3.3 Mbytes/sec and 3.6 Mbytes/sec, respectively. Thisis close to the peak bandwidth for long-range communication on the CM-5.8 Performance Estimation for Gaussian EliminationModeling of basic computation and communication primitives is often used in estimatingthe performance of a given program [20]. We illustrate how to estimate the performance ofa program by using the results stated in the previous sections. A Gaussian elimination codethat uses the row-oriented algorithm with partial pivoting algorithm [8] is given in Figure 16.Assuming that there are P nodes, the rows of the matrix A[N][N] are distributed using ablock-mapping strategy, such that the �rst N/P rows are assigned to node 0, the second N/Prows are assigned to node 2, and so on. The code gives just the enough detail about theelimination phase, back-substitution phase is not shown here.The elimination phase is performed column by column. The outer loop which iterates overpivots is executed in parallel by all processors. Within the loop body there are computationalphases, separated by communication phases. Computational phases include �nding themaximum value of the current column among the rows owned, computing the multipliers,updating the permutation vector in which the pivoting sequence is saved, and reducing thepart of nonpivot rows. Communication phases include a reduction operation to determinethe pivot value in a column, another reduction operation to �nd the maximum row number(pivot) in the case of a tie among the processors, and a broadcast operation to announcethe pivot row to all nodes. This code uses collective communication primitives but does notattempt to overlap computation and communication.The costs of the communication operations (as modeled by our benchmarking programs)required for the Gaussian elimination are given in Tables 6 and 7. We counted the numberof arithmetic operations performed in the inner loop bodies to determine the computationaltime in one iteration. The execution time of each iteration is multiplied by the number ofiterations to obtain the estimated time. There are N iterations for a matrix of size N�N.We counted the conditional expressions as one arithmetic operation (according to the typeof test) as in the GENESIS benchmark suite [10]. The percentage of the time the conditionaltest evaluates to true depends on the speci�c values assigned to a speci�c processor at a giventime. We assumed the condition yields a true value 50% of the time which is a very closeapproximation in average.This code was executed on a 32-node CM-5. The measured results are compared to theestimated results in Table 7 and are found to be within 10% of the estimated results for21



for

done [0:BS] = FALSE;v = 0;

locPivotVal = MIN_VAL;

locPivot = 0;

for (i=0; i<BS; i++) 

if 

locPivotVal = A[i][j];

locPivot = mypid*BS+i;

(A[i][j] > locPivotVal) {

if

pivotval =

(pivotval != locPivotVal)

locPivot = -1;

pivot = Reduce_int

Reduce_double(locPivotVal, MAX);

(locPivot, MAX);

}

perm[v++] = pivot;

done[pivot] = TRUE;

for (i=0; i<BS; i++)

if (pivot == locPivot) 

Broadcast_src(A[pivot][0:N], (N+1)*sizeof(double));

else

Broadcast_dest(pivotRow, (N+1)*sizeof(double));

}

fac[i] = A[i][j] / pivotVal;
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for 

if (!done[mypid*BS+i])

(i=0; i<BS; i++)

A[i][k] -= fac[i] * pivotrow[k];

for (k=j; k<N+1; k++)

(j=0; j<N; j++) {2.

Figure 16: The Gaussian elimination SPMD node program for static execution time estima-tion. Mesh SizesOperation Reference 64� 65 128� 129 256� 257 512� 513Double reduction using maximum Table 4 14.24 14.24 14.24 14.24Integer reduction using maximum Table 4 4.36 4.36 4.36 4.36Broadcast double array from a node Equation 2 604.96 1193.76 2371.36 4726.56Computation Table 1 31.39 117.18 451.96 1774.32Time per iteration(microsec) 654.95 1329.54 2841.92 6519.48Table 6: Cost of required operations for Gaussian elimination on a 32-node CM-5 (time isin microseconds). 22



Matrix Size 64� 65 128� 129 256� 257 512� 513Estimated Time(msec) 41.92 170.18 727.53 3337.97Measured Time(msec) 45.62 185.52 787.29 4598.69Table 7: Comparison of the estimated and measured times for Gaussian elimination code ona 32-node CM-5.matrices of size smaller than 512� 512. For a 512� 512 coe�cient matrix, there is a biggerdiscrepancy since the matrix is too big to �t into cache, therefore extra memory overhead isincurred to fetch and bring the data into cache.As seen, such modeling can be very useful in performance prediction for di�erent algo-rithms on the CM-5. This information can be used to choose optimal algorithms and tooptimize program codes and automate performance estimation at compile-time by using thecost function of each basic primitive.9 ConclusionsIn this paper we presented a benchmarking study of the computation and communicationperformance of the CM-5 multicomputer. We formulated the communication overhead interms of message size and latency.Using vector units become more e�cient than using only the SPARC microprocessor, whenthe vector lengths go over twenty. We can get half the peak performance for vector lengths of100{200 for single-precision numbers, and of 200{300 for double-precision numbers. Vectorunits give us up to 30 Mops rate which results in about a 15 Gops processing rate for a512-node CM-5.Communication benchmarks show that the data network has a start-up latency of 84microseconds and a bandwidth of 8.5 MB/sec for unidirectional transfer between two nearest-neighbor nodes. Communication latencies for misaligned messages are longer than latenciesfor aligned-messages. Message transmission latencies and bandwidths are independent ofpartition size and vary only slightly with the number of network levels crossed.There are several global operations that use the control network for communication. Con-catenation operation requires time linearly proportional to the size of the resultant array.The reduction operators take about 5 microseconds for integers and 15{20 microseconds foroating-point numbers. Scans and segmented scans are quite fast and can be completed in6{7 microseconds for integers.We simulated basic communication primitives of mesh and hypercube topologies on theCM-5. The bandwidth for hypercube-type of communications was less than 4 MB/sec.This was also true in cases when all communication passed through the root of the CM-5 interconnection network. For mesh-type of communication patterns, the bandwidth wasagain about 4 MB/sec. 23
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