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Abstract 

 

This study explores whether spatial parameters (e.g. landscape position, distance to 

nearest gas well, geologic unit of water extraction) corresponded with the spatial distribution of 

methane concentrations in domestic drinking water wells overlying the Marcellus Shale in New 

York State, where unconventional shale gas extraction is currently banned. Domestic 

groundwater wells (n=204) were sampled across five counties (Broome, Chemung, Chenango, 

Steuben, and Tioga) in New York from 2012-2014. Based on analysis of water from homeowner 

wells sampled in 2013 the majority of samples (77%) had low concentrations of methane (< 0.1 

mg/L), and only 5% of wells (n=7) had actionable levels of methane (> 10 mg/L), in the absence 

of shale gas production. Dissolved methane concentrations are not strongly correlated with 

landscape position, as observed in prior studies, nor other parameters indicative of subsurface 

planes of weakness (i.e. faults or lineaments). The distribution of elevated methane levels was 

most strongly correlated with Na-HCO3 water type. While the majority of all groundwater 

samples (55%) were classified as Ca-HCO3-type waters, 93% of those wells have <0.1 mg/L of 

dissolved methane. The distribution of methane between Ca-HCO3 (n=76) and Na-HCO3 (n=23) 

water types was significantly different (p<0.001) with mean methane concentrations of 0.3 and 

3.8 mg/L, respectively. Methane isotopic compositions of a subset of samples suggest a 

thermogenic or mixed origin for methane. Results suggest that shallow groundwater mixing with 

deeper Na-Cl and Na-HCO3 type water charged with thermogenic methane from Upper 

Devonian shales might occur more frequently in the fractured bedrock upland regions than 

previously suspected.  
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Introduction 

 

The Marcellus shale is a gas-bearing middle Devonian formation deposited in the 

Appalachian basin and underlies regions of New York (NY), Pennsylvania (PA), Ohio, and West 

Virginia. Development of unconventional shale gas extraction methods (e.g. directional drilling 

and high volume hydraulic fracturing), has led to a surge in the number of gas wells completed in 

the Marcellus shale in recent years (Vidic et al., 2013). One of the largest shale gas plays in the 

U.S, the Marcellus is estimated to have 141 trillion cubic feet (TCF) of technically recoverable 

dry thermogenic natural gas (EIA 2012; Kargbo, 2010).  To put that volume in perspective, total 

U.S consumption of natural gas in 2014 was 26.7 TCF (EIA, 2014). Development of the 

Marcellus has generated millions of dollars in state and federal tax revenue and created tens of 

thousands of jobs (Considine et al., 2010). Despite the economic benefits, there are societal 

concerns regarding the impact of unconventional hydraulic fracturing on water resources and 

water quality that have drawn heightened media attention and influenced political decisions 

surrounding the issue (Soeder, 2010; Vengosh et al., 2013; Vidic et al., 2013). Unconventional 

extraction methods are currently used to produce gas from the Marcellus in all of its overlying 

states, with the exception of NY, where the Marcellus underlies an area of approximately 48,433 

km
2
 (NYSDEC, 2011). In 2010, the NY state legislature established a moratorium on 

unconventional gas drilling in the state, which lasted a number of years, before the state’s 

ultimate decision to officially ban the process in 2014.  As such, NY provides a unique 

opportunity to understand the natural occurrence of dissolved methane in the absence of 

unconventional gas extraction in regions overlying the Marcellus. 
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Concerns for potential stray gas migration to shallow groundwater aquifers (e.g. Entrekin 

et al., 2011; Kargbo et al., 2010), which provide water to domestic wells in the region, have 

prompted numerous studies of the natural variability of groundwater methane concentrations in 

areas of NY, PA, and West Virginia underlain by the Marcellus shale. In New York, methane 

occurs naturally in groundwater wells, primarily at low concentrations (< 1 mg/L), but 

occasionally in amounts which exceed the solubility in water and present an explosive hazard 

(Kappel, 2013; Kappel & Nystrom, 2012; Heisig & Scott, 2013; McPhillips et al., 2014; 

Molofksy et al., 2013; and Eltschlager et al, 2001). Gas production may introduce additional 

stray gas into shallow groundwater aquifers due to faulty seals on gas production wells, or 

enhanced migration of methane along fracture pathways during the drilling processes (Vidic et 

al. 2013).  The potential for stray gas contamination of shallow groundwater in areas with 

unconventional gas production creates a need for effective means of distinguishing between 

natural and anthropogenic methane occurrence, while recognizing the extended history of 

historical gas production from conventional wells. This necessitates additional baseline water 

quality information and a greater understating of dissolved methane variability in groundwater 

prior to unconventional gas extraction, to evaluate allegations of contamination (Davies, 2011; 

Molofsky et al., 2013). Given the similar regional geology, climate, and land use across areas 

underlain by the Marcellus, studies in NY can be considered representative of natural methane 

occurrence prior to high volume hydraulic fracturing in an area with historical and continuous 

conventional gas development.  

Prior work clearly demonstrates there is natural occurrence of methane in shallow 

groundwater throughout the Marcellus shale play, and specifically in southern NY (Kappel & 

Nystrom, 2012; Heisig & Scott, 2013; McPhillips et al., 2014; Boyer et al., 2012; Mathes & 
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White, 2006; and Molofksy et al., 2013 ). Natural surface seeps of methane have been observed 

in NY along faults or laterally from swamps (Kappel & Nystrom, 2012), with low levels of 

dissolved methane present in shallow groundwater throughout the state, and localized 

occurrences of elevated methane concentrations above 10 and 28 mg/L (Kappel, 2013). In NY, 

natural gas has been observed in groundwater drawn from upper Devonian bedrock, the Tully 

limestone, surficial glacial till deposits, and in the Hamilton group above the Marcellus. Isotopes 

of methane and higher chain hydrocarbons (C1-C5) have been used to identify sources of natural 

gas in groundwater and reflect the geochemistry and thermal maturity of natural gas in the source 

rock. Upper and middle Devonian formations are less thermally mature in central NY, relative to 

northeastern PA (Repetski et al., 2008). Methane isotopes from the upper and middle Devonian 

formations in central NY are, on average, δ
13

C-CH4 of -44.7 +/- 3.9 ‰, compared to -36.3 +/- 3.0 

‰ in lower Devonian and Silurian formations (Jenden, 1993).  

Prior studies of patterns of elevated methane concentrations in the Marcellus shale region 

have focused on hydrogeologic setting and environmental drivers, such as well proximity to gas 

production areas. In PA, NY, and West Virginia, elevated methane concentrations in domestic 

wells have been linked to topographic position, specifically lowland valleys (Molofsky et al. 

2011; Heisig & Scott, 2013; Mathis & White, 2006). However, the correlation between 

landscape position and methane is not consistently observed, even within similar study areas. 

Near the PA border, in Susquehanna County, Jackson et al. (2013) observed no correlation 

between elevated methane concentrations and proximity to valley bottoms, but rather cited 

proximity to gas wells as the primary driver for elevated methane. Conversely, in the same study 

region, Molofsky et al. (2013) observed a significant correlation between topographic position 

and methane concentration, and found upper range methane concentrations occurred more 
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frequently in valley versus upland water wells. Analysis of an expansive dataset of groundwater 

quality data from groundwater wells throughout northeastern PA revealed no relationship 

between methane concentrations in domestic wells and proximity to existing gas wells (Siegel et 

al., 2015).  Similar to the findings in PA, two studies in southern NY noted contradictory 

evidence for the importance of landscape position in conjunction with aquifer confinement on 

the distribution of methane concentrations in domestic wells (Heisig & Scott, 2013; McPhillips, 

et al., 2014). 

Use of publically available water quality data to assess impacts of shale development in 

the Marcellus are hindered by the presence of pre-existing elevated methane concentrations 

(Brantley et al., 2014). Understanding the occurrence of dissolved methane levels prior to high 

volume hydraulic fracturing in aquifers with a history of natural methane occurrence and 

historical conventional gas drilling is important for evaluating future contamination (Davies, 

2011; Molofsky et al., 2013). Prior studies have also noted the need for a larger randomized 

sampling size and increased sampling density (Davies, 2011; Saba & Orzechowski 2011; 

McPhillips et al., 2014; Kappel, 2013). The goal of this study is to further interrogate 

relationships between landscape parameters and natural occurrence of methane in shallow 

groundwater overlying the Marcellus shale. We build on prior work by expanding the geographic 

study area, while maintaining a high density of randomly-selected observation sites to provide a 

comprehensive analysis of natural occurrence of methane in the region. This study also 

complements similar studies in the region by providing an increased number of isotopic data in 

upland areas, examining temporal changes in methane concentrations, and evaluating the 

influence of faults and lineaments on gas levels. Well and spatial proximity parameters addressed 
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in this study include: well depth, topographic position, geologic setting, stratigraphic unit of 

water extraction, and distance to nearest road, fault, and active or other gas wells. 

Study Area 

 

The study area extends across five counties in NY (Broome, Chemung, Chenango, 

Steuben, and Tioga counties), which lie along the border of NY and PA (Figure 1). This region is 

primarily underlain by upper Devonian shale and sandstone, transitioning from the lower 

Canadaway in the southwestern region of the study area, into the West Falls, Sonyea, Genesee 

and older middle Devonian Hamilton Group shale towards the northwest. The underlying 

bedrock is sedimentary rock of Cambrian, Ordovician, Silurian, and Devonian age, which gently 

dips southward and is overlain by discontinuous glacial till, with an unsorted mixture of clay, 

silt, sand, and boulders in the uplands and stratified silt, clay, and outwash sand and gravel in the 

valleys (Williams, 2010).  

 In the western part of the study region (Steuben and the majority of Chemung County), 

the Chemung River trends northwest to southeast before merging with the Susquehanna River in 

northern Pennsylvania. To the west, in Tioga, Broome, and Chenango Counties, the Upper 

Susquehanna River flows from the northeast into Pennsylvania. In general, throughout the study 

area, uplands are bedrock overlain by thin layers of glacial till, with thicker layers of glacial till 

and alluvium lining the river valleys (Miller et al., 1982; McPherson, 1993). The river valleys are 

lined with glacial material and make up the primary and principal aquifers mapped by the  

U.S Geologic Survey (USGS). In upland regions the groundwater source is primarily fractured 

bedrock, and freshwater zones observed to circulate to greater depths in upland areas relative to 

valleys (Williams, 2014).  
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Methods 

Site Selection 

A total of 203 domestic groundwater wells were sampled in the summers of 2012 and 

2013 across 5 counties (10,231 km
2
) in Southern NY (Broome, Chenango, Chemung, Steuben, 

and Tioga Counties). Sampling locations were chosen from an online database of domestic wells 

drilled in the region since 2000, which is collected and maintained by the NY State Department 

of Environmental Conservation (NYSDEC) and made available from the NY state GIS 

Clearinghouse (https://gis.ny.gov/). To obtain a large distribution of randomly selected domestic 

wells, three wells were indiscriminately chosen within each cell of a 7 by 7 km grid overlain 

across the study area. This process generated approximately 750 candidate wells. We solicited 

landowner participation in our study by contacting well owners by mail using tax parcel data for 

the location of the candidate wells. This methodology produced a total sample size of 203 

groundwater samples across the study area. In addition to taking water samples, homeowners 

were also surveyed regarding their well water quality and well construction. 

Sample Collection and Analysis 

Untreated well water was purged from each well until a stable temperature was reached, 

which typically took 5-10 minutes. Samples were collected from an indoor or outdoor spigot that 

bypassed any water treatment systems or, in a few instances, collected directly from the home’s 

pressure tank. Field measurements of pH, temperature, and electrical conductivity were taken 

with a WTW 340i probe. Groundwater samples were filtered with a 0.45-μm filter into two 125-

ml polypropylene bottles, one acidified to a pH less than 2 (3-4 drops nitric acid) and one left un-

acidified, to analyze for trace metals and dissolved ions, respectively. Samples were analyzed for 

major dissolved ions and δD-H2O and δ
18

O-H2O isotopes at the Syracuse University Department 

of Earth Sciences Hydrology Laboratory. Major ions (Na
+
, NH4

+
, K

+
, Ca

2+
, Mg

2+
, F

-
, Cl

-
, Br

-
, 
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NO3
-
, PO4

3-
, SO4

2-
) were analyzed using a Dionex ICS-2000 ion chromatograph. Isotopes of 

water were measured using a Picarro L2130-i Cavity Ringdown Spectrometer. Trace metal 

analysis for Li, B, Al, P, Mn, Fe, Zn, Sr, Ba, Pb, and Se in water samples were measured using 

an Elan DRC-e Inductively Coupled Plasma Mass Spectrometer (ICPMS) at the State University 

of NY College of Environmental Science and Forestry Analytical and Technical Services 

Laboratory. Halogen analyses for Br and I were done using a Bruker Daltronics Aurora M90 

Quadrupole based ICPMS at Syracuse University. A subset of 35 samples was selected for 

strontium isotopic analysis (
86

Sr/
87

Sr) by thermal ionization mass spectrometry (TIMS) at the 

Radiogenic Isotope Laboratory at the Massachusetts Institute of Technology (MIT) and data 

from this analysis can be found in.  

A total of 137 of the samples collected in 2013 were analyzed for dissolved methane. 

These samples were collected in two 100-mL glass vials with no headspace, one acidified with 

hydrochloric acid. Dissolved methane concentrations were measured at the University of 

Rochester by the headspace equilibration technique and gas chromatography (GC), using a 

Shimadzu GC-14A equipped with a flame ionization detector (FID). The minimum detection 

limit (MDL) for the method was 0.0001 mg/L; detections below this limit were treated as equal 

to the MDL. Of these samples, 21 sites were resampled in the summer of 2014 for methane 

concentration and methane isotopic analysis of δ
13

C-CH4 and δD-CH4. Samples for methane 

isotope analysis were collected in 60-ml glass vials with silicone lined caps and measured at the 

University of California at Davis Stable Isotope Facility. Raw data for all chemical constituents 

and isotopic data evaluated in this study can be can be found in Appendix A.  

Spatial Data Analysis  

 Various well and spatial parameters were compiled for the sampled wells to identify 

potential correlations with methane concentrations.  Similar groundwater studies in NY and PA 
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have noted a correlation between the topographic position of a well and the dissolved methane 

concentration in groundwater (Heisig & Scott 2013; Molofsky et al. 2013). In NY, valley wells 

completed in confined bedrock were shown to have higher dissolved methane concentrations 

than those in upland settings (Heisig & Scott, 2013). However, multiple methods for the 

delineation of landscape position have been suggested, including: (1) delineation of valley extent 

based on a synthetic stream network from a 1/3 arc second 10 meter digital elevation model 

(DEM, Heisig & Scott 2013) (2) well proximity to major and minor flowlines in the national 

hydrography dataset (Molofsky et al. 2013); and (3) well position within USGS mapped valley 

fill aquifers (McPhillips et al. 2014). The first method above, which is based on a synthetic 

stream network derived from a DEM, is the most comprehensive method of determining valley 

extent because it takes into account valley slope and topographic relief, but is also time-

consuming to implement.  To understand how the choice of method affects well classification 

and associated correlation with methane levels, all three methods are used and compared.   

Although much attention has been given to valley setting as an important predictor of 

elevated methane concentrations, the orientation and size of valleys are controlled primarily by 

prior glacial activity in southern NY. However, Heisig & Scott (2013) noted that valley 

orientation can occasionally be a reflection of regional joint, lineament, or fault orientation. 

Throughout NY State, Jacobi (2002) delineated a large number of faults, some identified by 

methane detection in the overlying soil, and lineaments. For this reason, in addition to landscape 

position, we evaluated well proximity to faults (Jacobi, 2002) or lineaments (EARTHSAT, 1997) 

(Appendix B, Fig S1a).  

Potential for gas migration to domestic wells from historical gas production areas was 

assessed based on domestic well proximity to active (n=125) and presumed inactive (n=245) gas 
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wells (Appendix B, Fig S1b). from available 2013 NYSDEC data 

(http://www.dec.ny.gov/energy/1603.html). Gas wells were classified based on the well status as 

either active or other (all remaining classifications, including inactive, plugged and abandoned, 

temporarily abandoned, unknown, etc). Well proximity to roads and highways were also 

examined (Appendix B, Fig S1c). GIS files of New York State (NYS) roads were obtained from 

the NYS GIS Clearinghouse, with highways classified as major U.S routes and interstate 

highways.  

Geologic Setting 

The geologic unit of completion for each groundwater well was determined based on well 

depth information and contoured maps of the stratigraphic base elevation for the Dunkirk, Java, 

West Falls, Sonyea, Genesee, and Hamilton formations, as well as isopach maps of the Java, 

West Falls, Sonyea, Genesee, and Hamilton upper Devonian geologic groups prepared by the 

Eastern Shale Gas Project (EGSP) and Morgantown Energy Technology Center (METC) (EGSP, 

1980). These maps, in conjunction with the location of the surface contact between stratigraphic 

groups on a geologic map, were used to generate interpolated elevation surfaces of the contacts 

between geologic groups underlying the study area.  The bedrock of well completion was 

determined based on the elevation of the maximum well depth, relative to the bedrock contact 

surfaces. When the bedrock unit of completion was ambiguous, due to limited spatial extent of 

some bedrock surface data, wells were classified as being from one of two potential stratigraphic 

units. This classification method was compared to classifications based solely on the well 

location on a geologic map of the study area (Fisher, 1970).  A detailed discussion on how to 

determine the geologic group of well completion can be found in the documentation (Appendix 

C). 
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Statistical Analysis of Data 

Multiple statistical methods have been used to asses which parameters are the best 

predictors of variability in methane concentrations in shallow groundwater overlying the 

Marcellus. Due to the typically skewed distribution of methane concentrations, non-parametric 

statistical tests are often used.  Mann-Whitney U, Kruskal-Wallis, and Tukey’s tests, all non-

parametric, have been used to determine the significance of observed differences in methane 

concentrations between discretely grouped wells (McPhillips et al., 2014; Molofsky et al., 2013; 

Heisig & Scott, 2013; Jackson, 2013). The Mann-Whitney U statistical test evaluates whether 

two sample sets are drawn from equivalent distributions (a non-parametric analogue to a t-test), 

while the Kruskall-Wallis test extends to more than two groups (a non-parametric ANOVA). 

Tukey’s tests, provided the distributions are not equal, is used in conjunction with ANOVA to 

determine which groups significantly differ (Helsel & Hirsch, 2012).  

In the case of continuous explanatory variables, rather than discrete groups, Pearson and 

Spearman correlations (parametric and non-parametric, respectively) have been used to 

determine the significance of observed relationships between methane and various explanatory 

variables (Jackson et al., 2013). Pearson correlation coefficients are a measure of the linear 

correlation between continuous variables and are most appropriate for normally distributed data.  

The Spearman correlation coefficient is a more robust non-parametric test for a monotonic 

relationship between variables that is not strongly influenced by outliers. Similar to the 

Spearman correlation coefficient is the Kendall τ coefficient, which measures the strength of 

association between two values (Helsel & Hirsh, 2002). 

Mann-Whitney U non-parametric tests have been used in NY and Pennsylvania studies to 

assess differences in dissolved methane concentrations in wells grouped by landscape position 

(upland or valley) and/or proximity (<1 km or >1 km) to gas wells (McPhillips et al., 2014; 
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Molofsky et al., 2013). Comparatively, Jackson (2013) used a Kruskall-Wallis test on wells 

grouped by proximity to natural gas wells using a 1 km threshold and Pearson and Spearman 

correlations to evaluate the relationship between methane concentrations and well proximity to 

gas wells and stream valley bottoms. In Heisig & Scott (2013), a Kruskal Wallis test was used to 

asses significant differences between median methane concentrations for wells grouped by 

landscape position and well confinement, and those with significant differences were further 

analyzed using Tukey’s test to determine which median concentrations differed among groups. 

For this study, significance of continuous relationships between methane concentrations 

and solute concentrations and proximity parameters (e.g. distances to nearest gas wells, faults) 

were evaluated using Pearson, Spearman, and Kendall τ coefficients. Statistical tests were 

performed using non-transformed and log-transformed data for both methane and solute 

concentrations. 

The full dataset of well proximity in relation to the spatial parameters analyzed in this 

study, as well as the resulting classifications for landscape position and geologic unit of well 

completion using the described methods can be found in Appendix B.  

Results 

A majority of the wells sampled in 2013 (n=137) had dissolved methane concentrations 

<0.001 mg/L CH4 (n=95). Spatially, the highest methane concentrations occurred predominantly 

in Steuben County, and to a lesser extent, Chenango County (Fig. 2). The majority of observed 

methane concentrations were low, with 66% of wells containing <0.1 mg/L CH4. Seven samples 

(5.1% of those sampled) had methane concentrations >10 mg/L, with a maximum observed 

concentration of 28.7 mg/L CH4 (Fig. 3). This sample was the only to exceed the U.S Office of 

Surface Mining and Reclamation Enforcement hazard level of 28 mg/L, when gas levels become 
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potentially explosive (Eltschlager, et al., 2001). Analysis of dissolved methane concentrations in 

wells sampled in 2013 and 2014 indicates some variability between years (see Appendix A. 

Figure S1).  

 The piper diagram (Fig. 4) illustrates that groundwater type throughout the study area is 

primarily Ca-HCO3 with relatively elevated methane levels associated with Na-HCO3 type water. 

Samples classified by groundwater type based the piper diagram (Fig. 5), indicate that dissolved 

methane concentrations in 14 samples (or 50%) of Na-HCO3 or Na-HCO3-Cl type waters, had 

above 1 mg/L CH4. The majority of all samples (55%) were classified as Ca-HCO3 type waters 

and 93% of Ca-HCO3 type waters have < 0.1 mg/L of dissolved methane. The distribution of 

dissolved methane concentrations between water types (p<0.001, Kruskall Wallis) and between 

Ca-HCO3 and Na-HCO3 (p<0.001, Mann-Whitney U) were significantly different; with mean 

methane concentrations of 0.3 and 3.8 mg/L for Ca-HCO3 and Na-HCO3 respectively.  

Three methods for classifying the topographic position of wells were compared: 

generation of valley extent using a synthetic stream network derived from a DEM (“DEM-

based”) (Fig. 6a); proximity to major and minor National Hydrography Data flowlines (“NHD 

method”) (Fig. 6b); and well location (“mapped valley aquifer method”) (Fig. 6c). Of the wells 

sampled for methane (n=137), 55% were classified the same (n=76) across all three methods 

(Appendix B, Table S3). The mapped aquifer-method classified the topographic position of the 

majority of wells as upland and the Mann-Whitney U test for significance between methane and 

landscape position using this method was significant. However, a disproportionately large 

number of wells were classified as occurring in upland settings (n=117) for the mapped valley 

aquifer method, relative to either of the other two methods (Fig 6f).  
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Mann-Whitney U tests show no significant differences between methane concentrations 

in valleys compared to uplands when classified by the DEM-based method.  However the NHD 

method yielded statistically significant differences (p=0.04) with mean methane concentrations 

slightly higher in upland wells (mean=0.88 and 1.9 mg/L for upland and valley wells, 

respectively). When wells are classified using the mapped valley aquifer method, differences 

between methane distributions in valleys versus uplands are significant (p=0.01), but 

concentrations are higher in uplands, contrary to prior findings (Molofsky et al., 2013; Heisig & 

Scott, 2013). Because a disproportionately large number of wells were classified as in uplands 

when using the mapped valley aquifer method for classifying landscape position, it is unlikely 

the differences between the groups are meaningful. Spearman, Pearson and Kendall  

coefficients between methane concentrations and landscape position (expressed as distance to 

closest major or minor NHD flowlines) were not significant (p>0.05).  

 Two methods were used to determine the geologic group of well completion (Fig. 7). 

The first was the “bedrock contact interpolation method,” which classified wells based on the 

elevation of the maximum well depth and the interpolated elevations of the underlying bedrock 

contact surfaces. The second “geologic map” method classified wells based solely on their 

location on a geologic map. Table 1 shows the contingency table for instances where the bedrock 

contact interpolation method classified wells the same or differently than the geologic map 

method. Wells classified differently using the two methods were generally determined to be in 

the next stratigraphically older (or deeper) unit when classified by the bedrock interpolation 

method, rather than the geologic map method, or as being in either the same or adjacent group in 

locations where contact surfaces were unavailable. Wells with “error” classifications reflect 

instances where the interpolated surface method classified wells as completed in a geologic 
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group not present at that location (i.e the geologic group outcrops south of the well location). The 

highest methane concentrations occurred in wells completed in the West Fall group, which 

underlies the majority of the study area, with a few high methane samples observed in the 

Sonyea or Genesee formations (Fig 8). The Kruskall-Wallis test for differences in the methane 

concentrations across geologic units shows no statistically significant differences. However, the 

bedrock surface interpolation method only considers the total well depth in relation to the 

interpolated geologic surfaces, and does not attempt to differentiate between those wells 

classified as above the base of a geologic unit which could be completed in till or glacial 

sediment.  

The distribution of methane concentrations was not affected by well distance to nearest 

proximity parameter (Fig. 9).  Pearson, Spearman, and Kendall τ coefficients between methane 

concentrations and various proximal variables (distance to nearest faults, lineaments, active and 

other gas wells, roads and highways) hypothesized to influence methane levels were not 

significant (p>0.05), with the exception of distances to nearest highways (Table 2).  However, 

distances to nearest highways were only weakly, negatively correlated with methane 

concentrations (coefficients ranged from -0.2 to -0.3) Correlations between methane 

concentrations and other chemical constituents were significant for Na, NH4, F, Sr, Ba, Br, and I 

(Table 3). 

Isotopes of methane, δ
13

C-CH4 and δD-CH4, suggest the sources of methane to our 

sampled wells were primarily thermogenic associated gases (T, Tc), with one sample in the range  

of non-associated (Tm) dry gases (Fig 10a). Six samples had isotope values indicative of a mixed 

origin, with very few samples showing a biogenic signature. Isotope values for the highest  
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methane concentrations (>10 mg/L) clustered between -250 and -270 and -49 and -52 for δD-

CH4 and δ
13

C-CH4, respectively. Isotopes of methane for samples with between 0.1 and 1 mg/L 

CH4 were scattered between biogenic, mixed, and thermogenic. For comparison, isotopes of 

methane from samples collected from organic-rich shale from neighboring Allegheny county 

(D6-D10; Osborn et al, 2010) and samples collected from the Marcellus shale (D60-62; Osborn 

et al, 2010) and Trenton/Black River Group (O74; Osborn et al, 2010) from Steuben county were 

used as a first approximation for local shale gas signatures in the region (Fig. 10b). 

 The methane isotopic signature of groundwater wells (this study) and an additional 60 

wells from a USGS study within the same area (Heisig & Scott, 2013), were compared to the 

methane isotopic signature of gas from local Upper Devonian and Ordovician Trenton-Black 

River river formation (Osborn & McIntosh, 2010), and regional samples of Marcellus gas from 

NY and PA (Osborn & McIntosh, 2010; Molofsky et al., 2013). Samples of the Marcellus gas 

from NY (D60) and PA (D61-62) in Washington County (Osborn & McIntosh, 2010) and free 

gas from Susquehanna Co. (Molofsky et al., 2013) have different isotopic signatures, reflecting 

of the variations in the thermal maturity between localities. The isotopic composition of methane 

samples of the Upper Devonian shales used for comparison were sampled from nearby 

Allegheny County, and these formations likely outcrop at the surface before entering our study 

area. Samples taken from local NY formations show a trend in increasing thermally maturity 

from the Upper Devonian formations to the Ordovician Trenton-Black River group. 

Groundwater samples fall within the thermogenic range of Upper and Middle Devonian 

formations, but none of the groundwater samples are as enriched in δ
13

C-CH4 as the Trenton-

Black River group.  
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Discussion 

As shown in previous studies, occurrence of dissolved methane in shallow groundwater is 

common in areas overlying the Marcellus shale, with 14% of sampled wells having >1 mg/L 

CH4 and 5.1% having >10 mg/L CH4. Detectable levels of methane (>0.001 mg/L) were found in 

the majority of wells sampled. Multiple studies have attributed elevated methane concentrations 

in the region with valley lowlands (Molofsky et al., 2013; Heisig & Scott, 2013) or proximity to 

existing gas wells (Osborn et al., 2011; Jackson et al., 2013), and with Na-HCO3 groundwater 

type (McPhillips et al., 2014; Siegel et al., 2015), although these attributes have had varied 

success as predictors of high methane concentrations.  

The association between landscape position of a well and elevated methane 

concentrations is based on the conceptual model that valley wells are proximally closer to the 

interface of fresh groundwater and saline groundwater charged with methane seeping upward 

through the underlying fractured bedrock (Heisig & Scott, 2013). In PA, methane concentrations 

in 1,701 predrill samples in Susquehanna County were found to be significantly higher in wells 

completed in lowlands compared to upland settings using a one-way Mann-Whitney U test 

(Molofsky et al., 2013). Conversely, a similar study in the same area, although with a smaller 

sampling density, discerned no correlation between methane concentrations and proximity to 

valleys (Jackson et al., 2013). Similar contradictory findings have been observed in NY as well. 

A USGS study that sampled 60 homeowner wells across a large study area (4,687 km
2
), 

equivalent to a sampling density of 1.2 wells per 100 km
2
, found topographic position and well 

confinement to be strong predictors of high methane concentrations (Heisig & Scott, 2013). A 

higher density study of 113 wells in a smaller study area (2,315 km
2 

; 5 wells per 100 km
2
) found 

methane concentrations in wells were not influenced by topographic position (McPhillips et al, 

2014). This study, with the largest study area and a sampling density of 1.3 wells per 100 km
2
, 
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found landscape position provided conflicting results with regard to the significance of methane 

distributions in wells classified based on topographic position. This study suggests the method 

chosen to classify the topographic position of a well may influence the significance of this 

parameter as a mechanism influencing the distribution of elevated methane concentrations. 

Elevated methane concentrations appear to be isolated geographically and the topographic 

position of wells with elevated methane is not consistently valley lowlands. This finding does not 

appear to be an issue of sample size or distribution. This could be in part, that the sampling 

strategy used in this study was more favorable to upland settings. Efforts to sample a large 

number of domestic wells over such a large study area was inherently favorable to uplands. One 

suggestion to overcome this would be to combine data from all prior work in the study area, 

including data from Heisig and Scott (2013) and McPhillips et al. (2014). However, while this 

would create a larger database for statistical analysis, difference in well selection criteria may 

bias the analysis. For example, the Heisig and Scott (2013) study intentionally sampled wells 

greater than 1 km from an existing gas well, so using the data set in analysis of distance to gas 

wells could bias results. Furthermore, addition of the McPhillips et al. (2014) data set would 

result in an oversampling of Chenango County compared to the rest of the study area. The 

distribution of methane between these datasets may also be different, calling into question the 

comparability of these different sample populations.  

 Multiple statistical approaches were used to evaluate the relationship between methane 

concentrations and landscape position and distance to gas wells, to better understand how the 

choice of statistical test presented in previous studies might influence the significance of these 

relationships. Excluding classifications based on the regional aquifer method, which classified a 

disproportionate number of wells as occurring in upland settings, no statistical difference in the 
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methane concentrations was observed in wells based on landscape position for Mann-Whitney U 

test, contradictory to previous studies (Molofsky et al., 2013; Heisig & Scott, 2013).  Using a 

statistical approach similar to Jackson et al (2013), the Pearson, Spearman, and Kendall τ 

coefficients between methane and proximity to valley bottom streams defined by NHD flowlines 

were also not significant. 

At a linear scale, elevated methane concentrations visually appear to correspond to 

proximity to fault, lineaments, and gas wells (Fig. 9). Because of the heavily skewed distribution 

of methane concentration toward lower concentrations, empirical observations of the influence of 

well distance to proximity parameters must be evaluated using a log scale. Siegel et al. (2015) 

noted the high percentage of samples at low concentrations presents a visually misleading 

depiction of the relationship between methane and proximity to oil and gas wells at linear scale. 

This remains true for all of the proximity parameters investigated in this study. The lack of any 

relationship between methane concentrations and active or other gas wells in the study area 

suggests that conventional gas drilling has not influenced that distribution of elevated methane 

levels in groundwater for this region  

As observed in previous studies, the association between elevated methane 

concentrations and Na-HCO3 type waters is likely the result of carbonate dissolution in the 

underlying shale bedrock and subsequent cation exchange between calcium and sodium over 

long residence times. The evolutionary trend from Ca-Mg-HCO3 to Na-HCO3 type waters, and 

corresponding shift in redox conditions to more reducing, favors methanogenesis (Kreese, 2012). 

However, isotopes of methane indicate sources are primarily thermogenic or mixed gas sources.  

The majority of the wells, including those with elevated methane concentrations, were completed 

in the West Falls group, which contains the organic rich Rhinestreet shale. Gas production in the 
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Rhinestreet shale is scattered throughout New York, primarily in the western portion of the state. 

Investigation into gas production from this formation, specifically the Rathborne gas field in 

Steuben County, demonstrated pockets of sporadic methane production. Methane isotopic data 

from this formation might prove useful in evaluating thermogenic sources of dissolved 

groundwater methane in regions overlying the West Falls.  

The isotopic composition of several groundwater samples exhibit a signature indicative 

of potential mixing with a thermogenic gas source such as Upper Devonian shale, or possible 

fractionation as a result of methane oxidation could that have caused an increased in the  δ
13

C-

CH4 and δD-CH4 isotope values. The methane isotopic compositions of groundwater samples 

with the highest concentrations of dissolved methane are not easily distinguishable from the 

methane isotopic signature of the Upper Devonian samples from Alleghany County. The 

Marcellus sample (D60) taken from Steuben County also has an isotopic signature within the 

range of groundwater samples.  δ
13

C-CH4 and δD-CH4 isotopes of the more thermally mature 

Ordovician Trenton/Black River does not fall into the range of isotopes values for groundwater 

samples. Since the isotope ranges of natural gases are a reflection of the geochemistry and 

thermal maturity of source rock, which varies with locality, any comparison between the isotopic 

signatures of methane in groundwater to a proposed source material needs to be local to the study 

area. Also, without knowing the isotopic range of other gas bearing units underlying the study 

area it would be difficult to claim a specific source for thermogenic methane for the sampled 

groundwater. But given the differences between the much lower lying Ordovician Trenton/Black 

River samples, groundwater samples based on our limited data are similar in methane isotopic 

composition to thermogenic Devonian gas sources. However, given the similarity of methane 

isotopic signatures in upper and middle Devonian formations and local groundwater samples, 
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δ
13

C-CH4 and δD-CH4 will not be enough to distinguish between individual sources and isotopic 

analysis of C2 – C5 for both groundwater and local Devonian gas bearing units may be required 

to distinguish between sources.  

Dissolved methane was most strongly correlated with water type and we observed 

significant differences in the distribution of methane from Ca-HCO3 and Na-HCO3 type waters. 

Prior work has suggested that shallow groundwater mixing with deeper Na-Cl and Na-HCO3 

type groundwater, charged with thermogenic methane from underlying formations, occurs more 

frequently in valley wells where the distance to these waters is less. However, thermogenically 

sourced methane from primarily upland wells sampled in this study, might suggest that upland 

mixing with deeper brine influenced water might me more prevalent that previously considered; 

and more work is needed to understand migration pathways in upland settings.  
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Tables 

 

Table 1.  Contingency table comparing the Bedrock interpolation Method and the Geologic Map 

Method for classifying the geologic unit of well completion.  

 

Bedrock 

Interpolation Method 

Geologic Map Method 
 

Conneaut Canadaway Java 
West 

Falls 
Sonyea Genesee Hamilton Total 

Conneaut 0 0 0 0 0 0 0 0 

Canadaway 0 13 0 0 0 0 0 13 

Java 0 1 10 0 0 0 0 11 

West Falls 0 0 4 63 0 0 0 67 

Sonyea 0 0 0 13 6 0 0 19 

Genesee 0 0 0 0 7 18 0 25 

Hamilton 0 0 0 0 0 1 3 4 

Canadaway/Conneaut 5 0 0 0 0 0 0 5 

West Falls/Sonyea 0 0 0 5 0 0 0 5 

Sonyea/Genesee 0 0 0 0 3 0 0 3 

Error 0 0 6 1 0 0 4 11 

Total 5 14 20 82 16 19 7 
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Table 2. Statistical results of Pearson, Spearman, and Kendall correlation between proximity 

parameters and methane concentration 

 

 

  

 Statistical Test for Correlation 

Proximity Pearson Spearman Kendall 

Parameter p-value R p-value Rho p-value Tau 

Faults 0.102 -0.140 0.876 -0.013 0.987 -0.001 

Lineaments 0.717 -0.031 0.231 0.103 0.251 0.067 

Active Gas Wells 0.122 -0.133 0.833 -0.018 0.842 -0.012 

Other Gas Wells 0.168 -0.119 0.320 -0.086 0.314 -0.058 

Highway 0.118 0.134 0.881 0.013 0.978 0.002 

NYS Roads 0.195 -0.111 0.360 -0.079 0.359 -0.053 
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Chemical 

Constituent 

Correlation between methane and other chemical constituents Correlation between log  methane and log chemical constituents 

Pearson Spearman Kendall Pearson Spearman Kendall 

p-value R p-value Rho p-value Tau p-value R p-value Rho p-value Tau 

Na (ppm) <0.0001 0.24 <0.0001 -0.42 <0.0001 -0.29 <0.0001 0.19 <0.0001 -0.42 <0.0001 -0.29 

I (ppb) <0.0001 0.03 <0.0001 0.52 <0.0001 0.36 <0.0001 0.03 <0.0001 0.52 <0.0001 0.36 

Ba (ug/L) <0.0001 0.58 <0.0001 0.49 <0.0001 0.35 <0.0001 0.55 <0.0001 0.49 <0.0001 0.35 

Fe (ug/L) <0.0001 0.14 0.62 0.51 0.70 0.35 0.04 0.20 0.62 0.51 0.70 0.35 

F (ppm) <0.0001 0.07 <0.0001 -0.02 <0.0001 -0.01 <0.0001 -0.02 <0.0001 -0.02 <0.0001 -0.01 

Br (ppb) <0.0001 0.47 <0.0001 -0.04 <0.0001 -0.02 <0.0001 0.17 <0.0001 -0.04 <0.0001 -0.02 

Cl (ppm) <0.0001 0.52 0.07 0.48 0.05 0.34 0.00 0.49 0.07 0.48 0.05 0.34 

Sr (ug/L) <0.0001 0.43 <0.0001 0.16 <0.0001 0.12 <0.0001 0.27 <0.0001 0.16 <0.0001 0.12 

NH4 (ppm) <0.0001 -0.09 <0.0001 -0.17 <0.0001 -0.10 <0.0001 -0.18 <0.0001 -0.17 <0.0001 -0.10 

Pb (ug/L) 0.01 -0.06 <0.0001 0.01 <0.0001 0.00 0.05 0.09 <0.0001 0.01 <0.0001 0.00 

SO4 (ppm) 0.04 0.07 0.05 0.57 0.06 0.41 0.07 0.11 0.05 0.57 0.06 0.41 

Mn (ug/L) 0.10 0.02 <0.0001 -0.16 <0.0001 -0.11 0.02 -0.16 <0.0001 -0.16 <0.0001 -0.11 

NO3 (ppm) 0.21 0.15 <0.0001 0.35 <0.0001 0.28 <0.0001 0.14 <0.0001 0.35 <0.0001 0.28 

Mg (ppm) 0.28 -0.12 0.05 -0.61 0.07 -0.42 0.03 -0.43 0.05 -0.61 0.07 -0.42 

Zn (ug/L) 0.38 0.04 0.00 0.00 0.00 0.00 0.26 -0.02 0.00 0.00 0.00 0.00 

Li (ug/L) 0.41 0.54 <0.0001 0.41 <0.0001 0.28 0.22 0.51 <0.0001 0.41 <0.0001 0.28 

K (ppm) 0.42 0.52 0.84 0.71 0.84 0.51 0.84 0.61 0.84 0.71 0.84 0.51 

P (ug/L) 0.44 -0.08 0.07 -0.03 0.04 -0.02 0.48 -0.10 0.07 -0.03 0.04 -0.02 

Al (ug/L) 0.57 0.45 0.81 0.57 0.83 0.41 0.47 0.62 0.81 0.57 0.83 0.41 

Se (ug/L) 0.64 0.46 0.97 0.37 0.97 0.26 0.81 0.34 0.97 0.37 0.97 0.26 

PO4 (ppm) 0.69 0.43 0.93 0.47 0.96 0.33 0.51 0.45 0.93 0.47 0.96 0.33 

B (ug/L) 0.78 -0.08 <0.0001 -0.27 <0.0001 -0.18 0.74 -0.10 <0.0001 -0.27 <0.0001 -0.18 

Ca (ppm) 0.86 -0.17 0.07 -0.17 0.06 -0.11 0.07 -0.16 0.07 -0.17 0.06 -0.11 

Table 3. Statistical results of Pearson, Spearman, and Kendall correlation between water chemistry and methane concentration 
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Figures

 

 

 

 

Figure 1. The study area which covers Steuben, Chemung, Tioga, Broome, and Chenango Counties 
in relation to the outlined extent of the Upper Susquehanna Subbasin (left) and Chemung Subbasin 
(right). The inset map shows the underlying bedrock across the study area.  
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Figure 2. The spatial distribution of methane across the study area in relation to the 
geologic extent of underlying Utica and Marcellus Shale.  
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Figure 3. Distribution of methane from (n=137) samples 
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Figure 4. Piper diagram of (n=137) samples classified by water type and symbolized by ,ethane 
concentration.  
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Figure 5. The distribution of methane based on water type classified using the piper diagram 
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Figure 6. Landscape position of well classified using the DEM based –method (a), the NHD-
method (b), and the mapped aquifer method (c). The distribution of methane based on each 
classification (d-f).  
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Figure 7. Geologic map of the study area and well classification based on bedrock contact 
interpolation method compared to a geologic map of the study area (Fisher, 1970).  
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Figure 8. Boxplot distribution of methane concentrations for wells classified using the bedrock 
contact interpolation method and the geologic map method.   
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Figure 9. Methane concentration with well proximity to faults, lineaments, active and other gas 
wells, highways and lineaments at linear and log scale.  

 

 

 

 

 

 

 



33 
 

 

 

Figure10. Schoell plot (1980) of  (10a) isotopes δ13C-CH4 and δD-CH4 of methane colors based 
on dissolved methane concentration. (10b) δ13C-CH4 and δD-CH4 of NY groundwater SWIFT 
(this study), USGS (Heisig & Scott, 2013)1

 , NY gas bearing formations (black symbols) Upper 
Devonian, Marcellus, Trenton/Black River (Osborn & McIntosh, 2010)2,  and PA gas from the 
Marcellus in Washington Co.  (Osborn & McIntosh, 2010)2 and Susquehanna Co. (Molofksy, 
2013)3. 
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SWIFT 
ID 

Sample ID Na 
(ppm) 

NH4 
(ppm) 

K 
(ppm) 

Mg 
(ppm) 

Ca 
(ppm) 

F 
(ppm) 

Cl 
(ppm) 

NO3 
(ppm) 

PO4 
(ppm) 

SO4 
(ppm) 

CH4 
(mg/L) 

BR01A BR01A_2013 13.1 b.d.l 0.5 6.0 36.6 0.1 1.8 0.5 n.m 26.2 0.0017 
BR09A BR09A_2013 16.6 n.m 0.6 3.1 9.8 0.1 3.1 1.9 n.m 11.6 0.0035 
BR10A BR10A_2013 83.5 n.m b.d.l b.d.l 0.4 0.2 9.6 0.4 0.1 16.3 0.0030 
BR12A BR12A_2013 14.5 b.d.l 0.8 6.1 46.8 0.1 1.4 1.1 0.9 27.7 0.0018 
BR13A BR13A_2012 12.1 b.d.l 1.7 6.9 36.4 0.2 1.8 0.2 n.m 13.7 n.m 
BR13B BR13B_2013 6.1 n.m 0.3 9.3 43.8 b.d.l 1.8 0.5 n.m 8.7 0.0001 
BR13C BR13C_2013 70.7 n.m n.m b.d.l b.d.l 0.1 23.8 2.1 n.m 13.2 0.0018 
BR14A BR14A_2012 8.8 0.1 0.8 8.0 32.4 0.2 0.9 b.d.l n.m 10.1 n.m 
BR14B BR14B_2013 52.5 0.2 0.7 7.3 27.2 0.2 4.4 n.m n.m 19.9 0.0180 
BR15A BR15A_2013 17.4 b.d.l 0.6 5.9 29.1 0.1 7.0 0.4 1.6 11.2 0.0007 
BR16A BR16A_2013 7.8 n.m 1.0 2.3 17.7 0.1 13.6 6.9 0.2 12.9 0.0003 
BR16B BR16B_2013 70.1 0.3 0.9 6.1 30.1 0.3 10.6 b.d.l n.m 14.1 0.3916 
BR17A BR17A_2012 20.3 b.d.l 0.9 14.5 46.0 0.2 32.0 0.1 n.m 6.3 n.m 
BR17B BR17B_2012 37.0 b.d.l 0.9 26.7 72.3 b.d.l 1.2 0.1 n.m 83.2 n.m 
BR18A BR18A_2012 8.8 b.d.l 1.2 10.3 39.8 0.2 0.9 0.4 n.m 12.6 n.m 
BR18B BR18B_2013 93.0 b.d.l 0.7 1.0 7.7 0.2 40.6 b.d.l b.d.l 15.7 0.0103 
BR19A BR19A_2012 77.9 0.2 1.1 13.4 49.4 0.2 6.7 b.d.l n.m 105.3 n.m 
BR20A BR20A_2012 8.8 0.2 1.6 8.2 32.5 0.2 0.8 0.3 n.m 11.6 n.m 
BR21A BR21A_2012 79.9 0.1 1.0 2.3 12.7 0.2 44.1 b.d.l n.m 0.1 n.m 
BR22A BR22A_2013 6.9 n.m 0.8 4.7 21.1 0.1 10.7 0.8 0.8 8.3 0.0022 
BR22B BR22B_2013 11.5 n.m 2.1 13.1 39.1 0.2 3.1 b.d.l b.d.l 17.8 0.0007 
BR26A BR26A_2013 82.8 b.d.l 1.6 15.2 50.0 0.5 95.4 b.d.l n.m 5.4 3.6772 
BR28A BR28A_2013 74.8 n.m 0.1 b.d.l b.d.l 0.1 66.3 0.3 n.m 0.6 0.0016 
BR29A BR29A_2013 80.0 0.3 1.3 2.8 14.4 0.4 6.4 b.d.l n.m 19.3 0.0119 
BR30A BR30A_2013 63.4 b.d.l 1.0 8.5 34.6 0.2 17.3 b.d.l b.d.l 15.5 0.0199 
BR33A BR33A_2013 32.6 b.d.l 1.3 6.8 31.6 0.2 1.8 b.d.l n.m 12.7 0.0031 
BR34A BR34A_2013 8.7 n.m 1.8 22.7 53.6 0.1 21.0 b.d.l n.m 27.8 0.0001 
BR35A BR35A_2012 24.4 0.2 1.6 16.1 46.0 0.2 1.1 0.1 n.m 17.8 n.m 

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 
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SWIFT 
ID 

Sample ID Na 
(ppm) 

NH4 
(ppm) 

K 
(ppm) 

Mg 
(ppm) 

Ca 
(ppm) 

F 
(ppm) 

Cl 
(ppm) 

NO3 
(ppm) 

PO4 
(ppm) 

SO4 
(ppm) 

CH4 
(mg/L) 

BR36A BR36A_2013 10.3 n.m 1.0 8.2 23.5 0.1 4.5 1.2 b.d.l 10.2 0.0048 
BR36B BR36B_2013 28.5 b.d.l 2.2 18.1 58.3 0.1 66.5 b.d.l 10.1 17.5 0.0026 
BR37A BR37A_2013 78.8 0.5 1.2 8.5 30.0 0.3 16.9 b.d.l n.m 1.7 1.2468 
BR41A BR41A_2013 14.3 n.m 0.8 4.5 18.3 0.1 37.6 0.7 n.m 7.7 0.0003 
CM01A CM01A_2013 80.4 0.4 0.8 2.7 16.2 0.3 37.1 b.d.l n.m 3.8 3.4465 
CM02A CM02A_2012 20.6 b.d.l 1.2 9.6 44.0 0.1 1.4 b.d.l n.m 10.0 n.m 
CM04A CM04A_2012 14.6 b.d.l 0.6 9.6 35.4 0.2 0.5 0.2 n.m 16.8 n.m 
CM06A CM06A_2013 19.1 b.d.l 1.1 10.3 55.0 0.2 3.4 b.d.l 1.2 25.0 0.0031 
CM07A CM07A_2012 27.5 b.d.l 1.4 50.5 203.9 0.1 433.7 1.0 n.m 24.6 n.m 
CM07B CM07B_2013 51.0 n.m 1.1 11.8 79.2 0.1 122.7 5.1 n.m 13.6 0.0002 
CM09A CM09A_2012 7.3 b.d.l 1.0 8.5 32.5 0.2 1.8 0.1 n.m 10.7 n.m 
CM09B CM09B_2013 8.1 b.d.l 0.6 12.3 58.1 b.d.l 1.4 b.d.l n.m 16.0 0.0004 
CM10A CM10A_2012 21.8 0.3 0.6 8.7 37.4 0.1 0.9 b.d.l n.m 23.3 n.m 
CM10B CM10B_2012 8.7 b.d.l 0.6 11.5 44.4 0.2 5.9 b.d.l n.m 22.2 n.m 
CM12A CM12A_2012 5.6 b.d.l 1.2 11.0 56.1 0.2 9.5 14.3 n.m 34.9 n.m 
CM13A CM13A_2012 15.6 b.d.l 1.3 16.0 94.6 0.1 132.2 0.1 n.m 14.6 n.m 
CM14A CM14A_2013 65.4 0.2 0.7 2.0 12.8 0.2 2.3 0.2 n.m 14.7 0.0030 
CM14B CM14B_2013 125.2 0.2 0.6 2.2 12.4 0.5 44.7 b.d.l 1.2 21.8 0.5847 
CM16A CM16A_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m 
CM16B CM16B_2012 8.9 b.d.l 1.9 14.4 58.6 0.2 13.4 0.8 n.m 16.5 n.m 
CM16C CM16C_2013 8.4 n.m 1.0 5.8 85.2 b.d.l 31.4 0.7 0.5 21.5 0.0004 
CM17A CM17A_2012 33.0 0.2 1.1 30.2 98.4 0.2 20.3 b.d.l n.m 115.8 n.m 
CM17B CM17B_2013 12.2 b.d.l 0.8 8.8 43.4 0.2 5.5 b.d.l n.m 31.6 0.0012 
CM18A CM18A_2012 96.6 0.3 1.3 1.6 10.6 0.2 1.1 b.d.l n.m 21.5 n.m 
CM19A CM19A_2012 20.0 b.d.l 0.9 11.6 47.8 0.1 0.6 n.m n.m 20.7 n.m 
CM19B CM19B_2013 43.4 b.d.l 0.7 9.6 30.0 0.1 2.7 b.d.l 0.1 28.4 0.0565 
CM22A CM22A_2013 48.8 b.d.l 1.2 3.9 29.4 0.1 74.3 2.3 0.6 14.5 0.0004 
CM22B CM22B_2013 6.3 n.m 1.1 6.6 33.4 0.1 1.3 0.3 n.m 15.6 0.0001 
CM25A CM25A_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m 
CN05A CN05A_2013 66.3 0.1 0.4 3.2 18.8 0.3 15.5 n.m n.m 13.6 2.5014 
CN06A CN06A_2013 16.2 b.d.l 1.6 10.4 68.0 b.d.l 27.3 24.5 0.6 9.6 0.0001 
CN07A CN07A_2013 5.6 n.m 0.3 5.3 41.3 0.1 2.3 0.7 b.d.l 23.4 0.0032 

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 

 



Appendix A 36 
 

SWIFT 
ID 

Sample ID Na 
(ppm) 

NH4 
(ppm) 

K 
(ppm) 

Mg 
(ppm) 

Ca 
(ppm) 

F 
(ppm) 

Cl 
(ppm) 

NO3 
(ppm) 

PO4 
(ppm) 

SO4 
(ppm) 

CH4 
(mg/L) 

CN10A CN10A_2013 4.4 n.m 0.5 6.4 21.2 0.1 0.5 0.6 n.m 8.9 0.0220 
CN12A CN12A_2013 20.9 n.m 0.6 11.0 40.4 0.1 3.3 b.d.l n.m 15.9 0.0022 
CN14A CN14A_2013 25.0 b.d.l 0.5 9.1 34.9 0.1 0.8 b.d.l n.m 19.1 0.0033 
CN14B CN14B_2013 76.7 0.3 0.4 2.6 11.5 0.3 2.0 b.d.l b.d.l 3.1 2.0377 
CN18A CN18A_2013 7.4 b.d.l 0.5 6.0 25.7 0.1 b.d.l 0.2 n.m 12.3 0.0042 
CN18B CN18B_2013 1.5 b.d.l 0.6 2.0 9.5 0.1 0.6 2.0 n.m 3.3 n.m 
CN26A CN26A_2013 18.7 b.d.l 0.7 10.3 38.5 0.1 4.5 0.2 n.m 11.4 0.0032 
CN26B CN26B_2013 7.6 n.m 0.7 9.3 36.0 0.1 0.9 0.7 n.m 8.1 0.0025 
CN26C CN26C_2013 1.9 n.m 0.3 1.4 14.5 0.1 1.4 5.5 n.m 2.7 0.0003 
CN27A CN27A_2013 17.4 n.m 1.1 14.1 57.2 0.1 5.2 1.6 n.m 26.3 0.0027 
CN30A CN30A_2013 4.7 n.m 0.8 3.0 15.7 b.d.l 2.8 8.8 b.d.l 5.8 0.0003 
CN30B CN30B_2013 18.3 n.m 1.3 3.9 38.3 b.d.l 30.7 13.3 n.m 8.9 n.m 
CN30C CN30C_2013 7.7 b.d.l 0.7 7.3 38.4 0.1 2.8 b.d.l 0.3 12.7 0.0031 
CN30C 
Artesian 

CN30C 
Artesian_2013 

4.4 n.m 0.9 2.3 15.0 0.1 3.7 7.0 n.m 8.7 0.0001 

CN31A CN31A_2013 15.4 b.d.l 0.7 8.2 44.5 0.1 2.9 b.d.l n.m 16.3 0.0072 
CN31B CN31B_2013 8.7 b.d.l 0.6 5.1 25.0 0.1 2.1 0.8 n.m 7.1 0.3463 
CN32A CN32A_2013 5.6 b.d.l 1.3 7.8 30.4 b.d.l 2.6 13.0 n.m 8.3 0.0002 
CN33A CN33A_2013 48.6 b.d.l 0.9 5.8 26.1 0.3 21.5 b.d.l b.d.l 9.5 0.4049 
CN37A CN37A_2013 28.0 0.2 0.8 7.0 33.4 0.1 23.5 b.d.l 0.7 3.0 4.6494 
CN37A 
MILK 

CN37AMILK_ 
2013 

8.5 n.m 0.8 7.7 52.3 0.1 20.2 12.0 0.2 16.1 0.0026 

CN38A CN38A_2013 19.6 0.6 1.0 7.4 43.6 0.1 3.3 b.d.l 0.3 3.6 0.9162 
CN38B CN38B_2013 96.4 0.2 0.7 1.3 5.3 0.3 11.9 n.m 1.8 1.3 4.1413 
CN38C CN38C_2013 24.9 b.d.l 0.7 6.3 34.7 0.1 2.9 b.d.l n.m 10.5 0.0197 
CN39A CN39A_2013 37.6 0.2 0.9 3.5 21.2 0.2 3.4 b.d.l 0.7 2.5 0.2637 
CN39B CN39B_2013 19.6 n.m 0.7 7.3 39.0 0.1 2.9 b.d.l n.m 15.6 0.0010 
CN43A CN43A_2013 50.8 0.3 0.9 3.7 19.9 0.1 4.7 b.d.l n.m 9.1 0.1274 
CN46A CN46A_2013 29.6 n.m 0.7 2.1 17.6 0.1 3.9 3.3 0.2 23.4 0.0044 
CN49A CN49A_2013 9.1 b.d.l 0.6 6.8 38.1 0.1 3.9 b.d.l n.m 10.9 0.0012 
CN50A CN50A_2013 6.8 n.m 0.8 4.3 33.5 0.1 18.8 10.1 b.d.l 14.4 0.0142 
CN50B CN50B_2013 30.7 0.2 0.6 5.6 28.9 0.2 2.7 n.m n.m 13.1 0.0277 

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 
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SWIFT 
ID 

Sample ID Na 
(ppm) 

NH4 
(ppm) 

K 
(ppm) 

Mg 
(ppm) 

Ca 
(ppm) 

F 
(ppm) 

Cl 
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(ppm) 

PO4 
(ppm) 

SO4 
(ppm) 

CH4 
(mg/L) 

CN51A CN51A_2013 7.4 n.m 0.6 5.5 25.1 0.2 1.6 b.d.l n.m 9.5 0.0006 
CN52A CN52A_2013 80.8 0.2 0.6 b.d.l 2.8 0.2 3.6 n.m 0.4 11.1 0.7478 
CN53A CN53A_2013 9.3 n.m 1.1 4.0 19.1 0.1 2.0 7.0 n.m 13.9 0.0017 
ST01A ST01A_2013 29.9 b.d.l 1.4 12.6 86.5 0.1 56.5 b.d.l b.d.l 29.0 0.0950 
ST03A ST03A_2012 108.4 0.3 1.1 1.9 11.4 0.6 53.7 b.d.l n.m 2.8 n.m 
ST04A ST04A_2013 86.8 n.m 6.0 6.6 41.4 b.d.l 159.2 4.2 n.m 10.9 0.0020 
ST04B ST04B_2013 3.5 n.m 0.5 5.8 32.9 0.1 3.7 4.2 b.d.l 14.8 0.0032 
ST04C ST04C_2013 86.6 n.m 1.6 5.7 35.6 0.1 132.2 1.2 1.4 10.3 0.0013 
ST05A ST05A_2013 66.8 0.7 1.8 3.2 18.3 0.5 8.0 n.m b.d.l 0.3 4.5022 
ST05B ST05B_2013 413.9 1.5 3.1 9.6 63.0 0.7 664.2 b.d.l b.d.l n.m 12.7982 
ST06A ST06A_2012 48.0 0.6 1.3 13.9 49.4 0.2 25.1 b.d.l n.m 12.4 n.m 
ST06C ST06C_2013 183.7 0.7 1.0 4.0 19.6 0.6 58.5 n.m n.m 0.1 17.9937 
ST09A ST09A_2013 6.5 n.m 0.9 14.2 60.4 0.1 14.8 2.2 b.d.l 31.9 0.0044 
ST10A ST10A_2012 10.0 b.d.l 1.5 10.5 41.4 b.d.l 31.1 27.5 n.m 15.7 n.m 
ST10B ST10B_2012 7.7 b.d.l 1.1 8.1 29.1 b.d.l 14.2 18.1 n.m 16.0 n.m 
ST12A ST12A_2012 45.5 0.3 1.3 5.2 26.2 0.2 11.0 b.d.l n.m 0.5 n.m 
ST12B ST12B_2013 152.4 0.6 0.8 b.d.l 0.7 0.3 66.1 n.m n.m 0.1 15.3230 
ST19A ST19A_2012 29.2 b.d.l 0.9 4.4 22.1 0.1 6.3 b.d.l n.m 1.8 n.m 
ST19B ST19B_2012 6.6 b.d.l 2.3 8.8 41.4 0.1 8.3 4.9 n.m 11.0 n.m 
ST20A ST20A_2013 79.3 n.m 2.1 13.2 47.9 0.1 153.2 1.9 n.m 12.2 0.0001 
ST23B ST23B_2013 141.7 n.m 1.1 2.2 12.8 0.7 53.6 b.d.l n.m 17.5 9.3039 
ST23C ST23C_2013 224.4 n.m 1.0 1.9 11.7 0.9 164.9 n.m n.m 19.6 7.1298 
ST24B ST24B_2013 9.9 b.d.l 1.4 18.8 92.9 0.1 16.0 4.4 0.4 28.1 0.0102 
ST25A ST25A_2012 11.4 b.d.l 1.9 24.6 95.6 0.1 19.0 0.1 n.m 140.7 n.m 
ST25B ST25B_2013 12.5 n.m 1.5 7.4 51.3 0.2 6.2 0.4 n.m 13.3 0.0040 
ST26A ST26A_2012 144.9 0.4 2.1 3.4 15.7 0.3 57.3 b.d.l n.m 1.2 n.m 
ST27A ST27A_2013 12.6 n.m 1.5 7.6 48.7 b.d.l 22.0 7.1 n.m 12.5 0.0058 
ST28A ST28A_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m 
ST29A ST29A_2013 21.8 b.d.l 1.2 18.1 85.1 0.2 95.8 b.d.l n.m 33.2 0.0018 
ST30A ST30A_2012 55.2 b.d.l 2.0 13.4 52.6 0.3 4.7 3.3 n.m 69.9 n.m 
ST30B ST30B_2013 10.9 b.d.l 1.1 13.8 72.8 0.1 15.2 b.d.l 0.1 31.6 0.0013 
ST31A ST31A_2012 6.2 b.d.l 1.0 17.3 45.6 0.2 3.4 3.5 n.m 31.1 n.m 

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 
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ST33A ST33A_2013 16.4 b.d.l 1.5 11.8 68.7 0.1 6.1 0.2 n.m 31.2 0.0074 
ST35A ST35A_2012 11.6 b.d.l 2.3 16.0 86.7 0.1 0.8 0.1 n.m 93.9 n.m 
ST35B ST35B_2013 30.1 0.2 1.6 21.6 93.7 0.1 4.1 b.d.l b.d.l 9.0 13.7646 
ST35C ST35C_2013 10.6 b.d.l 2.1 9.5 80.0 0. 1 3.3 b.d.l 14.7 53.9 0.7281 
ST36B ST36B_2013 8.0 n.m 2.4 8.5 44.6 0.1 1.3 1.2 n.m 12.3 0.0006 
ST36C ST36C_2013 202.6 0.3 1.5 2.3 14.3 0.3 207.4 n.m 0.7 2.0 1.0740 
ST37A ST37A_2012 38.1 b.d.l 1.1 8.3 36.2 0.1 17.6 0.2 n.m 5.3 n.m 
ST44A ST44A_2013 9.1 n.m 1.8 9.7 80.6 0.2 34.2 5.5 b.d.l 29.8 0.0039 
ST45A ST45A_2012 8.3 b.d.l 0.9 6.5 45.6 b.d.l 1.5 0.5 n.m 10.0 n.m 
ST46A ST46A_2012 23.1 b.d.l 1.3 15.8 66.0 b.d.l 42.2 8.3 n.m 16.7 n.m 
ST46B ST46B_2012 9.0 b.d.l 0.9 6.5 41.3 0.1 0.4 b.d.l n.m 6.8 n.m 
ST46C ST46C_2013 4.8 n.m 1.4 4.3 31.0 b.d.l 3.8 1.4 n.m 11.7 0.0025 
ST47A ST47A_2012 10.3 b.d.l 1.2 9.7 42.7 0.1 0.9 0.1 n.m 14.1 n.m 
ST47B ST47B_2013 13.1 b.d.l 0.6 6.0 26.5 0.2 25.9 b.d.l n.m 13.3 0.0103 
ST49A ST49A_2012 17.2 b.d.l 2.1 16.9 47.0 0.2 0.8 0.1 n.m 9.1 n.m 
ST49B ST49B_2013 19.4 n.m 1.1 5.7 27.5 0.1 57.8 9.9 n.m 11.4 0.0022 
ST51A ST51A_2012 131.0 0.3 2.5 2.7 13.5 0.5 52.4 0.1 n.m b.d.l n.m 
ST51B ST51B_2012 12.6 b.d.l 1.4 9.0 44.4 0.1 12.8 b.d.l n.m 10.3 n.m 
ST52A ST52A_2012 67.4 0.2 2.6 17.1 98.2 0.1 109.3 b.d.l n.m 16.2 n.m 
ST53A ST53A_2013 64.6 n.m 5.8 10.1 70.7 b.d.l 138.9 n.m n.m 26.4 0.0032 
ST53B ST53B_2013 9.8 n.m 1.0 9.7 66.0 0.1 40.9 1.8 n.m 7.7 0.0274 
ST54A ST54A_2012 35.3 b.d.l 1.4 7.6 74.5 0.1 103.7 1.3 n.m 9.9 n.m 
ST54B ST54B_2012 13.9 b.d.l 1.3 7.0 49.7 0.1 1.4 0.1 n.m 4.9 n.m 
ST55A ST55A_2013 138.8 0.4 1.9 4.9 42.9 0.2 101.9 b.d.l n.m n.m 24.3748 

ST55A_2 ST55A_2_2013 158.5 0.5 2.3 4.5 40.9 0.3 141.6 n.m n.m n.m 25.7118 
ST55B ST55B_2013 116.6 0.2 0.7 11.0 77.0 0.3 168.7 n.m b.d.l b.d.l 28.6485 
ST59A ST59A_2012 17.0 b.d.l 2.0 35.4 60.9 0.1 0.7 0.1 n.m 48.8 n.m 
ST60A ST60A_2012 19.5 0.1 2.3 23.6 57.4 0.1 3.0 0.3 n.m 35.7 n.m 
ST61A ST61A_2013 18.8 n.m 2.5 15.0 80.9 0.2 47.5 3.4 b.d.l 34.4 0.0166 
ST61B ST61B_2013 7.9 n.m 2.0 14.4 47.0 0.2 20.1 0.4 n.m 19.9 0.0085 
ST62A ST62A_2012 33.3 b.d.l 2.6 18.3 138.9 b.d.l 119.4 4.1 n.m 25.1 n.m 
ST64A ST64A_2013 16.6 0.2 2.2 15.2 61.5 0.1 2.4 b.d.l 0.5 20.8 0.0162 

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 
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ST69A ST69A_2012 21.2 0.2 1.7 6.1 21.3 0.2 2.0 0.2 n.m 11.0 n.m 
ST72A ST72A_2013 31.2 b.d.l 3.1 18.0 75.1 0.2 2.0 b.d.l n.m 53.2 0.0055 
ST73A ST73A_2012 39.8 0.3 2.0 11.4 50.2 0.1 40.9 b.d.l n.m 1.5 n.m 
ST73B ST73B_2012 17.8 b.d.l 1.4 10.0 48.2 0.1 2.8 0.2 n.m 14.4 n.m 
ST73C ST73C_2013 13.9 n.m 2.2 10.2 64.5 b.d.l 28.7 1.2 n.m 15.4 0.0003 
ST73D ST73D_2013 12.0 n.m 0.8 5.8 53.0 0.1 20.2 7.3 n.m 13.2 0.0004 
ST75A ST75A_2013 15.1 b.d.l 2.7 22.3 96.8 0.2 5.3 1.6 n.m 80.0 0.0001 
ST76A ST76A_2012 43.0 b.d.l 1.5 8.2 53.7 b.d.l 93.9 3.3 n.m 10.8 n.m 
ST76B ST76B_2013 12.1 n.m 1.9 17.1 65.3 0.1 10.9 0.3 n.m 22.5 0.0004 
ST77A ST77A_2013 42.0 b.d.l 2.6 12.9 44.7 0.2 20.6 b.d.l n.m 12.2 0.4058 
ST79A ST79A_2013 7.9 n.m 1.6 11.1 30.0 0.1 1.5 0.5 n.m 16.5 0.0001 
ST82A ST82A_2013 29.3 b.d.l 1.7 12.3 31.1 0.2 1.5 b.d.l n.m 22.3 0.0033 
ST84A ST84A_2013 7.5 n.m 3.4 16.9 88.9 0.1 16.9 2.3 0.1 46.4 0.0002 
ST85A ST85A_2012 4.6 b.d.l 1.8 25.4 61.0 0.2 1.3 0.2 n.m 46.6 n.m 
ST86A ST86A_2012 5.2 b.d.l 2.0 14.3 60.1 0.2 4.6 1.1 n.m 15.6 n.m 
ST86B ST86B_2013 23.8 b.d.l 1.9 11.2 57.7 0.2 3.6 b.d.l b.d.l 21.6 0.3502 
ST87A ST87A_2012 69.7 0.4 3.8 8.8 22.3 0.2 2.7 b.d.l n.m 3.0 n.m 
TI01A TI01A_2013 10.4 b.d.l 0.4 8.2 34.8 0.1 0.7 b.d.l n.m 12.7 0.0009 
TI02A TI02A_2013 7.2 b.d.l 0.6 7.2 28.7 0.2 2.9 b.d.l n.m 17.1 0.0466 
TI07A TI07A_2013 50.1 n.m 1.8 17.1 61.5 b.d.l 82.4 11.4 n.m 12.7 0.0001 
TI10A TI10A_2012 14.0 0.5 1.2 8.9 36.5 0.2 34.1 b.d.l n.m 10.1 n.m 
TI10B TI10B_2013 58.1 n.m 0.8 12.9 45.1 0.1 3.4 0.5 n.m 74.7 0.0002 
TI11A TI11A_2013 37.7 b.d.l 0.5 2.2 8.9 0.2 9.6 b.d.l n.m 2.9 1.1548 
TI11B TI11B_2013 1.2 b.d.l 3.9 0.9 3.7 0.1 3.3 b.d.l b.d.l 1.7 n.m 
TI12A TI12A_2013 10.4 b.d.l 0.7 13.5 54.8 b.d.l 7.8 b.d.l n.m 10.1 0.0620 
TI14A TI14A_2013 11.6 n.m 0.5 11.6 37.8 0.1 3.5 0.6 b.d.l 15.1 0.0001 
TI14B TI14B_2013 23.5 n.m 0.6 17.8 68.7 0.1 56.5 n.m b.d.l 21.5 0.0378 
TI14C TI14C_2013 9.1 n.m 0.4 4.7 21.3 b.d.l 8.7 5.4 n.m 8.1 0.0001 
TI14D TI14D_2013 17.2 n.m 1.3 18.4 79.0 b.d.l 16.9 26.5 n.m 13.3 0.0001 
TI15A TI15A_2013 63.6 b.d.l 0.5 1.5 9.7 0.3 2.8 b.d.l n.m 20.4 0.0038 
TI15B TI15B_2013 15.7 n.m 2.0 10.1 59.5 b.d.l 24.6 12.4 n.m 10.5 0.0001 
TI18D TI18D_2013 14.0 b.d.l 0.8 8.9 41.3 0.1 1.9 2.0 b.d.l 8.3 0.0009 

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 
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TI18E TI18E_2013 17.8 b.d.l 0.8 10.9 50.0 0.1 5.1 0.5 n.m 9.2 0.0470 
TI18F TI18F_2013 8.6 n.m 1.1 14.8 53.1 0.1 10.6 0.6 n.m 14.9 0.0076 
TI20A TI20A_2013 53.4 b.d.l 1.1 17.9 38.8 0.3 1.2 b.d.l 0.8 46.4 0.1388 
TI20B TI20B_2013 9.8 n.m 0.6 11.0 47.1 0.1 24.4 19.8 b.d.l 13.9 0.0001 
TI20C TI20C_2013 18.0 n.m 1.4 9.4 41.6 0.1 26.6 3.8 n.m 8.7 n.m 
TI21A TI21A_2013 10.7 b.d.l 0.9 5.0 15.5 b.d.l 24.1 2.1 n.m 11.6 0.0001 
TI21B TI21B_2013 97.3 b.d.l 4.0 1.1 3.7 0.2 4.2 n.m b.d.l 15.2 0.0020 
TI22A TI22A_2012 14.1 b.d.l 2.2 18.7 54.2 0.2 61.3 0.2 n.m 13.3 n.m 
TI22B TI22B_2013 43.0 0.2 0.8 7.1 26.4 0.2 6.6 b.d.l n.m 4.5 n.m 
TI22C TI22C_2013 10.3 n.m 0.9 10.8 38.2 0.2 1.2 b.d.l n.m 8.3 n.m 
TI23A TI23A_2013 46.4 0.2 1.0 20.7 61.4 0.2 8.3 n.m b.d.l 78.6 0.5246 
TI26A TI26A_2013 36.5 b.d.l 0.9 31.7 111.2 0.1 4.0 b.d.l n.m 179.4 0.0005 
TI28A TI28A_2013 40.1 n.m 0.9 8.2 42.1 0.1 53.5 10.1 n.m 13.5 0.0001 
TI28B TI28B_2013 32.8 0.3 1.4 10.6 41.6 0.2 4.0 b.d.l n.m 14.1 0.0033 
TI30A TI30A_2013 147.2 b.d.l 1.1 b.d.l 1.3 0.2 3.9 n.m 0.2 76.3 0.0008 
TI31A TI31A_2012 32.2 0.2 2.0 9.5 39.4 0.2 4.6 b.d.l n.m 9.9 n.m 
TI31B TI31B_2013 33.4 0.3 1.0 10.2 40.1 0.2 3.7 b.d.l n.m 10.1 0.0375 

b.d.l = below detection; n.m = not measured 

 

  

Table S1. Concentrations of major ions, and dissolved methane data for (n=204) wells sampled from 2012 through 2013 
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BR01A BR01A_2013 13.2 b.d.l b.d.l b.d.l 11.1 93.3 5.9 373.0 97.4 0.1 b.d.l 8.6 2.6 
BR09A BR09A_2013 11.6 b.d.l 128.7 b.d.l 7.4 26.0 6.5 132.0 151.9 0.2 b.d.l 5.6 1.8 
BR10A BR10A_2013 1708.9 10747.0 120.0 b.d.l 5.1 237.6 235.3 39.3 b.d.l 0.1 b.d.l 5.6 4.9 
BR12A BR12A_2013 14.9 b.d.l b.d.l b.d.l 17.4 113.5 b.d.l 613.0 131.4 b.d.l b.d.l 4.4 2.4 
BR13A BR13A_2012 7.5 27.8 n.m b.d.l 3.2 n.m 12.3 234.2 31.7 0.5 b.d.l b.d.l 6.2 
BR13B BR13B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 125.0 b.d.l 80.8 15.7 0.1 b.d.l 6.0 1.5 
BR13C BR13C_2013 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 11.4 2.2 
BR14A BR14A_2012 11.4 75.7 n.m b.d.l 79.5 n.m b.d.l 561.9 144.4 0.3 b.d.l b.d.l 6.3 
BR14B BR14B_2013 54.4 b.d.l b.d.l b.d.l 67.4 70.3 b.d.l 631.8 105.8 b.d.l b.d.l 9.6 3.1 
BR15A BR15A_2013 11.9 b.d.l b.d.l b.d.l 9.8 73.0 5.1 402.5 99.0 0.2 b.d.l 5.9 2.8 
BR16A BR16A_2013 b.d.l b.d.l 10.1 b.d.l 109.5 50.3 9.5 41.8 75.9 0.2 b.d.l 2.1 0.5 
BR16B BR16B_2013 45.5 b.d.l b.d.l b.d.l 97.0 86.1 18.4 636.5 233.1 b.d.l b.d.l 69.1 15.0 
BR17A BR17A_2012 10.1 64.8 n.m b.d.l 70.2 n.m 6.5 255.9 211.9 0.0 b.d.l b.d.l 17.3 
BR17B BR17B_2012 19.0 78.1 n.m b.d.l 79.0 n.m b.d.l 1128.4 54.6 1.3 b.d.l b.d.l 13.5 
BR18A BR18A_2012 10.1 66.2 n.m b.d.l b.d.l n.m 6.2 563.4 107.6 1.1 0.0 b.d.l 3.7 
BR18B BR18B_2013 39.7 b.d.l b.d.l b.d.l 2.9 25.0 4.2 161.1 47.0 b.d.l b.d.l 13.9 5.1 
BR19A BR19A_2012 45.7 169.2 n.m b.d.l 126.4 n.m 18.8 611.2 33.0 0.2 b.d.l b.d.l 19.8 
BR20A BR20A_2012 14.0 74.0 n.m b.d.l 22.7 n.m b.d.l 862.4 117.4 0.3 b.d.l b.d.l 2.6 
BR21A BR21A_2012 63.3 145.8 n.m b.d.l 51.1 n.m b.d.l 293.8 326.7 0.1 b.d.l 393.1 36.5 
BR22A BR22A_2013 b.d.l b.d.l b.d.l b.d.l 4.9 61.4 31.8 147.1 54.2 0.9 b.d.l b.d.l 0.6 
BR22B BR22B_2013 21.2 b.d.l b.d.l b.d.l 23.2 77.3 b.d.l 131.4 41.0 0.1 b.d.l 3.4 1.5 
BR26A BR26A_2013 61.0 b.d.l b.d.l b.d.l 16.6 114.2 b.d.l 924.1 215.5 b.d.l b.d.l 446.1 27.7 
BR28A BR28A_2013 b.d.l b.d.l b.d.l b.d.l 5.3 b.d.l b.d.l 6.5 b.d.l 1.0 b.d.l 17.3 1.2 
BR29A BR29A_2013 46.7 b.d.l b.d.l b.d.l 17.9 39.9 b.d.l 397.0 77.0 b.d.l b.d.l 13.5 9.6 
BR30A BR30A_2013 15.5 b.d.l b.d.l b.d.l 546.2 140.5 b.d.l 205.2 20.2 b.d.l b.d.l 108.5 17.3 
BR33A BR33A_2013 34.9 b.d.l b.d.l b.d.l 6.0 70.4 b.d.l 373.3 93.2 b.d.l b.d.l 15.9 6.2 
BR34A BR34A_2013 18.5 b.d.l b.d.l b.d.l b.d.l 127.6 8.2 403.0 162.7 0.1 b.d.l 7.8 1.8 
BR35A BR35A_2012 22.4 102.6 n.m b.d.l 384.2 n.m 11.0 611.4 68.3 0.3 b.d.l b.d.l 7.6 
BR36A BR36A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 51.7 6.1 133.4 105.9 0.2 b.d.l 5.0 0.9 
BR36B BR36B_2013 44.3 b.d.l b.d.l b.d.l 209.7 140.1 5.0 1645.5 102.2 b.d.l b.d.l 8.0 2.2 
BR37A BR37A_2013 79.7 b.d.l b.d.l b.d.l 48.5 76.2 b.d.l 1537.4 890.1 b.d.l b.d.l 102.8 27.5 
BR41A BR41A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 61.3 8.8 45.7 119.9 0.2 b.d.l 11.3 0.6 
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CM01A CM01A_2013 46.6 b.d.l b.d.l b.d.l 61.9 117.5 b.d.l 444.4 478.1 b.d.l b.d.l 241.5 14.5 
CM02A CM02A_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m b.d.l 7.8 
CM04A CM04A_2012 13.8 82.7 n.m b.d.l 13.3 n.m 12.1 630.0 101.2 0.1 b.d.l b.d.l 4.9 
CM06A CM06A_2013 12.4 b.d.l b.d.l b.d.l 11.8 132.6 b.d.l 377.3 85.7 b.d.l b.d.l 8.7 4.8 
CM07A CM07A_2012 46.4 108.2 n.m b.d.l 135.9 n.m 13.2 3324.8 599.0 1.1 0.1 205.6 63.4 
CM07B CM07B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 234.7 48.5 128.8 82.7 0.6 b.d.l 8.1 0.5 
CM09A CM09A_2012 6.6 b.d.l n.m b.d.l 15.6 n.m 7.3 140.4 177.5 0.5 b.d.l b.d.l 4.6 
CM09B CM09B_2013 b.d.l b.d.l b.d.l b.d.l 291.7 209.3 b.d.l 228.5 290.6 b.d.l b.d.l 6.6 1.3 
CM10A CM10A_2012 8.4 30.4 n.m b.d.l 12.7 n.m b.d.l 498.4 105.7 0.6 b.d.l b.d.l 3.2 
CM10B CM10B_2012 14.7 103.0 n.m b.d.l 18.1 n.m b.d.l 610.5 58.3 0.3 b.d.l b.d.l 6.8 
CM12A CM12A_2012 5.2 22.6 n.m b.d.l b.d.l n.m 14.0 113.5 30.9 0.2 0.1 b.d.l 2.1 
CM13A CM13A_2012 10.1 b.d.l n.m b.d.l b.d.l n.m 9.1 324.5 302.6 0.6 0.0 50.4 13.1 
CM14A CM14A_2013 31.5 b.d.l b.d.l b.d.l 4.6 36.2 b.d.l 409.4 98.5 b.d.l b.d.l 10.8 4.5 
CM14B CM14B_2013 32.9 b.d.l b.d.l b.d.l 56.2 44.5 b.d.l 152.4 128.3 b.d.l b.d.l 289.8 42.5 
CM16A CM16A_2012 20.0 55.8 n.m b.d.l 14.8 n.m 11.5 465.4 61.7 0.8 b.d.l n.m n.m 
CM16B CM16B_2012 12.3 26.5 n.m b.d.l b.d.l n.m 46.5 222.2 167.7 0.3 0.1 b.d.l 4.7 
CM16C CM16C_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 192.8 b.d.l 157.3 108.3 0.1 b.d.l 82.6 1.1 
CM17A CM17A_2012 44.0 232.8 n.m 15.9 1375.5 n.m 5.8 618.9 38.4 b.d.l b.d.l b.d.l 23.2 
CM17B CM17B_2013 15.5 b.d.l b.d.l b.d.l 139.4 92.7 5.4 414.2 80.8 0.1 b.d.l 8.8 4.1 
CM18A CM18A_2012 67.0 245.3 n.m 16.1 8.1 n.m b.d.l 590.5 115.8 b.d.l 0.1 b.d.l 4.8 
CM19A CM19A_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m b.d.l 5.0 
CM19B CM19B_2013 b.d.l b.d.l b.d.l b.d.l 269.1 250.7 b.d.l 266.3 31.1 b.d.l b.d.l n.m n.m 
CM22A CM22A_2013 17.7 b.d.l b.d.l b.d.l 24.6 107.3 16.5 408.1 420.3 0.3 b.d.l 284.6 18.1 
CM22B CM22B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 78.9 11.1 87.9 23.1 0.3 b.d.l 8.3 1.6 
CM25A CM25A_2012 472.0 637.1 n.m 54.6 59.2 n.m b.d.l 1168.7 895.4 0.1 0.0 n.m n.m 
CN05A CN05A_2013 102.0 435.3 b.d.l b.d.l 13.9 38.0 b.d.l 508.6 105.7 b.d.l b.d.l 110.4 5.6 
CN06A CN06A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 187.5 6.4 101.8 23.2 0.2 b.d.l 15.2 2.0 
CN07A CN07A_2013 10.5 b.d.l b.d.l b.d.l b.d.l 107.5 8.9 469.7 87.2 0.2 b.d.l n.m n.m 
CN10A CN10A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 46.4 12.8 80.5 63.4 0.1 b.d.l 3.4 0.9 
CN12A CN12A_2013 15.0 b.d.l b.d.l b.d.l 12.1 99.1 21.6 409.7 82.3 0.1 b.d.l 7.4 2.0 
CN14A CN14A_2013 15.8 b.d.l b.d.l b.d.l 142.6 86.2 b.d.l 558.7 78.4 0.4 b.d.l 3.7 1.5 
CN14B CN14B_2013 42.4 365.6 b.d.l b.d.l 11.7 25.2 b.d.l 369.9 143.9 0.1 b.d.l 7.9 1.6 
CN18A CN18A_2013 b.d.l b.d.l b.d.l b.d.l 96.0 116.7 6.5 167.1 79.4 b.d.l b.d.l 0.5 1.5 
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CN18B CN18B_2013 b.d.l b.d.l 11.7 b.d.l 10.7 63.8 b.d.l 20.6 24.6 b.d.l b.d.l 4.3 2.0 
CN26A CN26A_2013 16.8 b.d.l b.d.l b.d.l b.d.l 93.2 30.4 1071.8 172.9 1.6 b.d.l 11.6 2.0 
CN26B CN26B_2013 b.d.l b.d.l b.d.l b.d.l 4.0 80.2 12.2 123.9 75.8 0.2 b.d.l 2.0 2.0 
CN26C CN26C_2013 b.d.l b.d.l 19.0 b.d.l b.d.l 36.2 11.0 29.9 52.6 1.6 b.d.l 6.5 0.9 
CN27A CN27A_2013 10.9 b.d.l b.d.l b.d.l 54.5 142.5 4.1 335.1 117.6 b.d.l 0.1 19.7 3.8 
CN30A CN30A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 14.6 148.7 18.5 17.8 0.9 0.0 6.7 1.0 
CN30B CN30B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 104.3 8.7 67.3 24.1 0.1 b.d.l 13.5 0.8 
CN30C CN30C_2013 10.0 b.d.l b.d.l b.d.l 44.1 112.0 12.9 239.2 123.4 0.1 0.0 4.1 3.4 
CN30C 
Artesian 

CN30CArtesia
n_2013 11.7 b.d.l b.d.l b.d.l b.d.l 22.7 5.3 41.5 15.7 b.d.l b.d.l 6.6 1.0 

CN31A CN31A_2013 19.4 b.d.l b.d.l b.d.l 22.1 60.4 84.1 301.3 279.3 0.2 b.d.l 3.9 1.3 
CN31B CN31B_2013 21.8 b.d.l b.d.l b.d.l 171.1 259.5 b.d.l 439.9 127.4 b.d.l 0.0 3.2 2.9 
CN32A CN32A_2013 15.5 b.d.l b.d.l b.d.l b.d.l 53.5 b.d.l 144.7 97.3 0.2 b.d.l 13.1 2.0 
CN33A CN33A_2013 50.8 367.2 b.d.l b.d.l 11.7 47.3 10.1 1081.2 366.4 0.1 0.2 20.9 6.8 
CN37A CN37A_2013 33.7 b.d.l b.d.l b.d.l 38.4 74.9 b.d.l 750.3 1713.6 b.d.l b.d.l 157.0 9.4 
CN37A 
MILK 

CN37AMILK_
2013 16.1 b.d.l b.d.l b.d.l b.d.l 101.6 b.d.l 109.5 281.3 0.2 0.0 7.4 1.6 

CN38A CN38A_2013 22.4 b.d.l b.d.l b.d.l 186.3 261.2 b.d.l 630.7 522.1 b.d.l b.d.l 4.4 5.4 
CN38B CN38B_2013 74.7 b.d.l b.d.l b.d.l 3.4 b.d.l b.d.l 125.3 154.7 b.d.l b.d.l 11.2 1.1 
CN38C CN38C_2013 24.1 b.d.l b.d.l b.d.l 115.1 347.7 8.3 370.6 422.0 b.d.l b.d.l 4.6 11.9 
CN39A CN39A_2013 36.2 253.6 b.d.l b.d.l 86.2 45.7 5.3 1137.7 899.3 0.1 b.d.l 22.7 4.2 
CN39B CN39B_2013 15.8 b.d.l b.d.l b.d.l 1.5 86.0 b.d.l 167.1 83.4 0.8 b.d.l 3.7 6.0 
CN43A CN43A_2013 51.9 350.5 b.d.l b.d.l 32.1 53.2 b.d.l 502.0 405.6 b.d.l b.d.l 18.6 6.6 
CN46A CN46A_2013 33.1 b.d.l b.d.l b.d.l b.d.l 29.4 13.7 239.8 241.3 0.1 0.5 7.1 0.9 
CN49A CN49A_2013 22.2 b.d.l b.d.l b.d.l 148.7 77.8 14.8 851.3 137.0 0.1 b.d.l 3.8 1.6 
CN50A CN50A_2013 14.7 b.d.l b.d.l b.d.l 2.0 67.7 42.8 79.8 33.6 0.3 0.1 12.1 0.9 
CN50B CN50B_2013 33.3 b.d.l b.d.l b.d.l 61.4 56.8 b.d.l 605.5 116.4 b.d.l b.d.l 6.7 4.5 
CN51A CN51A_2013 15.9 b.d.l b.d.l b.d.l 1.8 49.3 13.3 149.2 74.1 0.4 0.1 2.8 1.1 
CN52A CN52A_2013 72.6 b.d.l b.d.l b.d.l 12.8 b.d.l b.d.l 100.6 52.5 b.d.l b.d.l 8.2 1.7 
CN53A CN53A_2013 18.8 b.d.l b.d.l b.d.l b.d.l 36.8 5.0 367.1 34.9 0.2 0.0 3.5 1.0 
ST01A ST01A_2013 17.7 b.d.l b.d.l b.d.l 170.8 297.0 5.9 171.9 108.6 b.d.l b.d.l 9.9 0.8 
ST03A ST03A_2012 49.8 294.7 n.m b.d.l 20.4 n.m b.d.l 262.0 256.6 b.d.l b.d.l 510.8 30.1 
ST04A ST04A_2013 12.3 b.d.l b.d.l b.d.l b.d.l 100.7 30.7 80.5 44.8 1.6 0.1 7.5 0.3 
ST04B ST04B_2013 14.2 b.d.l b.d.l b.d.l b.d.l 68.2 4.4 56.2 14.8 0.1 0.2 3.8 0.4 
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ST04C ST04C_2013 12.8 b.d.l b.d.l b.d.l 3.5 85.5 15.2 55.6 28.9 0.1 0.1 28.3 1.5 
ST05A ST05A_2013 83.3 506.4 b.d.l b.d.l 34.3 41.1 b.d.l 499.8 134.9 b.d.l b.d.l 10.8 1.0 
ST05B ST05B_2013 216.6 527.7 b.d.l b.d.l 47.1 116.9 b.d.l 3422.4 1080.2 b.d.l 0.1 4416.8 71.8 
ST06A ST06A_2012 51.0 300.2 n.m b.d.l 63.4 n.m b.d.l 1757.9 471.9 b.d.l b.d.l b.d.l 14.8 
ST06C ST06C_2013 77.1 550.5 b.d.l b.d.l 35.2 51.3 b.d.l 734.6 569.3 b.d.l 0.0 370.2 21.1 
ST09A ST09A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 132.4 9.9 135.5 36.1 0.2 0.1 10.5 1.1 
ST10A ST10A_2012 b.d.l b.d.l n.m b.d.l b.d.l n.m 13.4 80.2 45.1 0.1 0.2 b.d.l 2.2 
ST10B ST10B_2012 b.d.l b.d.l n.m 17.9 b.d.l n.m b.d.l 55.5 17.4 0.1 0.1 b.d.l n.m 
ST12A ST12A_2012 23.1 142.0 n.m b.d.l 40.8 n.m b.d.l 579.3 767.5 b.d.l b.d.l 111.9 11.7 
ST12B ST12B_2013 60.2 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 5.4 b.d.l b.d.l 508.4 27.7 
ST19A ST19A_2012 17.2 133.0 n.m 21.6 63.3 n.m b.d.l 238.7 181.4 b.d.l b.d.l 55.4 8.8 
ST19B ST19B_2012 b.d.l 24.1 n.m b.d.l 54.6 n.m b.d.l 151.5 118.5 b.d.l 0.1 b.d.l 6.4 
ST20A ST20A_2013 b.d.l b.d.l b.d.l b.d.l 3.8 144.8 50.5 174.5 245.3 n.m b.d.l 9.7 1.2 
ST23B ST23B_2013 79.7 345.6 b.d.l b.d.l 41.5 36.2 9.5 325.3 95.3 b.d.l 0.1 407.6 25.9 
ST23C ST23C_2013 132.8 441.4 b.d.l b.d.l 8.2 31.0 5.8 391.6 222.1 b.d.l b.d.l 157.2 20.9 
ST24B ST24B_2013 b.d.l b.d.l b.d.l b.d.l 88.6 223.6 6.1 128.9 253.0 b.d.l b.d.l 13.2 2.5 
ST25A ST25A_2012 41.0 69.1 n.m b.d.l 89.1 n.m 6.1 4508.2 750.7 0.1 0.0 b.d.l 3.5 
ST25B ST25B_2013 b.d.l b.d.l b.d.l b.d.l 29.9 112.3 5.4 115.7 138.4 0.3 0.1 7.9 4.9 
ST26A ST26A_2012 73.6 234.8 n.m b.d.l 11.3 n.m b.d.l 260.1 469.3 0.1 b.d.l 497.0 41.5 
ST27A ST27A_2013 b.d.l b.d.l b.d.l b.d.l 5.8 109.2 5.9 124.2 282.2 0.1 b.d.l 7.9 0.8 
ST28A ST28A_2012 b.d.l b.d.l n.m b.d.l 5.6 n.m b.d.l 71.4 49.4 b.d.l 0.1 n.m n.m 
ST29A ST29A_2013 b.d.l b.d.l b.d.l b.d.l 161.2 237.8 6.2 241.3 137.0 b.d.l 0.1 7.4 0.7 
ST30A ST30A_2012 58.0 307.3 n.m b.d.l 4.9 n.m 11.8 1605.9 61.3 b.d.l 0.1 b.d.l 3.6 
ST30B ST30B_2013 b.d.l b.d.l b.d.l b.d.l 7.5 169.1 10.2 145.7 48.0 0.1 b.d.l 0.3 0.1 
ST31A ST31A_2012 13.8 b.d.l n.m b.d.l 12.1 n.m b.d.l 83.6 29.7 0.0 0.4 b.d.l 1.4 
ST33A ST33A_2013 b.d.l b.d.l b.d.l b.d.l 14.0 157.5 5.1 265.7 223.1 b.d.l 0.1 11.2 1.0 
ST35A ST35A_2012 18.6 36.6 n.m b.d.l 40.1 n.m 13.1 204.4 34.7 0.5 b.d.l b.d.l 4.7 
ST35B ST35B_2013 b.d.l b.d.l b.d.l b.d.l 301.3 418.3 b.d.l 558.9 2128.2 38.7 0.1 9.7 2.5 
ST35C ST35C_2013 13.7 b.d.l b.d.l b.d.l 153.4 168.6 b.d.l 318.2 131.4 4.0 b.d.l 11.2 3.6 
ST36B ST36B_2013 b.d.l b.d.l b.d.l b.d.l 4.8 100.9 30.6 98.8 95.2 0.2 b.d.l 6.0 1.6 
ST36C ST36C_2013 98.4 297.7 b.d.l b.d.l 11.4 37.9 b.d.l 359.5 161.3 b.d.l 0.1 1154.9 60.7 
ST37A ST37A_2012 8.9 74.6 n.m b.d.l 88.3 n.m 30.9 213.7 446.4 b.d.l 0.0 90.9 8.2 
ST44A ST44A_2013 10.2 b.d.l b.d.l b.d.l 2.4 182.6 11.7 174.9 48.2 0.3 0.0 41.7 3.3 
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ST45A ST45A_2012 5.4 b.d.l n.m b.d.l 2.1 n.m b.d.l 106.1 85.4 0.2 0.0 b.d.l 5.7 
ST46A ST46A_2012 b.d.l 26.7 n.m b.d.l b.d.l n.m b.d.l 135.0 130.9 0.1 0.1 b.d.l 3.4 
ST46B ST46B_2012 5.4 b.d.l n.m b.d.l 11.4 n.m 10.7 109.9 719.5 0.1 0.0 b.d.l 3.9 
ST46C ST46C_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 70.5 55.9 57.5 38.8 0.3 0.1 4.7 0.5 
ST47A ST47A_2012 8.7 40.4 n.m b.d.l 14.4 n.m 11.3 334.5 88.6 0.3 b.d.l b.d.l 3.5 
ST47B ST47B_2013 b.d.l b.d.l b.d.l b.d.l 1098.3 385.2 5.7 75.8 56.8 0.1 0.0 15.1 1.2 
ST49A ST49A_2012 14.5 49.1 n.m b.d.l 312.3 n.m b.d.l 342.4 167.5 0.0 b.d.l b.d.l 8.5 
ST49B ST49B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 67.6 6.8 58.0 235.5 0.4 0.0 17.1 0.7 
ST51A ST51A_2012 53.9 133.1 n.m 18.4 45.7 n.m b.d.l 179.8 139.7 0.1 b.d.l 495.9 43.4 
ST51B ST51B_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m 108.5 11.2 
ST52A ST52A_2012 29.6 73.5 n.m b.d.l 266.1 n.m b.d.l 647.2 2102.9 0.5 b.d.l 368.8 32.3 
ST53A ST53A_2013 b.d.l b.d.l b.d.l b.d.l 13.1 172.7 8.5 209.7 644.6 0.6 0.1 12.5 1.1 
ST53B ST53B_2013 b.d.l b.d.l b.d.l b.d.l 36.7 156.6 b.d.l 204.9 1345.8 b.d.l 0.1 21.7 3.1 
ST54A ST54A_2012 b.d.l b.d.l n.m b.d.l 19.9 n.m b.d.l 146.3 287.7 b.d.l 0.1 307.0 24.2 
ST54B ST54B_2012 9.7 41.2 n.m b.d.l 58.2 n.m 5.4 284.6 837.4 b.d.l b.d.l b.d.l 6.6 
ST55A ST55A_2013 89.3 322.0 b.d.l b.d.l 169.4 113.4 9.3 1080.6 1105.8 b.d.l 0.1 719.2 34.1 

ST55A_2 ST55A_2_ 
2013 97.8 372.8 b.d.l b.d.l 79.8 110.6 b.d.l 1385.5 1477.4 b.d.l 0.0 626.4 28.4 

ST55B ST55B_2013 b.d.l b.d.l b.d.l b.d.l 501.5 3158.9 16.0 1050.1 1063.7 0.1 b.d.l n.m n.m 
ST59A ST59A_2012 23.6 59.1 n.m b.d.l 10.2 n.m b.d.l 469.9 30.4 0.1 0.1 b.d.l 6.5 
ST60A ST60A_2012 21.0 75.8 n.m b.d.l 404.6 n.m b.d.l 700.2 84.4 0.3 b.d.l b.d.l 6.2 
ST61A ST61A_2013 10.1 b.d.l b.d.l b.d.l 2.7 198.1 71.1 314.2 53.8 0.1 0.0 7.6 0.3 
ST61B ST61B_2013 17.5 b.d.l b.d.l b.d.l b.d.l 105.4 8.8 720.0 109.1 0.2 0.0 8.8 0.2 
ST62A ST62A_2012 13.0 31.2 n.m b.d.l 56.5 n.m 21.6 317.6 583.7 b.d.l 0.1 68.5 21.9 
ST64A ST64A_2013 21.1 b.d.l b.d.l b.d.l 60.2 150.9 5.4 597.2 116.6 b.d.l 0.0 10.4 4.3 
ST69A ST69A_2012 12.1 67.1 n.m b.d.l 22.0 n.m b.d.l 553.7 79.9 0.2 b.d.l b.d.l 3.0 
ST72A ST72A_2013 28.7 b.d.l b.d.l b.d.l 150.2 215.0 b.d.l 339.9 47.9 b.d.l b.d.l 13.7 5.2 
ST73A ST73A_2012 n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m n.m 361.2 32.7 
ST73B ST73B_2012 12.3 71.0 n.m b.d.l 3.1 n.m 5.8 190.4 169.3 0.5 0.1 56.4 5.6 
ST73C ST73C_2013 15.3 b.d.l b.d.l b.d.l 1.5 151.0 24.2 367.0 181.8 0.2 b.d.l 88.9 6.5 
ST73D ST73D_2013 b.d.l b.d.l b.d.l b.d.l 5.9 143.0 6.5 83.0 97.9 9.0 0.0 9.7 5.7 
ST75A ST75A_2013 23.5 b.d.l b.d.l b.d.l 7.2 233.6 6.3 481.5 23.5 b.d.l 0.0 16.0 3.6 
ST76A ST76A_2012 5.7 b.d.l n.m b.d.l 3.1 n.m b.d.l 212.7 108.8 0.1 0.1 b.d.l 5.5 
ST76B ST76B_2013 14.2 b.d.l b.d.l b.d.l 7.9 161.1 15.2 180.1 20.2 0.2 0.1 16.9 4.6 

Table S2. Concentrations of trace metals, bromide, and iodide 
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ST77A ST77A_2013 45.9 b.d.l b.d.l b.d.l 63.1 102.8 13.9 673.5 2357.5 0.1 b.d.l 95.4 8.2 
ST79A ST79A_2013 15.6 b.d.l b.d.l b.d.l b.d.l 66.4 11.1 226.7 52.1 0.2 b.d.l 8.0 0.9 
ST82A ST82A_2013 25.9 b.d.l b.d.l b.d.l 20.3 167.6 7.8 673.8 63.6 b.d.l 0.1 12.0 3.9 
ST84A ST84A_2013 16.7 b.d.l b.d.l b.d.l b.d.l 206.8 56.2 237.3 119.4 0.2 b.d.l 15.4 1.2 
ST85A ST85A_2012 14.7 b.d.l n.m b.d.l b.d.l n.m b.d.l 96.8 73.7 0.0 0.1 b.d.l 1.8 
ST86A ST86A_2012 11.1 b.d.l n.m b.d.l b.d.l n.m b.d.l 118.4 64.3 2.5 0.1 b.d.l 3.2 
ST86B ST86B_2013 22.4 b.d.l b.d.l b.d.l 137.5 134.1 4.8 415.9 249.6 0.1 b.d.l 20.2 4.5 
ST87A ST87A_2012 81.4 234.4 n.m b.d.l 7.4 n.m b.d.l 1185.8 812.1 b.d.l b.d.l b.d.l 7.9 
TI01A TI01A_2013 b.d.l b.d.l b.d.l b.d.l 18.3 79.0 b.d.l 496.4 101.5 0.1 0.0 10.7 3.3 
TI02A TI02A_2013 b.d.l b.d.l b.d.l b.d.l 684.1 119.3 27.0 96.9 207.9 b.d.l b.d.l 8.1 1.4 
TI07A TI07A_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 165.4 13.1 89.4 101.8 b.d.l b.d.l 16.2 1.0 
TI10A TI10A_2012 9.0 30.7 n.m b.d.l 261.8 n.m 7.4 364.6 189.7 0.4 b.d.l b.d.l 16.9 
TI10B TI10B_2013 33.7 b.d.l b.d.l b.d.l b.d.l 79.2 b.d.l 342.0 28.1 b.d.l 0.1 6.5 9.1 
TI11A TI11A_2013 25.6 b.d.l b.d.l b.d.l 41.9 231.9 b.d.l 131.6 204.0 0.2 b.d.l 7.4 0.9 
TI11B TI11B_2013 b.d.l b.d.l b.d.l b.d.l 45.7 167.2 19.5 15.4 9.0 0.2 b.d.l 0.5 0.5 
TI12A TI12A_2013 b.d.l b.d.l b.d.l b.d.l 4.8 133.9 179.8 144.9 142.3 b.d.l 0.0 8.8 3.6 
TI14A TI14A_2013 14.7 b.d.l b.d.l b.d.l b.d.l 88.2 4.0 478.2 89.4 0.1 0.0 18.6 3.1 
TI14B TI14B_2013 16.7 b.d.l b.d.l b.d.l 165.6 163.5 b.d.l 426.4 316.8 b.d.l 0.0 204.7 19.1 
TI14C TI14C_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 49.1 9.0 39.2 16.6 0.1 b.d.l 3.5 1.0 
TI14D TI14D_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 188.5 b.d.l 113.7 112.2 b.d.l 0.1 15.9 2.6 
TI15A TI15A_2013 51.0 354.5 b.d.l b.d.l 1.7 21.9 b.d.l 276.4 72.0 b.d.l 0.0 3.2 6.2 
TI15B TI15B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 186.4 b.d.l 101.8 55.8 0.2 b.d.l 4.9 9.1 
TI18D TI18D_2013 10.7 b.d.l b.d.l b.d.l 2.8 114.9 4.3 496.9 224.6 b.d.l 0.0 4.7 3.0 
TI18E TI18E_2013 13.0 b.d.l b.d.l b.d.l 90.0 143.8 b.d.l 753.0 240.9 b.d.l b.d.l 10.7 3.5 
TI18F TI18F_2013 b.d.l b.d.l b.d.l b.d.l 14.8 151.6 4.4 239.9 137.1 0.1 b.d.l 10.9 1.4 
TI20A TI20A_2013 b.d.l b.d.l b.d.l b.d.l 601.9 524.8 13.5 282.9 13.8 b.d.l b.d.l 15.6 12.0 
TI20B TI20B_2013 b.d.l b.d.l b.d.l b.d.l b.d.l 142.8 b.d.l 71.6 60.4 0.1 0.1 6.4 0.6 
TI20C TI20C_2013 b.d.l b.d.l b.d.l b.d.l 2.8 124.2 b.d.l 73.5 50.0 b.d.l 0.1 13.1 1.1 
TI21A TI21A_2013 b.d.l b.d.l b.d.l b.d.l 20.2 84.1 31.5 85.2 56.5 0.8 0.1 6.1 0.2 
TI21B TI21B_2013 10.6 b.d.l b.d.l b.d.l 49.8 10.9 b.d.l 21.0 5.0 b.d.l b.d.l 12.0 5.5 
TI22A TI22A_2012 18.0 52.4 n.m b.d.l 17.2 n.m 5.5 600.5 227.5 0.1 0.0 56.6 13.0 
TI22B TI22B_2013 21.3 b.d.l b.d.l b.d.l 20.4 76.1 b.d.l 480.1 508.6 b.d.l b.d.l 72.5 1.2 
TI22C TI22C_2013 b.d.l b.d.l b.d.l b.d.l 192.4 114.6 5.5 216.1 231.3 b.d.l b.d.l 40.3 5.3 

Table S2. Concentrations of trace metals, bromide, and 
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TI23A TI23A_2013 25.3 b.d.l b.d.l b.d.l 293.0 181.6 5.4 422.5 24.5 b.d.l b.d.l 6.9 2.3 
TI26A TI26A_2013 b.d.l b.d.l b.d.l b.d.l 755.7 407.9 7.3 262.7 24.6 b.d.l b.d.l 6.9 6.6 
TI28A TI28A_2013 b.d.l b.d.l b.d.l b.d.l 3.0 132.6 4.2 61.8 38.9 0.1 0.3 17.6 2.2 
TI28B TI28B_2013 30.0 b.d.l b.d.l b.d.l 93.7 124.2 b.d.l 682.5 125.9 b.d.l b.d.l 26.1 7.1 
TI30A TI30A_2013 b.d.l b.d.l b.d.l b.d.l 6.6 11.9 b.d.l 9.7 b.d.l b.d.l b.d.l 10.2 5.7 
TI31A TI31A_2012 22.9 154.7 n.m b.d.l 81.2 n.m b.d.l 775.9 13.6 0.1 b.d.l b.d.l 12.8 
TI31B TI31B_2013 22.4 b.d.l b.d.l b.d.l 91.2 116.3 7.1 1004.2 181.9 0.2 b.d.l 14.5 6.4 

b.d.l = below detection; n.m = not measured 

Table S2. Concentrations of trace metals, bromide, and 
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Sample 2014 Sample 
ID 

d2HVSMOW d13CVPDB 

1 TI20A -123.1 -39.15 
2 CN33A -75.5 -35.13 
3 CN38B -173.6 -39.00 
5 CN39A -298.4 -51.12 
6 CM14B -155.0 -39.24 
7 BR26A -153.0 -48.06 
9 TI11A -183.3 -44.12 
10 ST23C -230.0 -48.72 
11 ST55A_2 -253.8 -51.99 
12 CN05A -198.8 -42.43 
13 ST01A -162.3 -37.16 
14 CM01A -255.4 -76.06 
15 ST12B -270.3 -49.24 
16 ST86B -103.2 -42.97 
17 ST55A -253.4 -49.63 
18 CN38A -249.8 -79.72 
19 CN37A Milk -205.1 -40.25 
20 TI23A -184.0 -56.05 
21 ST36C_2 -172.8 -57.30 
23 CN43A -81.3 -52.53 
24 ST23B -223.2 -47.99 
25 ST06C -260.9 -63.70 
26 ST35B -251.7 -58.23 
27 ST77A -145.7 -56.65 
28 ST39A 

Basswood 
-96.1 -37.52 

Table S3. Methane Isotope data for groundwater 
wells sampled in 2014 
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Sample 
Number Sample ID Sr (ppb) 87/86 Std Err % 2 SE 

1 ST36C 359.456 0.711379 0.0007 0.000010 
2 ST73C 367.046 0.711397 0.0006 0.000009 
3 TI22A 600.457 0.711390 0.0007 0.000010 
4 ST55A 1080.633 0.710975 0.0005 0.000007 
5 ST55A_2 1385.470 0.711402 0.0007 0.000010 
6 ST05B 3422.411 0.711391 0.0006 0.000009 
7 ST53A 209.705 0.711391 0.0006 0.000009 
8 CM13A 324.482 0.711384 0.0006 0.000009 
9 ST23C 391.591 0.711393 0.0007 0.000010 
10 BR36B 1645.482 0.711406 0.0006 0.000009 
11 BR34A 403.011 0.711394 0.0008 0.000011 
12 ST77A 673.457 0.713667 0.0006 0.000009 
13 CN33A 1081.189 0.711399 0.0005 0.000007 
14 ST35A 204.355 0.711396 0.0007 0.000010 
15 CN39A 1137.654 0.711388 0.0006 0.000009 
16 BR14B 631.828 0.711388 0.0006 0.000009 

 

  

Table S5. Strontium Isotope data for groundwater wells  
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
BR01A 6.34 0.28 32.03 15.61 4.29 0.03 2035.1 2074.6 Upland Upland Upland 
BR09A 2.48 0.13 39.03 13.72 0.11 0.11 575.0 1148.9 Upland Valley Valley 
BR10A 2.16 0.10 40.91 12.97 0.92 0.14 2456.9 1821.8 Valley Upland Upland 
BR12A 0.53 0.13 43.11 11.62 2.34 0.23 213.4 1906.0 Upland Valley Upland 
BR13A 1.13 0.28 35.53 8.47 0.12 0.12 1426.1 955.8 Upland Upland Valley 
BR13B 4.83 1.40 39.25 9.98 1.55 0.26 284.9 334.3 Upland Valley Valley 
BR13C 1.56 0.17 36.86 8.46 0.60 0.01 836.8 1192.9 Valley Valley Valley 
BR14A 3.16 0.30 33.39 8.41 0.21 0.13 3935.1 1365.1 Upland Upland Upland 
BR14B 0.02 0.74 35.34 7.76 1.40 0.08 4612.6 491.9 Upland Upland Upland 
BR15A 1.70 0.25 38.07 4.85 0.19 0.19 6760.7 426.3 Upland Upland Upland 
BR16A 0.11 0.43 37.60 7.55 1.10 0.01 4579.1 1861.1 Upland Upland Upland 
BR16B 0.30 0.21 37.07 6.34 0.05 0.05 1517.4 1127.0 Upland Upland Upland 
BR17A 0.83 0.24 42.86 9.10 3.71 0.05 1449.2 2473.4 Upland Upland Upland 
BR17B 0.14 0.45 41.16 6.96 2.04 0.35 2597.0 2609.0 Upland Upland Upland 
BR18A 1.06 0.12 48.41 3.68 1.22 0.26 1102.0 4678.4 Upland Upland Upland 
BR18B 2.02 0.33 46.35 8.90 2.45 0.01 3488.4 2045.7 Upland Upland Upland 
BR19A 0.57 0.52 47.32 0.59 2.65 0.38 1398.7 471.8 Upland Upland Upland 
BR20A 0.42 0.10 45.82 5.04 3.95 0.05 6583.6 1919.7 Upland Upland Upland 
BR21A 0.73 0.11 45.27 9.73 0.03 0.03 126.8 1611.6 Valley Valley Valley 
BR22A 3.13 0.19 44.47 14.81 2.06 0.07 4024.3 3489.5 Upland Upland Upland 
BR22B 0.89 0.27 44.07 17.10 1.12 0.26 3617.2 2283.3 Upland Upland Upland 
BR26A 4.54 0.80 43.31 7.41 0.81 0.01 4041.1 747.2 Upland Upland Upland 
BR28A 0.80 0.91 54.67 3.99 3.44 0.03 181.5 543.6 Upland Valley Valley 
BR29A 0.56 0.22 47.96 6.23 1.78 0.01 392.4 1558.0 Upland Valley Upland 
BR30A 0.83 0.42 49.79 10.69 0.35 0.05 1889.2 294.1 Upland Upland Upland 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
BR33A 4.17 0.29 54.19 13.88 1.96 0.01 38.8 4180.7 Upland Valley Upland 
BR34A 0.89 0.06 43.90 10.24 3.71 0.14 2488.5 1080.6 Upland Upland Upland 
BR35A 0.68 0.84 45.98 12.24 1.45 0.06 3429.0 1131.7 Upland Upland Upland 
BR36A 1.87 0.53 51.37 10.58 3.59 0.15 2059.8 1699.2 Upland Upland Upland 
BR36B 1.02 0.28 56.74 7.52 6.74 0.05 1439.0 188.9 Upland Upland Upland 
BR37A 0.78 0.20 57.58 11.22 1.36 0.04 116.6 1939.8 Valley Valley Valley 
BR41A 1.18 0.33 59.04 12.35 2.60 0.01 529.8 3067.2 Upland Valley Valley 
CM01A 2.05 0.19 1.23 4.45 1.16 0.05 302.1 1118.9 Upland Valley Valley 
CM02A 3.98 0.62 1.44 3.55 5.17 0.02 579.6 1980.2 Upland Valley Upland 
CM04A 1.93 0.08 5.47 3.71 3.19 0.04 4265.7 655.0 Upland Upland Upland 
CM06A 6.52 0.01 2.32 4.21 1.00 0.08 1677.3 307.7 Upland Upland Upland 
CM07A 1.44 0.43 1.65 5.63 3.09 0.02 2684.4 1968.3 Valley Upland Upland 
CM07B 1.32 0.01 3.27 5.85 5.68 0.03 1390.1 2626.7 Valley Upland Valley 
CM09A 3.93 0.13 3.15 4.88 5.05 0.05 797.0 2226.8 Upland Valley Upland 
CM09B 2.40 0.07 4.14 2.93 2.79 0.02 3237.0 247.9 Upland Upland Valley 
CM10A 0.18 0.09 3.53 3.47 1.34 0.14 4680.0 702.8 Upland Upland Upland 
CM10B 0.18 0.09 3.53 3.47 1.34 0.14 4680.0 702.8 Upland Upland Upland 
CM12A 3.85 0.42 3.77 3.77 1.68 0.06 4837.9 1704.5 Upland Upland Upland 
CM13A 2.59 0.22 2.03 2.03 5.73 0.07 5651.3 1950.3 Upland Upland Upland 
CM14A 2.28 0.18 2.26 2.26 9.27 0.05 9941.3 744.9 Upland Upland Upland 
CM14B 0.58 0.14 1.55 1.55 7.65 0.03 2523.4 144.6 Upland Upland Upland 
CM16A 0.14 0.22 1.62 3.84 2.32 0.04 5073.9 1349.3 Upland Upland Upland 
CM16B 3.55 0.72 0.83 1.69 4.20 0.02 3069.6 1111.6 Upland Upland Upland 
CM16C 0.14 0.22 1.62 3.85 2.32 0.03 5067.0 1352.3 Upland Upland Upland 
CM17A 0.58 1.34 6.03 3.50 3.61 0.06 138.0 2701.1 Upland Valley Valley 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
CM17B 1.67 0.99 3.52 1.54 1.79 0.05 565.9 2032.0 Upland Valley Upland 
CM18A 0.10 1.71 2.18 2.30 0.72 0.01 183.5 3859.2 Valley Valley Valley 
CM19A 7.37 0.61 8.16 2.81 7.14 0.38 11386.7 1257.2 Upland Upland Upland 
CM19B 6.21 1.18 6.78 2.44 8.05 0.01 8800.7 123.4 Upland Upland Valley 
CM22A 7.93 0.03 4.07 3.68 0.71 0.02 1557.3 853.6 Upland Upland Upland 
CM22B 8.31 1.40 4.67 3.89 2.20 0.01 2647.6 435.4 Upland Upland Upland 
CM25A 1.59 0.02 15.22 10.20 1.44 0.14 901.2 335.4 Valley Valley Valley 
CN05A 0.53 0.49 0.93 4.33 2.30 0.38 1257.9 1018.4 Upland Upland Upland 
CN06A 0.63 0.03 1.61 6.19 0.67 0.06 1293.5 1497.8 Valley Upland Valley 
CN07A 0.11 0.09 12.23 13.25 5.19 0.37 4721.9 1925.8 Upland Upland Upland 
CN10A 0.32 0.45 8.99 7.32 0.89 0.29 1207.1 2294.7 Upland Upland Upland 
CN12A 0.20 1.03 0.37 0.46 4.68 0.14 1969.0 317.1 Upland Upland Upland 
CN14A 0.83 0.17 12.54 16.21 2.15 0.01 7500.1 480.3 Upland Upland Upland 
CN14B 0.10 0.38 14.40 17.77 3.32 0.01 612.7 1693.4 Upland Valley Valley 
CN18A 6.15 0.18 5.42 5.57 1.19 0.17 2823.4 263.5 Upland Upland Upland 
CN18B 6.15 0.18 5.42 5.57 1.19 0.17 2823.4 263.5 Upland Upland Upland 
CN26A 0.49 0.09 4.62 4.62 1.45 0.06 4440.7 1359.3 Upland Upland Upland 
CN26B 2.15 1.25 0.28 0.28 5.96 0.17 4649.7 1401.0 Upland Upland Upland 
CN26C 2.27 0.41 6.72 0.41 1.06 0.04 1235.7 1390.9 Upland Upland Upland 
CN27A 4.12 1.20 12.34 12.50 1.16 0.02 4024.6 606.3 Upland Upland Upland 
CN30A 3.15 0.76 15.80 9.17 3.93 0.05 3002.7 1385.8 Upland Upland Upland 
CN30B 1.89 0.32 13.21 11.79 0.02 0.02 744.7 710.3 Valley Valley Valley 
CN30C 5.89 0.23 20.37 5.36 1.59 0.04 2642.2 1465.2 Upland Upland Upland 

CN30CArtesian 5.89 0.23 20.37 5.36 1.59 0.04 2642.2 1465.2 Upland Upland Upland 
CN31A 2.62 1.04 15.94 5.49 1.21 0.02 1508.3 2282.5 Upland Upland Upland 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
CN31B 0.81 0.13 11.12 4.75 3.27 0.02 185.6 373.7 Upland Valley Upland 
CN32A 0.15 0.42 3.99 2.08 2.94 0.18 6580.0 1714.2 Upland Upland Upland 
CN33A 2.02 0.14 9.37 1.29 0.56 0.05 142.6 1403.6 Upland Valley Upland 
CN37A 3.41 0.30 16.42 3.15 4.29 0.02 1597.2 1872.0 Upland Upland Upland 

CN37AMILK 3.41 0.30 16.42 3.15 4.29 0.02 1597.2 1872.0 Upland Upland Upland 
CN38A 6.71 1.53 16.02 6.19 3.42 0.02 2009.2 256.7 Upland Upland Upland 
CN38B 4.13 1.37 16.46 5.19 1.13 0.09 4643.5 610.2 Upland Upland Upland 
CN38C 4.25 0.12 12.42 5.47 5.19 0.20 760.5 3175.5 Upland Valley Valley 
CN39A 0.26 0.55 16.23 4.89 2.54 0.05 1431.8 295.3 Upland Upland Upland 
CN39B 1.59 0.35 12.87 4.46 1.81 0.05 995.3 1839.7 Upland Upland Valley 
CN43A 4.87 0.40 24.92 5.91 0.17 0.07 2841.2 12.2 Upland Upland Upland 
CN46A 0.83 0.05 26.10 11.45 3.50 0.03 1005.9 85.4 Upland Upland Valley 
CN49A 0.07 0.11 31.15 12.38 2.19 0.05 4504.6 1750.9 Upland Upland Upland 
CN50A 0.06 0.31 29.35 4.89 0.11 0.11 1195.0 1206.5 Upland Upland Upland 
CN50B 1.02 0.50 27.75 7.62 3.74 0.05 1342.1 1246.1 Upland Upland Upland 
CN51A 1.58 0.53 26.90 1.17 1.22 0.09 2522.7 1680.9 Upland Upland Upland 
CN52A 2.82 0.57 27.60 7.80 0.23 0.03 342.0 2003.8 Upland Valley Valley 
CN53A 2.59 1.16 34.96 9.82 1.44 0.03 1512.8 2251.8 Upland Upland Upland 
ST01A 0.63 0.39 5.32 5.89 0.05 0.03 4201.8 2550.2 Valley Upland Valley 
ST03A 0.44 0.10 13.22 3.83 2.58 0.00 5095.8 11.4 Upland Valley Upland 
ST04A 1.77 0.09 17.22 3.23 0.00 0.00 2867.4 98.7 Upland Upland Valley 
ST04B 2.61 1.18 16.69 3.58 0.64 0.01 6672.8 662.1 Upland Upland Upland 
ST04C 1.83 0.02 17.16 3.19 0.06 0.06 3099.2 267.1 Upland Upland Valley 
ST05A 1.28 0.17 19.92 2.52 4.60 0.03 411.5 745.0 Upland Valley Valley 
ST05B 1.20 0.07 19.83 2.58 4.71 0.03 542.5 711.2 Upland Valley Valley 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
ST06A 0.71 0.30 14.43 1.69 8.72 0.17 16912.3 1400.6 Upland Upland Upland 
ST06C 0.46 0.41 14.62 1.90 8.96 0.06 16320.3 1421.4 Upland Upland Upland 
ST09A 0.12 0.03 6.72 7.93 1.15 0.15 828.8 1639.4 Upland Valley Upland 
ST10A 1.92 0.88 10.77 6.27 1.35 0.09 9713.2 205.6 Upland Valley Upland 
ST10B 1.63 0.59 10.62 6.28 1.06 0.07 9949.8 117.6 Upland Valley Upland 
ST12A 0.01 0.15 11.60 2.96 5.65 0.13 434.3 401.6 Upland Valley Valley 
ST12B 1.44 0.81 9.93 3.88 7.05 0.07 396.5 307.9 Upland Valley Valley 
ST19A 3.06 2.00 4.34 9.27 2.01 0.02 523.6 4780.5 Upland Valley Upland 
ST19B 2.70 0.53 6.54 6.92 3.13 0.20 2965.3 318.6 Upland Valley Upland 
ST20A 2.57 0.11 4.87 7.53 2.81 0.04 7850.4 834.7 Upland Upland Upland 
ST23B 2.22 0.28 12.39 3.80 4.25 0.07 22388.1 1966.2 Upland Upland Upland 
ST23C 2.18 0.24 12.46 3.74 4.19 0.08 22606.0 1738.1 Upland Upland Upland 
ST24B 0.19 0.02 10.39 7.43 0.04 0.03 2113.1 1093.4 Upland Upland Valley 
ST25A 1.94 0.37 10.99 1.07 0.98 0.04 810.5 2179.3 Upland Upland Upland 
ST25B 2.66 0.04 5.83 4.87 2.13 0.03 5996.7 579.5 Upland Upland Upland 
ST26A 0.06 0.69 9.29 2.48 0.34 0.06 3069.4 844.0 Upland Upland Upland 
ST27A 6.11 0.64 2.56 7.55 2.07 0.04 1689.1 1196.9 Upland Upland Upland 
ST28A 1.67 0.62 6.49 6.08 0.97 0.03 5159.7 1118.6 Upland Upland Upland 
ST29A 0.97 0.58 11.50 6.28 1.42 0.07 455.8 1015.8 Upland Valley Valley 
ST30A 1.10 0.25 10.62 8.82 3.36 0.06 9992.4 1392.7 Upland Upland Upland 
ST30B 0.45 0.22 13.08 5.55 0.14 0.04 1865.5 561.9 Upland Upland Valley 
ST31A 2.07 0.06 7.73 8.25 2.27 0.09 6591.7 1813.8 Upland Upland Upland 
ST33A 0.75 1.18 5.11 5.28 1.26 0.04 3779.7 61.8 Valley Upland Upland 
ST35A 0.37 0.13 10.44 3.77 6.34 0.17 1868.2 4174.4 Upland Upland Upland 
ST35B 1.24 0.10 8.61 6.68 3.35 0.01 2713.0 1678.0 Upland Upland Upland 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
ST35C 0.81 0.28 10.62 3.50 6.68 0.09 2505.3 3529.7 Upland Upland Upland 
ST36B 0.55 0.08 7.45 4.76 1.86 0.15 867.7 599.3 Upland Upland Upland 
ST36C 0.72 0.08 7.61 4.64 1.94 0.03 986.0 125.6 Upland Upland Valley 
ST37A 4.71 0.04 7.27 1.23 0.72 0.13 279.3 1184.6 Valley Valley Valley 
ST44A 4.01 0.09 14.20 4.20 6.65 0.02 2239.0 1292.6 Upland Upland Upland 
ST45A 2.37 1.28 6.13 2.23 3.83 0.25 3250.5 937.9 Upland Upland Upland 
ST46A 1.66 0.63 2.87 2.08 0.63 0.03 295.1 327.7 Valley Valley Valley 
ST46B 0.09 0.76 2.12 2.42 2.10 0.11 3959.0 984.3 Upland Upland Upland 
ST46C 2.75 0.78 10.04 5.22 7.91 0.04 2575.5 2976.0 Upland Upland Upland 
ST47A 1.77 1.13 1.47 1.64 4.56 0.03 6676.2 2416.8 Upland Upland Upland 
ST47B 1.30 0.21 2.39 1.28 6.87 0.05 417.0 822.2 Valley Upland Valley 
ST49A 3.16 0.25 4.71 3.03 6.69 0.11 430.0 225.9 Upland Valley Upland 
ST49B 2.27 0.29 2.92 3.88 0.02 0.02 1442.7 243.6 Upland Upland Upland 
ST51A 2.02 0.27 6.41 0.33 0.06 0.05 604.8 1029.2 Upland Valley Valley 
ST51B 0.64 0.02 10.19 3.19 2.19 0.01 286.8 630.0 Upland Valley Valley 
ST52A 3.28 0.76 12.46 3.56 4.12 0.02 415.5 170.2 Upland Valley Valley 
ST53A 0.27 0.24 11.22 7.02 7.58 0.33 3059.1 2439.2 Upland Upland Upland 
ST53B 0.56 0.53 11.13 7.25 7.27 0.00 3467.8 2559.4 Upland Upland Upland 
ST54A 2.32 0.46 12.33 2.30 10.22 0.01 3438.8 3025.2 Upland Upland Upland 
ST54B 0.59 0.23 9.62 5.98 6.47 0.23 4580.9 1349.7 Upland Upland Upland 
ST55A 0.43 0.33 8.89 5.50 4.68 0.04 362.4 1236.8 Upland Valley Upland 

ST55A_2 0.50 0.27 8.83 5.44 4.62 0.03 250.0 1323.5 Upland Valley Upland 
ST55B 0.50 0.61 7.06 4.80 3.17 0.00 3375.3 12.7 Upland Upland Upland 
ST59A 0.19 0.06 5.46 5.51 0.81 0.04 2873.3 330.5 Upland Valley Upland 
ST60A 1.79 0.11 0.93 4.34 0.94 0.03 5574.0 96.1 Upland Valley Upland 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
ST61A 0.40 0.70 7.46 7.19 0.99 0.04 9131.2 1893.5 Upland Upland Upland 
ST61B 0.76 0.94 4.45 3.28 2.21 0.05 1799.3 3753.0 Upland Upland Upland 
ST62A 1.19 1.68 12.70 0.57 3.90 0.01 6671.7 1712.3 Upland Upland Upland 
ST64A 3.93 1.23 15.33 2.36 7.06 0.04 1460.3 3593.9 Upland Upland Upland 
ST69A 1.52 0.15 5.90 2.46 1.77 0.02 5885.0 352.1 Upland Valley Upland 
ST72A 3.25 0.49 6.70 3.74 0.57 0.07 953.5 995.0 Upland Valley Upland 
ST73A 1.62 2.06 7.28 1.35 0.55 0.07 623.7 2814.7 Upland Valley Valley 
ST73B 1.28 1.73 6.10 2.54 1.26 0.28 2365.2 2916.0 Upland Upland Upland 
ST73C 1.04 0.05 6.10 3.18 3.15 0.04 2675.4 1314.1 Upland Upland Upland 
ST73D 1.82 0.65 5.47 4.15 4.10 0.06 1117.5 394.9 Upland Upland Valley 
ST75A 0.46 0.45 13.90 5.38 4.52 0.04 4391.6 1611.1 Upland Upland Upland 
ST76A 1.42 0.65 4.55 3.56 4.65 0.03 2522.3 2316.3 Upland Upland Upland 
ST76B 0.36 0.29 6.10 2.23 7.60 0.05 4709.9 1630.5 Upland Upland Upland 
ST77A 2.83 1.66 40.81 4.71 0.71 0.06 974.1 1156.5 Valley Upland Valley 
ST79A 0.45 1.34 5.47 2.69 2.49 0.30 3208.0 940.0 Upland Upland Upland 
ST82A 4.02 0.35 2.33 8.50 7.02 0.49 2756.9 1664.3 Upland Upland Upland 
ST84A 1.26 0.38 14.33 8.55 6.90 0.04 1348.0 2240.3 Upland Upland Upland 
ST85A 1.74 1.37 14.70 10.41 7.35 0.00 2928.8 1164.5 Upland Upland Upland 
ST86A 1.60 0.39 7.08 3.56 7.53 0.04 1336.4 1655.5 Upland Upland Upland 
ST86B 3.09 0.56 6.17 2.82 9.17 0.04 4123.5 105.8 Upland Upland Valley 
ST87A 2.84 0.30 5.41 2.02 9.40 0.17 2667.1 1339.0 Upland Upland Upland 
TI01A 4.00 0.59 27.44 18.48 1.79 0.03 6432.2 800.9 Upland Upland Upland 
TI02A 0.13 0.24 31.48 22.80 0.56 0.19 248.4 942.2 Upland Valley Upland 
TI07A 1.42 0.31 6.38 1.47 3.63 0.01 253.9 424.2 Valley Valley Valley 
TI10A 2.87 0.38 24.59 16.38 4.88 0.11 656.0 656.8 Valley Valley Valley 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
TI10B 2.08 0.21 20.49 11.79 9.03 0.06 4074.3 574.3 Upland Upland Upland 
TI11A 2.05 0.49 32.61 18.38 2.70 0.01 1052.5 102.8 Upland Upland Valley 
TI11B 2.05 0.49 32.61 18.38 2.70 0.01 1052.5 102.8 Upland Upland Valley 
TI12A 1.18 0.39 6.88 0.98 4.19 0.03 1118.7 88.3 Valley Upland Valley 
TI14A 0.39 0.08 16.92 6.47 9.35 0.04 531.4 776.1 Valley Valley Valley 
TI14B 1.04 0.52 15.39 6.86 10.17 0.02 980.1 1058.9 Valley Upland Valley 
TI14C 1.16 0.44 15.87 7.04 10.18 0.04 756.2 572.0 Valley Valley Valley 
TI14D 1.06 0.51 15.38 6.88 10.19 0.02 954.2 1020.8 Valley Upland Valley 
TI15A 5.63 0.42 21.56 4.98 4.18 0.09 6101.1 746.3 Upland Upland Upland 
TI15B 3.66 0.37 25.48 9.00 3.36 0.06 576.2 131.5 Valley Valley Valley 
TI18D 1.70 0.07 10.00 2.62 9.83 0.30 3805.8 842.0 Upland Upland Upland 
TI18E 1.78 1.08 25.11 1.81 1.66 0.06 777.8 2566.6 Upland Valley Upland 
TI18F 1.70 0.07 10.00 2.62 9.83 0.30 3805.8 842.0 Upland Upland Upland 
TI20A 4.52 0.89 23.73 7.08 1.90 0.05 1673.1 661.2 Upland Upland Upland 
TI20B 5.27 0.31 22.29 5.31 0.55 0.05 156.3 661.6 Valley Valley Valley 
TI20C 5.00 0.17 22.62 3.90 0.73 0.03 215.5 396.2 Valley Valley Valley 
TI21A 0.27 0.69 27.77 7.57 3.70 0.09 3997.3 507.4 Upland Upland Upland 
TI21B 0.02 0.29 33.75 3.79 4.52 0.09 12743.8 1280.5 Upland Upland Upland 
TI22A 3.73 0.24 12.16 9.06 5.54 0.04 3655.8 1100.1 Upland Upland Upland 
TI22B 9.31 0.17 28.27 5.23 0.35 0.12 585.0 795.2 Upland Valley Valley 
TI22C 9.31 0.17 28.27 5.23 0.35 0.12 585.0 795.2 Upland Valley Valley 
TI23A 4.52 0.40 11.15 8.01 7.78 0.02 238.8 1876.1 Upland Valley Upland 
TI26A 1.54 0.37 30.37 2.87 2.28 0.12 2783.4 1117.6 Upland Upland Upland 
TI28A 0.01 0.08 16.73 11.68 4.21 0.01 1127.2 1214.8 Valley Upland Valley 
TI28B 2.00 2.16 20.75 9.29 3.60 0.07 6252.3 1584.8 Upland Upland Upland 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Distance to Parameter in (km) Distance to NHD Flowline (Ft) Landscape Position 

Fault Lineament 
Active 

Gas 
Well 

Other 
Gas 
Well 

Highways Roads Major  
Flowline 

Minor  
Flowline 

Mapped 
Valley 
Aquifer 

NHD 
Based 

Method 

DEM 
Based 

Method 
TI30A 3.48 0.60 24.31 3.59 1.04 0.00 1689.2 4612.0 Upland Upland Upland 
TI31A 1.80 0.48 32.85 1.68 3.16 0.07 2099.2 1658.7 Upland Upland Upland 
TI31B 1.80 0.47 32.87 1.67 3.15 0.05 2095.7 1634.0 Upland Upland Upland 

 

 

 

Table S1. Well distance to proximity parameters and landscape positon classification 
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SWIFT ID 

Bedrock Classification 

Bedrock Interpolation 
Method 

Geologic Map 
Method 

BR01A   
BR09A   
BR10A Genesee Sonyea 
BR12A Sonyea West Falls 
BR13A Genesee Sonyea 
BR13B Sonyea Sonyea 
BR13C   
BR14A   
BR14B   
BR15A West Falls West Falls 
BR16A   
BR16B Sonyea West Falls 
BR17A Sonyea West Falls 
BR17B West Falls/Sonyea West Falls 
BR18A West Falls West Falls 
BR18B Sonyea West Falls 
BR19A West Falls West Falls 
BR20A West Falls West Falls 
BR21A Genesee Sonyea 
BR22A West Falls West Falls 
BR22B West Falls West Falls 
BR26A West Falls West Falls 
BR28A West Falls/Sonyea West Falls 
BR29A West Falls West Falls 
BR30A West Falls/Sonyea West Falls 
BR33A West Falls West Falls 
BR34A West Falls West Falls 
BR35A West Falls West Falls 
BR36A West Falls/Sonyea West Falls 
BR36B West Falls/Sonyea West Falls 
BR37A   
BR41A West Falls West Falls 
CM01A West Falls West Falls 
CM02A West Falls West Falls 

Table S2. Bedrock Classification using the bedrock 
interpolation method and the geologic map method 
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SWIFT ID 

Bedrock Classification 

Bedrock Interpolation 
Method 

Geologic Map 
Method 

CM04A West Falls West Falls 
CM06A West Falls West Falls 
CM07A West Falls West Falls 
CM07B Sonyea West Falls 
CM09A West Falls West Falls 
CM09B   
CM10A West Falls West Falls 
CM10B West Falls West Falls 
CM12A West Falls West Falls 
CM13A West Falls West Falls 
CM14A West Falls West Falls 
CM14B West Falls West Falls 
CM16A West Falls West Falls 
CM16B West Falls West Falls 
CM16C   
CM17A West Falls West Falls 
CM17B West Falls West Falls 
CM18A West Falls West Falls 
CM19A West Falls West Falls 
CM19B   
CM22A West Falls West Falls 
CM22B West Falls West Falls 
CM25A West Falls West Falls 
CN05A Hamilton Hamilton 
CN06A Hamilton Hamilton 
CN07A Hamilton Hamilton 
CN10A Genesee Genesee 
CN12A Hamilton Genesee 
CN14A   
CN14B Genesee Genesee 
CN18A Genesee Genesee 
CN18B   
CN26A Error Hamilton 
CN26B Genesee Genesee 
CN26C Genesee Genesee 
CN27A Genesee Genesee 

Table S2. Bedrock Classification using the bedrock 
interpolation method and the geologic map method 
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SWIFT ID 

Bedrock Classification 

Bedrock Interpolation 
Method 

Geologic Map 
Method 

CN30A Genesee Genesee 
CN30B Genesee Genesee 
CN30C Genesee Sonyea 

CN30CArtesian   
CN31A Genesee Genesee 
CN31B Genesee Genesee 
CN32A Genesee Genesee 
CN33A Error Hamilton 
CN37A Genesee Genesee 

CN37AMILK Genesee Genesee 
CN38A Genesee Genesee 
CN38B Genesee Genesee 
CN38C Genesee Genesee 
CN39A Error Hamilton 
CN39B Error Hamilton 
CN43A Genesee Genesee 
CN46A   
CN49A Genesee Sonyea 
CN50A Genesee Sonyea 
CN50B Sonyea Sonyea 
CN51A Genesee/Sonyea Sonyea 
CN52A Genesee/Sonyea Sonyea 
CN53A Genesee/Sonyea Sonyea 
ST01A West Falls West Falls 
ST03A   
ST04A West Falls West Falls 
ST04B West Falls West Falls 
ST04C West Falls West Falls 
ST05A West Falls West Falls 
ST05B West Falls West Falls 
ST06A   
ST06C West Falls West Falls 
ST09A   
ST10A Error Java 
ST10B   
ST12A West Falls West Falls 

Table S2. Bedrock Classification using the bedrock 
interpolation method and the geologic map method 
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SWIFT ID 

Bedrock Classification 

Bedrock Interpolation 
Method 

Geologic Map 
Method 

ST12B West Falls West Falls 
ST19A West Falls West Falls 
ST19B West Falls Java 
ST20A Error Java 
ST23B Sonyea West Falls 
ST23C Sonyea West Falls 
ST24B   
ST25A Java Java 
ST25B Canadaway Canadaway 
ST26A Canadaway Canadaway 
ST27A West Falls Java 
ST28A West Falls West Falls 
ST29A West Falls West Falls 
ST30A   
ST30B West Falls West Falls 
ST31A West Falls West Falls 
ST33A Java Java 
ST35A Canadaway Canadaway 
ST35B Canadaway Canadaway 
ST35C Canadaway Canadaway 
ST36B West Falls West Falls 
ST36C West Falls West Falls 
ST37A   
ST44A Canadaway Canadaway 
ST45A West Falls West Falls 
ST46A West Falls West Falls 
ST46B   
ST46C Error Java 
ST47A Error West Falls 
ST47B West Falls West Falls 
ST49A   
ST49B Canadaway/Conneaut Conneaut 
ST51A   
ST51B Canadaway Canadaway 
ST52A Canadaway Canadaway 
ST53A West Falls Java 

Table S2. Bedrock Classification using the bedrock 
interpolation method and the geologic map method 
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SWIFT ID 

Bedrock Classification 

Bedrock Interpolation 
Method 

Geologic Map 
Method 

ST53B Error Java 
ST54A West Falls Java 
ST54B Java Java 
ST55A West Falls West Falls 

ST55A_2   
ST55B   
ST59A Canadaway/Conneaut Conneaut 
ST60A Canadaway Canadaway 
ST61A Canadaway Canadaway 
ST61B Canadaway/Conneaut Conneaut 
ST62A Canadaway Canadaway 
ST64A Error Java 
ST69A Canadaway/Conneaut Conneaut 
ST72A Java Java 
ST73A Java Java 
ST73B Error Java 
ST73C Canadaway Canadaway 
ST73D   
ST75A Java Java 
ST76A Java Java 
ST76B Java Java 
ST77A Sonyea West Falls 
ST79A Canadaway/Conneaut Conneaut 
ST82A Canadaway Canadaway 
ST84A Java Canadaway 
ST85A   
ST86A Java Java 
ST86B Java Java 
ST87A   
TI01A Sonyea West Falls 
TI02A   
TI07A Sonyea West Falls 
TI10A Sonyea Sonyea 
TI10B Sonyea West Falls 
TI11A Genesee Sonyea 
TI11B   

Table S2. Bedrock Classification using the bedrock 
interpolation method and the geologic map method 
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SWIFT ID 

Bedrock Classification 

Bedrock Interpolation 
Method 

Geologic Map 
Method 

TI12A   
TI14A   
TI14B Sonyea Sonyea 
TI14C Sonyea Sonyea 
TI14D Sonyea Sonyea 
TI15A West Falls West Falls 
TI15B Sonyea West Falls 
TI18D   
TI18E West Falls West Falls 
TI18F   
TI20A Sonyea West Falls 
TI20B West Falls West Falls 
TI20C   
TI21A West Falls West Falls 
TI21B   
TI22A West Falls West Falls 
TI22B Genesee Genesee 
TI22C   
TI23A West Falls West Falls 
TI26A West Falls West Falls 
TI28A   
TI28B   
TI30A West Falls West Falls 
TI31A West Falls West Falls 
TI31B West Falls West Falls 

 

  

Table S2. Bedrock Classification using the bedrock 
interpolation method and the geologic map method 
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Figure S1 (a) The distribution of inferred faults(Jacobi, 2002) and 
lineaments (EARTHSAT, 1997).  (b) Well location of active and other 
gas wells in NYS in 2013.  (c) Highway and roads in the study area.  
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Methodology of Bedrock Classification using interpolation method 

Contoured maps of the base elevation for the Dunkirk, Java, West Falls, Sonyea, 

Genesee, and Hamilton and isopach maps of the Java, West Falls, Sonyea, Genesee, and 

Hamilton upper Devonian geologic groups prepared by the Eastern Shale Gas Project (EGSP) 

and Morgantown Energy Technology Center (METC) (citation) were converted into tagged 

image file formats and imported into ESRI ArcGIS software.  The contours for each base and 

isopach map were digitized and used to create a surface of triangular irregular networks (TIN) to 

represent the base and thickness of each aforementioned geologic group. Points representing the 

base elevation for the Dunkirk, Java, West Falls, Sonyea, Genesee, and Hamilton were 

constructed from line contours and polygons of the buried extent of each group were generated 

in reference to locations where the base outcropped at the surface. The spatial intersection of the 

base points with the buried extent with the respective geologic group was selected and exported 

to represent the buried surfacial extent for each formation, which was combined with the TIN 

isopach surface to determine the group thickness at each point location. The surface elevation of 

each group was calculated by adding the thickness to the base elevation at that point to create a 

TIN surface of the buried surface. The resulting surfaces of the base and buried surficial extent 

of the Java, West Falls, Sonyea, Genesee, and Hamilton and base of the Dunkirk were used to 

extrapolate the surface and base elevation for each group at the location of each SWIFT well.  

To refine the classifications new base surfaces were created to eliminate areas of no data 

by determining the elevation at the contact between the base and surface of a group. An inverse 

weighted distance surface was created from the point elevations of the base contours generated 
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from EGSP maps and the contact between the base and surface of a group on a geologic map.  

The geologic group of well completion for each groundwater well was determined based on the 

elevation of the well depth as greater or less than the elevation of the surface or base geologic 

group. Those classified as between the base and surface of the same formation was classified as 

being within that formation. Wells that were missing data above a certain geologic group were 

classified as being above either the surface of base of the last geologic group there was 

information for. Using a geologic map the bedrock was determined at the location for wells 

missing data. Those wells identified as being above the base of a unit and classified on a 

geologic map as being within the same group were identified as completed in that group. Wells 

classified as being above the base or surface of a unit and classified on a geologic map as being 

within a stratigrpahically younger group were identified as every possible younger group to the 

outcropping bedrock. Wells above a group’s surface and in the sequentially younger stratigraphic 

group on a geologic map were classified as in the younger unit.  
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Figure S2. Decision chart for bedrock classification of groundwater wells 
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