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Continuous Models of Computation for Logic
Programs:

Importing Continuous Mathematics into Logic
Programming’s Algorithmic Foundations

Howard A. Blair*, Fred Dushin, David W. Jakel, Angel J. Rivera, and
Metin Sezgin

Department of Electrical Engineering and Computer Science,
Syracuse University

Syracuse, New York 13244-4100 USA
{blair,fadushin,dwjakel,angel ,mtsezgin}@top.cis.syr.edu

Abstract Logic programs may be construed as discrete-time and continuous-time
dynamical systems with continuous states. Techniques for obtaining explicit formu-
lations of such dynamical systems are presented and the computational performance
of examples is presented. Extending 2-valued and n-valued logic to continuous-
valued logic is shown to be unique, up to choosing the representations of the indi-
vidual truth values as elements of a continuous field, provided that lowest degree
polynomials are selected. In the case of 2-valued logic, the constraint that enables
the uniqueness of the continualization is that the Jacobian matrices of the continu-
alizations of the Boolean connectives have only affine entries. This property of the
Jacobian matrix facilitates computation via gradient descent methods.

1 Orientation

This paper is lightly technical; proofs are omitted in favor of intuitive discus-
sion. Some derivations of principal results are sketched.

The semantics of logic programs, in almost all of the versions that remain
today as serious topics of research or as bases for implementation of logic
programming systems, fundamentally rest on the notion of interpretation,
or synonymously, structure, for a first-order language. Herbrand models are
mere special cases, and far less special than usually supposed, since every
structure for a first-order language L is elementarily equivalent to a quotient
of an Herbrand model of a suitable extension of L, [BM98]. The semantics of
intuitionistic logics, modal logics, and even multi-valued logics are engineered
from this notion of structure. Many of these semantics have an associated op-
erator analogous to the one-step consequence operator T p originally studied
by van Emden and Kowalski [vEK76]. Viewed through the associated op-
erator (which partially incorporates the semantics of the program), a logic
program P is a discrete-state, discrete-time dynamical system. If we move
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2 Blair, et.al.

to a continuous-valued logic, then there are analogues of these familiar se-
mantic alternatives. We will discuss the move to continuous-valued logics,
which we call continualization, below. Continuous-valued logic programs are
continuous-state, discrete-time operators, when viewed through the various
associated consequence operators that generalize those of the discrete case.
The continualization methods that we discuss lead to not only continuous
but also differentiable operators. From that property one can 1) associate
continuous-state, continuous-time dynamical systems, 2) provide a model
theory for them in continuous-valued logic, 3) embed classical logic into
continuous-valued logic, and 4) obtain continuous-time dynamical systems
equivalent to the programs one starts with in the sense that both systems
have the same fixed points, i.e. models.

Various models of computation such as register machines, Turing ma-
chines, and the simple imperative programming language (cf. [Te94]) show
that computation can be viewed in the following way: Imagine n natural
number variables Xy, ..., X, initialized to an n-tuple of values. A relatively
simple function iteratively updates these values until a relatively simple n-ary
relation is satisfied. Then the answer is extracted, again in a simple way, such
as projection out of the final n-tuple. More fundamentally, this point of view
is embodied in Kleene’s Normal Form Theorem [Sh67]. We can repeat what
we just said this way: any computation takes a token on a lattice point in an
n-space R" and repeatedly jumps it around on lattice points until it lands
in a desired region of the space that is easy to recognize, and an answer is
projected out of the point where the token ends up. So, there arises the possi-
bility of moving the token around smoothly as time progresses continuously.
Call such a process a smooth computation. A continuous-time dynamical sys-
tem is just a set of rules for moving a token around smoothly. Our point
of view 1s that simple dynamical systems based on low degree polynomials
play the same role in smooth computation as normal logic programs play in
discrete computation.

It is important to dispose of two misconceptions. First, on reflection, one
might suppose that the claims of the previous paragraph were really straight-
forward since in extending a discrete operator to a continuous operator there
is so much freedom that just about anything can be crafted. This is not so
under very simple linear algebraic restrictions. Continualization of a 2-valued
or multi-valued logic involves choosing elements of a continuous field to stand
for the underlying discrete truth-values. What freedom there is in continu-
alization is highly structured. Subject to a simple constraint, a continualiza-
tion is unique up to a dependence only on the elements of the field chosen
to represent the discrete truth-values. Different choices of truth-value repre-
sentations in the field produce linearly isomorphic continualizations. Thus,
different choices of truth-value representations amount to a change of basis
in the continualization.
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For all of the preceding remarks, it remains that there is of course resid-
ual arbitrariness in continualization. Our response to this arbitrariness is to
reflect on the distinction between the Euclidean plane and the set of all pairs
of real numbers R x R. An arbitrary choice of coordinates is involved in
identifying the two spaces that is not determined by any natural geometric
considerations [Bo86]. When one reflects on the consequences of Descartes’
[De37] arbitrary imposition of coordinates on the Euclidean plane, the over-
whelming response to the residual arbitrariness in Descartes’ move is: so
what?

The second misconception that the authors have frequently encountered,

particularly among those well-versed in “engineering mathematics” | is that
dynamical systems are a special, rather limited case of systems of differential
equations. This also is not so. This paper 1s not the place to elucidate this
claim. The members of a nearly all-encompassing class of first and higher-
order differential equations are representable as dynamical systems; we refer
the interested reader to Hubbard & West, [HW95], and Guckenheimer &
Holmes, [GH83].
Plan of the paper: We will begin by stating our contention about the fruitful
relationship between logic programs and dynamical systems, and speculate
on the long-range gains to be expected from pursuing investigations in that
direction, and then we will relate our ideas to other existing work. The con-
tinualization of 2— and n—valued logic will then be presented with a discus-
sion about the uniqueness of the continualization, and we will conclude the
section on continualization with comments on the relationship of our con-
tinuous truth values to fuzzy logic. We will then present an example of a
continuous-time dynamical system corresponding to a propositional program
and show how the system tracks into the {0, 1}-valued fixed points of the
program. A second example involves a very small program which turns out
to have remarkable discrete-time dynamics and from which every finite and
infinite propositional program can be modularly built. We will conclude the
paper with a program over a signature with seven propositional letters that
produces the sudden emergence and sudden collapse of enormously complex
limit cycles as the interpretation of its main connective in its clause bodies
is continuously tuned. We exhibit this program primarily as an example of
emergent phenomena in continuous-valued logic.

2 The Contention and a Caution

We are proposing a supplementary direction of research for logic program-
ming to go in. There is no claim of exclusivity here. In fact, we believe it
1s essential to coordinate efforts in the direction we propose with all worth-
while programs of research in logic programming, and also nonmonotonic
reasoning.
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We contend that logic programs, equipped with any of a variety of seman-
tics, are representable as discrete time continuous state dynamical systems.
Datalog programs are subsequently translatable into finite dimensional con-
tinuous time dynamical systems as well. Translation of predicate programs
with function symbols into continuous time dynamical systems is clearly pos-
sible, but here the mathematics is heavy going, involving linear operators on
infinite dimensional vector spaces, if, as far as we can see at present, un-
natural encodings are to be avoided. This is a beautiful and powerful area
of exploration, but mostly premature at this time, we think, for logic pro-
gramming purposes. Nevertheless, we mention in passing that the dynamical
properties of logic programs acting on a Hilbert space is intriguing [Mu96].

Notions rooted in logic are usefully and naturally translatable into notions
from continuous mathematics, and more importantly, from the perspective of
computing with (formal) logic, we import for free the staggeringly enormous
arsenal of mathematical technology available in connection with computing
the trajectories of dynamical systems and understanding their structure.

The big question of course is how much of what is imported is actually
useful for the purpose of computing with formal logic. We shall attempt
to demonstrate in this paper that even the most elementary computational
aspects of dynamical systems have immediate application for computing with
formal logic. Computing (feasibly) with logic can be seen as effectively (and
feasibly) finding models, which are, in turn, fixed points of a suitable operator.
(The notion of models-as-fixed-points is a pivotal contribution of Reiter’s
which he exploited when introducing the notion of extension in default logic,
[Re80].) Below, we will discuss an approach to computing supported and
stable models of datalog programs using dynamical systems.

The desired fixed points associated with a particular program or theory
are usefully seen as fixed points of an associated dynamical system. With
regard to this latter perspective, one may get a glimmer of the possibilities
by perusing the Fiz Point Theory on the Web site.!

Our grand contention raises a vitally important caution. Suppose (per-
haps at this stage it is just a supposition) that our contention has merit.
There arises the temptation to go into dynamical systems and fixed point
theory looking for applications that will drive logic programs. The area is
vast, providing years of mathematical research to enter upon. The opportu-
nities abound for writing a multitude of papers, each one amounting to show
how an approach to fixed point finding may be suitably adapted to com-
putationally driving logic programs in this or that class. The adaptability
of gradient descent methods to finding models is probably a large enough
area for investigation to start a small research industry that could go on for
several years. Most of this activity would probably be a catastrophic dilution
of effort wn logic programming. So, we advocate a more cautious approach:
whatever fruitful trails exist in dynamical systems and fixed point theory

! http://www.math.utep.edu/Faculty /khamsi /fixedpoint /fpt.html



Continuous mathematics in logic programming 5

for logic programming purposes, these trails are probably best explored by
carefully judging their suitability for enhancing less exotic research programs
in logic programming, and nonmonotonic reasoning. We mention in passing
that our own primary concerns with regard to continualization techniques at
present lie in (1) program and model complexity and (2) belief revision.

3 Long-term Expectations

In this section we will briefly indicate a number of lines of investigation that
can be supported by continualization techniques, and argue for the likely pay-
off from each area of research that we mention. At this stage in our presen-
tation it is necessary to mention that in section 6 we will present an example
of a continuous-time dynamical system that computes the supported models
of a ground datalog program via the most naive so-called gradient descent
method, that of following continuous trajectories. (For a brief description of
gradient descent and a picture illustrating trajectories, see section 6). The
example is not intended to advocate that supported models be computed in
such a manner. Rather, we illustrate the continuous-time approach in the way
we do because it highlights in a simple way the idea of the basin-of-attraction
of a fixed point along with geometric intuition for how the collection of these
basins is structured. This idea is important in applying continualization in
the areas of research that we indicate below. The purpose of the example also
includes showing how continuous-time dynamical systems can be seen as con-
servative extensions, from a logical point of view, of ordinary logic programs
based on 2-valued (as well as 3- or n-valued) logic. The range of techniques
which may subsequently be brought to bear on the dynamical systems that
arise 1s enormous.

Roughly, gradient-descent is concerned with finding global minima of
functions. The problem may be thought of as finding the locations of least
altitude on a surface which is the function’s graph. One may hope to find
such optima by guessing and then descending as rapidly as possible on the
surface much as a skier may take the path of steepest descent to get to the
bottom of the trail as rapidly as possible.

Transfer of neural net methods: Neural networks, whatever their short-
comings, still represent a significant success for artificial intelligence. Percep-
trons, which can be seen as simple neural nets, were originally described by
Minsky and Papert [MP69] in terms of gradient descent algorithms. Gradient
descent methods play a huge role in training algorithms [WZ89], [MMR97],
[AGPC90]. Logic programming enjoys an advantage over neural networks by
being able to equip the object corresponding to the neural net, namely the
program, with a declarative semantics. The lack of declarative semantics for
neural nets is sometimes enthusiastically regarded as some mysterious virtue



6 Blair, et.al.

they possess, having acquired abilities through training algorithms that could
not have been feasibly programmed. If we think of a logic program as standing
in place of a neural net, the expressive power available in logic programming
permits concise formulation of much more robust formal systems than can
be readily given with a neural net. It is not that neural nets cannot be used
in this way, it 1s just that, as “linguistic” formalisms, logic programming
constitutes a much higher level language than do neural network formalisms.

Neural nets enjoy an advantage over logic programs in that they robustly
employ techniques from continuous mathematics for adaptation and opera-
tion, and also for their design. We are seeking the best of both worlds by
trying to import similar techniques from continuous mathematics into the
much higher level formalism offered by logic programs.

Transfer of fuzzy control methods: There is much controversy about the
scientific quality of fuzzy logic as a development in logic [Pa91]. Still, fuzzy
control, with its apparent basis in fuzzy logic, represents an important success
for the area, and is having a greater impact on industrial-strength applications
than is logic programming. It 1s not enough to dismiss this success as simply
the result of the relative abundance of opportunities in different sorts of
application/problem areas. The observations that we made above about the
advantages of neural nets over logic programming also hold regarding the
advantage fuzzy logic and control has over logic programming. Perusal of the
fuzzy control literature (for example [KGK94,Ma77,TS85, TKK91]) seems to
indicate that (1) fuzzy logic and control offers higher level formalisms that
come closer to logic programming than do neural networks, and (2) the use
of continuous mathematical techniques is somewhat, at least typically if not
in principle, less robust than i1s seen in neural networks. There seems to be
a trade-off: as the semantics of the formalism becomes increasingly clear and
declarative, continuous mathematics drops away. Our contention is that this
is neither desirable, nor intrinsically necessary, rather being due to accidents
of developmental history and the concerns of the area’s practitioners.

Equality relations in fuzzy control [KGK94] come close to logic programs
as a relatively high level formalism. However, there is no high-level fuzzy for-
malism comparable to logic programming languages. Fuzzy control is more
of a tool-box of techniques at the area’s present state of development. Much
stands to be gained, if the techniques and capabilities of fuzzy control tech-
niques can be formally amalgamated into logic programming. Moreover, there
has been some work in the foundations of fuzzy logic that is interesting from
the point of view of mathematical logic. Here again, with careful selection,
logic programming stands to gain at its foundations by incorporating this
work from fuzzy logic [Ha98].

Comparative program behavior:. The fundamental problem that investi-
gation into comparative program behavior treats is seen by asking, given two
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programs P, and Ps, how are their supported models related? It is possible to
smoothly deform P; into Ps. The well-known one-step consequence operator
Tp enables a program P to be regarded as a transformation on interpreta-
tions of the program whose supported models are the transformations’ fixed
points. As P; is deformed along various paths to P, what happens to its fixed
points? It turns out that in some cases the fixed points of P, are obtainable
from the fixed points of P; by such deformations, and sometimes not. When
failure occurs, the reasons involve singularities and basin boundaries,; but sys-
tematic organized knowledge of what is going on remains to be developed.
One payoff from such techniques is that it is possible to very rapidly find
the supported models of a program at the other end of various deformations
from P after all of the hard work and time spent on computing P’s supported
models.

One need not only be concerned with the motion of supported models as
programs are smoothly altered. Take for example a deductive database with
an intentional program, i.e. a program, to which a variety of collections of
facts, i.e. extensional parts, can be adjoined. A user might ask whether a
simple ground goal G follows from the intentional program together with its
current collection of facts. A deduction of G (or a refutation of = (&) becomes
a smooth trajectory of a suitable representation of this deductive database’s
intentional part as a dynamical system. An extensional part, i.e. a collection
of facts, together with a goal, becomes a starting point for a trajectory. As the
starting point changes, how do the trajectories change? If we knew robust
answers to that question, we would expect to obtain short-cuts to query
processing in many cases.

Hybrid systems as constraint programs: A constraint program clause
can be described as having the form

AT ¢

where A + I is simply a normal program clause and ¢ is a constraint which,
loosely, 18 just something which takes on a truth value in possible models of
the program. A model of a constraint program is then an interpretation M in
which, after replacing each constraint ¢ by its truth value v in M, the result-
ing program has M as a model. In continuous-valued logic one needs to know
how a continuous truth-value contributed by a constraint is to be combined
with the rest of the clause. It becomes possible to parameterize the proposi-
tional connectives in the clause bodies by parameters that depend upon v. In
the case of 2-valued normal logic programs, in which the negative literals can
be seen as constraints, the outcome of constraint evaluation has the effect of
varying discretely among a range of Horn clause programs, as is seen in the
Gelfond-Lifschitz transform [GL88]. Thus the outcome of evaluating various
constraints in a guessed model in continuous-valued logic can have the effect
of tuning the program continuously among a continuum of programs. In the
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final section of the paper we will see the how enormously complex behavior
emerges from tuning continuous-valued programs.

One application is to a paradigmatic class of control problems. These con-
trol problems can be described as having two major components, classically
described as the plant and the controller. The controller receives sensor data
in the form of continuous values and has the problem of adjusting tunable
parameters in the plant so as to cause the sensor values to stay within accept-
able ranges. Thus the controller may be described as steering the plant. The
controller has a theory, or control-law in order to perform the steering task.
Every so often, say every 50 milliseconds, the plant process changes enough
so that a new control-law has to be devised. The more important problem
facing the controller is the latter task. Control-law revision is a discrete task.
In effect, the controller has to revise a theory. However, in continuous-valued
logic the revision might be accomplished by tuning the continuous-valued
logical operations in the control-law using the outcome of constraint evalua-
tion, where the constraint expresses a continuous-valued relationship among
the sensor readings.

Belief revision and theory change: One approach to theory change in-
volves the notion of contracting a theory so that it does not entail a particular
proposition . Given a theory 7', the contraction of T" with respect to ¢ is a
suitably chosen consistent subtheory 7" of T' that does not entail ¢ [AGMS85].
The corresponding notion for dynamical systems can be developed as follows.
A theory T can be identified with a class of models M. A subtheory 7" of
T is then identifiable with a superclass of models M’ of M. The notion for
dynamical systems corresponding to that of model is fized point. Thus the
contraction notion for dynamical systems corresponds to increasing the num-
ber of fixed points that avoid certain regions in the space of possible fixed
points.

Random combinatorial search and complexity: The fixed points of a
dynamical system have (possibly empty) basins of attraction. Given a combi-
natorial search problem such as to find a Hamiltonian circuit in a graph, we
may represent the problem as one of finding a supported or a stable model of
a logic program [MT98]; in turn as one of finding a fixed point of a dynamical
system. Distinct solutions are represented as distinct models. If one guesses
a solution then the dynamical system may or may not move the guess to an
actual solution if any adjustment is necessary. If the guess is moved to an
actual solution ¢ then the guess was in the basin of attraction of o. Two
questions arise: (1) Given a guess that is in the basin of attraction of a solu-
tion, how fast can the guess be adjusted to produce the actual solution? (2)
How likely is the guess to be in the basin of attraction of some solution? The
first question has to do with the flow of the system (this is a question about
vector fields) and the second question has to do with the size of the basins.
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If progress toward an actual solution has a rate bounded above zero, and
trajectories have bounded arc-length, then producing a solution from a good
guess is a linear-time process. The size of the union of all basins of attrac-
tion then becomes a representation of the probability of guessing correctly
modulo a linear-time adjustment. Knowledge about how to build programs
with large basins of attraction when represented as dynamical systems would
provide knowledge of how to program combinatorial search problems with
probabilistically low run-times.

The ability to tune the connectives in a program also permits the tuning of
structural complexity. Take for example finite ground programs all of whose
clauses have the form

A« B|C

where A, B and C are atoms and | is a Boolean connective. The problem of
deciding whether a supported model exists in which not every atom is false is
NP-complete when | is taken as NAND (i.e not-both), and n® (where n is the
number of clauses) when | is taken as XOR (exclusive-or). So consider the
following heuristic for deciding an instance of the former problem (where | is
NAND): replace NAND by XOR, find the solutions of the latter (XOR) prob-
lem, and drag the solutions over to possible solutions for the former (NAND)
problem by subjecting | to a deformation from XOR to NAND. We have only
limited experience with the heuristic, but we do know that something inter-
esting happens in cases when it fails. Namely, it appears from computational
experiments that solutions obtained on the XOR side of the problem get
crunched together in a singularity as they are subjected to a smooth defor-
mation towards NAND. The singularity’s location indicates where a sudden
sharp discontinuity in the complexity of the associated satisfiability problem
takes place.

4 Relationship to Prior Work

To the best of our knowledge there is no prior work that explores continuous-
time dynamical systems as such as a model of computation that directly
relates dynamical systems to logic programs, although clearly, much work in
neural networks bears on dynamical systems as a model of computation.

Related work of a different character that bears on logic programs as
continuous-time dynamical systems is due to Robert Paige, [Pa94]. Paige’s
work uses sophisticated techniques of finite differencing to translate from one
programming language (just as a testbed example, SETL2) to another (again,
just as an example, C). With dynamical systems (discrete or continuous time)
one can continuously deform one logic program to another. Our own inves-
tigations have not yet examined any detailed relationship between our own
work and Paige’s, but that there is a relationship is clear and acquiring a
detailed understanding deserves serious attention.
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Much of the original inspiration for our work comes from the work of
Melvin Fitting both on metric methods [Fi94] and on bi-lattice semantics
[Fi91]. The metric methods work views a program from a particular class
of logic programs as a certain kind of discrete-time dynamical system called
a contractive iterated function system [Ba93] to obtain a unique supported
model (i.e. fixed point) of the program. The bi-lattice semantics permits
continuous-valued logic.

In [BDHO7] two of us explored the relationship between logic programs
and cellular automata [Wo86,Wo94, TM8&7]. Cellular automata are easily con-
tinualized into continuous-time dynamical systems. Moreover, if one 1s con-
cerned not only with models of programs, but also with the computational
paths (trajectories) of programs, Horn clause programs are sufficient for simu-
lating covered (i.e. no local variables in clause bodies) normal logic programs.
The result is made precise and is contained as a theorem in [BDH97]. Previ-
ously in [B-H96] we reported on how covered normal logic programs could be
seen as elements of a metric space of bounded almost everywhere continuous
functions.

Another major development is the optimization modeling language Nu-
merica [VADJ98, VHLD97,VH97]. The language allows users to solve hard
nonlinear optimization problems expressed as ordinary differential equations
(what we call here a continuous-time dynamical system) by sophisticated in-
terval analysis. We see a strong natural affinity between Numerica and our
own work. Numerica is an exciting tool and it behoove us, or anyone, to take
full advantage of it in work regarding dynamical systems.

In comparison with Numerica, we are proposing to use dynamical systems
to literally drive logic programs viewed dually as programs and as theories in
continuous-valued logic. In fact, viewed in this manner, dynamical systems
based on low-degree polynomials play exactly the same role for computing
with respect to continuous-valued logic as normal predicate logic programs
play with respect to 2- and 3-valued logic. In other words, running a dynam-
ical system (by which we mean generating a trajectory) is to do a deduction
in continuous-valued logic, literally. The emphasis in Numerica is to deduce,
via numerical analysis methods (specifically involving interval analysis), the
optima of a dynamical system. Our emphasis is not on the optima per se,
but rather on the trajectories. In an example which we will develop in the
next section, we will determine supported models of normal logic programs
by gradient descent, which of course involves the search for global optima.
But, the real point of the example is to illustrate how to obtain non-trivial
continuous-time dynamical systems which are essentially fixed-point equiv-
alent to the discrete-time one-step consequence operator associated with a
given normal logic program. By “non-trivial” in this context, we mean a
system that can be specified without knowing where the fixed points were
located before we started.
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The Quantitative Rule Sets (QRS) of van Emden [vE86] and paraconsis-
tent programs, as formulated by Subrahmanian and Kifer, [KS92] are related
to our work, since both approaches, particularly the former, and optionally
the latter, use continuous-valued logic. The main distinction between our
work and this earlier work involving continuous-valued logic is that finite
propositional QRS programs and the paraconsistent programs are not liter-
ally everywhere differentiable, most particularly at the boundaries precisely
where the special case of classical two-valued logics are obtained. Our cur-
rent notion of program, that involves continuous-valued logic, is differentiable
everywhere. Continuous-valued logic programs that lack this property block
the final step to a continuous-time dynamical system. However, much of van
Emden’s results on QRS’s carry over to our programs anyway.

Tucker, Tapia and Bennett [TTB85] introduced notions of differential and
integral for Boolean functions from {0,1}" to {0,1}. Our continualizations
have differentials that do not agree with theirs, except, coincidentally, for
conjunction. However, the Tucker-Tapia-Bennett partial derivative of ma-
terial implication with respect to the hypothesis is constantly 0, i.e. false.
The intuition behind this outcome alludes us. In our case the same partial
derivative 1s signed and turns out to be —1 times the logical negation of the
conclusion, indicating that if the conclusion is true, no change takes place
in the truth of the implication as the hypothesis changes, and if the conclu-
sion is false, then the implication undergoes change in the direction opposite
to the change in the hypothesis. This is arguably more natural. Still, our
motivation is fundamentally computational, not semantical. We are not too
much concerned with the meaning of our continuous truth values. As we will
demonstrate below, the dynamical systems are intended for computational
purposes, and can easily filter out non-{0, 1}-valued fixed points. At the end
of our discussion of continualization we will point out the relationship of our
continualizations to fuzzy logic. It is a good fit by happenstance. So whatever
value the reader may put on T-norms and T-co-norms, our conjunction and
disjunctions satisfy the T-norm and co-norm postulates [KGK94]. Indeed,
our continualizations of conjunction and disjunction are coincidentally the
most commonly occurring continuous representations of these connectives in
fuzzy logic, when we choose 0 to represent false and 1 to represent true.

5 Continualizing Propositional Connectives

The reader may wish to skip to the example below; however the proof of
the uniqueness of continualization with respect to lowest degree choices of
polynomials is remarkable for its brevity. Begin with n-valued logic where
the semantics of the k-ary propositional connectives are given by various
functions of the type

{v1, ...,vn}k—>{v1, ce, Unt
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where {v1, ..., vy} is the set of truth values. Let B = {v1, ..., v,}. Choose
your favorite field F (presumably a continuous field, but at this stage that
isn’t necessary) such that B can be embedded one-to-one into . Embed B
into F as you like and regard B as a subset of F. Consider linear combinations
with respect to F of all functions of the type B¥ —= F under pointwise
addition and scalar multiplication. The set of all such functions is itself a
vector space over F of dimension n”. Call this vector space V. Now, consider
any collection of functions from F* to F that forms a vector space U, also of
dimension n*, such that the restriction of the functions in U from F* to B* is
amapping onto V. Then the restriction mapping is a linear isomorphism from
U to V, from which 1t follows that there are no non-trivial automorphisms
of U that respect the restriction mapping. That is, using the functions in U
there is at most one way to generalize the functions in V.

We now choose U. The method involves a special case of a technique
known as Lagrangian interpolation, with which the reader need not be famil-
iar. Let U be the vector space of polynomials of degree n — 1 in each of &
variables with coefficients in F and variables in 1, ..., zx. For example, if
F is the reals and n = k = 2, then U is the vector space of polynomials of
the form

AL+ Aoz + Azza + Mz xo

where A1, Ag, Az, A4 are real numbers.

U is a vector space over F of dimension n*. We have only to show that the
restriction mapping is onto V. For this we have to show that for every function
fin V there is a polynomial in U that agrees with f on {v1, ..., v, }*. Define
the n*-many distinct polynomials

Pi, @y, oo wg) = U5 (21— vy) - A1, (2 — vy)
iEi ik
for each choice of i, =1, ..., n,m =1, ... k. Let
Pivoip = Piyan (Uiy, ooy viy)

From the way F;, ;, is defined, it follows that

Piy.iy, 7 0.
Then
Pi_l,l,,ikpil...ik(vil, ) =1
and
Pi_l,l,,ikpil...ik(l‘h o xE)=0
whenever (zy, ..., z5) € B¥ — {(v;,, ..., v, )}. It is in taking the reciprocal

of pi, i, that we needed a field, and not merely a ring.
Now, let f € V be given and let

T

Qf(wr, ooy @) = X0 o 20 o fviys o vik)Pi_l,l,,ikPil...ik(rl, oy )
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Then,
Qf(vila sy vik) = f(vila sy vik)
for all (v, ..., vi,) € {vi, ..., v }*. That is,
[ =Qy
on {vi, ..., vy }*. So the restriction map from U to V' is onto. Hence there is

exactly one way to extend the functions of type
{og, o o — oy, o o)

to polynomials over F of degree n — 1 in each of %k variables.

We call this construction the lowest degree polynomial continualization
of n-valued logic over field F, when F is the real or complex number field.
We have just shown this continualization to be unique among possible lowest
degree polynomials up to the representations in F of the truth values. Notice
that changes in the choice of truth-value representations in the field amounts
to a change of basis in U.

Notice also that if we continualized with not necessarily lowest degree
polynomials, then the polynomials that continualize the standard basis of
the vector space V' are divisible by the polynomials in U/ that continualize
those same standard basis elements, since these not necessarily lowest degree
polynomials merely contain superfluous factors of the form x; — v where
v € {v1, ..., vy }. Thus the choice of the space of polynomials by which to
continualize V is exceedingly limited by linear algebraic constraints.

Example: In the case of 2-valued logic, with truth values represented by 0
and 1, whether 0 corresponds to false or to true is immaterial to the contin-
ualization; instead, the correspondence of 0 with false or true determines the
interpretation of the truth tables. For example, in the truth table below, sup-
pose by = bs = b3 = 0 and b4 = 1. Then the truth table defines conjunction
if 0 represents false, and defines disjunction if 0 represents true.

Consider a function from {0,1}? to {0, 1} defined by the truth table

paqpeq

Then

peq=>01(1—p)(1—q)+bs(l —p)g+bsp(l—q)+bapg
= A1+ Aap + Azq + Aapg
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where
1 0 00 by Al
-1 0 10 ba | | A
-1 1 00 bs| | A3
1-1-11 by A4

Notice that by the uniqueness of the continualizing polynomial under the as-
sumption that the exponents are bounded by 1, each of the Boolean sentence
connectives, conjunction and disjunction, must be represented by one of the
functions given by the two polynomials uv, u+v — uv, depending on whether
0 or 1 represents false. Also, in the case of unary Boolean functions, negation
must be represented by the function given by 1 — u. The inverse of the above
matrix gives the restriction mapping discussed in the derivation above, with
respect to a fairly natural choice of bases.

The example shows that our lowest degree continualizations force on us
the most typical choices for continualizing conjunction and disjunction in
fuzzy logic. To the perhaps limited extent that one accepts the notion of
fuzzy truth values, our truth values can be interpreted as having the same
meaning, or lack of it, as fuzzy truth values have.

6 A Continuous-Time Example

In this section we will show by the development of an example how to rep-
resent a normal ground datalog program, i.e. a finite propositional normal
logic program, as a continuous-time dynamical system. We shall not, in this
paper, be rigorously detailed with these dynamical systems. The example is
the following:

a ¢ —b,—c

b+ —a,—d

c+—d

d+c

With respect to the usual 2-valued semantics, this program has three sup-
ported Herbrand models; i.e. fixed points: {a}, {b}, {c,d}. The first two are
stable, the third is not. Our methods have thus far concentrated on finding
supported, (i.e. fixed point) models of programs. For propositional programs,
a supported model can be checked for stability in linear time. Thus, regarding
programs that do not have many more supported models than stable models,
efficiently finding supported models is a useful heuristic for finding stable
models.

A continuous-time dynamical system is a system of simultaneous equa-

tions of the form p
% = fl(taxla"'axn)

dgt" =falt,er, ... 2n).
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Assumptions on the f; vary according to the purpose at hand. In our applica-
tions the f; are polynomials, and occasionally trigonometric, or exponential.
Hence integrability and differentiability follow painlessly. Intuitively, ¢ is time,
and the equations express how a point is moving as a function of time and
current position. If the f; are all independent of ¢, then the system is said to
be autonomous.

Let false be represented by 0, and true by 1. By the continualization
method of the previous section we obtain the following transformation, whose
{0, 1}-valued fixed points are precisely the supported models of our program:

1—b—c+be
l—a—d+ad
d

C

QU O R

Let R be the field of real numbers. As an operator on R?, 7" has fixed points
along two curved lines that orthogonally intersect at the point (a,b,¢,d) =
(%, %, 0,0). Projected onto the a, b-plane, these lines are along the main diago-
nal b = a and the orthogonal line 6 = 1 —a. The {0, 1}-valued fixed points are
(1,0,0,0), (0,1,0,0) and (0,0,1,1) as we expect from the program. We shall
see how the continuous-time dynamical system representation finds these
fixed points.

Let I be the identity operator on R* and put R = T — I. The kernel
of R, i.e. the subset of R* that R maps to (0,0,0,0), is precisly the set of
fixed points of 7. The kernel of R can be found by gradient-descent methods,
among many others. Of course, the kernel can be found analytically on this
simple example, but gradient-descent methods are more easily scalable.

We show how to express the dynamical system corresponding to gradient
descent for finding the kernel of R, and show how to augment it to filter out
unwanted fixed points.

The differential of R denoted by dR is given by the Jacobian matrix of R.
This matrix is the matrix of partial derivatives of the component functions
of R. Specifically, if we express R by

Y1 1l -2y —xo — w3+ 2023
Y|  |l—xz1—2z2—2a+ 2124
Y3 Ty — X3
Ya T3 — T4
then loaa
8' J=54,9,
dR:[—yZ]
Oxjlici 034

1490

(¢ indexes rows, j indexes columns) The partial derivatives all have the affine
form
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in the case of 2-valued logic when we continualize by polynomials with degree
1 in each variable.
Specifically for our example,

-1 —1—|—l‘3 —1—|—l‘2 0

_ —1—|—l‘4 -1 0 —1—|—l‘1
dit = 0 0 -1 1
0 0 1 -1

A program can always be first normalized to an equivalent program in
2-valued logic that has at most two literals in the clause bodies. Programs in
such a normal form will yield affine forms for the resulting partial derivatives.
The differential is a linear function whose graph, in a suitably translated
coordinate system, forms a hyperplane tangent to the graph of R.

The standard (Euclidean) norm of a point is its distance from the origin.
We denote the norm of a point x in R” by ||x||. Note that T(x) = x iff
R(x) = 0iff ||R(x)|| = 0 iff || R(x)||* = 0. (Squaring maintains differentiabil-
ity when the kernel of R is reached.) We will reach the kernel of R by moving
on tangent hyperplanes to the graph of ||R||? that produce the most rapid
instantaneous decrease in ||R||?. The gradient of ||R||* is a vector that lies
in this tangent hyperplane in a direction corresponding to the most rapid
instantaneous change in || R||? and is given by (d||R||?)?. It can be calculated
that, as long as the Jacobian is defined for this square-norm function,

(d[RI")T = 2(dR)" R

(Superscript T denotes matrix transpose.) The matrices have been transposed
here so that one obtains the differential of ||R||? as a column vector.

An instantaneous movement of x is expressed by dx. To obtain the fastest
decrease in ||R||? while remaining on its graph, one moves x according to

& _(IRIPYT = —2dR)T R.
dt

(When written out without matrix notation, the equations above will be
seen to conform to our definition of autonomous continuous-time dynamical
system.)

We would like the system to stop moving x exactly when || R||? reaches 0.
In general, one expects a dynamical system like this to occasionally get stuck
at so-called saddle points or local minima. By adding auxiliary variables to
the system, one can prevent it from reaching fixed points except at global
minima because we already know in advance what the global minimum 1is,
although not where it is, namely when ||R||? is 0. We will not go into detail
on this last point. More interesting is how to prune out unwanted fixed points
of the dynamical system. Consider

C(x) = [(zi(zi — 1)]i=1,..n
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The associated dynamical system is given by

dx T
i —2(dC)* C.

Almost all points moved by this dynamical system are attracted exclu-
sively to the vertices of the unit n-cube. The only exception is the point at the
center of the cube. The sum of one’s original system with the 0, 1-attractor
does the trick. (The reader should intuitively reflect that motion produced
by the sum of differentials accumulates in general in a nonlinear way).

Finally, the dynamical system in which we are interested, is

Cfl—j = —2(dR)"R - 2(dC)*C.

This system is almost fixed-point equivalent to the original logic program. It
happens to have a saddle point, that is, a fixed point where further descent
is still immediately possible. (We leave it to the reader to guess where.)
Saddle points and local minima can be observed through auxiliary variables
to correspond to values of x where the global minimum has not yet been
achieved. The values of the auxiliary variables can thus be kept changing,
destroying any possibility of achieving a fixed point of the dynamical system
unless x is at a {0, 1}-valued zero of ||R||?. These {0, 1}-valued zeros of || R||?
correspond to the supported models of the original program from which R was
derived. For this reason, let us call a {0, 1}-valued zero of ||R||? a supported

model of the dynamical system Cil—)f = —2(dR)TR — 2(dC)TC. We do not
expect to reach one of these supported models no matter where we start; it
is enough to be able to start with a reasonable probability of being in the
basin of attraction of one of them. Repeated trials raise the probability as
high as we like. Of course precise analysis of such probabilistic approaches
is required, but at this stage we are offering only computational evidence of
the utility of the approach. One approach to a complexity analysis involves
estimating the volumes of the basins of attraction of the supported models.

Let x(t) be the position of a point at time ¢ as it is determined by the
system together with the starting position x(0). The position at time ¢ can
be calculated by iterating

x(t+ At) .= x(t) + Cfl—);At
where At approximates dt. In our example At = 0.001.

The figure below indicates the performance of the system in our exam-
ple. The curves, called trajectories, that the dynamical system follows, begin
at various integer lattice points in R? and track into one of the supported
models. The figure shows the trace of these trajectories on the (a, b)-plane.
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=2

=2 2

7 A Fundamental Discrete-time System

Consider the program
a <+ —b
b+ —a

We take advantage of our 2-valued logic to re-express this program as the
2-valued equivalent

a+blb

b—ala

where the vertical bar indicates the NAND operation, i1.e. not-both. As a
discrete-time system with continuous states, we can express this program by

(3] =120
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T has four fixed points: (1,0), (0,1), (—¢, —¢), and (—QAS, —q/;), where ¢ is the
golden ratio, and 6 is 1 — &. Iterating 7', we can think of this process as
taking place in discrete time steps. The convergence of the dynamical system
is expressed by the following figure.

0.0
-0.57
-1.07

-1.57

-z.00 ' 1 1 i 1 1 1 1
-2.0 -1.5 -0 -0.5 0.0 0.5 1.0 1.5 2.0

The checkerboard pattern within the figure consists of countably many rows
and columns, increasingly squeezed into the figure as the outer boundary
is approached. The sequence of squares on the diagonals does not decrease
in area in geometric proportion as the sequence approaches the corners of
the checkerboard; rather, the decrease is determined by the dynamical (i.e.
iterative) properties of a certain degree-4 polynomial on the interval from 0 to
the golden ratio. Starting points in the plane outside the shaded checkerboard
figure lead to diverging iterations to infinity. Inside the figure, starting points
in the central small interior square and in all regions depicted by the same
light shade of grey, are attracted to a limit cycle oscillating between (0, 0) and
(1,1). Starting points in any of the rectangular areas bearing the same shade
of grey as the rectangle containing the point (1,0) are attracted to (1,0),
and similarly for (0,1). The remaining fixed points that involve the golden
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ratio are repelling; all sequences of iterations that do not start on them are
repelled away from them. This 1s also true of the entire boundaries between
rectangular patches, as well as the outer boundary; any sequence starting
on or near them is repelled away from them. The fixed point (—¢, —¢) is
at the lower corner of the checkerboard figure, and (—QAS, —qg) is at the upper
right corner of the central smaller lightly shaded square. Since the non-{0, 1}-
valued fixed points are repelling, they can be ignored.
Consider the following propositional program, which we call an if-then-

else component.

réeul|v

uepla

véqlb

a+—blb

b—ala.

The pattern in this program expresses
7  (if a then p else ¢)

Suppose one has a program in which these clauses are a part. Any non-
repelling fixed point of the program, even if it is not {0, 1}-valued, will satisfy
the if-then-else interpretation. From this it follows that one can represent
any (including infinite ones) propositional program in 2-valued logic with a
program built from repeated uses of the component. By the term represent
we mean that given a program P, we can find a program @ built from if-
then-else components whose non-repelling fixed points restrict to the fixed
points of P. (Thus the completion of @ is a conservative extension of the
completion of P in 2-valued logic.)

The attentive reader may have noticed that the programs we treated
so far all have the property that heads of distinct clauses are distinct. More
generally, heads of distinct clauses do not unify. We point out that it is always
possible to represent a program by a conservative extension to a program with
this property, even when the initial program is infinite.

8 Emergent Phenomena from Tuning

We conclude the paper with an example of a program that produces emergent
phenomena in continuous-valued logic as its main connective is tuned.

Po < Ps ® 1
P1 < Ppoep2
P2 <~ p1eps
P3 < p2eps
P4 < p3 e ps
P5 < P4 ® s
Ps < Ps ® po
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The possible interpretations under consideration for the p e ¢ connective are
given by
A1+ Aap + Azq + Aapq .

with the A; as real numbers. The space of these polynomials is of course
linearly isomorphic to R*. We will vary the coefficients (A1, A2, Az, Aa) of
these polynomials, and hence the interpretation of the connective e, along
a short line segment in R* between the points (a1,a1 + b1, a1 — by,b1) and
(az, az + b2, az — ba, ba), where

a; = —0.6892
b1 = 0.3446
as = —0.6911
by = 0.3456

In the figure that follows, the horizontal A-axis from 0 to 1 is the line segment
in R* from (a1, ay+b1,a;—by,b1) to (az, az+bs, az—bs, bs). Thus, each value
on the horizontal axis corresponds to an interpretation of e. The vertical 7-
axis corresponds to the Euclidean norm of valuations. We will briefly explain
this by considering just one point plotted in the figure.

There is a point (A, ) = (0.375,4.7051) occurring on one of the fibers in
the portion of the figure just to the left of center. The interpretation of the
connective e is given by the polynomial

a+(a+b)p+(a—1b)g+bpg

where
a=(1—-Xa+ Aas
b= (1 — /\)bl + Abs

where a1, b1, a2 and by are as above. Specifically, for the value A = 0.375, the
values of @ and b are « = —0.68991 and b = 0.34485. The value = 4.7051
is the Euclidean norm (the distance from the origin (0,0,0,0,0,0,0)) of the
Herbrand interpretation (with continuous truth-values) given by T?jglw(fo)
where Iy(po) = 1 and Iy(p1) ... = Io(ps) = 0. That is, Iy = (1,0,0,0,0,0,0).
(The reason we do not start the iteration at the origin of the space in this
example is due to not wanting the truth value of every atom in the interpre-
tations we reach to be equal). Specifically, the values of the atoms pq, ... ps
in T%°7(I,) are given by

po = —1.1442045697971657
p1 = —1.424646495185601
p2 = —2.411334918922416
p3 = —0.06419512110633097
ps = —2.3764341956984323
ps = —1.5553879344313004
ps = —2.2167841794959537 .
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What is the significance of the fact that this point (A,7) occurs on this
fiber? The fiber indicates an attracting limit cycle in the iteration of Tp.
The cycle has a period of 16. Only eight fibers are visible in the figure be-
cause the other eight are clustered in a similar figure corresponding to values
with norms near 7 and are consequently off the top of the figure. Thus Tp
1s asymptotically converging to a limit cycle of period 16. Equivalently, the
program corresponding to T}f has the valuation displayed above as a sup-
ported model. As the connective e is tuned continuously from left to right
in the figure the model suddenly emerges out of somewhat chaotic iterative
behavior at A = 0.197, and appears to change continuously until it vanishes
again at A = 0.542. Actually, the structure of the fibers is collectively more
complicated: there are three distinct values of A where the eight fibers ex-
change places. This appears to be due to an irregular boundary of the basin
of attraction around the fibers that captures the iteration of Tp at slightly
different stages as the interpretation of e is tuned.

For each value on the horizontal axis, the program was iterated 2900 times
beginning at (1,0,0,0,0,0,0). If the norms of all of the valuations that result
from an iteration are less then 64, then the iteration i1s deemed to not be
diverging to infinity. A value on the vertical axis is the norm of a valuation.
If the iteration is not diverging to infinity, then the norms of the next 300
iterations are plotted. The plots of every other iteration appear in the figure.

| | | |
4] 0,123 0.248 0.374 04393 0624 0.749 0.874 1

On the right-hand side of the figure the fibrous gaps are spreading out and
becoming increasingly complex before somewhat abruptly disappearing as
the cyclic structure in the iterations vanishes.
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Although beyond the scope of this paper, we know how to find the regions
of the space of polynomials that give rise to this emergent complex behavior.
The fact that models can be made to vary continuously as the program is
tuned appears to facilitate the application to hybrid control discussed earlier
and similar applications.
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