Fitting Semantics for Conditional Term Rewriting

Chilukuri K. Mohan

Syracuse University, ckmohan@syr.edu
Fitting Semantics for Conditional Term Rewriting

Chilukuri K. Mohan

December 1990
Abstract: This paper investigates the semantics of conditional term rewriting systems with negation which do not satisfy useful properties like termination. It is shown that the approach used by Fitting [5] for Prolog-style logic programs is applicable in this context. A monotone operator is developed, whose fixpoints describe the semantics of conditional rewriting. Several examples illustrate this semantics for non-terminating rewrite systems which could not be easily handled by previous approaches.

1 Introduction

Conditional term rewriting systems (CTRS) have attracted much attention in the recent past as a useful generalization of the simpler formalism of term rewriting systems (TRS). But CTRS have not been unconditionally accepted, due to the absence of well defined semantics for conditional rewriting mechanisms. This paper suggests one remedy, following the approach of Melvin Fitting, who suggested similar semantics for Prolog-style logic programs [5].

Past work on the semantics of conditional term rewriting has followed three directions:

1. Impose restrictions on the syntax of the CTRS formalism to ensure termination and the existence of a unique precongruence which is considered to describe the meaning of the rewrite relation [8]. This approach does not define the meaning of rewriting when the CTRS does not satisfy the relevant termination criterion. Also, the termination criterion itself is undecidable, and is not a necessary condition for each rewrite step and all rewrite sequences to terminate finitely.

1 "fitting" (Webster's Dictionary): (adjective) suitable, appropriate; (verb) the act of adapting or making fit.
2. Give logical semantics for a CTRS R as a set of conditional equations $\mathcal{E}(R)$ together with a set of "default" negative equality literals [13]. This approach is useful either all rewrite sequences terminate or if the CTRS is intended to describe a specification based on a set of free constructor functions.

3. Transform CTRS into "equivalent" TRS, and identify the semantics of the CTRS with that of the transformed systems [1]. Assign an "initial algebra" semantics for TRS. The drawback of this approach is that it does not adequately describe the operational use of CTRS with negative literals in the antecedents of rules.

This paper attempts to fill the lacuna using an elegant approach of Fitting, which brings together an analysis of Kripke's theory of truth [10], Kleene's multivalued logics [9], and Tarski's lattice-theoretical fixpoint theorem [15]. Fitting [5] uses this approach to present an alternative to the semantics of logic programming given by Apt and Van Emden [2], and successfully captures the semantics of the operational use of negation in logic programs. The main contribution of this paper is to show that this approach can also successfully explain the meaning of conditional rewriting systems with negation, including the problematic CTRS whose semantics have eluded the grasp of previous approaches (e.g., $p \neq q \Rightarrow p \rightarrow q, p = q \Rightarrow p \rightarrow q$).

In the next section, we introduce CTRS and point out the deficiencies of a two-valued fixpoint semantics. Following some mathematical preliminaries, we describe the new semantics for conditional rewriting. Several examples are then given to illustrate the semantics. References follow concluding remarks.

2 Preliminaries

2.1 Conditional Rewriting

We define the formalism and operational use of a natural language for expressing data type and function specifications [13, 8].

Definition 1 Equational-Inequational-Conditional Term Rewriting Systems (EI-CTRS) are finite sets of rules of the general form

$$[s_1 = t_1 \wedge \ldots \wedge s_n = t_n] \wedge [p_1 \neq q_1 \wedge \ldots \wedge p_m \neq q_m] \Rightarrow lhs \rightarrow rhs,$$

in which lhs and rhs are two terms, and the antecedent is a conjunction of zero or more equations $s_i = t_i$ and negated equality literals $p_j \neq q_j$. Every variable occurring in each s_i, t_i, p_j, q_j and rhs must also occur in lhs.

2
Following [4], 'p/j' refers to the subterm of p at position j, and 'p[q]j' refers to the result of replacing p/j by q in p. For instance, when positions are described in Dewey decimal notation, \(f(g(a, h(b, c)), d)/1.2 \) is \(h(b, c) \), and \(f(g(a, h(b, c)), d)[m\,]_{1.2} \) is \(f(g(a, m), d) \).

Besides matching and replacement, conditional rewriting requires checking that the antecedent of a rule holds. The basic idea underlying the definition of EI-rewriting is to conclude that two terms are equal if they have converging reduction sequences, and not equal otherwise (for ground terms). Not surprisingly, the attempt to find a valley-proof for an equality does not always terminate. But if reduction sequences from two terms \(p, q \) do terminate without converging, then we can assert that \(p = q \) has no valley-proof using the given rewriting system. But if \(p \) and \(q \) are not ground, it is not safe to conclude from such non-convergence that \(p \neq q \), if we wish to preserve the property of closure under substitution; it is possible that \(p\sigma = q\sigma \) for some instantiation \(\sigma \).

Variables in different rules are first renamed to be distinct from each other and from those in the term to be EI-reduced. To maximize the ability to make positive or negative conclusions, we assume a non-strict parallel evaluation strategy in examining rewrite sequences issuing from various literals.

Definition 2: A term \(m \) **EI-Reduces** (or **EI-Rewrites**) to \(n \) using an EI-CTS \(R \) (denoted \(m \rightarrow_{R} n \)) if \(R \) contains a rule \(\text{cond} \Rightarrow \text{lhs} \rightarrow \text{rhs} \) and there is a substitution \(\sigma \) matching \(\text{lhs} \) with a subterm \(m/j \) of \(m \), such that each of the following conditions hold:

1. **Match and Replace**: \((\text{lhs})\sigma \equiv m/j \) and \(n \equiv m[(\text{rhs})\sigma]_j \).

2. **Demonstrable Convergence**: For each equality \(s_i = t_i \in \text{cond} \), there is a common term to which \(s_i\sigma \) and \(t_i\sigma \) can be EI-reduced in a finite number of steps.

3. **Demonstrable Non-Convergence**: For every negated equality literal \(s_i \neq t_i \in \text{cond} \), it can be demonstrated by finite EI-rewriting sequences that \(s_i\sigma \) and \(t_i\sigma \) are ground terms with no common reduct. More precisely, the following conditions must hold:
 (i) \(s_i\sigma \) and \(t_i\sigma \) are ground terms;
 (ii) all EI-rewriting sequences from \(s_i\sigma \) and \(t_i\sigma \) terminate; and
 (iii) the set of all reducts of \(s_i\sigma \) is disjoint from that of \(t_i\sigma \).

2.2 Fixpoint Semantics

Definition 3, If \(f \) is a function (of one argument) whose domain and range are the same, then \(S \) is a **fixpoint** (or **fixed point**) of \(f \) whenever \(f(S) = S \). If the domain elements are partially ordered, \(f \) may have zero or more partially ordered fixpoints:
- a fixpoint S is minimal if there is no other fixpoint T such that $T < S$ in the ordering;
- a minimal fixpoint S is the least fixpoint if $S \leq T$ for every fixpoint;
- a fixpoint S is maximal if there is no other fixpoint T such that $T > S$ in the ordering;
- two fixpoints S, T are compatible if they have a common upper bound which is a fixpoint,
 i.e., $\exists S'. (S \leq S') \land (T \leq S') \land (f(S') = S')$;
- a fixpoint is intrinsic (or optimal [12]) iff it is compatible with every fixpoint of f.

In the fixpoint semantics approach, the 'meaning' of a program is considered to be
the least fixpoint of a function/relation which represents the behavior of the program on
some input. The following fixpoint semantics can be suggested for conditional rewriting, as
in [8]. A function Ψ_R is associated with each CTRS R such that if S is a binary relation,
and S^* is its reflexive transitive closure, then $\Psi_R(S)$ is a binary relation which is the set
of all two-tuples (p, q) such that for some rule $[s_1 = t_1 \land \ldots \land s_n = t_n] \land [p_1 \neq q_1 \land \ldots \land
p_m \neq q_m] \Rightarrow l \rightarrow r$ in R, we have $\exists k, \exists \sigma, p/k \equiv \sigma, q \equiv p[r\sigma], \forall i, \exists r_i, (s_i, r_i) \in S^*$ and
$(i, r_i) \in S^*$, and $\forall j$, there is no r_j such that $(p_j, r_j) \in S^*$, $(q_j, r_j) \in S^*$. In this approach,
the 'meaning' of rewriting with R is identified with the least fixed point of Ψ_R, if it exists.
But such a least fixed point exists only when the CTRS satisfies certain stringent (and
undecidable) conditions that ensure the decidability and finite termination of all rewrite
sequences. The following is an example of a CTRS R such that Ψ_R has no fixpoint according
to the above definition: $\{a \neq b \Rightarrow a \rightarrow b\}$.

The problems with the above approach can be pinpointed to the following reasons:

1. The use of a two-valued logic precludes distinguishing between cases when we know
 that a rewrite doesn't occur, and cases when we do not know whether a rewrite can
 occur, particularly cases involving non-terminating reductions arising from terms in
 the antecedent of an invoked rewrite rule.

2. The relation Ψ_R is not 'monotone'.

Definition 4 A mapping Φ is monotone iff for all the elements in the (partially ordered)
domain, $S \leq T$ implies $\Phi(S) \leq \Phi(T)$.

2.3 Kleene's 3-valued logic

Kleene [9] presented a three-valued logic, partly motivated by the desire to give truth-value meanings to partial recursive functions. The logic hence lends itself easily to explain non-deterministic and infinite computations. Kleene’s third truth value represents the
indeterminate or unknown nature of statements. The truth, falsehood, or indeterminacy of statements may be captured by using Smullyan’s notation of ‘signed statements’:

Definition 5 If \(\psi \) is a statement, \(T\psi \) is a signed statement which is to be understood as asserting “\(\psi \) is true”. Similarly, \(F\psi \) is a signed statement which is to be understood as asserting “\(\psi \) is false”, which is contradictory to \(T\psi \). A set of signed statements is consistent if it is consistent in the usual sense, and also does not contain the pair \(T\psi, F\psi \) for any statement \(\psi \).

Implicitly, if a set of signed statements contains neither \(T\psi \) nor \(F\psi \) for some formula \(\psi \), it is understood that \(\psi \) is indeterminate or has Kleene’s third truth value.

‘Saturated’ consistent sets of signed statements are intended to serve as models for logic programs. To summarize a lengthy definition in [5], a set \(S \) of signed statements is saturated iff it contains the intuitive consequences of the members of \(S \); e.g.,

- \(T(X \land Y) \in S \) implies \(T(X) \in S \) and \(T(Y) \in S \),
- \(F(\forall x. P(x)) \in S \) implies \(F(P(t)) \) for some closed term \(t \),
- \(F X \in S \) implies \(T(\neg X) \in S \),
- \(F X \in S \) and \(FY \in S \) imply \(F(X \lor Y) \in S \),

et cetera.

3 New Semantics

Unlike Prolog-style logic programs, the operational use of CTRS involves iterated rewrites ensuing from the antecedents of conditional rules. So the definition of conditional rewriting recursively involves that of iterated rewriting. A careful definition of what it means for \(“p \rightarrow_R q” \) to be “false” is needed, since this is needed when evaluating negative equality literals in the antecedents of rules.

Let \(S \) be a consistent set of signed two-tuples; intuitively, \(S \) is a potential description of a rewrite relation. \(T(p, q) \in S \) is an abbreviation for \(T(\text{Rewrites}(p, q)) \), intended to mean that \(p \) rewrites to \(q \); and similarly \(F(p, q) \in S \) means \(p \) is known not to rewrite to \(q \). If neither of these is present in \(S \), that means the reduction from \(p \) to \(q \) is not known to be true or false, i.e., “\(p \rightarrow q \)” has the third truth value.

A new set of signed statements \(S^* \), describing the iteration of rewrites in \(S \), is defined as follows. For convenience, let \(S^* = S_T^* \uplus S_F^* \), distinguishing sets of statements with prefixes \(T \) and \(F \), respectively. \(S_T^* \) is just the reflexive transitive closure of the true statements in \(S \), which is the least set satisfying the following three conditions.

5
1. \(\forall a. \ T(a, a) \in S_T^* \),

2. \(\forall a, b, \text{if} \ T(a, b) \in S, \text{then} \ T(a, b) \in S_T^* \), and

3. \(\forall a, b, c, \text{if} \ T(a, b) \in S_T^* \text{ and } T(b, c) \in S_T^*, \text{then} \ T(a, c) \in S_T^* \).

The construction of \(S_T^* \) is slightly more complicated; note that \(F(a, b) \in S \) does not necessarily imply that \(F(a, b) \in S^* \): a rewrite sequence from \(a \) to \(b \) might exist through some other terms, e.g., if \(\{ F(a, b), T(a, c), T(c, b) \} \subseteq S \), then \(T(a, b) \in S^* \).

To conclude the absence of rewrite sequences, there should be no intermediate term from which a reduction sequence can occur. It is safe to assert that \((p \rightarrow_R^* q) \) is false iff it can be determined that there is no rewrite sequence of finite length from \(p \) to \(q \). This aspect can be satisfied by an iterative construction as follows, where \(S_F^i \) represents 2 tuples among which there is no reduction sequence of length \(\leq i \).

\[
S_F^0 = \{ F(a, b) | a \neq b \} \\
S_F^1 = \{ F(a, b) | F(a, b) \in S_F^0 \land F(a, b) \in S \} \\
S_F^{i+1} = \{ F(a, b) | F(a, b) \in S_F^i \land \forall y [F(y, b) \in S_F^i \lor F(a, y) \in S] \} \\
S_F^* = \lim_{i \to \infty} S_F^i \\
\]

Note: \(\forall i, S_F^{i+1} \subseteq S_F^i \), thus \(S_F^* \) is the greatest lower bound of a chain of sets in the subset ordering.

Example 1 Let the language contain only the constants \(a, b, c, d \).

Let \(R = \{ a \rightarrow b, b \rightarrow c \} \).

Let \(S = \{ F(a, a), T(a, b), F(a, c), F(a, d), F(b, a), F(b, b), T(b, c), F(b, d), F(c, a), F(c, b), F(c, c), T(c, d), F(d, a), F(d, b), F(d, c), F(d, d) \} \)

Then \(S_T^* = \{ T(a, a), T(a, b), T(a, c), T(a, d), T(b, b), T(b, c), T(b, d), T(c, c), T(c, d), T(d, d) \} \)
Example 2 Let the language contain only the constants a, b, c, d.

Let $R = \left\{ \begin{array}{l}
a \rightarrow b \\ b \rightarrow c \\ c \rightarrow d \Rightarrow c \rightarrow d
\end{array} \right\}.$

Let $S = \{ F(a,a), T(a,b), F(a,c), F(a,d), F(b,a), F(b,b), T(b,c), F(b,d), F(c,a), F(c,b), F(c,c), F(d,a), F(d,b), F(d,c) \}$

Then $S^*_R = \{ T(a,a), T(a,b), T(a,c), T(b,b), T(b,c), T(c,c), T(d,d) \}$

$S^0_F = \{ F(a,b), F(a,c), F(a,d), F(b,a), F(b,c), F(b,d), F(c,a), F(c,b), F(c,d), F(d,a), F(d,b), F(d,c) \}$

$S^1_F = \{ F(a,c), F(a,d), F(b,a), F(b,d), F(c,a), F(c,b), F(d,a), F(d,b), F(d,c) \}$

$S^2_F = \{ F(a,d), F(b,a), F(c,a), F(c,b), F(c,d), F(d,a), F(d,b), F(d,c) \}$

$S^3_F = S^*_F = \{ F(b,a), F(c,a), F(c,b), F(d,a), F(d,b), F(d,c) \}$
Lemma 1: If \(S \) is consistent, then \(S^* \) is also consistent.

Lemma 2: The '⋆' operator is monotone, i.e., if \(S_1 \subseteq S_2 \), then \(S_1^* \subseteq S_2^* \).

Definition 6: When \(R \) is an EI-CTRS, a mapping \(\Phi_R \) from sets of signed two-tuples to sets of signed two-tuples is defined as follows: \(\Phi_R(S) \) is the smallest relation such that

- \(T(a, b) \in \Phi_R(S) \) if \(R \) contains a rule \(\bigwedge_{i=1}^{n} s_i = t_i \bigwedge_{j=1}^{m} p_j \neq q_j \Rightarrow l \rightarrow r \) such that
 \[
 \begin{align*}
 a/k &\equiv l \sigma \land b \equiv a[r \sigma]_k \\
 \exists k, \exists \sigma. &\quad \land \quad [\forall i \cdot \exists r_i \cdot T(s_i \sigma, r_i) \in S^* \land T(t_i \sigma, r_i) \in S^*] \\
 &\quad \land [\forall j \cdot \forall r_j \cdot F(p_j \sigma, r_j) \in S^* \lor F(q_j \sigma, r_j) \in S^*]
 \end{align*}
 \]

- \(F(a, b) \in \Phi_R(S) \) if for every rule \([\land_i s_i = t_i \land_j p_j \neq q_j \Rightarrow l \rightarrow r] \) in \(R \),
 \[
 \forall k \cdot \forall \sigma \left[(a/k \equiv l \sigma \land b \equiv a[r \sigma]_k) \Rightarrow (\exists i \cdot \forall r_i \cdot F(s_i \sigma, r_i) \in S^* \lor F(t_i \sigma, r_i) \in S^*) \land (\exists j \forall r_j \cdot F(p_j \sigma, r_j) \in S^* \lor F(q_j \sigma, r_j) \in S^*) \right]
 \]

Lemma 3: If \(S \) is consistent, then \(\Phi_R(S) \) is consistent.

Theorem 1: \(\Phi_R \) is monotone, i.e., \(S_1 \subseteq S_2 \Rightarrow \Phi_R(S_1) \subseteq \Phi_R(S_2) \).

Proof: Assume \(S_1 \subseteq S_2 \).
Let \(T(a, b) \in \Phi_R(S_1) \).
Then \(R \) contains a rule \(\bigwedge_{i=1}^{n} s_i = t_i \bigwedge_{j=1}^{m} p_j \neq q_j \Rightarrow l \rightarrow r \) such that
\[
\begin{align*}
 a/k &\equiv l \sigma \land b \equiv a[r \sigma]_k \\
 \exists k, \exists \sigma. &\quad \land \quad [\forall i \cdot \exists r_i \cdot T(s_i \sigma, r_i) \in S_1^* \land T(t_i \sigma, r_i) \in S_1^*] \\
 &\quad \land [\forall j \cdot \forall r_j \cdot F(p_j \sigma, r_j) \in S_1^* \lor F(q_j \sigma, r_j) \in S_1^*]
 \end{align*}
\]
Since \(S_1^* \subseteq S_2^* \) (by lemma 2), we have
\[
\forall i \cdot \exists r_i \cdot T(s_i \sigma, r_i) \in S_2^* \land T(t_i \sigma, r_i) \in S_2^*,
\]
and
\[
\forall j \forall r_j \cdot F(p_j \sigma, r_j) \in S_2^* \lor F(q_j \sigma, r_j) \in S_2^*,
\]
\[
\therefore T(a, b) \in \Phi_R(S_2).
\]
Similarly, we can show that if \(F(a, b) \in \Phi_R(S_1) \), then \(F(a, b) \in \Phi_R(S_2) \).
Hence \(\Phi_R(S_1) \subseteq \Phi_R(S_2) \).

Key Observation: The fixpoints of \(\Phi_R \) describe the semantics of conditional rewriting with an EI-CTRS \(R \); particularly important are the least fixpoint and the largest intrinsic fixpoint.
We now investigate the fixpoints of the monotone relation Φ_R corresponding to each rewrite system R.

Theorem 2 Let R be any EI-CTRS, and Φ_R be as defined above. Then:

1. Φ_R has maximal fixpoints.
2. Φ_R has a smallest fixpoint.
3. Φ_R has a largest intrinsic fixpoint, which is a subset of $\bigcap\{\text{maximal fixpoints of } \Phi_R\}$.
4. The smallest fixpoint of Φ_R above the empty set $\{\}$ is intrinsic.

Proof: Let D be the collection of all consistent sets of signed statements, ordered by the subset relation. D has a smallest member $\{\}$, since the empty set is consistent. Every chain $S_1 \subseteq S_2 \subseteq \cdots$ of elements of D has an upper bound $\bigcup \lim S_i$. Also, every nonempty set having an upper bound has an l.u.b. Since Φ_R is monotone on D, all the premises of theorem 2.2 in [6] are satisfied, and the conclusions stated in this theorem directly follow. □

A smallest fixpoint can be constructed using the following transfinite sequence of consistent sets of signed statements. Let Φ_R be as defined earlier, for any EI-CTRS R.

Definition 7

\[
\begin{align*}
A_0 &= \{\} \\
A_{\alpha+1} &= \Phi(A_\alpha) \\
A_\lambda &= \bigcup\{A_\alpha | \alpha < \lambda\} \text{ for limit ordinals } \lambda
\end{align*}
\]

By transfinite induction, it can be shown that this is a weakly increasing sequence, i.e., $A_\alpha \leq A_{\alpha+1}$ for all α. But the sequence cannot be strongly increasing, i.e., it is not possible that $\forall \alpha \cdot A_\alpha < A_{\alpha+1}$, since a sequence of consistent sets cannot have as many members as there are ordinals. Hence, for some α, we must have $A_\alpha = \Phi_R(A_\alpha)$, i.e., some member of the sequence is a fixpoint of Φ_R.

4 **Examples**

The following are some examples which illustrate the application of the new fixpoint semantics. Some of the CTRS's considered here cannot be handled adequately by previously given semantics, because they do not satisfy the conditions for termination, and are not constructor-based specifications. In each case, we assume that the only symbols in the language are those that appear in the rules of the rewriting system being considered. For each CTRS R, we begin with candidates for fixpoints which are supersets of ‘Z’, defined as
\{F(p, q)\} there is no rule \((C \Rightarrow l \rightarrow r) \in R\) such that \(\exists k, \sigma, k\sigma \equiv p/k \land q \equiv p[r\sigma]_k\).

The rationale is that for any \(S\), \(\Phi_R(S)\) will always contain \(F(p, q)\), for those pairs of terms \(p, q\) such that no rule in \(R\) can possibly reduce \(p\) to \(q\).

Example 3 Let \(R_1\) be \(\{a = b \Rightarrow a \rightarrow b\}\).

Let \(Z = \{F(a, a), F(b, a), F(b, b)\}\). Candidates for the fixpoints of \(\Phi_{R_1}\) are: \(Z\), \(Z \cup \{T(a, b)\}\), and \(Z \cup \{F(a, b)\}\). Each of these is a fixpoint; \(Z\) itself is the least fixpoint, whereas the other two are maximal fixpoints, with each of which \(Z\) is compatible. Hence \(Z\) is also the greatest intrinsic fixpoint of \(\Phi_{R_1}\).

Example 4 Let \(R_2\) be \(\{a \neq b \Rightarrow a \rightarrow b\}\).

Again, let \(Z = \{F(a, a), F(b, a), F(b, b)\}\). Candidates for the fixpoints of \(\Phi_{R_2}\) are also again \(Z\), \(Z \cup \{T(a, b)\}\), and \(Z \cup \{F(a, b)\}\). Of these, only \(Z\) is a fixpoint: note that \(\Phi_{R_2}(Z \cup \{T(a, b)\})\) will contain \(F'(a, b)\), and \(\Phi_{R_2}(Z \cup \{F(a, b)\})\) will contain \(T(a, b)\). Hence the others are not fixpoints of \(\Phi_{R_2}\).

Example 5 Let \(R_3\) be \(\{a \neq c \Rightarrow a \rightarrow b\}\).

Let \(Z = \{F(a, a), F(a, c), F(b, a), F(b, b), F(b, c), F(c, a), F(c, b), F(c, c)\}\). Candidates for the fixpoints of \(\Phi_{R_3}\) are \(Z\), \(Z \cup \{T(a, b)\}\), and \(Z \cup \{F(a, b)\}\). Of these, \(Z\) is a fixpoint, because the absence of \(T(a, b)\) and \(F(a, b)\) from \(Z\) implies that \(\Phi_{R_3}(Z)\) will contain neither \(T(a, b)\) nor \(F(a, b)\). Also, \(Z \cup \{T(a, b)\}\) is a fixpoint since \(\Phi_{R_3}(Z \cup \{T(a, b)\})\) will contain \(T(a, b)\). But \(\Phi_{R_3}(Z \cup \{F(a, b)\})\) will contain \(T(a, b)\), hence the third candidate is not a fixpoint. Hence \(Z\) is the least fixpoint, whereas \(Z \cup \{T(a, b)\}\) is the only maximal fixpoint, which is hence the greatest intrinsic fixpoint.

Example 6 Let \(R_4\) be \(\{a = c \Rightarrow a \rightarrow b\}\).

Let \(Z = \{F(a, a), F(a, c), F(b, a), F(b, b), F(b, c), F(c, a), F(c, b), F(c, c)\}\) again. Candidates for the fixpoints of \(\Phi_{R_4}\) are \(Z\), \(Z \cup \{T(a, b)\}\), and \(Z \cup \{F(a, b)\}\). Of these, \(Z\) is again a (least) fixpoint. \(Z \cup \{F(a, b)\}\) is also a fixpoint, but not \(Z \cup \{T(a, b)\}\). Thus \(Z \cup \{F(a, b)\}\) is the greatest intrinsic fixpoint.

Example 7 Let \(R_5\) be \(\{c \neq d \Rightarrow a \rightarrow b\}\).

Let \(Z = \{F(a, a), F(a, c), F(a, d), F(b, a), F(b, b), F(b, c), F(b, d), F(c, a), F(c, b), F(c, c), F(c, d), F(d, a), F(d, b), F(d, c), F(d, d)\}\). Candidates for the fixpoints of \(\Phi_{R_5}\) are \(Z\), \(Z \cup \{T(a, b)\}\), and \(Z \cup \{F(a, b)\}\). This time, \(Z\) is not a fixpoint because \(\Phi_{R_5}(Z)\) contains \(T(a, b)\). For the same reason, \(Z \cup \{F(a, b)\}\) is also not a fixpoint. The only fixpoint is \(Z \cup \{T(a, b)\}\).
Example 8 Let R_e be $\{c \neq d \Rightarrow a \rightarrow b, \quad a \neq b \Rightarrow c \rightarrow d\}$.

Let $Z = \{F'(a, a), F'(a, c), F'(a, d), F'(b, a), F'(b, b), F'(b, c), F'(b, d), F'(c, a), F'(c, b), F'(c, c), F'(d, a), F'(d, b), F'(d, c), F'(d, d)\}$. Candidates for the fixpoints of Φ_{R_e} are those supersets of Z which contain at most one of $T(a, b), \quad F'(a, b)$, and also at most one of $T(c, d), \quad F'(c, d)$. Of these, Z itself is a (least) fixpoint since it does not contain signed tuples which would enable either of the rewrite rules in R_e to be activated. If a fixpoint contains $F'(a, b)$, then it must also contain $T(c, d)$ since the second rewrite rule is activated; indeed, $Z \cup \{F'(a, b), T(c, d)\}$ is a (maximal) fixpoint. Similarly, $Z \cup \{T(a, b), F'(c, d)\}$ is also a (maximal) fixpoint. These maximal fixpoints are not mutually compatible, and Z is a fixpoint compatible with each of these maximal fixpoints. Hence Z is the least as well as the largest intrinsic fixpoint.

It can be shown that the other candidates are not fixpoints. For instance, $\Phi_{R_e}(Z \cup \{T(a, b)\})$ does not contain $T(a, b)$, since the antecedent of the first rewrite rule is not enabled: $F'(c, d) \notin Z \cup \{T(a, b)\}$

Example 9 Let R_7 be $\{a = b \Rightarrow a \rightarrow b, \quad a \neq b \Rightarrow a \rightarrow b\}$.

Let $Z = \{F'(a, a), F'(b, a), F'(b, b)\}$. Candidates for the fixpoints of Φ_{R_7} are $Z, \quad Z \cup \{T(a, b)\}$, and $Z \cup \{F'(a, b)\}$. Of these, Z is a (least) fixpoint. Also $Z \cup \{T(a, b)\}$ is a fixpoint, but not $Z \cup \{F'(a, b)\}$. Hence $Z \cup \{T(a, b)\}$ is the greatest intrinsic fixpoint. Note that a ‘disjunctive’ conditional rewriting mechanism which examines the antecedents of multiple rules achieves computation of the greatest intrinsic fixpoint in this case.

Example 10 Let R_8 be $\{c \neq d \Rightarrow a \rightarrow b, \quad a \neq b \Rightarrow a \rightarrow b\}$.

Let $Z = \{F'(a, a), F'(a, c), F'(a, d), F'(b, a), F'(b, b), F'(b, c), F'(b, d), F'(c, a), F'(c, b), F'(c, c), F'(c, d), F'(d, a), F'(d, b), F'(d, c), F'(d, d)\}$. Candidates for the fixpoints of Φ_{R_8} are $Z, \quad Z \cup \{T(a, b)\}$, and $Z \cup \{F'(a, b)\}$. Since Z contains $F'(c, x)$ and $F'(d, x)$ for every x, every superset of Z which is a fixpoint must contain $T(a, b)$ since the first rewrite rule is enabled. Hence $Z \cup \{T(a, b)\}$ is the only fixpoint.

Example 11 Let R_9 be $\{c \neq d \Rightarrow a \rightarrow b, \quad a \neq b \Rightarrow c \rightarrow d, \quad a = b \Rightarrow c \rightarrow d\}$.

Let $Z = \{F'(a, a), F'(a, c), F'(a, d), F'(b, a), F'(b, b), F'(b, c), F'(b, d), F'(c, a), F'(c, b), F'(c, c), F'(d, a), F'(d, b), F'(d, c), F'(d, d)\}$. Candidates for the fixpoints of Φ_{R_9} are those supersets of Z which contain at most one of $T(a, b), \quad F'(a, b)$, and also at most one of $T(c, d), \quad F'(c, d)$. Of these, Z itself is a (least) fixpoint since it does not contain signed tuples which would enable either of the rewrite rules in R_9. If a fixpoint contains $F'(a, b)$, then it must also contain $T(c, d)$ since the second rewrite rule is activated; indeed, $Z \cup \{F'(a, b), T(c, d)\}$ is a (maximal) fixpoint.
There are no other fixpoints: every superset of \(Z\) which contains \(F(a, b)\) or \(T(a, b)\) must also contain \(T(c, d)\) if it is a fixpoint, since the second or third rewrite rule is enabled. But every superset of \(Z\) which contains \(T(c, d)\) must also contain \(F(a, b)\) if it is a fixpoint, since the antecedent of the first rewrite rule is falsified. And every superset of \(Z\) which contains \(F(c, d)\) must also contain \(T(a, b)\) if it is a fixpoint, since the first rewrite rule is enabled.

Example 12 Let \(R_{10}\) be

\[\begin{align*}
\{ & c \neq d \Rightarrow a \rightarrow b, \quad a \neq b \Rightarrow c \rightarrow d, \quad a = b \Rightarrow c \rightarrow d, \quad c = d \Rightarrow a \rightarrow b \}.
\end{align*} \]

Again, let \(Z = \{ F(a, a), F(a, c), F(a, d), F(b, a), F(b, b), F(b, c), F(b, d), F(c, a), F(c, b), F(c, c), F(d, a), F(d, b), F(d, c), F(d, d) \} \). We again examine various consistent supersets of \(Z\) which are potential candidates for the fixpoints of \(\Phi_{R_{10}}\). \(Z\) itself is a (least) fixpoint, as in the previous example. If one of the other candidates contains \(T(a, b)\), then the third rewrite rule dictates that it must also contain \(T(c, d)\) if it is a fixpoint (and conversely). Indeed, \(Z \cup \{ T(a, b), T(c, d) \} \) is a (maximal) fixpoint. Candidates which contain \(F(a, b)\) (or \(F(c, d)\)) are not fixpoints, because the second (or first) rewrite rule is then enabled, generating \(T(c, d)\) (or \(T(a, b)\), respectively), which in turn implies that the candidate must contain \(T(a, b)\) (or \(T(c, d)\), respectively) making it inconsistent. Hence there are no other fixpoints.

5 Conclusions

We have investigated the fixpoint semantics of conditional term rewriting systems with negation. Two-valued semantics does not ascribe a meaning to some CTRS’s which do not satisfy useful properties like termination. We have shown that a three-valued approach used by Fitting [5] for Prolog-style logic programs is applicable in this context. A monotone operator is developed, whose fixpoints describe the semantics of conditional rewriting. Several examples illustrate this semantics for ‘troublesome’ rewrite systems which could not be handled easily by previous approaches. This work supports the contention that results achieved in research on Prolog-style logic programming can be useful in the context of conditional term rewriting.

We have hesitated to say whether it is the least fixpoint or the greatest intrinsic fixpoint which better describes the semantics of the EI-CTRS. The examples may motivate a preference for one or the other. The operational mechanism described in [13] and [8] computed members of the least fixpoint. To compute the greatest intrinsic fixpoint, we
need a different operational mechanism which uses "disjunctive rewriting" [14] (cf. example 9) as well as a mechanism which returns failure in some cases when naive evaluation of the antecedent leads to non-termination (cf. example 5). The formulation of such a rewriting mechanism, which computes precisely the greatest intrinsic fixpoint, is an issue for future work. In non-controversial cases, when termination requirements are satisfied, the least fixpoint and the greatest intrinsic fixpoint coincide (cf. examples 3, 4, 7).

References

