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ABSTRACT

Hierarchical Control Flow Graph Models define a modeling paradigm for discrete event simulation modeling
based upon hierarchical extensions to Control Flow Graph Models. Conceptually, models consist of a set
of encapsulated, concurrently operating model components that interact solely via message passing. The
primary objectives of Hierarchical Control Flow Graph Models are: (1) to facilitate model development by
making it easier to develop, maintain, and reuse models and model elements, and (2) to support the flexible
and efficient execution of models. Hierarchical Control Flow Graph Models use two complementary types
of hierarchical model specification structures, one to specify components and their interconnections, and the
other to specify component behaviors.

1 INTRODUCTION

The Hierarchical Control Flow Graph (HCFG) Model paradigm is a hierarchical modeling paradigm for
discrete event simulation that is based on and designed to be a hierarchical extension of Control Flow
Graph (CFG) Models (Cota and Sargent. 1990a). HCFG Models were designed to facilitate model development
and support the flexible and efficient execution of models. Model development is supported through the use
of hierarchy and encapsulation, and model execution is supported by algorithms that allow HCFG Models,
based on CFG Models, to be executed on either sequential or parallel /distributed computer systems.

HCOFG Models use two independent and complementary types of hierarchical model specification struc-
tures. One type of specification structure is used to specify a hierarchically organized set of encapsulated
concurrently operating model components and the interconnections between those components. The other
type of specification structure is used to specify the behaviors of the individual model components.

Discrete event simulation models based on the HOCFG Model paradigm are easy to develop and provide
(based on the underlying CFG Model representation) for flexible and efficient model execution on different
computer architectures. The hierarchical modeling capability provided by the HCFG Model paradigm makes
it easy to develop, use, maintain, and communicate models and model elements. The HCFG Model paradigm
draws upon object oriented concepts such as encapsulation and inheritance (derivation) and lends itself to
the development of generic and application specific libraries of reusable model elements. (Given the existence
of an appropriate set of model element libraries, HOFG Models can be constructed by simply “plugging”
together existing model elements. The HOFG Models are also extensible, in that when an appropriate model
element does not exist, a modeler can create a new model element, add this new model element to a model
element library, and then use this new model element in the construction of the model.



HCOFG Models support flexible and efficient execution via a set of CFG Model simulation execution
algorithms that allow a model to be executed on either sequential or a parallel/distributed computer. A
modeler using HOFG Models does not need to also be an expert on parallel/distributed computing in
order to obtain efficient parallel/distributed simulation execution as is the case in some parallel discrete
event simulation systems. No special or additional information is required from a modeler in order to
execute HCFG or CFG Models on parallel /distributed computer systems as information required for efficient
parallel /distributed simulation execution can be automatically extracted from the model by the simulation
execution algorithms.

Most elements and relationships in an HCOFG Model have a rather straightforward graphical represent-
ation that can be used as a basis for visual interactive modeling. The HCFG Model paradigm is computer
language independent, and a simulation system based on HCFG Models may be implemented using any gen-
eral purpose programming language. A prototype simulation system based on the HCFG Model paradigm
was implemented using the C++ programming language (Fritz, Daum, and Sargent 1995; Fritz, Sargent, and
Daum 1995).

The remainder of this paper is organized as follows. Section 2 gives a brief overview of CFG Models,
HCOFG Models and the high level operation of such models. Section 3 discusses the two types of model
specification structures used in the specification of HOFG Models. Section 4 briefly introduces the use of
“experimental frames” in HOFG Models, and in Section 5 a simple HCFG Model is presented to illustrate
modeling using the HOCFG Model paradigm. Finally, we summarize this paper in Section 6.

2 OVERVIEW

HCOFG Models are based on hierarchical extensions to CFG Models. HOFG Models can be translated into
equivalent CFG Models and executed on either sequential or parallel /distributed computer systems using any
of the set of simulation execution algorithms developed for CFG Models. This section presents an overview
of the CFG Model representation, the HCFG Model paradigm, and the operation of CFG and HCFG Models.

2.1 Control Flow Graph Models

Cota and Sargent (1990a) developed the CFG Model representation based on the modified process interaction
world view (Cota and Sargent, 1992). The primary objective of CFG Models was to make information useful
for parallel /distributed simulation explicit in the model representation, thus enabling the development of a
set of simulation execution algorithms for different types of computer architectures (Cota and Sargent 1990c¢).
A modeler does not need to add any additional or special information to a CFG Model in order to efficiently
execute a model on a parallel /distributed computer system. Conceptually, a CFG model consists of a sef,
of independent, encapsulated, concurrently operating model components where each component has its own
“thread of control” and the components interact with each other solely via message passing. The CFG Model
representation is state based and favors an “active resource” view of modeling over an “active transaction”
view. (GPSS (Schriber 1991) is a widely used system that favors the active transaction view.) Modeling from
an active resource view means that the system is modeled from the point of view of the system’s resources
by describing the behaviors and interactions of those resources.

CFG Models use two complementary types of model specification structures. The first type of specification
structure, called an Interconnection Graph, is used to specify the components that comprise the model and
how those components are interconnected. The second type of specification structure, called a Control Flow
Graph, 1s used to specify the behaviors of the individual model components. FEach component in a CFG Model
has an associated CFG behavior specification. A CFG defines the behavior of a specific type of component,
and all components of the same type are specified via a single CFG. A CFG Model specification consists of
one Interconnection Graph plus a set of CFG’s (one CFG for each distinct type of component in the model).

An Tnterconnection Graph is a directed graph in which the nodes represent model components and the
directed edges represent message channels that define a static routing pattern for intercomponent message
traffic. Messages leave components through output ports and enter components through input ports. A
component may have any number of input and/or output ports. Each channel connects one output port to
one input. port and each port is connected to exactly one channel (i.e., port connections are one-to-one). Each



channel generally carries only one type of message. This implies that there may be multiple channels between
two components if those components need to communicate more than one type of message.

Intercomponent messages possess attributes that are used to carry information between components. The
set of attributes possessed varies by message type, but all messages possess a “timestamp” attribute. The
timestamp of a message 1s the time at which the message was sent. Thisis in contrast to the method generally
used in parallel and distributed simulation in which a message’s timestamp specifies the time at which the
message 18 to be received and acted on by the message recipient.

Fach component in a CFG Model has its own local simulation clock, and the value of each component’s
clock is strictly non-decreasing. (Operationally, components may only move forward through time.) Since
the timestamp on each message is the time at which the message was sent (i.e., the value of the local clock of
the sending component), the timestamps on the messages sent over each channel are non-decreasing. When
a message is sent to a component’s output port it is immediately (in zero simulation time) transported over
the connecting channel to the corresponding input port. Messages sent over each channel arrive in the order
in which they are sent. Each input port has an associated message queue, and messages arriving at an input
port queue FTFO (First-Tn First-Out) in this message queune until the receiving component decides to receive
and act on them; i.e., CFG Model components are “active” receivers (Cota and Sargent. 1992). This is in
contrast to object oriented simulation systems that generally use a passive receiver model in which messages
are received and acted on by the receiving entity immediately upon their arrival.

The components in a CFG Model operate concurrently and are independent of each other except for
message passing interaction. Each component has its own thread of control, its own local simulation clock,
and its own set of local variables.

A Control Flow Graph is an augmented directed graph in which the nodes represent control states and
the edges specify the set of possible control state transitions. A control state is a formalization of the “process
reactivation point” (Cota and Sargent 1992).

Each component in a in a CFG Model has its own Point of Control (thread of control). Between events a
component’s Point, of Control (POC) resides at a control state, and the control state where a component’s POC
resides at any point in simulation time is called the component’s “current” control state. An event execution
for a component consists of three distinct operations: (1) the component advances its local simulation clock
to the time of its pending event, (2) the component’s POC traverses an edge originating from the its current,
control state, and (3) the component carries out any additional actions specified by an event routine associated
with the traversed edge. The control state that the component’s POC arrives at following an edge traversal
(event execution) then becomes the component’s new current control state.

The “angmented” part of a CFG’s augmented directed graph refers to a set of edge attributes. Each edge
in a CFG, in addition to an originating and a terminating control state, has the following three attributes:
a condition, a priority, and an event. The condition attribute specifies when (at what point in simulation
time) an edge can be considered for traversal. The edge originating from the component’s current control
state whose condition is satisfied af the earliest point in simulation time is selected. FEdge priorities are used
to choose between edges whose conditions are satisfied at the same “earliest” time (i.e., to break time ties).
Fdge priorities must be unique among all edges originating from the same control state. An edge’s event
attribute specifies a set of actions to take (in addition to the local clock update and the POC edge traversal)
as part of a component’s event execution. These actions may include: receiving a message, sending one
or more messages, and/or modifying the values of the component’s local variables. Component behavior
specification using CFG’s 1s discussed in Subsection 3.2.

Cota and Sargent (1990c) developed a set of algorithms for the execution of CFG Models that allow
CFG Models to be executed on either sequential computers or parallel/distributed computers. The paral-
lel /distributed execution algorithms use information explicit in the CFG Model representation to automatic-
ally generate “lookahead” information (Cota and Sargent 1990b). The availability and quality of lookahead
information is a key element in parallel/distributed simulation (Fujimoto 1990). Automatic generation of
lookahead in CFG Models alleviates the need for a modeler to manually add such information to a model
specification as 18 a common practice in parallel discrete event simulation.

The classes of simulation execution algorithms developed for CFG Models are shown in Figure 1. The
sequential algorithms execute models on a sequential computer while the parallel /distributed algorithms
execute models on parallel or distributed computers. The sequential-synchronous algorithm executes events



in a strict time order, whereas the sequential-asynchronous algorithm may reduce some simulation execution
overhead (such as event list manipulations) by executing some events out of time order when the execution
order of those events does not, affect the simulation result. Conservative parallel/distributed algorithms only
execute events when those events are gunaranteed to be correct. (Conservative algorithms avoid deadlock
through the use of either deadlock prevention or deadlock detection and correction.) Optimistic algorithms
save model state prior to executing any event that is not guaranteed to be correct. If an optimistic algorithm
later finds that an event execution was incorrect, it then “rolls back” to a previously saved state and continues
execution from that “restored” state. The combined parallel/distributed algorithms attempt to execute
in conservative mode whenever possible, but they may temporarily switch into optimistic mode when the
executing processor would otherwise be idle.

Hierarchical
- - Modeling
Hierarchical oo
[Control Flow Graph Model] Specification
Language
********************** Moded
(Control Flow Graph Model) Representation

Language

Simulation
Execution
Algorithms

Parallel/Distributed

(&/nchronous Asynchronou9 @onservative OptimisicXCombined)

Figure 1: Modeling Language, Representation Language, and Algorithms

2.2 Hierarchical Control Flow Graph Models

HCFG Models are based on the modified process interaction world view (Cota and Sargent 1992) and were
developed as a hierarchical modeling paradigm that can use CFG Models (Cota and Sargent 1990a) as a model
representation language. Using CFG Models as a model representation language allows HCFG Models to be
executed using any of the existing CFG Model execution algorithms.

While the CFG Model representation can be used for modeling, it was not designed for that purpose.
The CFG Model representation is straightforward to use in the modeling of simple systems but models can
become complex when modeling more complex systems. Also, CFG Model’s provide only limited support
for model element reuse. HOFG Models employ hierarchy and encapsulation for complexity management
and provide a wider range of support for reuse than is provided by CFG Models. A modeler can develop a
model using HCFG Models, transform the model into an equivalent CFG Model (Cota, Fritz, and Sargent
1994; Fritz and Sargent 1993), and then execute the model using any of the CFG algorithms shown in
Figure 1. (Transforming an HCFG Model into its equivalent CFG Model is conceptually straightforward
and computationally efficient.) HCFG Models are a superset, of CFG Models in that any valid CFG Model
18 also a valid HCFG Model.

HOFG Models use two complementary types of hierarchical model specification structures. The first
type of specification structure, called a Hierarchical Tnterconnection Graph (HIG), is used to specify a hier-
archically organized set of encapsulated components that comprise the model and how those components are
interconnected. The second type of specification structure, called a Hierarchical Control Flow Graph (HCFQG),
18 used to specify the behaviors of the individual components of the model. A HIG is a hierarchical extension
of an Interconnection Graph, and an HCFG 1s a hierarchical extension of a CFG. An HCFG Model specific-
ation consists of one HIG plus a set of HOCFG’s (one for each type of component in the model that requires
a behavior specification).

HCOFG Models use two distinct classes of model components: atomic and coupled. Atomic Compon-
ents (AC’s) correspond to the components used in CFG Models while coupled components have no counter-
part in CFG Models. Tn HCFG Models only the AC’s have HCFG behavior specifications.



Coupled components are encapsulated components that are formed by coupling together a set of atomic
and /or coupled subcomponents. Tt is this recursive definition of coupled components that provides support
for hierarchical component specification in HCFG Models. Each distinct type of coupled component in an
HCFG Model is specified via a corresponding Coupled Component, Specification (CCS). A modeler specifies
the HIG for an HCFG Model by simply specifying the set of CCS’s for the coupled components used in the
model.

A CCS is a directed graph in which the nodes represent. model components (atomic and/or coupled)
and the edges represent the channels over which intercomponent messages flow. The channels in a CCS
interconnect subcomponent ports in a manner analogous to a CFG Model Interconnection Graph. However,
in a CCS, channels may also connect ports of the component’s subcomponents to the “outside world” via a
set of “external” ports that allow messages to flow through the enclosing coupled component’s encapsulation
boundary. Note that a CFG Model Interconnection Graph is simply a special case of a coupled component
that: (1) has no connections to the outside world, and (2) in which all subcomponents are atomic. The
specification of components and interconnections via CCS’s is discussed 1in Subsection 3.1.

In HCFG Models each AC (Atomic Component) has a corresponding HOCFG that defines the behavior
for that type of AC. An HCFG is a hierarchical extension of a CFG in which the behavior of an AC can
be recursively partitioned into a set of encapsulated disjoint “partial” behaviors that, when combined, define
the AC’s behavior. Behavior specification via recursive application of “divide and conquer” provides support
for hierarchical behavior specification. This allows complex behaviors to be recursively broken down into
sets of disjoint simpler behaviors, each of which can then be individually specified. Each (partial or total)
behavior in an HCFG Model is specified using a behavior specification structure called a Macro Control
State (MCS). A MCS is an extension of a CFG that provides support for hierarchical modeling and reuse at,
the sub-AC level. MCS’s constitute the basic building blocks of an HCFG. A modeler constructs an HCFG
largely by specifying a set of MCS’s that, when combined, define the component’s behavior. Component
behavior specification using MCS’s is discussed in Subsection 3.2.

Figure 2 illustrates the relationships between the various structures used in the specification of an HCFG
Model. This model shows two coupled components, “a” and “c”, and three AC’s, “b”, “d”, and “e”. Fach
coupled component is defined via a CCS (Coupled Component Specification) that specifies the subcomponents

and interconnections that comprise the coupled component. Together, the CCS’s for “a” and

¢” completely
specify the model’s HIG. Coupled component “a”, the top level component in the HIG, via transitive closure,
encloses all other components in the model. Each of the AC’s has an associated HCFG that specifies the
behavior for that AC, and each HCFG 1is constructed from a hierarchically organized set of MCS’s. The
top level MCS of each AC encloses, via transitive closure, all other MCS’s in that AC’s HCFG in a manner
analogous to the way the top level component of a model encloses all the components of a model. The HCFG
for component “b” consists of a single MCS whereas the HCFG for component “e” is constructed using five
MCS’s. Tf the complexities of the MCS’s used in components “b” and “e” are comparable, then the behavior
of component “e” is likely to be (potentially five times) more complex than that of component “b”.

The HIG and HCFG hierarchical structures used in the HCFG Model paradigm aid in the management of
model complexity and make it easier to develop and maintain models. Also, the encapsulated model elements
(CCS’s and MCS’s) used in HOFG Models provide support for model element, reuse at both a higher level
(CCS’s) and at a lower level (MCS’s) than is possible with CFG Models.

2.3 Model Operation

Conceptually, an HOFG Model consists of a set of independent, encapsulated, concurrently operating AC’s
that interact with each other via message passing. All intercomponent message traffic in an HCFG Model
originates from and terminates at AC’s. (Coupled components define the component hierarchy and the static
routing pattern for the inter-AC messages, but they neither create nor destroy messages.)

The AC’s in a model interact with a simulation executive that executes the model as specified by the sim-
ulation execution algorithm, and in this manner the simulation executive can be thought of as the simulation
algorithm in operation. The simulation executive is a single central authority when executing a model using
one of the sequential simulation algorithms, whereas it consists of a set of distributed interacting entities
(executives) when executing a model using one of the parallel/distributed algorithms. When executing a
model using one of the sequential algorithms the simulation executive has access to “global” information on
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Figure 2: Relationships between Specification Structures

the state of the model and it directs the operation of all AC’s in the model based on this information. When
executing a model using one of the parallel/distributed algorithms each distributed executive is responsible
for and directly interacts with only those AC’s local to that executive. Distributed executives also interact
with each other in the handling of operational details such as deadlock prevention.

The simulation executive (or distributed executive) extracts information from and issues operational
directives to AC’s and is responsible for the correct and efficient operation of the simulation model (Cota
and Sargent 1990c). The executive is responsible for such activities as simulating the concurrent. operation of
A(C’s when executing a model on a sequential computer and for generating and using lookahead information
when executing a model on a parallel /distributed computer system. The specifics of the interaction between
the AC’s and the simulation executive(s) differs based upon the simulation algorithm being used, but there
exists a minimal level of interaction common across all the CFG Model simulation execution algorithms.

Conceptually an AC performs only two basic operations: (1) it selects an edge originating from its current,
control state, and (2) it executes its pending (next) event. The simulation executive uses information extracted
from the AC’s to determine when each AC should perform each operation and then directs the appropriate
AC’s to perform the appropriate operations in the appropriate sequence.

When an AC selects an edge as part of an edge selection operation, information associated with the
selected edge becomes available to the simulation executive. The information associated with the selected
edge includes the AC’s next event time and whether the AC’s next event is conditional or unconditional. A
conditional event is an event that can be preempted (replaced with a different event) due to the arrival of a
new intercomponent message. Also, each AC with a conditional next event informs the simulation executive
upon receipt of any intercomponent message that might preempt the component’s conditionally pending
event.

When an AC is directed to execute its next event, the AC first advances its local simulation clock to the
time of its next event. Then the AC’s POC traverses the AC’s selected edge and the AC carries out any
additional actions specified by the event attribute (routine) associated with the traversed edge.

We present, the synchronous sequential simulation execution algorithm as a concrete example of CFG
Model execution. The sequential synchronous algorithm simulates CFG Models on a sequential computer
and executes all events in strict time order. The sequential synchronous algorithm requires that each AC in
the model have a unique AC priority. This AC priority is used by the simulation algorithm to break time ties
between AC’s. (Recall that CFG edge priorities were used to break time ties between edges within an AC.)



Cota and Sargent (1990c¢) developed an algorithm that analyzes a CFG Model and automatically assigns AC
priorities in such a manner as to guarantee that the results of a sequential simulation of a model will be
identical to the results of a parallel /distributed simulation of the same model.

An overview of the sequential synchronous simulation execution algorithm is shown in Figure 3. Construc-
tion of the model involves the construction and initialization (in computer memory) of objects representing
the model. Model elements include model components, ports, interconnections, and component, behaviors.
Component, behaviors include the CFG (or MCS) graph(s), variables, AC initial control state (POC location),
and seeds for pseudo random number generators. Also, any initial intercomponent messages are created and
placed in the appropriate input port message queues, and priorities are assigned to AC’s for use in breaking
time ties during model execution.

1. Construct and initialize the model; assign priorities to AC’s.
2. Each AC performs an edge selection operation.
3. Repeat the following until termination conditions are met.

(a) Select the AC with the earliest next event time, using AC priorities to break time ties.
(b) The selected AC executes its pending event.
1. The AC advances 1ts local simulation clock to 1ts next event time.

1. The AC’s POC traverses its selected edge.
1. The AC carries out any additional actions specified by the event routine associated with the
traversed edge.
(¢) The following AC’s perform an edge selection operation.
1. The AC that just executed an event.
1. Any other AC that both:
A. had a conditionally pending edge, and

B. received a new intercomponent message that could preempt the AC’s conditionally pending
edge.

Figure 3: Sequential Synchronous Algorithm

Each AC then performs an edge selection operation. Each selected edge has an associated time that
determines the AC’s next event time and whether the AC’s next event is conditional or unconditional. One
way of selecting the next AC to execute an event is to use a priority queue of AC’s. Tf AC’s are placed in
a priority queue and selected based on the next event times of the AC’s (using AC priorities to break time
ties) then the AC with the earliest next event time (and highest priority in the case of time ties) will always
be at the front of the priority queue. The sequential synchronous algorithm then simply selects the AC at
the front of the priority queue and directs that AC to execute 1ts pending event.

The selected AC then executes its pending event. The selected AC 1s then “flagged” to indicate that it
must perform a new edge selection operation in order to determine its next event time. Also, any AC with
a conditional next event that received an intercomponent message that could preempt its currently selected
edge 1s also flagged for reevaluation. All such flagged AC’s are removed from the priority queue, directed to
perform a new edge selection operation, and then reinserted in the priority queue. Then, unless simulation
termination conditions are met, the AC selection process begins again. This describes the basic operation
of CFG and HCFG Models under the sequential synchronous simulation execution algorithm. The internal
specification and operation of individual AC’s is discussed in Subsection 3.2.



3 MODEL SPECIFICATION

An HCFG Model specification consists of one HIG plus a set of HCFG’s (one per distinet type of AC in the
model). The HIG specifies a hierarchically organized set of components that comprise a model and how those
components are interconnected, while HCFG’s describe the behaviors of the individual AC’s in the model.
Specification of a HIG, via a set of CCOS’s, is presented in Subsection 3.1, and the specification of HCFG's,
via sets of MCS’s, is discussed in Subsection 3.2.

3.1 Component and Interconnection Specification

The basic building block in an HCFG Model’s HIG is the model component, and HCFG Models use two
distinct classes of model components: atomic and coupled. Model components are encapsulated entities that
have an external view and an internal view. From the external view, all model components (hoth atomic and
coupled) have the following attributes: a name (instance name), a type (type name), a set of input ports,
and a set of output ports. From the external view of a component it is impossible to distinguish coupled
components from AC’s. (The internal views of coupled components and AC’s are covered in Subsections 3.1.1
and 3.2, respectively.) Each component in a model is an “instance” of a particular “type” of component.
The distinction between instance and type 1s significant in that, if multiple model components are instances
of the same type of component, then those components share the same type definition.

A component boundary is an encapsulation boundary. This means that the internals of a component are
hidden from the component’s external view, and conversely, the externals of a component are hidden from the
component’s internal view. The exception to this “hidden” rule is the set of ports through which messages
enter or leave the component. Ports cross the component’s encapsulation boundary and are visible from both
the internal and external views of a component. FEach port has the same identifier (name) on hoth sides of
the component’s encapsulation boundary and in this manner ports form the link between the internal and
external views of a component.

The HCFG Model paradigm specifies model elements and relationships but does not dictate how these
elements and relationships should be represented. In this paper we use graphical representations when we
feel they more clearly convey information than a textual representation would. Some conventions we follow
for the representation of model elements and relations are as follows. Components are represented via boxes,
message channels are represented by line segments and their directions by arrows, and port identifiers (names)
are located near the ports. Since a component’s ports cross i1ts encapsulation boundary and 1ts port names
are identical from both sides of the component boundary, in a graphical representation of a component its
port names may be located either inside or outside the component as 1s convenient. Naming conventions we
use are as follows. The first letter of a component type name is generally an uppercase letter whereas the first
letter of an instance name is generally a lowercase letter. When instance and type names are shown together
in a graphical representation, type names are distinguished by enclosing them in a set of parentheses “()”.

An external view of a component is shown in Figure 4. This model component named “theBlueServer” is
of component type “FExpServer”. Tt has three input ports: “new jobs”, “suspend operation”, and “restart
suspended job”, and one output port: “completed jobs”. One possible definition of message types for such
a component is as follows. (Note that intercomponent, messages can carry information between components
via message attributes.) Message arrivals on port “new johs” represent the arrival of a batch of new jobs
requiring processing, and a message attribute “batch_size” specifies the number of jobs in each batch. A
message arrival on “suspend operation” indicates that the server should suspend operation until instructed
otherwise, and a message arrival on port “restart suspended job” indicates that the server should resume
operation, restarting any job that was in service at the time server operation was suspended. Each message
departure on port “completed jobs” represents a job that has completed service at “theBlueServer”.

suspend-operation restart-suspended-job

(ExpServer)

new-jobs \_theBlueServer | completed-jobs

Figure 4: FExternal View of a Component



3.1.1 Coupled Component Specification

Coupled components are encapsulated model components formed by coupling together other components.
The internal view of a coupled component is the view from inside the component but outside all enclosed
subcomponents. This internal view is specified via a “Coupled Component Specification (CCS)” that specifies:
(1) a set, of subcomponents that are coupled together to form the new coupled component type and, (2) how
those subcomponents are interconnected.

Although coupled components do not. have behavior specifications (HCFG’s) like AC’s do, they do have
behaviors. The behavior of a coupled component 1s determined in an indirect manner by the behaviors and
couplings of the subcomponents that comprise the coupled component. This derives from the fact that each
coupled component encloses, directly and/or indirectly (recursion through the component hierarchy), one
or more AC’s. Note that coupled components that enclose identical sets of AC’s may exhibit differences in
behavior that are due solely to differences in the couplings (interconnections) of their enclosed subcomponents.

We next use a simple example to illustrate how a coupled component can be constructed from a coupling of
subcomponents. The first step in forming a new coupled component from a set of subcomponents s to specify
the set of subcomponents that are to be enclosed by the new coupled component and the interconnections
(represented via channels) of those subcomponents. These interconnections include both connections between
subcomponents and also connections between enclosed subcomponents and components external to the new
coupled component. Suppose that we wish to construct a new coupled component type “C” that contains two
components, “al” and “a2” of type “A”, and one component, “b”, of type “B”, interconnected as shown in
Figure 5(a). (Note that the port identifiers (names) of the two instances of component type “A” are identical
since they are of the same type.) The couplings (component interconnections) are represented graphically
in the figure (e.g., output port “02” of component “b” is connected to input port. “in” of component, “a2”).
Ports “new jobs” and “finished jobs” of component “b” are intended to be connected to components that
will reside outside the new coupled component and thus they are not connected in Figure 5(a).
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Figure 5: Coupling of Components



The next step in forming a new coupled component from a set of subcomponents is to draw an encapsu-
lation boundary around the subcomponents that we wish to encapsulate, as shown by the “dashed” box in
Figure 5(b). (We use a dashed box in Figure 5(b) to illustrate the drawing of a new encapsulation houndary
for a component of type “C”. All component boundaries in a CCS, including that of the enclosing coupled
component, are normally shown as solid boxes.) Note that the encapsulation boundary should “cut” only
those channels that will connect subcomponents contained within the new coupled component to components
that will be located outside the new coupled component. Each channel cut by the encapsulation boundary
forms an “external” port of the new coupled component and a unique identifier (name) must be assigned to
each such port. Thus, the new coupled component type “C” (shown as “(C)” in Figure 5(b)) has two external
ports, “process” and “done”, through which subcomponents inside “C” may communicate with components
outside “C”. Note that Figure 5(b) is a graphical representation of the CCS that completely defines the new
coupled component, type “C”. An external view of component type “C” is shown in Figure 5(c). Tnstances
of this new component type “C” are encapsulated model components that can be used anywhere in a model
that such a component 1s required.

The previous example illustrated a “bottom up” approach of constructing coupled components by coup-
ling together a set of existing subcomponents. Coupled components can also be constructed using a “top
down” approach. Using a top down approach, a modeler first specifies the external view of the component
(i.e., its type name and its ports) and then later specifies the internals of the component, type. The top down
approach allows a modeler to use a component in the construction of a model while deferring specification of
the component’s internals to a later time when they can be addressed separately. A modeler can use either
of these approaches or a combination of the two in the construction of an HOFG Model’s HIG.

A general method for constructing an HCFG Model’s HIG using a top down development of coupled
components is to recursively partition components into sets of interacting subcomponents until each of the
remaining “non-partitioned” components has a behavior that can be easily specified via an HCFG. Each of
these remaining non-partitioned components is then specified to be atomic and thus will have an associated
HCOFG behavior specification.

The AC’s in a model operate concurrently and each AC has its own thread of control. Thus, if a particular
model component has a “natural parallelism” in its behavior, then that component should be considered a
candidate for partitioning into two or more AC’s. Possible benefits of this partitioning include: (1) each of
the new smaller AC’s will likely have a simpler behavior and thus be easier to model via an HCFG, and
(2) the maximum theoretical parallelism during simulation execution using a parallel/distributed algorithm
increases with the number of AC’s in the model.

3.1.2 Hierarchical Structures

A HITG 1s completely specified via a set of CCS’s, each of which defines a coupled component type. However, to
determine the set of components that comprise a model and the hierarchical organization of those components,
one must construct the component hierarchy from the set of CCS’s. This construction is accomplished by
starting with the coupled component that encloses the entire model (the only component with no external
ports) and recursively constructing each of that component’s coupled subcomponents (as specified by the
subcomponent’s CCS).

Because a model’s component hierarchy may not be obvious from the set of CCS’s, it 1s desirable to have
an auxiliary structure that shows a model’s component hierarchy at a glance. HCFG Models use an auxiliary
structure called a “HIG tree” for this purpose. A HIG tree is a rooted tree structure in which the nodes of
the tree correspond to model components. Fach node in the HIG tree has a pair of attributes that specify
the corresponding component’s instance name and type name. “Child” nodes of a node in the HIG tree
correspond to the component’s immediate subcomponents. The internal nodes of the HIG tree contain other
components and thus correspond to coupled components, whereas the leaf nodes of the HIG tree correspond
to AC’s. A HIG tree is an abstraction of a HIG that captures the model components and their hierarchical
relationships but not the component interconnections. A model’s HIG tree can be constructed from its HIG
(set of CCS’s), but, the reverse is not possible as the component interconnection information is not present
in the HIG tree.

As stated above, each HCFG Model has one coupled component that encloses the entire model, and this
component is the only component in a model that has no external ports. We refer to this component as
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the “root” or “top level” component of the model as it corresponds to the root node of the HIG tree. Since
components are encapsulated entities that interact solely via message passing, if a coupled component has no
external ports, then those components inside this component are completely isolated from any components
outside this component. If we can partition a set of components into two sets such that there are no intercon-
nections (channels) between the two sets, then the two sets of components constitute at least two completely
independent models.

HCOFG Models also have a second type of auxiliary structure called a “HIG type tree”. Tn a HIG type
tree, the nodes of the rooted tree represent component “types” rather than component instances. A HIG
type tree can be constructed from a HIG tree, but the reverse is not possible as the component instance
name information is not present in the HIG type tree.

We use a simple example to illustrate the concepts of the HIG tree and HIG type tree. Suppose that
we have an HCFG Model whose top level component type “M” is defined by the CCS in Figure 6. Assume
that component types “A” and “C” are as shown in Figure b and also assume that component types “A”
and “B” are atomic. The HIG for this model is completely specified by two CCS’s (Coupled Component
Specifications), one for the top level coupled component type “M” and one for the coupled component type
“C”. Component types “A” and “B” are atomic and thus have behavior specifications (HCF@G’s) rather than
CCS’s.

(M)
(A) in done (C)

a out] pl process ¢

Figure 6: A Top Level CCS

The HIG tree for this simple model is shown in Figure 7(a) (component. type names are shown in paren-
theses) and the corresponding HIG type tree is shown in Figure 7(b). Since all names in the HIG type tree
are type names, there is no need to enclose the names in parentheses as is done in the HIG tree. The three
vertical bars in Figure 7(b) next to the “(2)” indicate replication (i.e., more than one component of type “A”
is contained within a component of type “C”). The “(2)” indicates that two components of type “A” are
contained in a component of type “C” as subcomponents.
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Figure 7: HIG Tree and HIG Type Tree

An HCFG Model’s HIG specifies a hierarchically organized set of model components as defined by a set of
CCS’s. The HIG tree and HIG type tree are auxiliary structures that show at a glance the component hierarchy
and component type hierarchy, respectively. The internal nodes of the auxiliary structures correspond to
coupled components and the leaf nodes correspond to AC’s. The specification of AC behaviors using HCFG’s
18 discussed in the following subsection.

3.2 Atomic Component Behavior Specification

Each AC is an encapsulated entity with an external view and an internal view. From the external view (as
discussed in Subsection 3.1) each type of component (coupled or atomic) has a type name, a set of input
ports, and a set of output ports. From the internal view each type of AC has the same elements as from its
external view plus an HCFG behavior specification.
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The basic building block of an HCFG is the MCS. A MCS is an encapsulated behavior specification
structure that 1s based on and designed to be an extension of a CFG. The MCS extensions to CFG’s provide
support for hierarchical behavior specification and model element reuse at the sub-AC level.

An HCFG behavior specification is a hierarchical behavior specification that is constructed from a set of
hierarchically organized and interconnected MCS’s. In addition to the set of MCS’s, each HCOFG also has a
set of variables and functions that are referred to as “AC” variables and functions. These AC variables (e.g.,
the AC’s local simulation clock) and functions are associated with the AC itself rather than any MCS. Any
and all MCS’s that constitute an AC’s HCFG can access these AC variables and functions.

Internally, each MCS contains a set of MCS variables and functions that are “owned” by the individual
MCS and are distinct from the AC variables and functions discussed above. Each MCS also possesses an
augmented directed graph and a set of “handles” through which the MCS can access the AC variables,
functions, and ports. If an HCFG consists of more than one MCS, then those MCS’s also possess two
additional elements. The first additional element is a set of “ping” in the MCS’s encapsulation boundary
through which the AC’s POC (Point of Control) can enter or leave the MCS, and the second additional
element is a set of handles that provide a MCS with access to variables and functions of other (ancestor)
MCS’s within the MCS hierarchy (of the HCFG). A MCS may only access information contained within an
ancestor MCS if such access has been explicitly granted, and such access (via a handle) can only be granted
by a parent to a child in the MCS hierarchy.

3.2.1 Fundamental Elements

In the case where an HCFG consists of a single MCS, that MCS 1s identical to a CFG. The fundamental ele-
ments that MCS’s have in common with CFG’s are discussed in this subsection, whereas the MCS extensions
to CFG’s that provide support for hierarchy and reuse are discussed in Subsection 3.2.3.

A CFG is a (control) state based behavior specification structure that is represented via an augmented
directed graph. The nodes represent control states and the edges specify the set of possible control state
transitions. Each AC has a POC (Point of Control) that moves from the AC’s current, control state, across
an edge, to a new control state each time the AC executes an event. (Edges may originate and terminate on
the same control state.)

Fach edge in a CFG has an associated condition, priority, and event attribute. The condition specifies
when an edge can be considered for traversal, edge priorities are used to to break time ties between edges,
and an edge’s event attribute (routine) specifies actions to be performed by the AC (in addition to the local
clock update and the POC edge traversal) when the edge is traversed as part of an event, execution.

An AC selects an edge based on the condition and priority attributes of the edges originating from
its current control state. The evaluation of edge conditions may in turn depend on samples taken from
distributions of random variables, the state of the AC’s input. port message queues, and/or the values of the
AC and CFG (MCS) variables. Edge priorities must be unique for all edges originating from the same control
state.

Fach edge condition in a CFG belongs to one of the following three condition types: “time delay”, “input
port”, or “boolean predicate”. Fdges are classified and edge conditions are evaluated based upon their edge
type.

Fdges with a time delay condition are called “TimeEdges”, and associated with each TimeFEdge is a time
delay function whose evaluation returns a nonnegative real value At. Time delay functions may access local
CFG and AC variables and may also sample from one or more random variable distributions. A TimeEdge’s
condition is satisfied (becomes True) with a local (AC) simulation time greater than or equal to (50, + Al),
where 1,,,,, 18 the current value of the local simulation clock and Af# is the value returned by the time delay
function associated with the TimeEdge. A TimeEdge’s time delay function is evaluated at most once between
event executions. A TimeEdge retains the value returned by its associated time delay function until the AC
executes its next event, after which the value is discarded, and thus a new value for Af must be generated
the next time the TimeFEdge is evaluated as part of an edge selection operation.

Fdges with an input port condition are called “PortEdges”, and associated with each PortEdge is an
input port of the AC. Fach PortEdge 1s associated with exactly one input port, however an input port may
be associated with more than one PortEdge. A PortEdge’s condition evaluation is determined by the status
of the associated input port’s message queue. Tf the input port’s message queue is nonempty (i.e., there is at
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least, one unreceived message), then the PortEdge’s condition is satisfied (True) with a local simulation time
greater than or equal to the maximum of: (1) the timestamp on the first message in the input port’s message
queune, and (2) the current local simulation time ({,0,). A PortEdge’s condition is not satisfied (i.e., it is
False) if the message queue of the associated input port contains no unreceived messages. Since the AC’s in
a model operate concurrently, intercomponent messages arrive asynchronously to the operation of each AC.
The condition of PortEdges associated with empty input ports will immediately change from False to True
upon the arrival of new intercomponent messages. Such a change in a PortEdge’s condition in response to
the arrival of a new intercomponent message may, in some cases, require that an AC redo an edge selection
operation taking into account the updated status of the PortEdge.

Fdges with a boolean predicate condition are called “BoolEdges”, and associated with each BoolEdge is a
boolean predicate that evaluates to either True or False. This boolean predicate can reference only variables
contained within the CFG and the AC. (Recall, as described above, that AC and CFG variables, although
both contained within an AC, are distinct.) A BoolEdge’s condition is satisfied with a corresponding local
simulation time greater than or equal to 1,,,, 1f the predicate evaluates to True at time #,,,,, otherwise the
BoolEdge’s condition is not satisfied (i.e., it is False). Since BoolEdge predicates are based on the values
of AC and CFG variables and the values of those variables may only change during an event execution, a
BoolEdge need be evaluated only once between event executions for the AC. We have found in behavior
modeling using CFG’s that BoolEdges with an “always True” predicate are used with sufficient frequency
that we define a subtype of a BoolEdge, called a “Truekdge”, to be a BoolEdge whose predicate is defined
to always be True.

Recall (Subsection 2.3) that an AC can perform only two basic operations: edge selection, and event,
execution. The simulation executive uses information extracted from the AC’s to determine when each of
these operations should be performed and then directs the appropriate AC’s to perform the appropriate
operations in the appropriate sequence. Two basic rules apply to the order in which the edge selection and
event, execution operations are performed for each AC. First, whenever an AC’s POC arrives at a control
state, the AC must successfully select an edge originating from that control state before that AC can execute
its next event. Second, an AC with a conditional next event must perform another edge selection operation
prior to executing its next event if it subsequently receives a message that could cause a PortEdge to preempt
the AC’s previously selected edge. Details of the edge selection and event execution operations are discussed
below.

When the simulation executive directs an AC to reevaluate its next event information, the AC evaluates
the conditions of the edges originating from the AC’s current control state (based on their edge types) and
selects the edge whose condition is satisfied at the earliest simulation time. If more than one edge originating
from the AC’s current control state has a condition that is satisfied at this “earliest” simulation time, then
the edge priorities are used to select the highest priority edge whose condition is safisfied at this earliest
time. The time associated with the selected edge becomes the AC’s next event time.

PortFdges require special consideration during edge selection operations since only PortEdges have a
condition that may change between between an AC’s event executions. An AC may have PortEdges whose
associated input ports have no unreceived messages (i.e., their message queues are empty), and evaluating
the condition of any such PortEdge will, as described above, return False. Tf an AC has one or more such
PortFEdges originating from its current control state and the arrival of a new intercomponent message could
cause such a PortEdge to be selected if the AC was directed to perform another edge selection operation, then
the AC’s pending event is a conditional event (i.e.; it can be preempted by a different event). Tf, however, an
A(C’s pending edge can not be preempted by any such PortEdge due to the arrival of a new intercomponent
message, then the AC’s pending event is unconditional.

An AC edge selection operation may fail to select an edge. If the simulation executive directs an AC
to select an edge and no edge originating from the AC’s current control state has an edge condition that is
satisfied, then the edge selection operation fails and the AC has no pending edge. The simulation executive
will never direct an AC to execute an event unless the AC has selected a pending edge with a finite next
event time. An AC that fails an edge selection operation is considered to have a next event time of 40c0. Tt
18 common for an AC that is simply waiting for a message arrival to have a conditional next event time of
+00.

When the simulation executive directs an AC to execute its pending event the AC performs the following
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operations. First, the AC advances its local simulation clock to its next event time (the time associated
with the AC’s selected edge). Then, the AC’s POC traverses the selected edge, and the AC carries out any
additional actions specified by the traversed edge’s event routine. The actions taken by an AC during an
event, execution may include updating the values of the AC’s or MCS’s local variables, sending one or more
messages o one or more output ports of the AC, and/or receiving a message from one of the AC’s input
ports. An AC may receive a message from an input port only during those event executions in which the
AC’s POC traverses a port edge.

PortFEdges also require special handling during event execution. Tf the edge traversed during an event
execution is a PortEdge, the AC receives the first message from the PortEdge’s associated input port message
queue. The message is removed from the input port’s message queue and the AC can examine and act on
the contents of the message’s attribute fields as part of its event action. Conceptually, the received message
ceases to exist at the completion of the PortEdge’s event routine.

If an AC requires no actions other than the clock update and POC traversal as part of an event execution,
we say that the event associated with that edge is the “null event”. The null event is commonly represented
as “epuu” or “e null()”. A PortEdge with a null event (transparently to the modeler) receives and discards
the message from its associated input port.

We use a graphical notation shown in Figure 8 to visually distinguish the different edge types used in
CFG’s. The condition and event attributes of an edge are located near the edge to which they belong. Edge
priorities are indicated via a positive integer near the base (origin) of an edge. Tower numbers represent
higher priorities, so an edge with priority one (1) indicates the highest priority edge originating from that
control state. Edge priorities are only required when more than one edge originates from the same control
state and no edge priorities are shown in Figure 8. Also, a TrueFEdge (subtype of BoolEdge) is represented
as a BoolFEdge with a capital “T” near the edge’s type symbol in lieu of a boolean predicate.

time-delay()
TimeEdge H%

port-identifier
PortEdge event

bool (taan—predi cate()
BoolEdge event()

event()
TrueEdge

T

Figure 8: Fdge Notation

3.2.2 A Two Class Server

Tn this subsection we demonstrate the hbehavior specification of a simple AC using a CFG (single MCS). We
model the behavior of a simple two class server borrowed from Cota and Sargent (1990a). This two class
server handles two classes of jobs using a “priority preempt/resume” job selection discipline. Each job is
either a “high priority” job, or a “low priority” job. Jobs within each class are processed on a First Come
First Serve (FOFS) basis. The server always works on a high priority job if one is available, and high priority
jobs are always run to completion once they start service. Tf the server is busy with a low priority job when
a high priority job arrives, the low priority job is preempted (work on it is suspended) and the server then
begins working on the high priority job. The server then processes high priority jobs until all available high
priority jobs have completed service. Work on any suspended low priority job is then resumed where it left
off, followed by continued processing of any other low priority jobs.

Since the AC that we are modeling 1s a server that handles two classes of jobs, we assign this AC the type
name: “2ClassServer”. The external view of the two class server AC is shown in Figure 9. A “2ClassServer”
AC has two input ports “hi-in” and “lo-in”, and two output ports “hi-out” and “lo-out”. In an AC of type
“2ClassServer” | each “job” arrival or departure is represented by a message. Thus a job arrival or departure
is synonymous with (and represented via) a message arrival or departure, respectively. The priority of a
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job arriving at the server is determined by the port on which it arrives. High priority jobs arrive on input
port “hi-in” and low priority jobs arrive on input port “lo-in”. As jobs finish service, they are sent out (as
messages); high priority jobs on “hi-out” and low priority jobs on “lo-out”.

lo-in lo-out
Figure 9: “2ClassServer” Type AC External View

We model the behavior of the “2ClassServer” AC using a CFG with four control states. We name these
four control states: “I”, “BL.”, “BH”, and “BP” which stand for “Idle”, “Busy-Low”, “Busy-High”, and
“Busy-Preempt”, respectively, as shown in Figure 10. (Note that this is just one of several possible ways in
which to model this type of component using CFG’s.) When the POC is at control state “T” the server is
idle. When the control state is at, “BL” the server is working on a low priority job (and no high priority jobs
are available). When the POC is att “BH” or “BP” the server is working on a high priority job. Tf the POC
is at “BP” there 1s a “suspended” low priority job upon which work will be “resumed” when there are no
more high priority jobs to process. Three PortEdges and three TimeEdges show the possible control state
transitions of the CFG.
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Figure 10: “2ClassServer” Control Flow Graph

When the POC arrives at control state “I”, it will remain at control state “I” until a job 1s available. If
a high priority job is available (there is an unreceived message on input port “hi-in”) the POC will traverse
the edge to “BH”, executing the event “start-hi()” during the traversal. Tf a low priority job is available
(there is an unreceived message on input port “lo-in”) the POC will traverse the edge to “BL.”, executing
the event “start-lo()” during the traversal. (Recall that a PortEdge’s event routine receives a single message
from its associated input port in addition to any other action it might take as part of an event execution.) Tf
both types of jobs are available, the POC will move to “BH” because the edge to “BH” has an edge priority
of “1” which is higher than the edge to “BL.” which has a priority of “2”. (Lower numbers indicate higher
priorities. Also note that edge priorities do not need to be explicitly specified unless more than one edge
originates from the same control state.)

When the POC arrives at “BL” from “T” it begins processing a low priority job, while when the POC
arrives at “BL” from “BP” it resumes processing a previously preempted low priority job. If a high priority
job arrives before the low priority job is completed, then work on the low priority job is suspended and the
remaining time to completion for the job is saved by the “start-preempt()” event routine as the POC traverses
the PortEdge to “BP”. We assign a higher priority to the TimeEdge from “BI.” to “I” than to the PortEdge
from “BL” to “BP” so that in the case of a time tie (where a low priority job finishes service at the same
time as a high priority job arrives) we send the completed low priority job on hefore we begin processing the
new high priority job. This allows the low priority job to possibly continue processing in another component
concurrently with the processing of the new high priority job in the “2ClassServer” component.



When the POC enters either “BH” or “BP”, processing of a high priority job begins. Processing then
continues for the duration specified by the time delay function “t-hi()” associated with the edges leaving
“BH” and “BP”. After the specified time delay for processing a high priority job the POC moves again. The
event routines associated with the edges leaving “BH” and “BP” send a message to the “hi-out” output port
indicating the completion of a high priority job. Even though the edges leaving “BH” and “BP” share the
same time delay function, they have different event routines because the edge leaving “BP” has an additional
responsibility to restore the state of the “preempted” low priority job that was saved by the “start-preempt()”
event routine during the POC’s traversal of the edge terminating on control state “BP”.

Note that the definition of the “t-hi()” time delay function is straightforward as high priority jobs always
run to completion once they begin processing, whereas the “t-lo()” time delay function on the TimeEdge
from “BL” to “I” is slightly more complex because it must also take into account the processing time that a
low priority job may have already received prior to and between preemptions by high priority jobs.

3.2.3 Support for Hierarchy and Reuse

The CFG representation is straightforward to use for modeling the behavior of simple AC’s but CFG’s can
become complex when modeling more complex AC’s. The number of control states and edges required to
model a behavior may grow exponentially with the complexity of the behavior being modeled, and as the
number of variables and functions required to model a behavior grows the CF(@G’s namespace can become

errors. (Consider a programming language in which all variables are global in scope.) Also, CFG’s provide
only limited support for model element reuse at the sub-AC level.

HCOFG’s provide support for hierarchical behavior specification and model element reuse at the sub-AC
level. Using HCFG’s, an AC’s behavior can be recursively partitioned into sets of encapsulated disjoint partial
behaviors, which when combined, completely specify an AC’s behavior. Each partial behavior is defined via an
associated encapsulated hehavior specification structure called a MCS (Macro Control State). Each MCS is
an independently specified and reusable model element. A set of hierarchically organized and interconnected
MCS’s form (along with a set of AC variables and functions) an HCFG behavior specification. This support
for hierarchical modeling and encapsulation aids a modeler in managing model complexity. Generally, when
an AC’s behavior 1s partitioned into a set of digjoint partial behaviors, each of those partial behaviors tends to
be less complex than the original behavior, and hence easier to model. Also, each partial behavior (MCS) has
its own (less crowded) namespace. A modeler constructs an HCFQG by specifying a hierarchically organized
and interconnected set of MCS’s along with a set of AC local variables and functions.

A MCS is an encapsulated behavior specification structure that has an external view and an internal view.
From the external view a MCS has a name (instance name), a type (type name), a set of input, pins, a set of
output pins, and formal parameter list. From the internal view a MCS has a type, a set of input pins, a set
of output pins, a formal parameter list, a set of variables and functions, an augmented directed graph, a set
of handles to variables and functions of the AC, and a set of handles to variables and functions belonging to
other (ancestor) MCS’s within the HCFG.

Fach MCS in an HOFG is interconnected to its parent MCS and to 1ts immediate child MCS’s in the
HCOFG hierarchy. These interconnections take two distinct forms, one form covers data and access sharing
between MCS’s, and the other form covers control flow interconnections that allow an AC’s POC to flow
between MCS’s.

A MCS may grant one or more of its child MCS’s access to variables or functions that are defined within
the parent MCS or to any variables or functions that the parent MCS has been granted access to by its
parent MCS. Access to variables and data may only be granted by a parent MCS to a child MCS and all such
access permissions must be explicitly specified. MCS variables and handles (access) to external information
are generally initialized via the MCS’s parameter list and/or via an experimental frame. (The experimental
frame concept, and its use in HCFG Models is discussed in Section 4.)

The hierarchical modeling capability of HCFG’s derives from the fact that MCS’s may contain other
MCS’s. The nodes in a MCS’s directed graph may contain hoth (simple) control states and/or other MCS’s.
Edges in a MCS’s graph originate from and/or terminate on either control states or MCS pins. Edges that
originate from control states are identical to the edges in CFG’s; however, edges originating from MCS pins
do not have the three (condition, priority, event) attributes that edges originating from control states have.
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Also, each pin is the origin for eractly one edge.

The operation of an HCFG 1s an extension of the operation of a CFG. The POC for an AC resides at a
control state called the current control state. This current control state is contained within a specific MCS,
called the current MCS. Edges are selected in the same manner as in CFG’s. The POC leaves the current
control state over the selected edge and the action specified by the event routine associated with the traversed
edge is carried out just as in CFG’s. However, in an HOFG, the selected edge may terminate on either a
control state within the same MCS, on an input pin of a child MCS, or on an output pin of the current MCS.
If the selected edge terminates on a control state within the current MCS then the operation is identical to
that of CFG’s. Tf the selected edge terminates on an input pin of a child MCS, then the POC enters that
child MCS through the input pin. If the selected edge terminates on an output pin of the current MCS, then
the POC leaves the current MCS and enters the current MCS’s parent MCS in the HCFG tree via the output
pin.

When the POC traverses an edge that terminates on a pin, the POC continues to traverse a sequence of
directed edges, starting with the edge leaving the pin, until it eventually arrives at a control state. In contrast
to control states, which may have an arbitrary number of outbound edges, each pin has exactly one outhound
edge, thus no edge selection algorithm is required for edges leaving pins. Since edges which originate from
pins do not have the set of three attributes (priority, condition, and event) that edges originating from control
states do, there is never a condition test required before traversing an edge originating from a pin, and there
18 no associated event to be executed during the traversal of an edge originating from a pin.

3.2.4 A Two Class Server Using MCS’s

We show a variation of the “2ClassServer” example from Subsection 3.2.2 to demonstrate the use of MCS’s
for modeling partial behavior specifications. (The partitioning demonstrated in this example was selected for
illustrative purposes rather than because it was particularly interesting, useful, or efficient.)

We encapsulate the processing of (non-preemptive) high priority jobs by drawing an encapsulation hound-
ary around control state “BH” of our original CFG (Figure 10) as shown in Figure 11(a). This encapsulation
boundary cuts the edges originating from and terminating on BH. Note than when a MCS encapsulation
boundary cuts an edge, the condition, priority, and event attributes of the original edge remain on the side
of the MCS boundary that contains the originating control state.

We replace the contents of the “BH” encapsulation boundary from Figure 11(a) with a child MCS named
“delay1” as shown in Figure 11(b). (We represent MCS’s contained within other MCS’s graphically as
ellipses so that they may be easily distinguished from (simple) control states.) The “delay1” MCS has two
pins, which we label “in” and “out”. These pins result from where the (“BH”) MCS encapsulation boundary
cut the two edges in the original CFG in Figure 11(a). The AC’s POC may enter or exit the “delay1” MCS
only via these pins. We next specify that the “delay1” MCS is to be a MCS of type “Delay1”, and then define
(specify the internal view of) a “Delayl” MCS type such that a “Delayl” type MCS models the behavior
that was previously modeled by the elements within the “dashed” encapsulation boundary of Figure 11(a).
We use the notation “delayl = Delay1()” to indicate that the “delay1” MCS in Figure 11(b) is of type
“Delay1” and that a “Delay1” type MCS requires no parameters (discussed below).

A graphical representation of a “Delayl” MCS is shown in Figure 11(c). (The pins are represented as
circles containing a “cross”.) A “Delayl” MCS contains a single control state “S” and two edges. The
TimeEdge originating from control state “S” has a time delay function “t-hi()” and an event routine “hi-
done()” that perform that same functions as the originals by the same name did in Figure 11(a). The “t-hi()”
time delay function and the “hi-done()” event routine are now associated with (part of) the “Delay1” MCS
type definition shown in Figure 11(c).

Parameterization can significantly enhance the reusability of MCS’s. We next demonstrate parameteriz-
ation and reuse of MCS’s. Tf; in addition to encapsulation the processing of (non-preemptive) high priority
jobs, we also encapsulate the behavior of processing (preemptive) high priority jobs (with an encapsula-
tion boundary around the “BP” control state of Figure 11(b)), we get a MCS as shown in Figure 12(a)
with “Delay1” and “Delay2” type MCS’s as shown in Figure 12(b). The “delayl” and “delay2” MCS’s of
Figure 12(a) would be specified as

delayl = Delay1()
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Figure 11: “2ClassServer” Having a Child MCS

delay2 = Delay2()

Examining the “Delay1” and “Delay2” MCS types shown in Figure 12(h), we notice that the two types
of MCS’s differ only in their event routines (“hi-done()” versus “preempt-done()”). Tn this case it is trivial
to create a single parameterized MCS type that can be used in place of the two distinct types. This new
parameterized MCS type “Delay” is shown in Figure 12(c). The “Delay” MCS type has two parameters: a
time delay function and an event routine. The “delay1” and “delay2” MCS’s of Figure 12(a) can now be

specified as follows.

delay1l
delay2

Delay(t-hi,hi-done)
Delay(t-hi,preempt-done)

Now both “delay1” and “delay2” are instances of the same type of MCS that differ only in their event routines.
(Note that the “Delay” MCS type has more flexibility than is required in the “2ClassServer” as it also allows
for different time delay functions to be specified for the “delay1” and “delay2” M(CS’s.)
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Figure 12: “2ClassServer” with Parameterized MCS Reuse

4 EXPERIMENTAL FRAME

HCFG Models support the use of experimental frames (Zeigler 1984). The “experimental frame” concept,
separates a model’s definition from the set of model parameters used for a specific execution of the model.
The experimental frame can be used to specify such information as: the initial control state (POC location)
for each AC, the initial values for AC and MCS variables (including the seeds for random number generators),
initial messages in input port message queues, desired data collection, model termination conditions, and, in
some cases, even variations in the model structure (e.g., the number of servers for a simulation run). The
experimental frame can also be used to specify parameters and handles during the instantiation of components
and MCS’s and can even modify HIG and HCFG hierarchies of the model.

FExperimental frame information can be supplied to an HOFG Model either interactively or in batch
mode. Information can be supplied via a user at a computer console, from a supervisory monitor program
or artificial intelligence, or simply from a set of configuration files. Interactive specification of experimental
frame information can allow for prompting, feedback, online help, and the use of default settings.

5 EXAMPLE

In this section we demonstrate modeling using HCFG Models by modeling a simple system. This simple
system illustrates the various features of HCFG Models but does not demonstrate how HCFG Models can
be used to model more complex systems; e.g., none of the AC’s in this example have an HCFG that uses a
MCS hierarchy of depth greater than two.

We model the behavior of a system that processes two classes of jobs using a two stage organization. The
first stage consists of a single two class server as was described in Subsection 3.2.4, whereas the second stage
of the system consists of two independent single servers, one for each class of jobs.

The HIG tree for the model we develop in this section is shown in Figure 13. From this figure it is easy
to see the components that constitute the model and the hierarchical organization of those components.
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Figure 13: Model HIG Tree

We model the highest level of the component hierarchy (the top level CCS of the HTG) using three compon-
ents as shown in Figure 14. The “source” component of type “2ClassExpSrc” models the arrival of new jobs
requiring processing, the “system” component of type “MySystem” models the two stage processing system,
and the “sink” component of type “2InputSink” removes jobs from the model after they have completed ser-
vice. We model component types “2ClassExpSrc” and “2InputSink” as AC’s, whereas we model component
type “MySystem” as a coupled component, thus allowing it to be decomposed into simpler subcomponents.

hi-in | )
(MySystem)

lo-out lo-in system lo-out lo-in

hi-out hi-out hi-in

(2ClassExpSrc)
source

(2InputSink)
sink

Figure 14: Top Level CCS

Tn this example we model each job as an intercomponent message (i.e., a message arrival to the “system”
component corresponds to a job arrival). These intercomponent messages also have attribute fields that can
be used to communicate additional information between components and also for any desired data collection
activity.

We model job arrivals to the system (using component type “2ClassExpSrc”) as having an exponential
interarrival time, and furthermore, each arrival is randomly assigned a priority as it arrives. The mean
interarrival time of jobs and the probability that a job arrival is a high priority job are two parameters that
a modeler can specify via the experimental frame.

We model the behavior of the “2ClassExpSrc” type AC as shown in Figure 15. Whenever the AC’s POC
arrives at control State “s1” it will remain there for an amount of time determined by the “exp-delay()” time
delay function. The “exp-delay()” time delay function is a function that samples from an exponential random
variable with a mean value specified by the modeler in the experimental frame. When the POC traverses
the self loop TimeEdge the AC executes the associated event routine “generate_job()”. The “generate_job()”
event, routine (also shown in Figure 15) creates a new message, determines the job priority (based on a
random variate), and sends the message (representing a job arrival) to the appropriate AC output port based
upon the job’s priority. This completes the description of the “2ClassExpSrc” type AC.

We next decompose the “system” component of type “MySystem” from Figure 14 into two processing
stages as shown by the CCS in Figure 16. We model component “stagel” as an AC of type “2ClassServer”
as described in Subsection 3.2.4, and we further decompose coupled component “stage2” of type “2Servers”
into two subcomponents as shown by the CCS in Figure 17.

Both subcomponents, “serverl” and °

‘server2”, are AC’s of type “Server” (i.e. they share the same
type definition). “Serverl” processes only high priority jobs, while “Server2” processes only low priority

jobs. The behavior specification of a “Server” type AC is shown in Figure 18. Recall that HCFG’s (MCS’s)
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generate_job()

exp-delay()

generate_job() {
// create a new job (message)
Message* newMsg = new Message();

// sample from a 0 to 1 uniform distribution for priority_sample
priority_sample = sample_from_0_1_uniform();

if (priority_sample <= probability_that_job_is_high priority) {
// this is a high priority job
// send job (message) to output port " “hi-out”~
hi_out -> send(newMsg);
} else {
// this is a low priority job
// send job (message) to output port *“lo-out”~
lo_out -> send(newulsg);

Figure 15: 2ClassExpSre MCS and “generate_job()” Event Routine

(‘(Mysystem) h
hi-in hi-in (2ClassServer) hi-owt  hiin (2Servers) ot 1 i-out
lo-in lo-in stagel lo-out lo-in stage2 lo-out lo-out
N Y,

Figure 16: MySystem CCS

support parameterization, thus, even though “server1” and “server2” share a common behavior specification, a
modeler can specify different mean service times for high priority and low priority jobs using the experimental
frame. This demonstrates parameterized reuse of AC’s in which parameters are specified via the experimental
frame.

When the “Server” type AC’s POC arrives at control state “T” (Tdle) in Figure 18, the AC waits until a
message arrives on input port “in” indicating that a job 1s available for processing. When a job is available
the AC begins processing the job by executing the associated event routine “start-job()” and the POC moves
to control state “B” (Busy). The AC’s POC remains at. “B” for an amount of time specified by the time
delay function “delay(mean)” and then finishes processing of the job by executing the associated event routine
“finish-job()”. One of the tasks of event routine “finish-job()” is to send a message to the AC’s output port
“out” to signify the completion of the job. With the specification of an AC of type “Server” we have finished
the specification of the component type “System” from Figure 14.

The only remaining component to be specified for our model is component “sink” of type “2InputSink”
from Figure 14. We specify component type “2InputSink” to be an AC whose behavior is defined as in
Figure 19. The “2InputSink” MCS has a single control state “s1” and two self looping PortEdges (one
for each input port). When a message arrives on either input port of an AC of type “2InputSink” the
appropriate edge is traversed. Note that the same event routine “remove-msg()” is associated with both

21



(2Servers)

in (Server) out
serverl

hi-in

hi-out

in (Server) out
lo-in lo-out
server2

Figure 17: 2Servers CCOS

delay(mean)
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Figure 18: Server MCS

remove-msg()

remove-msg()

Figure 19: 2InputSink MCS

PortFdges. This event routine simply extracts any desired information from the received message and then
destroys the message.

6 SUMMARY

We introduced the HCFG Model paradigm as a hierarchical modeling paradigm for discrete event simulation
that makes it easy to develop and reuse models and model elements and supports the flexible and efficient
execution of models on different types of computer architectures. We presented an overview of the spe-
cification and operation of CFG Models as the foundation upon which HCFG Models are based and then
discussed the HCFG Model extensions to CFG Models. A high level overview of the operation of CFG and
HCOFG Models was then presented, using using the sequential synchronous simulation execution algorithm
as an example. We then described the two types of complementary specification structures used in the con-
struction of HCFG Models; how CCS’s (Coupled Component. Specifications) are used in the construction
of a model’s HIG (Hierarchical Tnterconnection Graph) and how MCS’s (Macro Control States) are used in
the construction of HCFG (Hierarchical Control Flow Graph) behavior specifications for the AC’s (Atomic
Components) of a model. We demonstrated hierarchical modeling and model element, reuse in each of the
two specification types. Lastly, we briefly introduced the experimental frame concept as supported by the
HCFG Model paradigm and we then presented a complete model in order to illustrate modeling using the
HCOFG Model paradigm. The hierarchical modeling and reuse capability of HOFG Models makes it easy
to develop, use, maintain, and communication models that can be efficiently executed on different types of
computer systems. A modeler does not have to be an expert in parallel/distributed computing in order to
achieve efficient parallel /distributed model execution of HCFG Models.
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