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Continuous Models of Computation for LogicPrograms:Importing Continuous Mathematics into LogicProgramming's Algorithmic FoundationsHoward A. Blair?, Fred Dushin, David W. Jakel, Angel J. Rivera, andMetin SezginDepartment of Electrical Engineering and Computer Science,Syracuse UniversitySyracuse, New York 13244-4100 USAfblair,fadushin,dwjakel,angel,mtsezging@top.cis.syr.eduAbstract Logic programs may be construed as discrete-time and continuous-timedynamical systems with continuous states. Techniques for obtaining explicit formu-lations of such dynamical systems are presented and the computational performanceof examples is presented. Extending 2-valued and n-valued logic to continuous-valued logic is shown to be unique, up to choosing the representations of the indi-vidual truth values as elements of a continuous �eld, provided that lowest degreepolynomials are selected. In the case of 2-valued logic, the constraint that enablesthe uniqueness of the continualization is that the Jacobian matrices of the continu-alizations of the Boolean connectives have only a�ne entries. This property of theJacobian matrix facilitates computation via gradient descent methods.1 OrientationThis paper is lightly technical; proofs are omitted in favor of intuitive discus-sion. Some derivations of principal results are sketched.The semantics of logic programs, in almost all of the versions that remaintoday as serious topics of research or as bases for implementation of logicprogramming systems, fundamentally rest on the notion of interpretation,or synonymously, structure, for a �rst-order language. Herbrand models aremere special cases, and far less special than usually supposed, since everystructure for a �rst-order language L is elementarily equivalent to a quotientof an Herbrand model of a suitable extension of L, [BM98]. The semantics ofintuitionistic logics, modal logics, and even multi-valued logics are engineeredfrom this notion of structure. Many of these semantics have an associated op-erator analogous to the one-step consequence operator TP originally studiedby van Emden and Kowalski [vEK76]. Viewed through the associated op-erator (which partially incorporates the semantics of the program), a logicprogram P is a discrete-state, discrete-time dynamical system. If we move? Address correspondence to this author.



2 Blair, et.al.to a continuous-valued logic, then there are analogues of these familiar se-mantic alternatives. We will discuss the move to continuous-valued logics,which we call continualization, below. Continuous-valued logic programs arecontinuous-state, discrete-time operators, when viewed through the variousassociated consequence operators that generalize those of the discrete case.The continualization methods that we discuss lead to not only continuousbut also di�erentiable operators. From that property one can 1) associatecontinuous-state, continuous-time dynamical systems, 2) provide a modeltheory for them in continuous-valued logic, 3) embed classical logic intocontinuous-valued logic, and 4) obtain continuous-time dynamical systemsequivalent to the programs one starts with in the sense that both systemshave the same �xed points, i.e. models.Various models of computation such as register machines, Turing ma-chines, and the simple imperative programming language (cf. [Te94]) showthat computation can be viewed in the following way: Imagine n naturalnumber variables X1; : : : ; Xn initialized to an n-tuple of values. A relativelysimple function iteratively updates these values until a relatively simple n-aryrelation is satis�ed. Then the answer is extracted, again in a simple way, suchas projection out of the �nal n-tuple. More fundamentally, this point of viewis embodied in Kleene's Normal Form Theorem [Sh67]. We can repeat whatwe just said this way: any computation takes a token on a lattice point in ann-space Rn and repeatedly jumps it around on lattice points until it landsin a desired region of the space that is easy to recognize, and an answer isprojected out of the point where the token ends up. So, there arises the possi-bility of moving the token around smoothly as time progresses continuously.Call such a process a smooth computation. A continuous-time dynamical sys-tem is just a set of rules for moving a token around smoothly. Our pointof view is that simple dynamical systems based on low degree polynomialsplay the same role in smooth computation as normal logic programs play indiscrete computation.It is important to dispose of two misconceptions. First, on re
ection, onemight suppose that the claims of the previous paragraph were really straight-forward since in extending a discrete operator to a continuous operator thereis so much freedom that just about anything can be crafted. This is not sounder very simple linear algebraic restrictions. Continualization of a 2-valuedor multi-valued logic involves choosing elements of a continuous �eld to standfor the underlying discrete truth-values. What freedom there is in continu-alization is highly structured. Subject to a simple constraint, a continualiza-tion is unique up to a dependence only on the elements of the �eld chosento represent the discrete truth-values. Di�erent choices of truth-value repre-sentations in the �eld produce linearly isomorphic continualizations. Thus,di�erent choices of truth-value representations amount to a change of basisin the continualization.



Continuous mathematics in logic programming 3For all of the preceding remarks, it remains that there is of course resid-ual arbitrariness in continualization. Our response to this arbitrariness is tore
ect on the distinction between the Euclidean plane and the set of all pairsof real numbers R � R. An arbitrary choice of coordinates is involved inidentifying the two spaces that is not determined by any natural geometricconsiderations [Bo86]. When one re
ects on the consequences of Descartes'[De37] arbitrary imposition of coordinates on the Euclidean plane, the over-whelming response to the residual arbitrariness in Descartes' move is: sowhat?The second misconception that the authors have frequently encountered,particularly among those well-versed in \engineering mathematics", is thatdynamical systems are a special, rather limited case of systems of di�erentialequations. This also is not so. This paper is not the place to elucidate thisclaim. The members of a nearly all-encompassing class of �rst and higher-order di�erential equations are representable as dynamical systems; we referthe interested reader to Hubbard & West, [HW95], and Guckenheimer &Holmes, [GH83].Plan of the paper: We will begin by stating our contention about the fruitfulrelationship between logic programs and dynamical systems, and speculateon the long-range gains to be expected from pursuing investigations in thatdirection, and then we will relate our ideas to other existing work. The con-tinualization of 2� and n�valued logic will then be presented with a discus-sion about the uniqueness of the continualization, and we will conclude thesection on continualization with comments on the relationship of our con-tinuous truth values to fuzzy logic. We will then present an example of acontinuous-time dynamical system corresponding to a propositional programand show how the system tracks into the f0; 1g-valued �xed points of theprogram. A second example involves a very small program which turns outto have remarkable discrete-time dynamics and from which every �nite andin�nite propositional program can be modularly built. We will conclude thepaper with a program over a signature with seven propositional letters thatproduces the sudden emergence and sudden collapse of enormously complexlimit cycles as the interpretation of its main connective in its clause bodiesis continuously tuned. We exhibit this program primarily as an example ofemergent phenomena in continuous-valued logic.2 The Contention and a CautionWe are proposing a supplementary direction of research for logic program-ming to go in. There is no claim of exclusivity here. In fact, we believe itis essential to coordinate e�orts in the direction we propose with all worth-while programs of research in logic programming, and also nonmonotonicreasoning.



4 Blair, et.al.We contend that logic programs, equipped with any of a variety of seman-tics, are representable as discrete time continuous state dynamical systems.Datalog programs are subsequently translatable into �nite dimensional con-tinuous time dynamical systems as well. Translation of predicate programswith function symbols into continuous time dynamical systems is clearly pos-sible, but here the mathematics is heavy going, involving linear operators onin�nite dimensional vector spaces, if, as far as we can see at present, un-natural encodings are to be avoided. This is a beautiful and powerful areaof exploration, but mostly premature at this time, we think, for logic pro-gramming purposes. Nevertheless, we mention in passing that the dynamicalproperties of logic programs acting on a Hilbert space is intriguing [Mu96].Notions rooted in logic are usefully and naturally translatable into notionsfrom continuous mathematics, and more importantly, from the perspective ofcomputing with (formal) logic, we import for free the staggeringly enormousarsenal of mathematical technology available in connection with computingthe trajectories of dynamical systems and understanding their structure.The big question of course is how much of what is imported is actuallyuseful for the purpose of computing with formal logic. We shall attemptto demonstrate in this paper that even the most elementary computationalaspects of dynamical systems have immediate application for computing withformal logic. Computing (feasibly) with logic can be seen as e�ectively (andfeasibly) �nding models, which are, in turn, �xed points of a suitable operator.(The notion of models-as-�xed-points is a pivotal contribution of Reiter'swhich he exploited when introducing the notion of extension in default logic,[Re80].) Below, we will discuss an approach to computing supported andstable models of datalog programs using dynamical systems.The desired �xed points associated with a particular program or theoryare usefully seen as �xed points of an associated dynamical system. Withregard to this latter perspective, one may get a glimmer of the possibilitiesby perusing the Fix Point Theory on the Web site.1Our grand contention raises a vitally important caution. Suppose (per-haps at this stage it is just a supposition) that our contention has merit.There arises the temptation to go into dynamical systems and �xed pointtheory looking for applications that will drive logic programs. The area isvast, providing years of mathematical research to enter upon. The opportu-nities abound for writing a multitude of papers, each one amounting to showhow an approach to �xed point �nding may be suitably adapted to com-putationally driving logic programs in this or that class. The adaptabilityof gradient descent methods to �nding models is probably a large enougharea for investigation to start a small research industry that could go on forseveral years. Most of this activity would probably be a catastrophic dilutionof e�ort in logic programming. So, we advocate a more cautious approach:whatever fruitful trails exist in dynamical systems and �xed point theory1 http://www.math.utep.edu/Faculty/khamsi/�xedpoint/fpt.html



Continuous mathematics in logic programming 5for logic programming purposes, these trails are probably best explored bycarefully judging their suitability for enhancing less exotic research programsin logic programming, and nonmonotonic reasoning. We mention in passingthat our own primary concerns with regard to continualization techniques atpresent lie in (1) program and model complexity and (2) belief revision.3 Long-term ExpectationsIn this section we will brie
y indicate a number of lines of investigation thatcan be supported by continualization techniques, and argue for the likely pay-o� from each area of research that we mention. At this stage in our presen-tation it is necessary to mention that in section 6 we will present an exampleof a continuous-time dynamical system that computes the supported modelsof a ground datalog program via the most naive so-called gradient descentmethod, that of following continuous trajectories. (For a brief description ofgradient descent and a picture illustrating trajectories, see section 6). Theexample is not intended to advocate that supported models be computed insuch a manner. Rather, we illustrate the continuous-time approach in the waywe do because it highlights in a simple way the idea of the basin-of-attractionof a �xed point along with geometric intuition for how the collection of thesebasins is structured. This idea is important in applying continualization inthe areas of research that we indicate below. The purpose of the example alsoincludes showing how continuous-time dynamical systems can be seen as con-servative extensions, from a logical point of view, of ordinary logic programsbased on 2-valued (as well as 3- or n-valued) logic. The range of techniqueswhich may subsequently be brought to bear on the dynamical systems thatarise is enormous.Roughly, gradient-descent is concerned with �nding global minima offunctions. The problem may be thought of as �nding the locations of leastaltitude on a surface which is the function's graph. One may hope to �ndsuch optima by guessing and then descending as rapidly as possible on thesurface much as a skier may take the path of steepest descent to get to thebottom of the trail as rapidly as possible.Transfer of neural net methods: Neural networks, whatever their short-comings, still represent a signi�cant success for arti�cial intelligence. Percep-trons, which can be seen as simple neural nets, were originally described byMinsky and Papert [MP69] in terms of gradient descent algorithms. Gradientdescent methods play a huge role in training algorithms [WZ89], [MMR97],[AGPC90]. Logic programming enjoys an advantage over neural networks bybeing able to equip the object corresponding to the neural net, namely theprogram, with a declarative semantics. The lack of declarative semantics forneural nets is sometimes enthusiastically regarded as some mysterious virtue



6 Blair, et.al.they possess, having acquired abilities through training algorithms that couldnot have been feasibly programmed. If we think of a logic program as standingin place of a neural net, the expressive power available in logic programmingpermits concise formulation of much more robust formal systems than canbe readily given with a neural net. It is not that neural nets cannot be usedin this way, it is just that, as \linguistic" formalisms, logic programmingconstitutes a much higher level language than do neural network formalisms.Neural nets enjoy an advantage over logic programs in that they robustlyemploy techniques from continuous mathematics for adaptation and opera-tion, and also for their design. We are seeking the best of both worlds bytrying to import similar techniques from continuous mathematics into themuch higher level formalism o�ered by logic programs.Transfer of fuzzy control methods: There is much controversy about thescienti�c quality of fuzzy logic as a development in logic [Pa91]. Still, fuzzycontrol, with its apparent basis in fuzzy logic, represents an important successfor the area, and is having a greater impact on industrial-strength applicationsthan is logic programming. It is not enough to dismiss this success as simplythe result of the relative abundance of opportunities in di�erent sorts ofapplication/problem areas. The observations that we made above about theadvantages of neural nets over logic programming also hold regarding theadvantage fuzzy logic and control has over logic programming. Perusal of thefuzzy control literature (for example [KGK94,Ma77,TS85,TKK91]) seems toindicate that (1) fuzzy logic and control o�ers higher level formalisms thatcome closer to logic programming than do neural networks, and (2) the useof continuous mathematical techniques is somewhat, at least typically if notin principle, less robust than is seen in neural networks. There seems to bea trade-o�: as the semantics of the formalism becomes increasingly clear anddeclarative, continuous mathematics drops away. Our contention is that thisis neither desirable, nor intrinsically necessary, rather being due to accidentsof developmental history and the concerns of the area's practitioners.Equality relations in fuzzy control [KGK94] come close to logic programsas a relatively high level formalism. However, there is no high-level fuzzy for-malism comparable to logic programming languages. Fuzzy control is moreof a tool-box of techniques at the area's present state of development. Muchstands to be gained, if the techniques and capabilities of fuzzy control tech-niques can be formally amalgamated into logic programming.Moreover, therehas been some work in the foundations of fuzzy logic that is interesting fromthe point of view of mathematical logic. Here again, with careful selection,logic programming stands to gain at its foundations by incorporating thiswork from fuzzy logic [Ha98].Comparative program behavior:. The fundamental problem that investi-gation into comparative program behavior treats is seen by asking, given two



Continuous mathematics in logic programming 7programs P1 and P2, how are their supported models related? It is possible tosmoothly deform P1 into P2. The well-known one-step consequence operatorTP enables a program P to be regarded as a transformation on interpreta-tions of the program whose supported models are the transformations' �xedpoints. As P1 is deformed along various paths to P2, what happens to its �xedpoints? It turns out that in some cases the �xed points of P2 are obtainablefrom the �xed points of P1 by such deformations, and sometimes not. Whenfailure occurs, the reasons involve singularities and basin boundaries, but sys-tematic organized knowledge of what is going on remains to be developed.One payo� from such techniques is that it is possible to very rapidly �ndthe supported models of a program at the other end of various deformationsfrom P after all of the hard work and time spent on computing P 's supportedmodels.One need not only be concerned with the motion of supported models asprograms are smoothly altered. Take for example a deductive database withan intentional program, i.e. a program, to which a variety of collections offacts, i.e. extensional parts, can be adjoined. A user might ask whether asimple ground goal G follows from the intentional program together with itscurrent collection of facts. A deduction of G (or a refutation of :G) becomesa smooth trajectory of a suitable representation of this deductive database'sintentional part as a dynamical system. An extensional part, i.e. a collectionof facts, together with a goal, becomes a starting point for a trajectory. As thestarting point changes, how do the trajectories change? If we knew robustanswers to that question, we would expect to obtain short-cuts to queryprocessing in many cases.Hybrid systems as constraint programs: A constraint program clausecan be described as having the formA � : 'where A � is simply a normal program clause and ' is a constraint which,loosely, is just something which takes on a truth value in possible models ofthe program. A model of a constraint program is then an interpretation M inwhich, after replacing each constraint ' by its truth value � inM , the result-ing program has M as a model. In continuous-valued logic one needs to knowhow a continuous truth-value contributed by a constraint is to be combinedwith the rest of the clause. It becomes possible to parameterize the proposi-tional connectives in the clause bodies by parameters that depend upon �. Inthe case of 2-valued normal logic programs, in which the negative literals canbe seen as constraints, the outcome of constraint evaluation has the e�ect ofvarying discretely among a range of Horn clause programs, as is seen in theGelfond-Lifschitz transform [GL88]. Thus the outcome of evaluating variousconstraints in a guessed model in continuous-valued logic can have the e�ectof tuning the program continuously among a continuum of programs. In the



8 Blair, et.al.�nal section of the paper we will see the how enormously complex behavioremerges from tuning continuous-valued programs.One application is to a paradigmatic class of control problems. These con-trol problems can be described as having two major components, classicallydescribed as the plant and the controller. The controller receives sensor datain the form of continuous values and has the problem of adjusting tunableparameters in the plant so as to cause the sensor values to stay within accept-able ranges. Thus the controller may be described as steering the plant. Thecontroller has a theory, or control-law in order to perform the steering task.Every so often, say every 50 milliseconds, the plant process changes enoughso that a new control-law has to be devised. The more important problemfacing the controller is the latter task. Control-law revision is a discrete task.In e�ect, the controller has to revise a theory. However, in continuous-valuedlogic the revision might be accomplished by tuning the continuous-valuedlogical operations in the control-law using the outcome of constraint evalua-tion, where the constraint expresses a continuous-valued relationship amongthe sensor readings.Belief revision and theory change: One approach to theory change in-volves the notion of contracting a theory so that it does not entail a particularproposition '. Given a theory T , the contraction of T with respect to ' is asuitably chosen consistent subtheory T 0 of T that does not entail ' [AGM85].The corresponding notion for dynamical systems can be developed as follows.A theory T can be identi�ed with a class of modelsM. A subtheory T 0 ofT is then identi�able with a superclass of modelsM0 ofM. The notion fordynamical systems corresponding to that of model is �xed point. Thus thecontraction notion for dynamical systems corresponds to increasing the num-ber of �xed points that avoid certain regions in the space of possible �xedpoints.Random combinatorial search and complexity: The �xed points of adynamical system have (possibly empty) basins of attraction. Given a combi-natorial search problem such as to �nd a Hamiltonian circuit in a graph, wemay represent the problem as one of �nding a supported or a stable model ofa logic program [MT98]; in turn as one of �nding a �xed point of a dynamicalsystem. Distinct solutions are represented as distinct models. If one guessesa solution then the dynamical system may or may not move the guess to anactual solution if any adjustment is necessary. If the guess is moved to anactual solution � then the guess was in the basin of attraction of �. Twoquestions arise: (1) Given a guess that is in the basin of attraction of a solu-tion, how fast can the guess be adjusted to produce the actual solution? (2)How likely is the guess to be in the basin of attraction of some solution? The�rst question has to do with the 
ow of the system (this is a question aboutvector �elds) and the second question has to do with the size of the basins.



Continuous mathematics in logic programming 9If progress toward an actual solution has a rate bounded above zero, andtrajectories have bounded arc-length, then producing a solution from a goodguess is a linear-time process. The size of the union of all basins of attrac-tion then becomes a representation of the probability of guessing correctlymodulo a linear-time adjustment. Knowledge about how to build programswith large basins of attraction when represented as dynamical systems wouldprovide knowledge of how to program combinatorial search problems withprobabilistically low run-times.The ability to tune the connectives in a program also permits the tuning ofstructural complexity. Take for example �nite ground programs all of whoseclauses have the form A  B j Cwhere A;B and C are atoms and j is a Boolean connective. The problem ofdeciding whether a supported model exists in which not every atom is false isNP-complete when j is taken as NAND (i.e not-both), and n3 (where n is thenumber of clauses) when j is taken as XOR (exclusive-or). So consider thefollowing heuristic for deciding an instance of the former problem (where j isNAND): replace NAND by XOR, �nd the solutions of the latter (XOR) prob-lem, and drag the solutions over to possible solutions for the former (NAND)problem by subjecting j to a deformation from XOR to NAND. We have onlylimited experience with the heuristic, but we do know that something inter-esting happens in cases when it fails. Namely, it appears from computationalexperiments that solutions obtained on the XOR side of the problem getcrunched together in a singularity as they are subjected to a smooth defor-mation towards NAND. The singularity's location indicates where a suddensharp discontinuity in the complexity of the associated satis�ability problemtakes place.4 Relationship to Prior WorkTo the best of our knowledge there is no prior work that explores continuous-time dynamical systems as such as a model of computation that directlyrelates dynamical systems to logic programs, although clearly, much work inneural networks bears on dynamical systems as a model of computation.Related work of a di�erent character that bears on logic programs ascontinuous-time dynamical systems is due to Robert Paige, [Pa94]. Paige'swork uses sophisticated techniques of �nite di�erencing to translate from oneprogramming language (just as a testbed example, SETL2) to another (again,just as an example, C). With dynamical systems (discrete or continuous time)one can continuously deform one logic program to another. Our own inves-tigations have not yet examined any detailed relationship between our ownwork and Paige's, but that there is a relationship is clear and acquiring adetailed understanding deserves serious attention.



10 Blair, et.al.Much of the original inspiration for our work comes from the work ofMelvin Fitting both on metric methods [Fi94] and on bi-lattice semantics[Fi91]. The metric methods work views a program from a particular classof logic programs as a certain kind of discrete-time dynamical system calleda contractive iterated function system [Ba93] to obtain a unique supportedmodel (i.e. �xed point) of the program. The bi-lattice semantics permitscontinuous-valued logic.In [BDH97] two of us explored the relationship between logic programsand cellular automata [Wo86,Wo94,TM87]. Cellular automata are easily con-tinualized into continuous-time dynamical systems. Moreover, if one is con-cerned not only with models of programs, but also with the computationalpaths (trajectories) of programs, Horn clause programs are su�cient for simu-lating covered (i.e. no local variables in clause bodies) normal logic programs.The result is made precise and is contained as a theorem in [BDH97]. Previ-ously in [B-H96] we reported on how covered normal logic programs could beseen as elements of a metric space of bounded almost everywhere continuousfunctions.Another major development is the optimization modeling language Nu-merica [VHDJ98,VHLD97,VH97]. The language allows users to solve hardnonlinear optimization problems expressed as ordinary di�erential equations(what we call here a continuous-time dynamical system) by sophisticated in-terval analysis. We see a strong natural a�nity between Numerica and ourown work. Numerica is an exciting tool and it behoove us, or anyone, to takefull advantage of it in work regarding dynamical systems.In comparison with Numerica, we are proposing to use dynamical systemsto literally drive logic programs viewed dually as programs and as theories incontinuous-valued logic. In fact, viewed in this manner, dynamical systemsbased on low-degree polynomials play exactly the same role for computingwith respect to continuous-valued logic as normal predicate logic programsplay with respect to 2- and 3-valued logic. In other words, running a dynam-ical system (by which we mean generating a trajectory) is to do a deductionin continuous-valued logic, literally. The emphasis in Numerica is to deduce,via numerical analysis methods (speci�cally involving interval analysis), theoptima of a dynamical system. Our emphasis is not on the optima per se,but rather on the trajectories. In an example which we will develop in thenext section, we will determine supported models of normal logic programsby gradient descent, which of course involves the search for global optima.But, the real point of the example is to illustrate how to obtain non-trivialcontinuous-time dynamical systems which are essentially �xed-point equiv-alent to the discrete-time one-step consequence operator associated with agiven normal logic program. By \non-trivial" in this context, we mean asystem that can be speci�ed without knowing where the �xed points werelocated before we started.



Continuous mathematics in logic programming 11The Quantitative Rule Sets (QRS) of van Emden [vE86] and paraconsis-tent programs, as formulated by Subrahmanian and Kifer, [KS92] are relatedto our work, since both approaches, particularly the former, and optionallythe latter, use continuous-valued logic. The main distinction between ourwork and this earlier work involving continuous-valued logic is that �nitepropositional QRS programs and the paraconsistent programs are not liter-ally everywhere di�erentiable, most particularly at the boundaries preciselywhere the special case of classical two-valued logics are obtained. Our cur-rent notion of program, that involves continuous-valued logic, is di�erentiableeverywhere. Continuous-valued logic programs that lack this property blockthe �nal step to a continuous-time dynamical system. However, much of vanEmden's results on QRS's carry over to our programs anyway.Tucker, Tapia and Bennett [TTB85] introduced notions of di�erential andintegral for Boolean functions from f0; 1gn to f0; 1g. Our continualizationshave di�erentials that do not agree with theirs, except, coincidentally, forconjunction. However, the Tucker-Tapia-Bennett partial derivative of ma-terial implication with respect to the hypothesis is constantly 0, i.e. false.The intuition behind this outcome alludes us. In our case the same partialderivative is signed and turns out to be �1 times the logical negation of theconclusion, indicating that if the conclusion is true, no change takes placein the truth of the implication as the hypothesis changes, and if the conclu-sion is false, then the implication undergoes change in the direction oppositeto the change in the hypothesis. This is arguably more natural. Still, ourmotivation is fundamentally computational, not semantical. We are not toomuch concerned with the meaning of our continuous truth values. As we willdemonstrate below, the dynamical systems are intended for computationalpurposes, and can easily �lter out non-f0; 1g-valued �xed points. At the endof our discussion of continualization we will point out the relationship of ourcontinualizations to fuzzy logic. It is a good �t by happenstance. So whatevervalue the reader may put on T-norms and T-co-norms, our conjunction anddisjunctions satisfy the T-norm and co-norm postulates [KGK94]. Indeed,our continualizations of conjunction and disjunction are coincidentally themost commonly occurring continuous representations of these connectives infuzzy logic, when we choose 0 to represent false and 1 to represent true.5 Continualizing Propositional ConnectivesThe reader may wish to skip to the example below; however the proof ofthe uniqueness of continualization with respect to lowest degree choices ofpolynomials is remarkable for its brevity. Begin with n-valued logic wherethe semantics of the k-ary propositional connectives are given by variousfunctions of the type fv1; : : : ; vngk �! fv1; : : : ; vng



12 Blair, et.al.where fv1; : : : ; vng is the set of truth values. Let B = fv1; : : : ; vng. Chooseyour favorite �eld F (presumably a continuous �eld, but at this stage thatisn't necessary) such that B can be embedded one-to-one into F . Embed BintoF as you like and regard B as a subset ofF . Consider linear combinationswith respect to F of all functions of the type Bk �! F under pointwiseaddition and scalar multiplication. The set of all such functions is itself avector space over F of dimension nk. Call this vector space V . Now, considerany collection of functions from Fk to F that forms a vector space U , also ofdimension nk, such that the restriction of the functions in U from Fk to Bk isa mapping onto V . Then the restriction mapping is a linear isomorphism fromU to V , from which it follows that there are no non-trivial automorphismsof U that respect the restriction mapping. That is, using the functions in Uthere is at most one way to generalize the functions in V .We now choose U . The method involves a special case of a techniqueknown as Lagrangian interpolation, with which the reader need not be famil-iar. Let U be the vector space of polynomials of degree n � 1 in each of kvariables with coe�cients in F and variables in x1; : : : ; xk. For example, ifF is the reals and n = k = 2, then U is the vector space of polynomials ofthe form �1 + �2x1 + �3x2 + �4x1x2where �1; �2; �3; �4 are real numbers.U is a vector space over F of dimension nk. We have only to show that therestriction mapping is onto V. For this we have to show that for every functionf in V there is a polynomial in U that agrees with f on fv1; : : : ; vngk. De�nethe nk-many distinct polynomialsPi1:::ik(x1; : : : ; xk) = �nj=1j 6=i1(x1 � vj) � � ��nj=1j 6=ik(xk � vj)for each choice of im = 1; : : : ; n, m = 1; : : : ; k. Letpi1:::ik = Pi1:::ik(vi1 ; : : : ; vik) :From the way Pi1:::ik is de�ned, it follows thatpi1:::ik 6= 0 :Then p�1i1:::ikPi1:::ik(vi1 ; : : : ; vik) = 1and p�1i1:::ikPi1:::ik(x1; : : : ; xk) = 0whenever (x1; : : : ; xk) 2 Bk � f(vi1 ; : : : ; vik)g. It is in taking the reciprocalof pi1:::ik that we needed a �eld, and not merely a ring.Now, let f 2 V be given and letQf (x1; : : : ; xk) = �ni1=1 : : :�nik=1f(vi1 ; : : : ; vik)p�1i1:::ikPi1:::ik(x1; : : : ; xk)



Continuous mathematics in logic programming 13Then, Qf (vi1 ; : : : ; vik) = f(vi1 ; : : : ; vik)for all (vi1 ; : : : ; vik) 2 fv1; : : : ; vngk. That is,f = Qfon fv1; : : : ; vngk. So the restriction map from U to V is onto. Hence there isexactly one way to extend the functions of typefv1; : : : ; vngk �! fv1; : : : ; vngto polynomials over F of degree n� 1 in each of k variables.We call this construction the lowest degree polynomial continualizationof n-valued logic over �eld F , when F is the real or complex number �eld.We have just shown this continualization to be unique among possible lowestdegree polynomials up to the representations in F of the truth values. Noticethat changes in the choice of truth-value representations in the �eld amountsto a change of basis in U .Notice also that if we continualized with not necessarily lowest degreepolynomials, then the polynomials that continualize the standard basis ofthe vector space V are divisible by the polynomials in U that continualizethose same standard basis elements, since these not necessarily lowest degreepolynomials merely contain super
uous factors of the form xi � v wherev 2 fv1; : : : ; vng. Thus the choice of the space of polynomials by which tocontinualize V is exceedingly limited by linear algebraic constraints.Example: In the case of 2-valued logic, with truth values represented by 0and 1, whether 0 corresponds to false or to true is immaterial to the contin-ualization; instead, the correspondence of 0 with false or true determines theinterpretation of the truth tables. For example, in the truth table below, sup-pose b1 = b2 = b3 = 0 and b4 = 1. Then the truth table de�nes conjunctionif 0 represents false, and de�nes disjunction if 0 represents true.Consider a function from f0; 1g2 to f0; 1g de�ned by the truth tablep q p � q0 0 b10 1 b21 0 b31 1 b4Then p � q = b1(1 � p)(1� q) + b2(1� p)q + b3p(1� q) + b4pq= �1 + �2p + �3q + �4pq



14 Blair, et.al.where 2664 1 0 0 0�1 0 1 0�1 1 0 01 �1 �1 137752664b1b2b3b43775 = 2664�1�2�3�43775 :Notice that by the uniqueness of the continualizing polynomial under the as-sumption that the exponents are bounded by 1, each of the Boolean sentenceconnectives, conjunction and disjunction, must be represented by one of thefunctions given by the two polynomials uv, u+v�uv, depending on whether0 or 1 represents false. Also, in the case of unary Boolean functions, negationmust be represented by the function given by 1�u. The inverse of the abovematrix gives the restriction mapping discussed in the derivation above, withrespect to a fairly natural choice of bases.The example shows that our lowest degree continualizations force on usthe most typical choices for continualizing conjunction and disjunction infuzzy logic. To the perhaps limited extent that one accepts the notion offuzzy truth values, our truth values can be interpreted as having the samemeaning, or lack of it, as fuzzy truth values have.6 A Continuous-Time ExampleIn this section we will show by the development of an example how to rep-resent a normal ground datalog program, i.e. a �nite propositional normallogic program, as a continuous-time dynamical system. We shall not, in thispaper, be rigorously detailed with these dynamical systems. The example isthe following: a :b;:cb :a;:dc dd cWith respect to the usual 2-valued semantics, this program has three sup-ported Herbrand models, i.e. �xed points: fag; fbg; fc; dg. The �rst two arestable, the third is not. Our methods have thus far concentrated on �ndingsupported, (i.e. �xed point) models of programs. For propositional programs,a supported model can be checked for stability in linear time. Thus, regardingprograms that do not have many more supported models than stable models,e�ciently �nding supported models is a useful heuristic for �nding stablemodels.A continuous-time dynamical system is a system of simultaneous equa-tions of the form dx1dt = f1(t; x1; : : : ; xn)...dxndt = fn(t; x1; : : : ; xn) :



Continuous mathematics in logic programming 15Assumptions on the fi vary according to the purpose at hand. In our applica-tions the fi are polynomials, and occasionally trigonometric, or exponential.Hence integrability and di�erentiability follow painlessly. Intuitively, t is time,and the equations express how a point is moving as a function of time andcurrent position. If the fi are all independent of t, then the system is said tobe autonomous.Let false be represented by 0, and true by 1. By the continualizationmethod of the previous section we obtain the following transformation, whosef0; 1g-valued �xed points are precisely the supported models of our program:T 2664abcd3775 = 2664 1� b� c+ bc1� a� d+ addc 3775 :Let R be the �eld of real numbers. As an operator on R4, T has �xed pointsalong two curved lines that orthogonally intersect at the point (a; b; c; d) =(12 ; 12 ; 0; 0). Projected onto the a; b-plane, these lines are along the main diago-nal b = a and the orthogonal line b = 1�a. The f0; 1g-valued �xed points are(1; 0; 0; 0), (0; 1; 0; 0) and (0; 0; 1; 1) as we expect from the program. We shallsee how the continuous-time dynamical system representation �nds these�xed points.Let I be the identity operator on R4 and put R = T � I. The kernelof R, i.e. the subset of R4 that R maps to (0; 0; 0; 0), is precisly the set of�xed points of T . The kernel of R can be found by gradient-descent methods,among many others. Of course, the kernel can be found analytically on thissimple example, but gradient-descent methods are more easily scalable.We show how to express the dynamical system corresponding to gradientdescent for �nding the kernel of R, and show how to augment it to �lter outunwanted �xed points.The di�erential of R denoted by dR is given by the Jacobian matrix of R.This matrix is the matrix of partial derivatives of the component functionsof R. Speci�cally, if we express R by2664 y1y2y3y43775 = 26641� x1 � x2 � x3 + x2x31� x1 � x2 � x4 + x1x4x4 � x3x3 � x4 3775then dR = � @yi@xj �j=1;2;3;4i=1;2;3;4(i indexes rows, j indexes columns) The partial derivatives all have the a�neform @yi@xj = aij + bijxkij :



16 Blair, et.al.in the case of 2-valued logic when we continualize by polynomials with degree1 in each variable.Speci�cally for our example,dR = 2664 �1 �1 + x3 �1 + x2 0�1 + x4 �1 0 �1 + x10 0 �1 10 0 1 �1 3775A program can always be �rst normalized to an equivalent program in2-valued logic that has at most two literals in the clause bodies. Programs insuch a normal form will yield a�ne forms for the resulting partial derivatives.The di�erential is a linear function whose graph, in a suitably translatedcoordinate system, forms a hyperplane tangent to the graph of R.The standard (Euclidean) norm of a point is its distance from the origin.We denote the norm of a point x in Rn by jjxjj. Note that T (x) = x i�R(x) = 0 i� jjR(x)jj = 0 i� jjR(x)jj2 = 0. (Squaring maintains di�erentiabil-ity when the kernel of R is reached.) We will reach the kernel of R by movingon tangent hyperplanes to the graph of jjRjj2 that produce the most rapidinstantaneous decrease in jjRjj2. The gradient of jjRjj2 is a vector that liesin this tangent hyperplane in a direction corresponding to the most rapidinstantaneous change in jjRjj2 and is given by (djjRjj2)T . It can be calculatedthat, as long as the Jacobian is de�ned for this square-norm function,(djjRjj2)T = 2(dR)TR(Superscript T denotes matrix transpose.) The matrices have been transposedhere so that one obtains the di�erential of jjRjj2 as a column vector.An instantaneous movement of x is expressed by dx. To obtain the fastestdecrease in jjRjj2 while remaining on its graph, one moves x according todxdt = �(djjRjj2)T = �2(dR)TR :(When written out without matrix notation, the equations above will beseen to conform to our de�nition of autonomous continuous-time dynamicalsystem.)We would like the system to stop moving x exactly when jjRjj2 reaches 0.In general, one expects a dynamical system like this to occasionally get stuckat so-called saddle points or local minima. By adding auxiliary variables tothe system, one can prevent it from reaching �xed points except at globalminima because we already know in advance what the global minimum is,although not where it is, namely when jjRjj2 is 0. We will not go into detailon this last point. More interesting is how to prune out unwanted �xed pointsof the dynamical system. ConsiderC(x) = [(xi(xi � 1))]i=1;:::;n



Continuous mathematics in logic programming 17The associated dynamical system is given bydxdt = �2(dC)TC :Almost all points moved by this dynamical system are attracted exclu-sively to the vertices of the unit n-cube. The only exception is the point at thecenter of the cube. The sum of one's original system with the 0; 1-attractordoes the trick. (The reader should intuitively re
ect that motion producedby the sum of di�erentials accumulates in general in a nonlinear way).Finally, the dynamical system in which we are interested, isdxdt = �2(dR)TR� 2(dC)TC :This system is almost �xed-point equivalent to the original logic program. Ithappens to have a saddle point, that is, a �xed point where further descentis still immediately possible. (We leave it to the reader to guess where.)Saddle points and local minima can be observed through auxiliary variablesto correspond to values of x where the global minimum has not yet beenachieved. The values of the auxiliary variables can thus be kept changing,destroying any possibility of achieving a �xed point of the dynamical systemunless x is at a f0; 1g-valued zero of jjRjj2. These f0; 1g-valued zeros of jjRjj2correspond to the supported models of the original program fromwhich Rwasderived. For this reason, let us call a f0; 1g-valued zero of jjRjj2 a supportedmodel of the dynamical system dxdt = �2(dR)TR � 2(dC)TC. We do notexpect to reach one of these supported models no matter where we start; itis enough to be able to start with a reasonable probability of being in thebasin of attraction of one of them. Repeated trials raise the probability ashigh as we like. Of course precise analysis of such probabilistic approachesis required, but at this stage we are o�ering only computational evidence ofthe utility of the approach. One approach to a complexity analysis involvesestimating the volumes of the basins of attraction of the supported models.Let x(t) be the position of a point at time t as it is determined by thesystem together with the starting position x(0). The position at time t canbe calculated by iteratingx(t+�t) := x(t) + dxdt �twhere �t approximates dt. In our example �t = 0:001.The �gure below indicates the performance of the system in our exam-ple. The curves, called trajectories, that the dynamical system follows, beginat various integer lattice points in R4 and track into one of the supportedmodels. The �gure shows the trace of these trajectories on the (a; b)-plane.



18 Blair, et.al.

7 A Fundamental Discrete-time SystemConsider the program a  :bb :aWe take advantage of our 2-valued logic to re-express this program as the2-valued equivalent a b j bb a j awhere the vertical bar indicates the NAND operation, i.e. not-both. As adiscrete-time system with continuous states, we can express this program byT �ab � = � 1� b21� a2 �



Continuous mathematics in logic programming 19T has four �xed points: (1; 0), (0; 1), (��;��), and (��̂;��̂), where � is thegolden ratio, and �̂ is 1 � �. Iterating T , we can think of this process astaking place in discrete time steps. The convergence of the dynamical systemis expressed by the following �gure.

The checkerboard pattern within the �gure consists of countably many rowsand columns, increasingly squeezed into the �gure as the outer boundaryis approached. The sequence of squares on the diagonals does not decreasein area in geometric proportion as the sequence approaches the corners ofthe checkerboard; rather, the decrease is determined by the dynamical (i.e.iterative) properties of a certain degree-4 polynomial on the interval from 0 tothe golden ratio. Starting points in the plane outside the shaded checkerboard�gure lead to diverging iterations to in�nity. Inside the �gure, starting pointsin the central small interior square and in all regions depicted by the samelight shade of grey, are attracted to a limit cycle oscillating between (0; 0) and(1; 1). Starting points in any of the rectangular areas bearing the same shadeof grey as the rectangle containing the point (1; 0) are attracted to (1; 0),and similarly for (0; 1). The remaining �xed points that involve the golden



20 Blair, et.al.ratio are repelling; all sequences of iterations that do not start on them arerepelled away from them. This is also true of the entire boundaries betweenrectangular patches, as well as the outer boundary; any sequence startingon or near them is repelled away from them. The �xed point (��;��) isat the lower corner of the checkerboard �gure, and (��̂;��̂) is at the upperright corner of the central smaller lightly shaded square. Since the non-f0; 1g-valued �xed points are repelling, they can be ignored.Consider the following propositional program, which we call an if-then-else component. r  u j vu p j av  q j ba b j bb a j a :The pattern in this program expressesr  (if a then p else q)Suppose one has a program in which these clauses are a part. Any non-repelling �xed point of the program, even if it is not f0; 1g-valued, will satisfythe if-then-else interpretation. From this it follows that one can representany (including in�nite ones) propositional program in 2-valued logic with aprogram built from repeated uses of the component. By the term representwe mean that given a program P , we can �nd a program Q built from if-then-else components whose non-repelling �xed points restrict to the �xedpoints of P . (Thus the completion of Q is a conservative extension of thecompletion of P in 2-valued logic.)The attentive reader may have noticed that the programs we treatedso far all have the property that heads of distinct clauses are distinct. Moregenerally, heads of distinct clauses do not unify. We point out that it is alwayspossible to represent a program by a conservative extension to a program withthis property, even when the initial program is in�nite.8 Emergent Phenomena from TuningWe conclude the paper with an example of a program that produces emergentphenomena in continuous-valued logic as its main connective is tuned.p0  p6 � p1p1  p0 � p2p2  p1 � p3p3  p2 � p4p4  p3 � p5p5  p4 � p6p6  p5 � p0



Continuous mathematics in logic programming 21The possible interpretations under consideration for the p � q connective aregiven by �1 + �2p+ �3q + �4pq :with the �i as real numbers. The space of these polynomials is of courselinearly isomorphic to R4. We will vary the coe�cients (�1; �2; �3; �4) ofthese polynomials, and hence the interpretation of the connective �, alonga short line segment in R4 between the points (a1; a1 + b1; a1 � b1; b1) and(a2; a2 + b2; a2 � b2; b2), where a1 = �0:6892b1 = 0:3446a2 = �0:6911b2 = 0:3456In the �gure that follows, the horizontal �-axis from 0 to 1 is the line segmentinR4 from (a1; a1+b1; a1�b1; b1) to (a2; a2+b2; a2�b2; b2). Thus, each valueon the horizontal axis corresponds to an interpretation of �. The vertical �-axis corresponds to the Euclidean norm of valuations. We will brie
y explainthis by considering just one point plotted in the �gure.There is a point (�; �) = (0:375; 4:7051) occurring on one of the �bers inthe portion of the �gure just to the left of center. The interpretation of theconnective � is given by the polynomiala+ (a + b)p+ (a� b)q + bpqwhere a = (1� �)a1 + �a2b = (1� �)b1 + �b2where a1; b1; a2 and b2 are as above. Speci�cally, for the value � = 0:375, thevalues of a and b are a = �0:68991 and b = 0:34485. The value � = 4:7051is the Euclidean norm (the distance from the origin (0; 0; 0; 0; 0; 0;0)) of theHerbrand interpretation (with continuous truth-values) given by T3197P (I0)where I0(p0) = 1 and I0(p1) : : : = I0(p6) = 0. That is, I0 = (1; 0; 0; 0; 0; 0;0).(The reason we do not start the iteration at the origin of the space in thisexample is due to not wanting the truth value of every atom in the interpre-tations we reach to be equal). Speci�cally, the values of the atoms p0; : : : p6in T3197P (I0) are given byp0 = �1:1442045697971657p1 = �1:424646495185601p2 = �2:411334918922416p3 = �0:06419512110633097p4 = �2:3764341956984323p5 = �1:5553879344313004p6 = �2:2167841794959537 :



22 Blair, et.al.What is the signi�cance of the fact that this point (�; �) occurs on this�ber? The �ber indicates an attracting limit cycle in the iteration of TP .The cycle has a period of 16. Only eight �bers are visible in the �gure be-cause the other eight are clustered in a similar �gure corresponding to valueswith norms near 7 and are consequently o� the top of the �gure. Thus TPis asymptotically converging to a limit cycle of period 16. Equivalently, theprogram corresponding to T16P has the valuation displayed above as a sup-ported model. As the connective � is tuned continuously from left to rightin the �gure the model suddenly emerges out of somewhat chaotic iterativebehavior at � = 0:197, and appears to change continuously until it vanishesagain at � = 0:542. Actually, the structure of the �bers is collectively morecomplicated: there are three distinct values of � where the eight �bers ex-change places. This appears to be due to an irregular boundary of the basinof attraction around the �bers that captures the iteration of TP at slightlydi�erent stages as the interpretation of � is tuned.For each value on the horizontal axis, the programwas iterated 2900 timesbeginning at (1; 0; 0; 0; 0; 0;0). If the norms of all of the valuations that resultfrom an iteration are less then 64, then the iteration is deemed to not bediverging to in�nity. A value on the vertical axis is the norm of a valuation.If the iteration is not diverging to in�nity, then the norms of the next 300iterations are plotted. The plots of every other iteration appear in the �gure.
On the right-hand side of the �gure the �brous gaps are spreading out andbecoming increasingly complex before somewhat abruptly disappearing asthe cyclic structure in the iterations vanishes.
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