
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

1996 

Hierarchical Control Flow Graph Models Hierarchical Control Flow Graph Models 

Douglas G. Fritz 
Syracuse University, Simulation Research Group 

Robert G. Sargent 
Syracuse University, Simulation Research Group 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Fritz, Douglas G. and Sargent, Robert G., "Hierarchical Control Flow Graph Models" (1996). Electrical 
Engineering and Computer Science. 97. 
https://surface.syr.edu/eecs/97 

This Article is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/97?utm_source=surface.syr.edu%2Feecs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


HIERARCHICALCONTROL FLOW GRAPH MODELSDouglas G. FritzRobert G. SargentSimulation Research GroupSyracuse University439 Link hallSyracuse, New York 13244, U.S.A.July 26, 1996ABSTRACTHierarchical Control Flow Graph Models de�ne a modeling paradigm for discrete event simulation modelingbased upon hierarchical extensions to Control Flow Graph Models. Conceptually, models consist of a setof encapsulated, concurrently operating model components that interact solely via message passing. Theprimary objectives of Hierarchical Control Flow Graph Models are: (1) to facilitate model development bymaking it easier to develop, maintain, and reuse models and model elements, and (2) to support the exibleand e�cient execution of models. Hierarchical Control Flow Graph Models use two complementary typesof hierarchical model speci�cation structures, one to specify components and their interconnections, and theother to specify component behaviors.1 INTRODUCTIONThe Hierarchical Control Flow Graph (HCFG) Model paradigm is a hierarchical modeling paradigm fordiscrete event simulation that is based on and designed to be a hierarchical extension of Control FlowGraph (CFG)Models (Cota and Sargent 1990a). HCFGModels were designed to facilitatemodel developmentand support the exible and e�cient execution of models. Model development is supported through the useof hierarchy and encapsulation, and model execution is supported by algorithms that allow HCFG Models,based on CFG Models, to be executed on either sequential or parallel/distributed computer systems.HCFG Models use two independent and complementary types of hierarchical model speci�cation struc-tures. One type of speci�cation structure is used to specify a hierarchically organized set of encapsulatedconcurrently operating model components and the interconnections between those components. The othertype of speci�cation structure is used to specify the behaviors of the individual model components.Discrete event simulation models based on the HCFG Model paradigm are easy to develop and provide(based on the underlying CFG Model representation) for exible and e�cient model execution on di�erentcomputer architectures. The hierarchical modeling capability provided by the HCFG Model paradigm makesit easy to develop, use, maintain, and communicate models and model elements. The HCFG Model paradigmdraws upon object oriented concepts such as encapsulation and inheritance (derivation) and lends itself tothe development of generic and application speci�c libraries of reusable model elements. Given the existenceof an appropriate set of model element libraries, HCFG Models can be constructed by simply \plugging"together existing model elements. The HCFG Models are also extensible, in that when an appropriate modelelement does not exist, a modeler can create a new model element, add this new model element to a modelelement library, and then use this new model element in the construction of the model.1



HCFG Models support exible and e�cient execution via a set of CFG Model simulation executionalgorithms that allow a model to be executed on either sequential or a parallel/distributed computer. Amodeler using HCFG Models does not need to also be an expert on parallel/distributed computing inorder to obtain e�cient parallel/distributed simulation execution as is the case in some parallel discreteevent simulation systems. No special or additional information is required from a modeler in order toexecute HCFG or CFG Models on parallel/distributed computer systems as information required for e�cientparallel/distributed simulation execution can be automatically extracted from the model by the simulationexecution algorithms.Most elements and relationships in an HCFG Model have a rather straightforward graphical represent-ation that can be used as a basis for visual interactive modeling. The HCFG Model paradigm is computerlanguage independent, and a simulation system based on HCFG Models may be implemented using any gen-eral purpose programming language. A prototype simulation system based on the HCFG Model paradigmwas implemented using the C++ programming language (Fritz, Daum, and Sargent 1995; Fritz, Sargent, andDaum 1995).The remainder of this paper is organized as follows. Section 2 gives a brief overview of CFG Models,HCFG Models and the high level operation of such models. Section 3 discusses the two types of modelspeci�cation structures used in the speci�cation of HCFG Models. Section 4 briey introduces the use of\experimental frames" in HCFG Models, and in Section 5 a simple HCFG Model is presented to illustratemodeling using the HCFG Model paradigm. Finally, we summarize this paper in Section 6.2 OVERVIEWHCFG Models are based on hierarchical extensions to CFG Models. HCFG Models can be translated intoequivalent CFG Models and executed on either sequential or parallel/distributed computer systems using anyof the set of simulation execution algorithms developed for CFG Models. This section presents an overviewof the CFG Model representation, the HCFG Model paradigm, and the operation of CFG and HCFG Models.2.1 Control Flow Graph ModelsCota and Sargent (1990a) developed the CFG Model representation based on the modi�ed process interactionworld view (Cota and Sargent 1992). The primary objective of CFG Models was to make information usefulfor parallel/distributed simulation explicit in the model representation, thus enabling the development of aset of simulation execution algorithms for di�erent types of computer architectures (Cota and Sargent 1990c).A modeler does not need to add any additional or special information to a CFG Model in order to e�cientlyexecute a model on a parallel/distributed computer system. Conceptually, a CFG model consists of a setof independent, encapsulated, concurrently operating model components where each component has its own\thread of control" and the components interact with each other solely via message passing. The CFG Modelrepresentation is state based and favors an \active resource" view of modeling over an \active transaction"view. (GPSS (Schriber 1991) is a widely used system that favors the active transaction view.) Modeling froman active resource view means that the system is modeled from the point of view of the system's resourcesby describing the behaviors and interactions of those resources.CFGModels use two complementary types of model speci�cation structures. The �rst type of speci�cationstructure, called an Interconnection Graph, is used to specify the components that comprise the model andhow those components are interconnected. The second type of speci�cation structure, called a Control FlowGraph, is used to specify the behaviors of the individual model components. Each component in a CFGModelhas an associated CFG behavior speci�cation. A CFG de�nes the behavior of a speci�c type of component,and all components of the same type are speci�ed via a single CFG. A CFG Model speci�cation consists ofone Interconnection Graph plus a set of CFG's (one CFG for each distinct type of component in the model).An Interconnection Graph is a directed graph in which the nodes represent model components and thedirected edges represent message channels that de�ne a static routing pattern for intercomponent messagetra�c. Messages leave components through output ports and enter components through input ports. Acomponent may have any number of input and/or output ports. Each channel connects one output port toone input port and each port is connected to exactly one channel (i.e., port connections are one-to-one). Each2



channel generally carries only one type of message. This implies that there may be multiple channels betweentwo components if those components need to communicate more than one type of message.Intercomponent messages possess attributes that are used to carry information between components. Theset of attributes possessed varies by message type, but all messages possess a \timestamp" attribute. Thetimestamp of a message is the time at which the message was sent. This is in contrast to the method generallyused in parallel and distributed simulation in which a message's timestamp speci�es the time at which themessage is to be received and acted on by the message recipient.Each component in a CFG Model has its own local simulation clock, and the value of each component'sclock is strictly non-decreasing. (Operationally, components may only move forward through time.) Sincethe timestamp on each message is the time at which the message was sent (i.e., the value of the local clock ofthe sending component), the timestamps on the messages sent over each channel are non-decreasing. Whena message is sent to a component's output port it is immediately (in zero simulation time) transported overthe connecting channel to the corresponding input port. Messages sent over each channel arrive in the orderin which they are sent. Each input port has an associated message queue, and messages arriving at an inputport queue FIFO (First-In First-Out) in this message queue until the receiving component decides to receiveand act on them; i.e., CFG Model components are \active" receivers (Cota and Sargent 1992). This is incontrast to object oriented simulation systems that generally use a passive receiver model in which messagesare received and acted on by the receiving entity immediately upon their arrival.The components in a CFG Model operate concurrently and are independent of each other except formessage passing interaction. Each component has its own thread of control, its own local simulation clock,and its own set of local variables.A Control Flow Graph is an augmented directed graph in which the nodes represent control states andthe edges specify the set of possible control state transitions. A control state is a formalization of the \processreactivation point" (Cota and Sargent 1992).Each component in a in a CFG Model has its own Point of Control (thread of control). Between events acomponent's Point of Control (POC) resides at a control state, and the control state where a component's POCresides at any point in simulation time is called the component's \current" control state. An event executionfor a component consists of three distinct operations: (1) the component advances its local simulation clockto the time of its pending event, (2) the component's POC traverses an edge originating from the its currentcontrol state, and (3) the component carries out any additional actions speci�ed by an event routine associatedwith the traversed edge. The control state that the component's POC arrives at following an edge traversal(event execution) then becomes the component's new current control state.The \augmented" part of a CFG's augmented directed graph refers to a set of edge attributes. Each edgein a CFG, in addition to an originating and a terminating control state, has the following three attributes:a condition, a priority, and an event. The condition attribute speci�es when (at what point in simulationtime) an edge can be considered for traversal. The edge originating from the component's current controlstate whose condition is satis�ed at the earliest point in simulation time is selected. Edge priorities are usedto choose between edges whose conditions are satis�ed at the same \earliest" time (i.e., to break time ties).Edge priorities must be unique among all edges originating from the same control state. An edge's eventattribute speci�es a set of actions to take (in addition to the local clock update and the POC edge traversal)as part of a component's event execution. These actions may include: receiving a message, sending oneor more messages, and/or modifying the values of the component's local variables. Component behaviorspeci�cation using CFG's is discussed in Subsection 3.2.Cota and Sargent (1990c) developed a set of algorithms for the execution of CFG Models that allowCFG Models to be executed on either sequential computers or parallel/distributed computers. The paral-lel/distributed execution algorithms use information explicit in the CFG Model representation to automatic-ally generate \lookahead" information (Cota and Sargent 1990b). The availability and quality of lookaheadinformation is a key element in parallel/distributed simulation (Fujimoto 1990). Automatic generation oflookahead in CFG Models alleviates the need for a modeler to manually add such information to a modelspeci�cation as is a common practice in parallel discrete event simulation.The classes of simulation execution algorithms developed for CFG Models are shown in Figure 1. Thesequential algorithms execute models on a sequential computer while the parallel/distributed algorithmsexecute models on parallel or distributed computers. The sequential-synchronous algorithm executes events3



in a strict time order, whereas the sequential-asynchronous algorithm may reduce some simulation executionoverhead (such as event list manipulations) by executing some events out of time order when the executionorder of those events does not a�ect the simulation result. Conservative parallel/distributed algorithms onlyexecute events when those events are guaranteed to be correct. (Conservative algorithms avoid deadlockthrough the use of either deadlock prevention or deadlock detection and correction.) Optimistic algorithmssave model state prior to executing any event that is not guaranteed to be correct. If an optimistic algorithmlater �nds that an event execution was incorrect, it then \rolls back" to a previously saved state and continuesexecution from that \restored" state. The combined parallel/distributed algorithms attempt to executein conservative mode whenever possible, but they may temporarily switch into optimistic mode when theexecuting processor would otherwise be idle.
Control Flow Graph Model

Model
Representation
Language

Hierarchical
Modeling

Asynchronous

Sequential

Optimistic CombinedSynchronous

Parallel/Distributed

Conservative

Control Flow Graph Model
Hierarchical

Language
Specification

Simulation
Execution
AlgorithmsFigure 1: Modeling Language, Representation Language, and Algorithms2.2 Hierarchical Control Flow Graph ModelsHCFG Models are based on the modi�ed process interaction world view (Cota and Sargent 1992) and weredeveloped as a hierarchical modeling paradigm that can use CFGModels (Cota and Sargent 1990a) as a modelrepresentation language. Using CFG Models as a model representation language allows HCFG Models to beexecuted using any of the existing CFG Model execution algorithms.While the CFG Model representation can be used for modeling, it was not designed for that purpose.The CFG Model representation is straightforward to use in the modeling of simple systems but models canbecome complex when modeling more complex systems. Also, CFG Model's provide only limited supportfor model element reuse. HCFG Models employ hierarchy and encapsulation for complexity managementand provide a wider range of support for reuse than is provided by CFG Models. A modeler can develop amodel using HCFG Models, transform the model into an equivalent CFG Model (Cota, Fritz, and Sargent1994; Fritz and Sargent 1993), and then execute the model using any of the CFG algorithms shown inFigure 1. (Transforming an HCFG Model into its equivalent CFG Model is conceptually straightforwardand computationally e�cient.) HCFG Models are a superset of CFG Models in that any valid CFG Modelis also a valid HCFG Model.HCFG Models use two complementary types of hierarchical model speci�cation structures. The �rsttype of speci�cation structure, called a Hierarchical Interconnection Graph (HIG), is used to specify a hier-archically organized set of encapsulated components that comprise the model and how those components areinterconnected. The second type of speci�cation structure, called a Hierarchical Control Flow Graph (HCFG),is used to specify the behaviors of the individual components of the model. A HIG is a hierarchical extensionof an Interconnection Graph, and an HCFG is a hierarchical extension of a CFG. An HCFG Model speci�c-ation consists of one HIG plus a set of HCFG's (one for each type of component in the model that requiresa behavior speci�cation).HCFG Models use two distinct classes of model components: atomic and coupled. Atomic Compon-ents (AC's) correspond to the components used in CFG Models while coupled components have no counter-part in CFG Models. In HCFG Models only the AC's have HCFG behavior speci�cations.4



Coupled components are encapsulated components that are formed by coupling together a set of atomicand/or coupled subcomponents. It is this recursive de�nition of coupled components that provides supportfor hierarchical component speci�cation in HCFG Models. Each distinct type of coupled component in anHCFG Model is speci�ed via a corresponding Coupled Component Speci�cation (CCS). A modeler speci�esthe HIG for an HCFG Model by simply specifying the set of CCS's for the coupled components used in themodel.A CCS is a directed graph in which the nodes represent model components (atomic and/or coupled)and the edges represent the channels over which intercomponent messages ow. The channels in a CCSinterconnect subcomponent ports in a manner analogous to a CFG Model Interconnection Graph. However,in a CCS, channels may also connect ports of the component's subcomponents to the \outside world" via aset of \external" ports that allow messages to ow through the enclosing coupled component's encapsulationboundary. Note that a CFG Model Interconnection Graph is simply a special case of a coupled componentthat: (1) has no connections to the outside world, and (2) in which all subcomponents are atomic. Thespeci�cation of components and interconnections via CCS's is discussed in Subsection 3.1.In HCFG Models each AC (Atomic Component) has a corresponding HCFG that de�nes the behaviorfor that type of AC. An HCFG is a hierarchical extension of a CFG in which the behavior of an AC canbe recursively partitioned into a set of encapsulated disjoint \partial" behaviors that, when combined, de�nethe AC's behavior. Behavior speci�cation via recursive application of \divide and conquer" provides supportfor hierarchical behavior speci�cation. This allows complex behaviors to be recursively broken down intosets of disjoint simpler behaviors, each of which can then be individually speci�ed. Each (partial or total)behavior in an HCFG Model is speci�ed using a behavior speci�cation structure called a Macro ControlState (MCS). A MCS is an extension of a CFG that provides support for hierarchical modeling and reuse atthe sub-AC level. MCS's constitute the basic building blocks of an HCFG. A modeler constructs an HCFGlargely by specifying a set of MCS's that, when combined, de�ne the component's behavior. Componentbehavior speci�cation using MCS's is discussed in Subsection 3.2.Figure 2 illustrates the relationships between the various structures used in the speci�cation of an HCFGModel. This model shows two coupled components, \a" and \c", and three AC's, \b", \d", and \e". Eachcoupled component is de�ned via a CCS (Coupled Component Speci�cation) that speci�es the subcomponentsand interconnections that comprise the coupled component. Together, the CCS's for \a" and \c" completelyspecify the model's HIG. Coupled component \a", the top level component in the HIG, via transitive closure,encloses all other components in the model. Each of the AC's has an associated HCFG that speci�es thebehavior for that AC, and each HCFG is constructed from a hierarchically organized set of MCS's. Thetop level MCS of each AC encloses, via transitive closure, all other MCS's in that AC's HCFG in a manneranalogous to the way the top level component of a model encloses all the components of a model. The HCFGfor component \b" consists of a single MCS whereas the HCFG for component \e" is constructed using �veMCS's. If the complexities of the MCS's used in components \b" and \e" are comparable, then the behaviorof component \e" is likely to be (potentially �ve times) more complex than that of component \b".The HIG and HCFG hierarchical structures used in the HCFG Model paradigm aid in the management ofmodel complexity and make it easier to develop and maintain models. Also, the encapsulated model elements(CCS's and MCS's) used in HCFG Models provide support for model element reuse at both a higher level(CCS's) and at a lower level (MCS's) than is possible with CFG Models.2.3 Model OperationConceptually, an HCFG Model consists of a set of independent, encapsulated, concurrently operating AC'sthat interact with each other via message passing. All intercomponent message tra�c in an HCFG Modeloriginates from and terminates at AC's. (Coupled components de�ne the component hierarchy and the staticrouting pattern for the inter-AC messages, but they neither create nor destroy messages.)The AC's in a model interact with a simulation executive that executes the model as speci�ed by the sim-ulation execution algorithm, and in this manner the simulation executive can be thought of as the simulationalgorithm in operation. The simulation executive is a single central authority when executing a model usingone of the sequential simulation algorithms, whereas it consists of a set of distributed interacting entities(executives) when executing a model using one of the parallel/distributed algorithms. When executing amodel using one of the sequential algorithms the simulation executive has access to \global" information on5



= Macro Control State

HCFGHCFG

HIG

CCS

CCS

= Component

a

cb

d e
HCFG

Figure 2: Relationships between Speci�cation Structuresthe state of the model and it directs the operation of all AC's in the model based on this information. Whenexecuting a model using one of the parallel/distributed algorithms each distributed executive is responsiblefor and directly interacts with only those AC's local to that executive. Distributed executives also interactwith each other in the handling of operational details such as deadlock prevention.The simulation executive (or distributed executive) extracts information from and issues operationaldirectives to AC's and is responsible for the correct and e�cient operation of the simulation model (Cotaand Sargent 1990c). The executive is responsible for such activities as simulating the concurrent operation ofAC's when executing a model on a sequential computer and for generating and using lookahead informationwhen executing a model on a parallel/distributed computer system. The speci�cs of the interaction betweenthe AC's and the simulation executive(s) di�ers based upon the simulation algorithm being used, but thereexists a minimal level of interaction common across all the CFG Model simulation execution algorithms.Conceptually an AC performs only two basic operations: (1) it selects an edge originating from its currentcontrol state, and (2) it executes its pending (next) event. The simulation executive uses information extractedfrom the AC's to determine when each AC should perform each operation and then directs the appropriateAC's to perform the appropriate operations in the appropriate sequence.When an AC selects an edge as part of an edge selection operation, information associated with theselected edge becomes available to the simulation executive. The information associated with the selectededge includes the AC's next event time and whether the AC's next event is conditional or unconditional. Aconditional event is an event that can be preempted (replaced with a di�erent event) due to the arrival of anew intercomponent message. Also, each AC with a conditional next event informs the simulation executiveupon receipt of any intercomponent message that might preempt the component's conditionally pendingevent.When an AC is directed to execute its next event, the AC �rst advances its local simulation clock to thetime of its next event. Then the AC's POC traverses the AC's selected edge and the AC carries out anyadditional actions speci�ed by the event attribute (routine) associated with the traversed edge.We present the synchronous sequential simulation execution algorithm as a concrete example of CFGModel execution. The sequential synchronous algorithm simulates CFG Models on a sequential computerand executes all events in strict time order. The sequential synchronous algorithm requires that each AC inthe model have a unique AC priority. This AC priority is used by the simulation algorithm to break time tiesbetween AC's. (Recall that CFG edge priorities were used to break time ties between edges within an AC.)6



Cota and Sargent (1990c) developed an algorithm that analyzes a CFG Model and automatically assigns ACpriorities in such a manner as to guarantee that the results of a sequential simulation of a model will beidentical to the results of a parallel/distributed simulation of the same model.An overview of the sequential synchronous simulation execution algorithm is shown in Figure 3. Construc-tion of the model involves the construction and initialization (in computer memory) of objects representingthe model. Model elements include model components, ports, interconnections, and component behaviors.Component behaviors include the CFG (or MCS) graph(s), variables, AC initial control state (POC location),and seeds for pseudo random number generators. Also, any initial intercomponent messages are created andplaced in the appropriate input port message queues, and priorities are assigned to AC's for use in breakingtime ties during model execution.1. Construct and initialize the model; assign priorities to AC's.2. Each AC performs an edge selection operation.3. Repeat the following until termination conditions are met.(a) Select the AC with the earliest next event time, using AC priorities to break time ties.(b) The selected AC executes its pending event.i. The AC advances its local simulation clock to its next event time.ii. The AC's POC traverses its selected edge.iii. The AC carries out any additional actions speci�ed by the event routine associated with thetraversed edge.(c) The following AC's perform an edge selection operation.i. The AC that just executed an event.ii. Any other AC that both:A. had a conditionally pending edge, andB. received a new intercomponent message that could preempt the AC's conditionally pendingedge. Figure 3: Sequential Synchronous AlgorithmEach AC then performs an edge selection operation. Each selected edge has an associated time thatdetermines the AC's next event time and whether the AC's next event is conditional or unconditional. Oneway of selecting the next AC to execute an event is to use a priority queue of AC's. If AC's are placed ina priority queue and selected based on the next event times of the AC's (using AC priorities to break timeties) then the AC with the earliest next event time (and highest priority in the case of time ties) will alwaysbe at the front of the priority queue. The sequential synchronous algorithm then simply selects the AC atthe front of the priority queue and directs that AC to execute its pending event.The selected AC then executes its pending event. The selected AC is then \agged" to indicate that itmust perform a new edge selection operation in order to determine its next event time. Also, any AC witha conditional next event that received an intercomponent message that could preempt its currently selectededge is also agged for reevaluation. All such agged AC's are removed from the priority queue, directed toperform a new edge selection operation, and then reinserted in the priority queue. Then, unless simulationtermination conditions are met, the AC selection process begins again. This describes the basic operationof CFG and HCFG Models under the sequential synchronous simulation execution algorithm. The internalspeci�cation and operation of individual AC's is discussed in Subsection 3.2.7



3 MODEL SPECIFICATIONAn HCFG Model speci�cation consists of one HIG plus a set of HCFG's (one per distinct type of AC in themodel). The HIG speci�es a hierarchically organized set of components that comprise a model and how thosecomponents are interconnected, while HCFG's describe the behaviors of the individual AC's in the model.Speci�cation of a HIG, via a set of CCS's, is presented in Subsection 3.1, and the speci�cation of HCFG's,via sets of MCS's, is discussed in Subsection 3.2.3.1 Component and Interconnection Speci�cationThe basic building block in an HCFG Model's HIG is the model component, and HCFG Models use twodistinct classes of model components: atomic and coupled. Model components are encapsulated entities thathave an external view and an internal view. From the external view, all model components (both atomic andcoupled) have the following attributes: a name (instance name), a type (type name), a set of input ports,and a set of output ports. From the external view of a component it is impossible to distinguish coupledcomponents from AC's. (The internal views of coupled components and AC's are covered in Subsections 3.1.1and 3.2, respectively.) Each component in a model is an \instance" of a particular \type" of component.The distinction between instance and type is signi�cant in that, if multiple model components are instancesof the same type of component, then those components share the same type de�nition.A component boundary is an encapsulation boundary. This means that the internals of a component arehidden from the component's external view, and conversely, the externals of a component are hidden from thecomponent's internal view. The exception to this \hidden" rule is the set of ports through which messagesenter or leave the component. Ports cross the component's encapsulation boundary and are visible from boththe internal and external views of a component. Each port has the same identi�er (name) on both sides ofthe component's encapsulation boundary and in this manner ports form the link between the internal andexternal views of a component.The HCFG Model paradigm speci�es model elements and relationships but does not dictate how theseelements and relationships should be represented. In this paper we use graphical representations when wefeel they more clearly convey information than a textual representation would. Some conventions we followfor the representation of model elements and relations are as follows. Components are represented via boxes,message channels are represented by line segments and their directions by arrows, and port identi�ers (names)are located near the ports. Since a component's ports cross its encapsulation boundary and its port namesare identical from both sides of the component boundary, in a graphical representation of a component itsport names may be located either inside or outside the component as is convenient. Naming conventions weuse are as follows. The �rst letter of a component type name is generally an uppercase letter whereas the �rstletter of an instance name is generally a lowercase letter. When instance and type names are shown togetherin a graphical representation, type names are distinguished by enclosing them in a set of parentheses \()".An external view of a component is shown in Figure 4. This model component named \theBlueServer" isof component type \ExpServer". It has three input ports: \new{jobs", \suspend{operation", and \restart{suspended{job", and one output port: \completed{jobs". One possible de�nition of message types for sucha component is as follows. (Note that intercomponent messages can carry information between componentsvia message attributes.) Message arrivals on port \new{jobs" represent the arrival of a batch of new jobsrequiring processing, and a message attribute \batch size" speci�es the number of jobs in each batch. Amessage arrival on \suspend{operation" indicates that the server should suspend operation until instructedotherwise, and a message arrival on port \restart{suspended{job" indicates that the server should resumeoperation, restarting any job that was in service at the time server operation was suspended. Each messagedeparture on port \completed{jobs" represents a job that has completed service at \theBlueServer".
(ExpServer)

theBlueServer

suspend-operation

new-jobs completed-jobs

restart-suspended-jobFigure 4: External View of a Component8



3.1.1 Coupled Component Speci�cationCoupled components are encapsulated model components formed by coupling together other components.The internal view of a coupled component is the view from inside the component but outside all enclosedsubcomponents. This internal view is speci�ed via a \Coupled Component Speci�cation (CCS)" that speci�es:(1) a set of subcomponents that are coupled together to form the new coupled component type and, (2) howthose subcomponents are interconnected.Although coupled components do not have behavior speci�cations (HCFG's) like AC's do, they do havebehaviors. The behavior of a coupled component is determined in an indirect manner by the behaviors andcouplings of the subcomponents that comprise the coupled component. This derives from the fact that eachcoupled component encloses, directly and/or indirectly (recursion through the component hierarchy), oneor more AC's. Note that coupled components that enclose identical sets of AC's may exhibit di�erences inbehavior that are due solely to di�erences in the couplings (interconnections) of their enclosed subcomponents.We next use a simple example to illustrate how a coupled component can be constructed from a coupling ofsubcomponents. The �rst step in forming a new coupled component from a set of subcomponents is to specifythe set of subcomponents that are to be enclosed by the new coupled component and the interconnections(represented via channels) of those subcomponents. These interconnections include both connections betweensubcomponents and also connections between enclosed subcomponents and components external to the newcoupled component. Suppose that we wish to construct a new coupled component type \C" that contains twocomponents, \a1" and \a2", of type \A", and one component, \b", of type \B", interconnected as shown inFigure 5(a). (Note that the port identi�ers (names) of the two instances of component type \A" are identicalsince they are of the same type.) The couplings (component interconnections) are represented graphicallyin the �gure (e.g., output port \o2" of component \b" is connected to input port \in" of component \a2").Ports \new{jobs" and \�nished{jobs" of component \b" are intended to be connected to components thatwill reside outside the new coupled component and thus they are not connected in Figure 5(a).
in
out

(B)
b

(A)
a2a1

(A)

new-jobs
o1

i1

o2

i2
finished-jobs

in
out

in
out

(B)
b

(A)
a2a1

(A)

new-jobs
o1

i1

o2

i2
finished-jobs

process

in
out

done

(C)

process

done

(C)

(a)

(b)

(c)Figure 5: Coupling of Components9



The next step in forming a new coupled component from a set of subcomponents is to draw an encapsu-lation boundary around the subcomponents that we wish to encapsulate, as shown by the \dashed" box inFigure 5(b). (We use a dashed box in Figure 5(b) to illustrate the drawing of a new encapsulation boundaryfor a component of type \C". All component boundaries in a CCS, including that of the enclosing coupledcomponent, are normally shown as solid boxes.) Note that the encapsulation boundary should \cut" onlythose channels that will connect subcomponents contained within the new coupled component to componentsthat will be located outside the new coupled component. Each channel cut by the encapsulation boundaryforms an \external" port of the new coupled component and a unique identi�er (name) must be assigned toeach such port. Thus, the new coupled component type \C" (shown as \(C)" in Figure 5(b)) has two externalports, \process" and \done", through which subcomponents inside \C" may communicate with componentsoutside \C". Note that Figure 5(b) is a graphical representation of the CCS that completely de�nes the newcoupled component type \C". An external view of component type \C" is shown in Figure 5(c). Instancesof this new component type \C" are encapsulated model components that can be used anywhere in a modelthat such a component is required.The previous example illustrated a \bottom{up" approach of constructing coupled components by coup-ling together a set of existing subcomponents. Coupled components can also be constructed using a \top{down" approach. Using a top{down approach, a modeler �rst speci�es the external view of the component(i.e., its type name and its ports) and then later speci�es the internals of the component type. The top{downapproach allows a modeler to use a component in the construction of a model while deferring speci�cation ofthe component's internals to a later time when they can be addressed separately. A modeler can use eitherof these approaches or a combination of the two in the construction of an HCFG Model's HIG.A general method for constructing an HCFG Model's HIG using a top{down development of coupledcomponents is to recursively partition components into sets of interacting subcomponents until each of theremaining \non-partitioned" components has a behavior that can be easily speci�ed via an HCFG. Each ofthese remaining non-partitioned components is then speci�ed to be atomic and thus will have an associatedHCFG behavior speci�cation.The AC's in a model operate concurrently and each AC has its own thread of control. Thus, if a particularmodel component has a \natural parallelism" in its behavior, then that component should be considered acandidate for partitioning into two or more AC's. Possible bene�ts of this partitioning include: (1) each ofthe new smaller AC's will likely have a simpler behavior and thus be easier to model via an HCFG, and(2) the maximum theoretical parallelism during simulation execution using a parallel/distributed algorithmincreases with the number of AC's in the model.3.1.2 Hierarchical StructuresA HIG is completely speci�ed via a set of CCS's, each of which de�nes a coupled component type. However, todetermine the set of components that comprise a model and the hierarchical organization of those components,one must construct the component hierarchy from the set of CCS's. This construction is accomplished bystarting with the coupled component that encloses the entire model (the only component with no externalports) and recursively constructing each of that component's coupled subcomponents (as speci�ed by thesubcomponent's CCS).Because a model's component hierarchy may not be obvious from the set of CCS's, it is desirable to havean auxiliary structure that shows a model's component hierarchy at a glance. HCFG Models use an auxiliarystructure called a \HIG tree" for this purpose. A HIG tree is a rooted tree structure in which the nodes ofthe tree correspond to model components. Each node in the HIG tree has a pair of attributes that specifythe corresponding component's instance name and type name. \Child" nodes of a node in the HIG treecorrespond to the component's immediate subcomponents. The internal nodes of the HIG tree contain othercomponents and thus correspond to coupled components, whereas the leaf nodes of the HIG tree correspondto AC's. A HIG tree is an abstraction of a HIG that captures the model components and their hierarchicalrelationships but not the component interconnections. A model's HIG tree can be constructed from its HIG(set of CCS's), but the reverse is not possible as the component interconnection information is not presentin the HIG tree.As stated above, each HCFG Model has one coupled component that encloses the entire model, and thiscomponent is the only component in a model that has no external ports. We refer to this component as10



the \root" or \top level" component of the model as it corresponds to the root node of the HIG tree. Sincecomponents are encapsulated entities that interact solely via message passing, if a coupled component has noexternal ports, then those components inside this component are completely isolated from any componentsoutside this component. If we can partition a set of components into two sets such that there are no intercon-nections (channels) between the two sets, then the two sets of components constitute at least two completelyindependent models.HCFG Models also have a second type of auxiliary structure called a \HIG type tree". In a HIG typetree, the nodes of the rooted tree represent component \types" rather than component instances. A HIGtype tree can be constructed from a HIG tree, but the reverse is not possible as the component instancename information is not present in the HIG type tree.We use a simple example to illustrate the concepts of the HIG tree and HIG type tree. Suppose thatwe have an HCFG Model whose top level component type \M" is de�ned by the CCS in Figure 6. Assumethat component types \A" and \C" are as shown in Figure 5 and also assume that component types \A"and \B" are atomic. The HIG for this model is completely speci�ed by two CCS's (Coupled ComponentSpeci�cations), one for the top level coupled component type \M", and one for the coupled component type\C". Component types \A" and \B" are atomic and thus have behavior speci�cations (HCFG's) rather thanCCS's.
done
process

(C)
c

(A) in
outa

(M)Figure 6: A Top Level CCSThe HIG tree for this simple model is shown in Figure 7(a) (component type names are shown in paren-theses) and the corresponding HIG type tree is shown in Figure 7(b). Since all names in the HIG type treeare type names, there is no need to enclose the names in parentheses as is done in the HIG tree. The threevertical bars in Figure 7(b) next to the \(2)" indicate replication (i.e., more than one component of type \A"is contained within a component of type \C"). The \(2)" indicates that two components of type \A" arecontained in a component of type \C" as subcomponents.
(a) (b)

M(M)

A C

A B
(2)

(A) (C)
a c

(B)(A) (A)
a1 b a2Figure 7: HIG Tree and HIG Type TreeAn HCFGModel's HIG speci�es a hierarchically organized set of model components as de�ned by a set ofCCS's. The HIG tree and HIG type tree are auxiliary structures that show at a glance the component hierarchyand component type hierarchy, respectively. The internal nodes of the auxiliary structures correspond tocoupled components and the leaf nodes correspond to AC's. The speci�cation of AC behaviors using HCFG'sis discussed in the following subsection.3.2 Atomic Component Behavior Speci�cationEach AC is an encapsulated entity with an external view and an internal view. From the external view (asdiscussed in Subsection 3.1) each type of component (coupled or atomic) has a type name, a set of inputports, and a set of output ports. From the internal view each type of AC has the same elements as from itsexternal view plus an HCFG behavior speci�cation. 11



The basic building block of an HCFG is the MCS. A MCS is an encapsulated behavior speci�cationstructure that is based on and designed to be an extension of a CFG. The MCS extensions to CFG's providesupport for hierarchical behavior speci�cation and model element reuse at the sub-AC level.An HCFG behavior speci�cation is a hierarchical behavior speci�cation that is constructed from a set ofhierarchically organized and interconnected MCS's. In addition to the set of MCS's, each HCFG also has aset of variables and functions that are referred to as \AC" variables and functions. These AC variables (e.g.,the AC's local simulation clock) and functions are associated with the AC itself rather than any MCS. Anyand all MCS's that constitute an AC's HCFG can access these AC variables and functions.Internally, each MCS contains a set of MCS variables and functions that are \owned" by the individualMCS and are distinct from the AC variables and functions discussed above. Each MCS also possesses anaugmented directed graph and a set of \handles" through which the MCS can access the AC variables,functions, and ports. If an HCFG consists of more than one MCS, then those MCS's also possess twoadditional elements. The �rst additional element is a set of \pins" in the MCS's encapsulation boundarythrough which the AC's POC (Point of Control) can enter or leave the MCS, and the second additionalelement is a set of handles that provide a MCS with access to variables and functions of other (ancestor)MCS's within the MCS hierarchy (of the HCFG). A MCS may only access information contained within anancestor MCS if such access has been explicitly granted, and such access (via a handle) can only be grantedby a parent to a child in the MCS hierarchy.3.2.1 Fundamental ElementsIn the case where an HCFG consists of a single MCS, that MCS is identical to a CFG. The fundamental ele-ments that MCS's have in common with CFG's are discussed in this subsection, whereas the MCS extensionsto CFG's that provide support for hierarchy and reuse are discussed in Subsection 3.2.3.A CFG is a (control) state based behavior speci�cation structure that is represented via an augmenteddirected graph. The nodes represent control states and the edges specify the set of possible control statetransitions. Each AC has a POC (Point of Control) that moves from the AC's current control state, acrossan edge, to a new control state each time the AC executes an event. (Edges may originate and terminate onthe same control state.)Each edge in a CFG has an associated condition, priority, and event attribute. The condition speci�eswhen an edge can be considered for traversal, edge priorities are used to to break time ties between edges,and an edge's event attribute (routine) speci�es actions to be performed by the AC (in addition to the localclock update and the POC edge traversal) when the edge is traversed as part of an event execution.An AC selects an edge based on the condition and priority attributes of the edges originating fromits current control state. The evaluation of edge conditions may in turn depend on samples taken fromdistributions of random variables, the state of the AC's input port message queues, and/or the values of theAC and CFG (MCS) variables. Edge priorities must be unique for all edges originating from the same controlstate.Each edge condition in a CFG belongs to one of the following three condition types: \time delay", \inputport", or \boolean predicate". Edges are classi�ed and edge conditions are evaluated based upon their edgetype.Edges with a time delay condition are called \TimeEdges", and associated with each TimeEdge is a timedelay function whose evaluation returns a nonnegative real value �t. Time delay functions may access localCFG and AC variables and may also sample from one or more random variable distributions. A TimeEdge'scondition is satis�ed (becomes True) with a local (AC) simulation time greater than or equal to (tnow+�t),where tnow is the current value of the local simulation clock and �t is the value returned by the time delayfunction associated with the TimeEdge. A TimeEdge's time delay function is evaluated at most once betweenevent executions. A TimeEdge retains the value returned by its associated time delay function until the ACexecutes its next event, after which the value is discarded, and thus a new value for �t must be generatedthe next time the TimeEdge is evaluated as part of an edge selection operation.Edges with an input port condition are called \PortEdges", and associated with each PortEdge is aninput port of the AC. Each PortEdge is associated with exactly one input port, however an input port maybe associated with more than one PortEdge. A PortEdge's condition evaluation is determined by the statusof the associated input port's message queue. If the input port's message queue is nonempty (i.e., there is at12



least one unreceived message), then the PortEdge's condition is satis�ed (True) with a local simulation timegreater than or equal to the maximum of: (1) the timestamp on the �rst message in the input port's messagequeue, and (2) the current local simulation time (tnow). A PortEdge's condition is not satis�ed (i.e., it isFalse) if the message queue of the associated input port contains no unreceived messages. Since the AC's ina model operate concurrently, intercomponent messages arrive asynchronously to the operation of each AC.The condition of PortEdges associated with empty input ports will immediately change from False to Trueupon the arrival of new intercomponent messages. Such a change in a PortEdge's condition in response tothe arrival of a new intercomponent message may, in some cases, require that an AC redo an edge selectionoperation taking into account the updated status of the PortEdge.Edges with a boolean predicate condition are called \BoolEdges", and associated with each BoolEdge is aboolean predicate that evaluates to either True or False. This boolean predicate can reference only variablescontained within the CFG and the AC. (Recall, as described above, that AC and CFG variables, althoughboth contained within an AC, are distinct.) A BoolEdge's condition is satis�ed with a corresponding localsimulation time greater than or equal to tnow if the predicate evaluates to True at time tnow, otherwise theBoolEdge's condition is not satis�ed (i.e., it is False). Since BoolEdge predicates are based on the valuesof AC and CFG variables and the values of those variables may only change during an event execution, aBoolEdge need be evaluated only once between event executions for the AC. We have found in behaviormodeling using CFG's that BoolEdges with an \always True" predicate are used with su�cient frequencythat we de�ne a subtype of a BoolEdge, called a \TrueEdge", to be a BoolEdge whose predicate is de�nedto always be True.Recall (Subsection 2.3) that an AC can perform only two basic operations: edge selection, and eventexecution. The simulation executive uses information extracted from the AC's to determine when each ofthese operations should be performed and then directs the appropriate AC's to perform the appropriateoperations in the appropriate sequence. Two basic rules apply to the order in which the edge selection andevent execution operations are performed for each AC. First, whenever an AC's POC arrives at a controlstate, the AC must successfully select an edge originating from that control state before that AC can executeits next event. Second, an AC with a conditional next event must perform another edge selection operationprior to executing its next event if it subsequently receives a message that could cause a PortEdge to preemptthe AC's previously selected edge. Details of the edge selection and event execution operations are discussedbelow.When the simulation executive directs an AC to reevaluate its next event information, the AC evaluatesthe conditions of the edges originating from the AC's current control state (based on their edge types) andselects the edge whose condition is satis�ed at the earliest simulation time. If more than one edge originatingfrom the AC's current control state has a condition that is satis�ed at this \earliest" simulation time, thenthe edge priorities are used to select the highest priority edge whose condition is satis�ed at this earliesttime. The time associated with the selected edge becomes the AC's next event time.PortEdges require special consideration during edge selection operations since only PortEdges have acondition that may change between between an AC's event executions. An AC may have PortEdges whoseassociated input ports have no unreceived messages (i.e., their message queues are empty), and evaluatingthe condition of any such PortEdge will, as described above, return False. If an AC has one or more suchPortEdges originating from its current control state and the arrival of a new intercomponent message couldcause such a PortEdge to be selected if the AC was directed to perform another edge selection operation, thenthe AC's pending event is a conditional event (i.e., it can be preempted by a di�erent event). If, however, anAC's pending edge can not be preempted by any such PortEdge due to the arrival of a new intercomponentmessage, then the AC's pending event is unconditional.An AC edge selection operation may fail to select an edge. If the simulation executive directs an ACto select an edge and no edge originating from the AC's current control state has an edge condition that issatis�ed, then the edge selection operation fails and the AC has no pending edge. The simulation executivewill never direct an AC to execute an event unless the AC has selected a pending edge with a �nite nextevent time. An AC that fails an edge selection operation is considered to have a next event time of +1. Itis common for an AC that is simply waiting for a message arrival to have a conditional next event time of+1.When the simulation executive directs an AC to execute its pending event the AC performs the following13



operations. First, the AC advances its local simulation clock to its next event time (the time associatedwith the AC's selected edge). Then, the AC's POC traverses the selected edge, and the AC carries out anyadditional actions speci�ed by the traversed edge's event routine. The actions taken by an AC during anevent execution may include updating the values of the AC's or MCS's local variables, sending one or moremessages to one or more output ports of the AC, and/or receiving a message from one of the AC's inputports. An AC may receive a message from an input port only during those event executions in which theAC's POC traverses a port edge.PortEdges also require special handling during event execution. If the edge traversed during an eventexecution is a PortEdge, the AC receives the �rst message from the PortEdge's associated input port messagequeue. The message is removed from the input port's message queue and the AC can examine and act onthe contents of the message's attribute �elds as part of its event action. Conceptually, the received messageceases to exist at the completion of the PortEdge's event routine.If an AC requires no actions other than the clock update and POC traversal as part of an event execution,we say that the event associated with that edge is the \null event". The null event is commonly representedas \enull" or \e{null()". A PortEdge with a null event (transparently to the modeler) receives and discardsthe message from its associated input port.We use a graphical notation shown in Figure 8 to visually distinguish the di�erent edge types used inCFG's. The condition and event attributes of an edge are located near the edge to which they belong. Edgepriorities are indicated via a positive integer near the base (origin) of an edge. Lower numbers representhigher priorities, so an edge with priority one (1) indicates the highest priority edge originating from thatcontrol state. Edge priorities are only required when more than one edge originates from the same controlstate and no edge priorities are shown in Figure 8. Also, a TrueEdge (subtype of BoolEdge) is representedas a BoolEdge with a capital \T" near the edge's type symbol in lieu of a boolean predicate.
PortEdge

TrueEdge
T

event()

TimeEdge
event()

event()
port-identifier

BoolEdge
event()
boolean-predicate()

time-delay()Figure 8: Edge Notation3.2.2 A Two Class ServerIn this subsection we demonstrate the behavior speci�cation of a simple AC using a CFG (single MCS). Wemodel the behavior of a simple two class server borrowed from Cota and Sargent (1990a). This two classserver handles two classes of jobs using a \priority preempt/resume" job selection discipline. Each job iseither a \high priority" job, or a \low priority" job. Jobs within each class are processed on a First ComeFirst Serve (FCFS) basis. The server always works on a high priority job if one is available, and high priorityjobs are always run to completion once they start service. If the server is busy with a low priority job whena high priority job arrives, the low priority job is preempted (work on it is suspended) and the server thenbegins working on the high priority job. The server then processes high priority jobs until all available highpriority jobs have completed service. Work on any suspended low priority job is then resumed where it lefto�, followed by continued processing of any other low priority jobs.Since the AC that we are modeling is a server that handles two classes of jobs, we assign this AC the typename: \2ClassServer". The external view of the two class server AC is shown in Figure 9. A \2ClassServer"AC has two input ports \hi-in" and \lo-in", and two output ports \hi-out" and \lo-out". In an AC of type\2ClassServer", each \job" arrival or departure is represented by a message. Thus a job arrival or departureis synonymous with (and represented via) a message arrival or departure, respectively. The priority of a14



job arriving at the server is determined by the port on which it arrives. High priority jobs arrive on inputport \hi-in" and low priority jobs arrive on input port \lo-in". As jobs �nish service, they are sent out (asmessages); high priority jobs on \hi-out" and low priority jobs on \lo-out".
hi-in hi-out

lo-outlo-in

(2ClassServer)Figure 9: \2ClassServer" Type AC External ViewWe model the behavior of the \2ClassServer" AC using a CFG with four control states. We name thesefour control states: \I", \BL", \BH", and \BP" which stand for \Idle", \Busy-Low", \Busy-High", and\Busy-Preempt", respectively, as shown in Figure 10. (Note that this is just one of several possible ways inwhich to model this type of component using CFG's.) When the POC is at control state \I" the server isidle. When the control state is at \BL" the server is working on a low priority job (and no high priority jobsare available). When the POC is at \BH" or \BP" the server is working on a high priority job. If the POCis at \BP" there is a \suspended" low priority job upon which work will be \resumed" when there are nomore high priority jobs to process. Three PortEdges and three TimeEdges show the possible control statetransitions of the CFG.
I

BL

BH

hi-in
start-hi()

low-done()
t-lo()

preempt-done()
t-hi()

hi-done()
t-hi()

hi-in
start-preempt()

‘‘Busy-High’’

‘‘Idle’’

‘‘Busy-Low’’

1

2

1

2

lo-in
start-lo()

BP

‘‘Busy-Preempt’’Figure 10: \2ClassServer" Control Flow GraphWhen the POC arrives at control state \I", it will remain at control state \I" until a job is available. Ifa high priority job is available (there is an unreceived message on input port \hi-in") the POC will traversethe edge to \BH", executing the event \start-hi()" during the traversal. If a low priority job is available(there is an unreceived message on input port \lo-in") the POC will traverse the edge to \BL", executingthe event \start-lo()" during the traversal. (Recall that a PortEdge's event routine receives a single messagefrom its associated input port in addition to any other action it might take as part of an event execution.) Ifboth types of jobs are available, the POC will move to \BH" because the edge to \BH" has an edge priorityof \1" which is higher than the edge to \BL" which has a priority of \2". (Lower numbers indicate higherpriorities. Also note that edge priorities do not need to be explicitly speci�ed unless more than one edgeoriginates from the same control state.)When the POC arrives at \BL" from \I" it begins processing a low priority job, while when the POCarrives at \BL" from \BP" it resumes processing a previously preempted low priority job. If a high priorityjob arrives before the low priority job is completed, then work on the low priority job is suspended and theremaining time to completion for the job is saved by the \start-preempt()" event routine as the POC traversesthe PortEdge to \BP". We assign a higher priority to the TimeEdge from \BL" to \I" than to the PortEdgefrom \BL" to \BP" so that in the case of a time tie (where a low priority job �nishes service at the sametime as a high priority job arrives) we send the completed low priority job on before we begin processing thenew high priority job. This allows the low priority job to possibly continue processing in another componentconcurrently with the processing of the new high priority job in the \2ClassServer" component.15



When the POC enters either \BH" or \BP", processing of a high priority job begins. Processing thencontinues for the duration speci�ed by the time delay function \t-hi()" associated with the edges leaving\BH" and \BP". After the speci�ed time delay for processing a high priority job the POC moves again. Theevent routines associated with the edges leaving \BH" and \BP" send a message to the \hi-out" output portindicating the completion of a high priority job. Even though the edges leaving \BH" and \BP" share thesame time delay function, they have di�erent event routines because the edge leaving \BP" has an additionalresponsibility to restore the state of the \preempted" low priority job that was saved by the \start-preempt()"event routine during the POC's traversal of the edge terminating on control state \BP".Note that the de�nition of the \t-hi()" time delay function is straightforward as high priority jobs alwaysrun to completion once they begin processing, whereas the \t-lo()" time delay function on the TimeEdgefrom \BL" to \I" is slightly more complex because it must also take into account the processing time that alow priority job may have already received prior to and between preemptions by high priority jobs.3.2.3 Support for Hierarchy and ReuseThe CFG representation is straightforward to use for modeling the behavior of simple AC's but CFG's canbecome complex when modeling more complex AC's. The number of control states and edges required tomodel a behavior may grow exponentially with the complexity of the behavior being modeled, and as thenumber of variables and functions required to model a behavior grows the CFG's namespace can becomecrowded. A crowded name space can be an inconvenience to a modeler and can lead to di�cult to detecterrors. (Consider a programming language in which all variables are global in scope.) Also, CFG's provideonly limited support for model element reuse at the sub-AC level.HCFG's provide support for hierarchical behavior speci�cation and model element reuse at the sub-AClevel. Using HCFG's, an AC's behavior can be recursively partitioned into sets of encapsulated disjoint partialbehaviors, which when combined, completely specify an AC's behavior. Each partial behavior is de�ned via anassociated encapsulated behavior speci�cation structure called a MCS (Macro Control State). Each MCS isan independently speci�ed and reusable model element. A set of hierarchically organized and interconnectedMCS's form (along with a set of AC variables and functions) an HCFG behavior speci�cation. This supportfor hierarchical modeling and encapsulation aids a modeler in managing model complexity. Generally, whenan AC's behavior is partitioned into a set of disjoint partial behaviors, each of those partial behaviors tends tobe less complex than the original behavior, and hence easier to model. Also, each partial behavior (MCS) hasits own (less crowded) namespace. A modeler constructs an HCFG by specifying a hierarchically organizedand interconnected set of MCS's along with a set of AC local variables and functions.A MCS is an encapsulated behavior speci�cation structure that has an external view and an internal view.From the external view a MCS has a name (instance name), a type (type name), a set of input pins, a set ofoutput pins, and formal parameter list. From the internal view a MCS has a type, a set of input pins, a setof output pins, a formal parameter list, a set of variables and functions, an augmented directed graph, a setof handles to variables and functions of the AC, and a set of handles to variables and functions belonging toother (ancestor) MCS's within the HCFG.Each MCS in an HCFG is interconnected to its parent MCS and to its immediate child MCS's in theHCFG hierarchy. These interconnections take two distinct forms, one form covers data and access sharingbetween MCS's, and the other form covers control ow interconnections that allow an AC's POC to owbetween MCS's.A MCS may grant one or more of its child MCS's access to variables or functions that are de�ned withinthe parent MCS or to any variables or functions that the parent MCS has been granted access to by itsparent MCS. Access to variables and data may only be granted by a parent MCS to a child MCS and all suchaccess permissions must be explicitly speci�ed. MCS variables and handles (access) to external informationare generally initialized via the MCS's parameter list and/or via an experimental frame. (The experimentalframe concept and its use in HCFG Models is discussed in Section 4.)The hierarchical modeling capability of HCFG's derives from the fact that MCS's may contain otherMCS's. The nodes in a MCS's directed graph may contain both (simple) control states and/or other MCS's.Edges in a MCS's graph originate from and/or terminate on either control states or MCS pins. Edges thatoriginate from control states are identical to the edges in CFG's, however, edges originating from MCS pinsdo not have the three (condition, priority, event) attributes that edges originating from control states have.16



Also, each pin is the origin for exactly one edge.The operation of an HCFG is an extension of the operation of a CFG. The POC for an AC resides at acontrol state called the current control state. This current control state is contained within a speci�c MCS,called the current MCS. Edges are selected in the same manner as in CFG's. The POC leaves the currentcontrol state over the selected edge and the action speci�ed by the event routine associated with the traversededge is carried out just as in CFG's. However, in an HCFG, the selected edge may terminate on either acontrol state within the same MCS, on an input pin of a child MCS, or on an output pin of the current MCS.If the selected edge terminates on a control state within the current MCS then the operation is identical tothat of CFG's. If the selected edge terminates on an input pin of a child MCS, then the POC enters thatchild MCS through the input pin. If the selected edge terminates on an output pin of the current MCS, thenthe POC leaves the current MCS and enters the current MCS's parent MCS in the HCFG tree via the outputpin.When the POC traverses an edge that terminates on a pin, the POC continues to traverse a sequence ofdirected edges, starting with the edge leaving the pin, until it eventually arrives at a control state. In contrastto control states, which may have an arbitrary number of outbound edges, each pin has exactly one outboundedge, thus no edge selection algorithm is required for edges leaving pins. Since edges which originate frompins do not have the set of three attributes (priority, condition, and event) that edges originating from controlstates do, there is never a condition test required before traversing an edge originating from a pin, and thereis no associated event to be executed during the traversal of an edge originating from a pin.3.2.4 A Two Class Server Using MCS'sWe show a variation of the \2ClassServer" example from Subsection 3.2.2 to demonstrate the use of MCS'sfor modeling partial behavior speci�cations. (The partitioning demonstrated in this example was selected forillustrative purposes rather than because it was particularly interesting, useful, or e�cient.)We encapsulate the processing of (non-preemptive) high priority jobs by drawing an encapsulation bound-ary around control state \BH" of our original CFG (Figure 10) as shown in Figure 11(a). This encapsulationboundary cuts the edges originating from and terminating on BH. Note than when a MCS encapsulationboundary cuts an edge, the condition, priority, and event attributes of the original edge remain on the sideof the MCS boundary that contains the originating control state.We replace the contents of the \BH" encapsulation boundary from Figure 11(a) with a child MCS named\delay1" as shown in Figure 11(b). (We represent MCS's contained within other MCS's graphically asellipses so that they may be easily distinguished from (simple) control states.) The \delay1" MCS has twopins, which we label \in" and \out". These pins result from where the (\BH") MCS encapsulation boundarycut the two edges in the original CFG in Figure 11(a). The AC's POC may enter or exit the \delay1" MCSonly via these pins. We next specify that the \delay1" MCS is to be a MCS of type \Delay1", and then de�ne(specify the internal view of) a \Delay1" MCS type such that a \Delay1" type MCS models the behaviorthat was previously modeled by the elements within the \dashed" encapsulation boundary of Figure 11(a).We use the notation \delay1 � Delay1()" to indicate that the \delay1" MCS in Figure 11(b) is of type\Delay1" and that a \Delay1" type MCS requires no parameters (discussed below).A graphical representation of a \Delay1" MCS is shown in Figure 11(c). (The pins are represented ascircles containing a \cross".) A \Delay1" MCS contains a single control state \S" and two edges. TheTimeEdge originating from control state \S" has a time delay function \t-hi()" and an event routine \hi-done()" that perform that same functions as the originals by the same name did in Figure 11(a). The \t-hi()"time delay function and the \hi-done()" event routine are now associated with (part of) the \Delay1" MCStype de�nition shown in Figure 11(c).Parameterization can signi�cantly enhance the reusability of MCS's. We next demonstrate parameteriz-ation and reuse of MCS's. If, in addition to encapsulation the processing of (non-preemptive) high priorityjobs, we also encapsulate the behavior of processing (preemptive) high priority jobs (with an encapsula-tion boundary around the \BP" control state of Figure 11(b)), we get a MCS as shown in Figure 12(a)with \Delay1" and \Delay2" type MCS's as shown in Figure 12(b). The \delay1" and \delay2" MCS's ofFigure 12(a) would be speci�ed as delay1 � Delay1()17



I

BL

BH

hi-in
start-hi()

low-done()
t-lo()

preempt-done()
t-hi()

hi-done()
t-hi()

hi-in
start-preempt()

lo-in
start-low()

hi-done()
t-hi()

I

BL

low-done()
t-lo()

preempt-done()
t-hi()

hi-in
start-preempt()

lo-in
start-low()

hi-in
start-hi()

‘‘Busy-High’’

‘‘Idle’’

‘‘Busy-Low’’

1

2

1

2

(a)

(b)

Sin out

(c)

‘‘Idle’’

1

2

1
2

out in

‘‘Busy-Low’’

BP

BP

‘‘Busy-Preempt’’

‘‘Busy-Preempt’’

delay1

(Delay1)Figure 11: \2ClassServer" Having a Child MCSdelay2 � Delay2()Examining the \Delay1" and \Delay2" MCS types shown in Figure 12(b), we notice that the two typesof MCS's di�er only in their event routines (\hi-done()" versus \preempt-done()"). In this case it is trivialto create a single parameterized MCS type that can be used in place of the two distinct types. This newparameterized MCS type \Delay" is shown in Figure 12(c). The \Delay" MCS type has two parameters: atime delay function and an event routine. The \delay1" and \delay2" MCS's of Figure 12(a) can now bespeci�ed as follows. delay1 � Delay(t-hi,hi-done)delay2 � Delay(t-hi,preempt-done)Now both \delay1" and \delay2" are instances of the same type of MCS that di�er only in their event routines.(Note that the \Delay" MCS type has more exibility than is required in the \2ClassServer" as it also allowsfor di�erent time delay functions to be speci�ed for the \delay1" and \delay2" MCS's.)18



I

BL

low-done()
t-lo()

lo-in
start-low()

(Delay1)

in outS

t-hi()
hi-done()

in outS

(Delay)(time-delay,event) time-delay()
event()

(c)

‘‘Idle’’

1

2

1
2

out in

‘‘Busy-Low’’

delay1

delay2

hi-in

start-hi()

start-preempt()
hi-in

out in

(a)

(b)

in out

(Delay2)

S

preempt-done()
t-hi()Figure 12: \2ClassServer" with Parameterized MCS Reuse4 EXPERIMENTAL FRAMEHCFG Models support the use of experimental frames (Zeigler 1984). The \experimental frame" conceptseparates a model's de�nition from the set of model parameters used for a speci�c execution of the model.The experimental frame can be used to specify such information as: the initial control state (POC location)for each AC, the initial values for AC and MCS variables (including the seeds for random number generators),initial messages in input port message queues, desired data collection, model termination conditions, and, insome cases, even variations in the model structure (e.g., the number of servers for a simulation run). Theexperimental frame can also be used to specify parameters and handles during the instantiation of componentsand MCS's and can even modify HIG and HCFG hierarchies of the model.Experimental frame information can be supplied to an HCFG Model either interactively or in batchmode. Information can be supplied via a user at a computer console, from a supervisory monitor programor arti�cial intelligence, or simply from a set of con�guration �les. Interactive speci�cation of experimentalframe information can allow for prompting, feedback, online help, and the use of default settings.5 EXAMPLEIn this section we demonstrate modeling using HCFG Models by modeling a simple system. This simplesystem illustrates the various features of HCFG Models but does not demonstrate how HCFG Models canbe used to model more complex systems; e.g., none of the AC's in this example have an HCFG that uses aMCS hierarchy of depth greater than two.We model the behavior of a system that processes two classes of jobs using a two stage organization. The�rst stage consists of a single two class server as was described in Subsection 3.2.4, whereas the second stageof the system consists of two independent single servers, one for each class of jobs.The HIG tree for the model we develop in this section is shown in Figure 13. From this �gure it is easyto see the components that constitute the model and the hierarchical organization of those components.19



system
(MySystem)

sink
(2InputSink)

source
(2ClassExpSrc)

(2ClassServer)
stage1 stage2

(2Servers)

server1
(Server)

server2
(Server)

(Top)

Figure 13: Model HIG TreeWe model the highest level of the component hierarchy (the top level CCS of the HIG) using three compon-ents as shown in Figure 14. The \source" component of type \2ClassExpSrc" models the arrival of new jobsrequiring processing, the \system" component of type \MySystem" models the two stage processing system,and the \sink" component of type \2InputSink" removes jobs from the model after they have completed ser-vice. We model component types \2ClassExpSrc" and \2InputSink" as AC's, whereas we model componenttype \MySystem" as a coupled component, thus allowing it to be decomposed into simpler subcomponents.
(2ClassExpSrc) (MySystem) (2InputSink)

source system sink

hi-out

lo-out

hi-out

lo-out

hi-in

lo-in

hi-in

lo-inFigure 14: Top Level CCSIn this example we model each job as an intercomponent message (i.e., a message arrival to the \system"component corresponds to a job arrival). These intercomponent messages also have attribute �elds that canbe used to communicate additional information between components and also for any desired data collectionactivity.We model job arrivals to the system (using component type \2ClassExpSrc") as having an exponentialinterarrival time, and furthermore, each arrival is randomly assigned a priority as it arrives. The meaninterarrival time of jobs and the probability that a job arrival is a high priority job are two parameters thata modeler can specify via the experimental frame.We model the behavior of the \2ClassExpSrc" type AC as shown in Figure 15. Whenever the AC's POCarrives at control State \s1" it will remain there for an amount of time determined by the \exp-delay()" timedelay function. The \exp-delay()" time delay function is a function that samples from an exponential randomvariable with a mean value speci�ed by the modeler in the experimental frame. When the POC traversesthe self loop TimeEdge the AC executes the associated event routine \generate job()". The \generate job()"event routine (also shown in Figure 15) creates a new message, determines the job priority (based on arandom variate), and sends the message (representing a job arrival) to the appropriate AC output port basedupon the job's priority. This completes the description of the \2ClassExpSrc" type AC.We next decompose the \system" component of type \MySystem" from Figure 14 into two processingstages as shown by the CCS in Figure 16. We model component \stage1" as an AC of type \2ClassServer"as described in Subsection 3.2.4, and we further decompose coupled component \stage2" of type \2Servers"into two subcomponents as shown by the CCS in Figure 17.Both subcomponents, \server1" and \server2", are AC's of type \Server" (i.e. they share the sametype de�nition). \Server1" processes only high priority jobs, while \Server2" processes only low priorityjobs. The behavior speci�cation of a \Server" type AC is shown in Figure 18. Recall that HCFG's (MCS's)20



s1
exp-delay()

generate_job()generate_job() {// create a new job (message)Message* newMsg = new Message();// sample from a 0 to 1 uniform distribution for priority_samplepriority_sample = sample_from_0_1_uniform();if(priority_sample <= probability_that_job_is_high_priority) {// this is a high priority job// send job (message) to output port ``hi-out''hi_out -> send(newMsg);} else {// this is a low priority job// send job (message) to output port ``lo-out''lo_out -> send(newMsg);}} Figure 15: 2ClassExpSrc MCS and \generate job()" Event Routine
(2ClassServer) (2Servers)

stage1 stage2

hi-out

lo-out

hi-out

lo-out

hi-in

lo-in

hi-in

lo-in

(MySystem)

hi-in
lo-in

hi-out
lo-outFigure 16: MySystem CCSsupport parameterization, thus, even though \server1" and \server2" share a commonbehavior speci�cation, amodeler can specify di�erent mean service times for high priority and low priority jobs using the experimentalframe. This demonstrates parameterized reuse of AC's in which parameters are speci�ed via the experimentalframe.When the \Server" type AC's POC arrives at control state \I" (Idle) in Figure 18, the AC waits until amessage arrives on input port \in" indicating that a job is available for processing. When a job is availablethe AC begins processing the job by executing the associated event routine \start-job()" and the POC movesto control state \B" (Busy). The AC's POC remains at \B" for an amount of time speci�ed by the timedelay function \delay(mean)" and then �nishes processing of the job by executing the associated event routine\�nish-job()". One of the tasks of event routine \�nish-job()" is to send a message to the AC's output port\out" to signify the completion of the job. With the speci�cation of an AC of type \Server" we have �nishedthe speci�cation of the component type \System" from Figure 14.The only remaining component to be speci�ed for our model is component \sink" of type \2InputSink"from Figure 14. We specify component type \2InputSink" to be an AC whose behavior is de�ned as inFigure 19. The \2InputSink" MCS has a single control state \s1" and two self looping PortEdges (onefor each input port). When a message arrives on either input port of an AC of type \2InputSink" theappropriate edge is traversed. Note that the same event routine \remove-msg()" is associated with both21



(Server)

(Server)

server2

server1

in

in

(2Servers)

out

out
hi-in hi-out

lo-in lo-outFigure 17: 2Servers CCS
in

start-job() finish-job()

delay(mean)

I BFigure 18: Server MCS
s1

in1

in2

2

remove-msg()

remove-msg()

1Figure 19: 2InputSink MCSPortEdges. This event routine simply extracts any desired information from the received message and thendestroys the message.6 SUMMARYWe introduced the HCFG Model paradigm as a hierarchical modeling paradigm for discrete event simulationthat makes it easy to develop and reuse models and model elements and supports the exible and e�cientexecution of models on di�erent types of computer architectures. We presented an overview of the spe-ci�cation and operation of CFG Models as the foundation upon which HCFG Models are based and thendiscussed the HCFG Model extensions to CFG Models. A high level overview of the operation of CFG andHCFG Models was then presented, using using the sequential synchronous simulation execution algorithmas an example. We then described the two types of complementary speci�cation structures used in the con-struction of HCFG Models; how CCS's (Coupled Component Speci�cations) are used in the constructionof a model's HIG (Hierarchical Interconnection Graph) and how MCS's (Macro Control States) are used inthe construction of HCFG (Hierarchical Control Flow Graph) behavior speci�cations for the AC's (AtomicComponents) of a model. We demonstrated hierarchical modeling and model element reuse in each of thetwo speci�cation types. Lastly, we briey introduced the experimental frame concept as supported by theHCFG Model paradigm and we then presented a complete model in order to illustrate modeling using theHCFG Model paradigm. The hierarchical modeling and reuse capability of HCFG Models makes it easyto develop, use, maintain, and communication models that can be e�ciently executed on di�erent types ofcomputer systems. A modeler does not have to be an expert in parallel/distributed computing in order toachieve e�cient parallel/distributed model execution of HCFG Models.22



ReferencesCota, B., D. Fritz, and R. Sargent (1994). Control ow graphs as a representation language. In J. Tew,S. Manivannan, D. Sadowski, and A. Seila (Eds.), Proceedings of the 1994 Winter Simulation Conference,pp. 555{559.Cota, B. and R. Sargent (1990a, December). Control ow graphs: A method of model representation forparallel discrete event simulation. CASE Center Technical Report 9026, Syracuse University.Cota, B. and R. Sargent (1990b). A framework for automatic lookahead computation in conservative dis-tributed simulations. In D. Nicol (Ed.), Distributed Simulation, pp. 56{59. The Society for ComputerSimulation.Cota, B. and R. Sargent (1990c, November). Simulation algorithms for control ow graphs. CASE CenterTechnical Report 9023, Syracuse University.Cota, B. and R. Sargent (1992, April). A modi�cation of the process interaction world view.ACM Transactionson Modeling and Computer Simulation 2 (2), 109{129.Farr, S., A. Sisti, D. Fritz, and R. Sargent (1995). A simulation model of a surveillance radar data processingsystem using HI-MASS. In C. Alexopoulos, K. Kang, W. Lilegdon, and D. Goldsman (Eds.), Proceedingsof the 1995 Winter Simulation Conference, pp. 1364{1370.Fritz, D., T. Daum, and R. Sargent (1995, April).User's Manual for HI-MASS. Syracuse, NY: The SimulationResearch Group at Syracuse University.Fritz, D. and R. Sargent (1993, December). Hierarchical control ow graphs. CASE Center Technical Report9323, Syracuse University.Fritz, D. and R. Sargent (1995). An overview of hierarchical control ow graph models. In C. Alexopoulos,K. Kang, W. Lilegdon, and D. Goldsman (Eds.), Proceedings of the 1995 Winter Simulation Conference,pp. 1347{1355.Fritz, D., R. Sargent, and T. Daum (1995). An overview of HI-MASS (hierarchical modeling and simulationsystem. In C. Alexopoulos, K. Kang, W. Lilegdon, and D. Goldsman (Eds.), Proceedings of the 1995Winter Simulation Conference, pp. 1356{1363.Fujimoto, R. (1990, October). Parallel discrete event simulation.Communications of the ACM 33 (10), 30{53.Schriber, T. (1991). An Introduction to Simulation Using GPSS/H. John Wiley and Sons.Zeigler, B. (1984). Multifacetted Modelling and Discrete Event Simulation. Academic Press.
23


	Hierarchical Control Flow Graph Models
	Recommended Citation

	tmp.1286291883.pdf.y4f9z

