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versible Deformations in Condensed Matter, Sitges, Barcelona, Spain, June 14-18, 2004.

I. INTRODUCTION

Nonequilibrium transitions from stuck to flowing phases underlie the physics of a wide range

of physical phenomena. In a first class of systems the onset of a stuck or frozen state occurs

as a result of intrinsic dynamical constraints, due to interactions or crowding, and is usually

referred to as jamming [1]. Familiar examples are supercooled liquids that become a glasses upon

lowering the temperature, colloidal suspensions that undergo a glass transition due to crowding

upon increasing the density or the pressure, foams and granular materials that jam under shear,

arrays of dislocations in solids that jam under an applied load. In a second class of systems the

transition to a stuck state is due to external constraints, such as the coupling to quenched disorder

(pinning centers from material defects in vortex lattices, optical traps in colloids, etc.), and is

denoted as pinning [2]. Both classes of systems can be driven in and out of glassy states by tuning

not only temperature, density or disorder strength, but also an applied external force. The external

drive may be a shear stress in conventional glasses or simply a uniform applied force in systems

with extrinsic quenched disorder, where even a uniform translation of the system relative to the

fixed impurities represents a nontrivial perturbation. Vortex lattices in superconductors [3] and

charge density waves (CDWs) in metals [4] can be driven in and out of stuck glassy states by a

uniform external current or electric field, respectively. As recognized recently in the context of

jamming, the external drive plays a role not unlike that of temperature in driving the system to

explore metastable configurations and should be included as an axis in a complete phase diagram.

In this lectures I will focus on zero-temperature depinning transitions of interacting condensed

matter systems that spontaneously order in periodic structures and are driven over quenched

disorder. The prototype examples are vortex lattices in type-II superconductors [5] and charge

density waves in anisotropic metals [8]. Other examples include Wigner crystals of two dimensional

electrons in a magnetic field moving under an applied voltage [6], lattices of magnetic bubbles

http://arXiv.org/abs/cond-mat/0503660v1
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moving under an applied magnetic field gradient [7], and many others. In general these systems

form a lattice inside a solid matrix, provided by the superconducting or conducting material and

are subject to pinning by random impurities. The statics of such disordered lattices have been

studied extensively [5]. One crucial feature that distinguishes the problem from that of disordered

interfaces is that the pinning force experienced by the periodic structure is itself periodic, although

with random amplitude and phase [9]. As a result, although disorder always destroys true long-

range translational order and yields glassy phases with many metastable states and diverging energy

barriers between these states, the precise nature of the glassy state depends crucially on disorder

strength. At weak disorder the system, although glassy, retains topological order (the resulting

phase has been named Bragg glass in the context of vortex lattices) [9]. Topological defects

proliferate only above some characteristic disorder strength, where a topologically disordered glass

is formed.

The driven dynamics of disordered periodic structures have been studied extensively by modeling

the system as an overdamped elastic medium that can be deformed by disorder, but is not allowed

to tear, that is by neglecting the possible formation of topological defects due to the competition

of elasticity, disorder and drive. This model, first studied in the context of charge density waves,

exhibits a nonequilibrium phase transition from a pinned to a unique sliding state at a critical

value FT of the driving force. This nonequilibrium transition displays universal critical behavior

as in equilibrium continuous transitions, with the medium’s mean velocity v acting as an order

parameter [2, 8, 10]. While the overdamped elastic medium model may seem adequate to describe

the dynamics of driven Bragg glasses, many experiments and simulations of driven systems have

shown clearly that topological defects proliferate in the driven medium even for moderate disorder

strengths [11, 12, 13, 14, 54]. The dynamics near depinning becomes spatially and temporally

inhomogeneous, with coexisting moving and pinned degrees of freedom. This regime has been

referred to as plastic flow and may be associated with memory effects and even hysteresis in the

macroscopic response.

The goal of the present lectures is to describe coarse-grained models of driven extended systems

that can lead to history-dependent dynamics. Such models can be grouped in two classes. In the

first class the displacement of the driven medium from some undeformed reference configuration

remains single-valued, as appropriate for systems without topological defects, but the interactions

are modified to incorporate non-elastic restoring forces [15, 16, 17, 18, 19, 20]. In the second class

of models topological defects are explicitly allowed by removing the constraint of single-valued

displacements [21, 22, 23]. Here we will focus on the first class and specifically consider driven
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periodic media with a linear stress-strain relation, where the stress transfer between displacements

of different parts of the medium is nonmonotonic in time and describes viscous-type slip of neigh-

boring degrees of freedom. A general model of this type that encompasses many of the models

discussed in the literature was proposed recently by us [18, 20, 24]. Here slips between neighboring

degrees of freedom are described as viscous force, that allows a moving portion of the medium to

overshoot a static configuration before relaxing back to it. It is shown below that such viscous

coupling can be considered an effective way of incorporating the presence of topological defects

in the driven medium. Related models have also been used to incorporate the effect of inertia or

elastic stress overshoot in crack propagation in solids [19, 25]. The precise connection between the

two classes of models has been discussed in Ref. [26].

In Section II we review the simplest example of depinning transition, obtained when non-

interacting particles are driven through a periodic pinning potential. By contrasting the case of

periodic and non-periodic pinning, we stress that care must be used in the definition of the mean

velocity of the system. In Section III, we first describe the generic coarse-grained model of a

driven elastic medium that exhibits a continuous depinning transition as a function of the driving

force from a static to a unique sliding state. Next we introduce an anisotropic visco-elastic model

as a generic model of a periodic system driven through strong disorder. The model considers

coarse-grained degrees of freedom that can slip relative to each other in the directions transverse

to the mean motion, due to the presence of small scale defects (phase slips, dislocations, grain

boundaries) at their boundaries, but remain elastically coupled in the longitudinal directions. The

slip interactions are modeled as viscous couplings and a detailed physical motivation for this choice

is given in section IIIC. Most of our current results for these type of models are for the mean-field

limit and are presented in Section IV. The studies carried out so far for finite-range interactions

suggest that the mean-field theory described here may give the correct topology for the phase

diagram, although there will of course be corrections to the critical behavior in finite dimensions

[27]. Finally, we conclude in Section V by discussing the relation to other models described in the

literature and the connection to experiments.

II. DEPINNING OF NONINTERACTING PARTICLES

It is instructive to begin with the problem of a single particle driven through a periodic pinning

potential as the simplest illustration of driven depinning. Assuming overdamped dynamics, the
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equation of motion for the position x of the particle is

ζ
dx

dt
= F + hY (x) , (1)

where ζ is a friction coefficient (in the following we choose our units of time so that ζ = 1), F

is the external drive and Y (x) = Y (x + n), with n an integer, is a periodic function of period 1.

For simplicity we choose a piecewise linear pinning force, corresponding to Y (x) = (1/2 − x), for

0 ≤ x ≤ 1. In this case a periodic solution of Eq. (1) is obtained immediately in terms of the

time T needed to traverse a potential well, or period. Introducing an arbitrary time tJ such that

if x(tJ) = n, then x(tJ + T ) = n + 1, the particle position for tJ + nT ≤ t ≤ tJ + (n + 1)T is

x(t) = n +
1 − e−h(t−tJ−nT )

1 − e−hT
, (2)

where T is given by

T (h) =
1

h
ln

(

2F + h

2F − h

)

, (3)

for F > h/2 and diverges for F < h/2. In other words if F < h/2 the particle never leaves the

initial well, i.e., it is pinned. The threshold force for depinning is then Fc = h/2. In the sliding

state the mean velocity is defined as the average of the instantaneous velocity v(t) = dx
dt over the

arbitrary initial time tJ . This gives

v ≡ 〈v〉tJ =

∫ t−nT

t−(n+1)T

dtJ
T

v(t) =
1

T
. (4)

This definition naturally identifies the mean velocity of the particle with the inverse of the period.

The logarithmic behavior of v near threshold, v ∼ −1/ln(Fc − F ), is peculiar to a discontinuous

pinning force. For an arbitrary pinning force Y (X) the period T is

T =

∫ 1

0
dx

1

F + hY (x)
, (5)

and can be evaluated analytically for various forces. For instance, for a sinusoidal pinning force,

Y (x) = sin(2πx), one finds T = (F 2 − h2)−1/2, which gives v ∼ (F − Fc)
1/2 near threshold, a

generic behavior for continuous pinning forces.

The main focus of the remainder of this paper will be on the modeling of extended driven

systems as collections of interacting degrees of freedom. It will then be important to distinguish

two cases. For extended systems that are periodic, such as charge density waves and vortex

lattices, the pinning potential is itself periodic as each degrees of freedom sees the same disorder

after advancing one lattice constant. For non-periodic systems, such as interfaces, each degree of
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freedom moves through a random array of defects. When interactions are neglected, an extended

periodic system moving through a periodic random pinning potential can be modeled as a collection

of N non-interacting particles, where each particle sees its own periodic pinning potential. The

pinning potentials seen by different particles may differ in height and be randomly shifted relative

to each other, as sketched in Fig. 1. The equation of motion for the i-th particle at position xi is

then

dxi

dt
= F + hiY (xi + γi) , (6)

where γi are random phases uniformly distributed in [0, 1) and the pinning strengths hi are drawn

independently from a distribution ρ(hi). Since the displacements xi are decoupled, they can be

indexed by their disorder parameters γ and h instead of their spatial label i, i.e., xi(t; γi, hi) →
x(t; γ, h). The mean velocity of the many-particle system can then be written as an average over

the random phases and pinning strengths,

v =
1

N

∑

i

vi = 〈v(t; γ, h)〉γ,h

=

∫

dh ρ(h)

∫ 1

0
dγ v(t; γ, h) , (7)

where v(t; γ, h) = dx(t;γ,h)
dt . The average over the random phase of each degree of freedom is

equivalent to the average over the random time shift tJ described for the single-particle case and

yields
∫ 1
0 dγ v(t; γ, h) = 1/T (h), with T (h) the period of each particle given in Eq. (3). The mean

velocity is then

v =

〈

1

T (h)

〉

h

, (8)

where 〈...〉h =
∫

dh...ρ(h) denotes the average over the barrier height distribution. For distributions

ρ(h) that have support at h = 0, a system of noninteracting particles with periodic pinning depins

at F = 0, as there are always some particles experiencing zero pinning force.

A different single-particle problem that has been discussed in the literature is that of a particle

moving through a random (non-periodic) array of defects [28]. The defects can be described as

pinning potential wells centered at random positions and/or with random well heights. To make

contact with the periodic case we consider a particle moving through a succession of evenly spaced

pinning potential wells of random heights. The equation of motion is

∂tx = F +

Np−1
∑

p=0

hpY (x − p) , (9)
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FIG. 1: (a) Sketch of noninteracting degrees of freedom driven over a random periodic pinning potential

in one dimension. Spatial coordinates have been discretized so that degrees of freedom are labelled by an

index i. In (b) the case where each degree of freedom interacts elastically with its neighbors is shown. This

is a discretized one-dimensional realization of the elastic medium model described by Eq. (13) below.

where Np is the total number of pinning centers and the pinning strengths hp are drawn indepen-

dently from a distribution ρ(hp). Choosing again the piecewise-linear pinning force, the time to

traverse the p-th well is simply T (hp), with T given by Eq. (3). The mean velocity of the particle

is defined as the total distance travelled divided by the total time and is given by

v =
Np

∑

p T (hp)
≡ 1

〈T (h)〉h
. (10)

In this case, unless the distribution ρ(h) is bounded from above, there is always a finite probability

that the particle will encounter a sufficiently deep potential well to get pinned. Therefore for

unbounded ρ(h) the particle is always pinned in the thermodynamic limit. If ρ(h) is bounded from

above by a maximum pinning strength hmax, this value also represents the depinning threshold.

Finally, the case of many noninteracting particles driven through a random array of defects is

equivalent to that of a single particle, as the mean velocity of each particle can be calculated

independently. The mean velocity of the system is then again given by Eq. (10).

III. DEPINNING OF AN EXTENDED MEDIUM

We consider a d-dimensional periodic structure driven along one of its symmetry directions,

chosen as the x direction. The continuum equations for such a driven lattice within the elastic

approximation were derived by various authors by a rigorous coarse-graining procedure of the

microscopic dynamics [29, 30, 31]. Assuming overdamped microscopic dynamics, the equation for

the local deformation u(r, t) of the medium (in the laboratory frame) from an undeformed reference

state is written by balancing all the forces acting on each portion of the system as [32]

∂tui = ∂jσij + Fδix + Fpi(r,u) , (11)
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where σij is the stress tensor due to interactions among neighboring degrees of freedom, F is the

driving force and Fp is the periodic pinning force. The periodicity of the pinning force, which

contains Fourier components at all the reciprocal lattice vectors of the lattice, arises from the

coupling to the density of the driven lattice.

A. Elastic model

For conventional short-ranged elasticity the stress tensor is

σel
ij = 2c66uij + δij(c11 − c66)ukk , (12)

where c11 and c66 are the compressional and shear moduli of the driven lattice, respectively, and

uij = 1
2(∂iuj + ∂jui) is the strain tensor. It was shown in Ref. [29] that deformations of the driven

lattice along the direction of the driving force grow without bound due to large transverse shear

stresses that generate unbounded strains responsible for dislocation unbinding. For this reason,

we focus here on the dynamics of a scalar field ux(x,y, t) ≡ u(r, t), with r = (x,y), describing

deformations of the driven lattice along the direction of mean motion. The d−1-dimensional vector

y denotes the coordinates transverse to the direction of motion. Assuming c11 >> c66, we obtain

a scalar model for the driven elastic medium, given by

∂tu = c11∂
2
xu + c66∇2

y
u + F + Fp(r, u) , (13)

where Fp denotes the x component of the pinning force. For simplicity we also consider a model

that only retains the component of the pinning force at the smallest reciprocal lattice vector and

choose our units of lengths so that the corresponding period is 1. The pinning force is then taken

of the form

Fp(r, u) = h(r)Y (u(r, t) − γ(r)) , (14)

where Y (u) = Y (u + n) is a periodic function. The random pinning strengths h are drawn inde-

pendently at every spatial point from a distribution with zero mean and short-ranged correlations

to be prescribed below. The random phases γ are spatially uncorrelated and distributed uniformly

in [0, 1).

The model of a driven overdamped elastic medium embodied by Eq. (13) has been studied

extensively both analytically and numerically [2, 8, 10, 33, 34]. It exhibits a depinning transition

at a critical value FT of the applied force from a static to a unique sliding state [35]. The depinning
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can be described as a continuous equilibrium transition, with the mean velocity v = 〈∂tu〉 playing

the role of the order parameter, and universal critical behavior. The velocity vanishes as FT is

approached from above as v ∼ (F − FT )β . The critical exponent β depends only on the system

dimensionality and was found to be β = 1−ǫ/6+O(ǫ2) using a functional RG expansion in ǫ = 4−d

[10, 36].

B. Viscoelastic model

Strong disorder can yield topological defects in the driven lattice, making the elastic model

inapplicable [37, 38]. In this case the dynamics becomes inhomogeneous, with coexisting pinned

and moving regions [39, 40]. The depinning transition may be discontinuous (first order), possi-

bly with macroscopic hysteresis. Several mean-field models of driven extended systems have been

proposed [2, 16, 17, 18, 19, 21, 22] to describe this inhomogeneous dynamics. Here we focus on a

class of models that retains a single-valued displacement field and a linear stress-strain relation,

but assumes that the presence of topological defects can be effectively incorporated at large scales

by a non-instantaneous stress transfer that couples to gradients of the local velocity (rather than

displacement). More precisely, we consider an anisotropic model of coarse-grained degrees of free-

dom that can slip relative to each other in at least one of the directions transverse to the mean

motion, due to the presence of small scale defects (phase slips, dislocations, grain boundaries) at

their boundaries, but remain elastically coupled in the longitudinal directions [20]. This model in-

corporates the anisotropy of the sliding state in the plastic flow region that results either from flow

along coupled channels oriented in the direction of the drive (e.g., as in the moving smectic phase

[41]) or in layered materials such as the high-Tc cuprate superconductors. It also encompasses

several of the models discussed in the literature.

For generality, consider a d = d‖ + d⊥-dimensional medium composed of degrees of freedom

that are coupled elastically in d‖ direction and can slip relative to each other in the remaining d⊥

directions. The axis x along which the driving force is applied is along one of the d‖ directions.

The equation of motion for the displacement u(r‖, r⊥, t) is given by

∂tu = K∇2
‖u + η∇2

⊥v + F + Fp(r, u); , (15)

with v = ∂tu the local velocity. This model will be referred to as the visco-elastic (VE) model as

it incorporates elastic couplings of strength K in d‖ directions and viscous couplings of strength

controlled by a shear viscosity η in the remaining d⊥ directions. A two-dimensional cartoon of this
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FIG. 2: A two-dimensional realization of the anisotropic driven medium described in the text. Spatial

coordinates have been discretized in the figure so that degrees of freedom are labelled by indices ℓ and i,

respectively transverse and longitudinal to the direction of the driving force, F . Each degree of freedom

interacts with its neighbors via elastic couplings in the longitudinal direction and via viscous or similar slip

couplings in the transverse direction.

anisotropic model is shown in Fig. 2.

For η = 0 (or d⊥ = 0) the VE model reduces to the elastic model (but with isotropic elasticity)

of Eq. (13). Conversely, for K = 0 (or d‖ = 0) Eq. (15) reduces to the purely viscous model

studied earlier by us [18, 24]. For any distribution of pinning strengths with support at h = 0,

the purely viscous model has zero threshold for depinning, but it does exhibit a critical point

separating regions of unique and multivalued solutions for the mean velocity. In the VE model

(η 6= 0 and K 6= 0) even when fluid-like shear takes place, particle conservation gives a sharp

depinning transition in flow along the channels. Furthermore, as shown below, the model has a

sharp mean-field tricritical point separating a region of parameters where depinning is continuous,

in the universality class of elastic depinning, from one where depinning become discontinuous and

hysteretic.

It is important to stress that the VE model still assumes overdamped microscopic dynamics.

Velocity or viscous couplings can appear generically in the large-scale equations of motion upon

coarse-graining the microscopic dynamics of a dissipative medium. In fact, next we show that

viscous couplings indeed represent an effective way of incorporating the local dissipation due to

the presence of topological defects.

C. Viscoelastic coupling as an effective description of topological defects

The goal of this section is to provide some justification to the anisotropic VE model as an

effective description of topological defects in a driven lattice. To this purpose we consider a two

dimensional medium and take advantage of the continuum equations developed many years ago

by Zippelius et al. [42] to describe the time-dependent properties of two-dimensional solids near



10

melting. These authors combined the equations of free dislocation motion with solid hydrodynamics

to construct a semimicroscopic dynamical model of a solid with free dislocations. They further

showed that the dynamics of such of a ”heavily dislocated solid” (an elastic medium with an

equilibrium concentration of free dislocations) is identical to that of the hexatic phase obtained

when a two-dimensional solid melts via the unbinding of dislocations [43]. More recently we [44]

reconsidered the dynamical equations for the ”heavily dislocated solid” of Ref. [42] and showed

that they can be recast in the form of the phenomenological equations of a viscoelastic fluid (with

hexatic order) introduced many years ago by Maxwell [45]. In the presence of free dislocations

the local stresses in the medium have contributions from both elastic stresses and defect motion.

The latter couple again to the the local strains which control the defect dynamics. By eliminating

the defect degrees of freedom, one obtains a linear, although nonlocal, relation between strain and

stress, given by [46]

σVE
ij (r, t) = δij cL ukk(r, t) + δij(c11 − cL)

∫ t

−∞
dt′e−(t−t′)/τb vkk(r, t

′)

+2c66

∫ t

−∞
dt′e−(t−t′)/τs [vij(r, t

′) − 1

2
δijvkk(r, t

′)] , (16)

where vij = 1
2(∂ivj + ∂jvi and the velocity v is defined here in terms of the momentum density

g as v = g/ρ0, with ρ0 the equilibrium mass density of the medium. Also in Eq. (16) cL is

the compressional modulus of the liquid and τb ≈ (c11µ
c
dnfa2

0)
−1 and τs ≈ (c66µ

g
dnfa2

0)
−1 are

the compressional and shear relaxation times, with µg,c
d the dislocation glide and climb mobility,

respectively. Of course in the presence of dislocations the displacement u is no longer single-

valued (although the strain uij remains single-valued and continuous) and ∂tu 6= v due to both the

motion of vacancy/interstitial defects and of dislocations. The phenomenological Maxwell model

of viscoelasticity is obtained by assuming that ∂tu = v even in the presence of dislocations. Then

for t << τs, τb the viscoelastic stress σVE(r, t) reduces to the familiar elastic stress tensor given in

Eq. (12),

σVE(r, t << τs, τb) ≈ σel
ij . (17)

Conversely for t >> τs, τb one obtains

σVE
ij (r, t >> τs, τb) ≈ δij cLukk + δij(ηb + η)vkk + 2ηvij , (18)

which describes stresses in a viscous fluid of shear viscosity η = c66τs and bulk viscosity ηb =

(c11 − cL)τb. The first term on the right hand side of Eq. (18) is the pressure and incorporates the

fact that even a liquid has a nonzero long-wavelength compressional elasticity, which is associated
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with density conservation. As we will see below this terms plays a crucial role in controlling the

physics of depinning of a viscoelastic medium. The Maxwell viscoelastic fluid has solid-like shear

rigidity at high frequency, but flows like a fluid at low frequency. Since the relaxation times τs and

τb are inversely proportional to the density nf of free dislocations, the Maxwell model behaves as

a continuum elastic medium on all time scales when nf → 0 and as a viscous fluid when nfa2
0 ∼ 1.

Dislocation climb is much slower than dislocation glide (µc
d << µg

d), resulting in τb >> τs.

We therefore assume that the response to compressional deformations is instantaneous on all time

scales, but retain a viscoelastic response to shear deformations. Letting τb → ∞, we find

σVE
ij (r, t) ≈ δij c11ukk(t) + 2c66

∫ t

−∞
dt′e−(t−t′)/τs [vij(t

′) − δij

2
vkk(t

′)] . (19)

We now turn to the case of interest here, where topological defects are generated in a an

extended medium driven through quenched disorder. In this case the medium has no low frequency

shear modulus, but particle conservation still requires long wavelength elastic restoring forces to

compressional deformations. On the other hand, the number of topological defects is not fixed

as dislocations are continuously generated and annihilated by the interplay of elasticity, disorder

and drive [39, 40, 47]. Furthermore, unbound dislocations can be pinned by disorder and do

not equilibrate with the lattice. In the plastic region near depinning the dynamics remains very

inhomogeneous and fluid-like and the pinning of dislocations by quenched disorder is not sufficient

to restore the long wavelength shear-stiffness of the medium. For this reason we propose to describe

the effect of topological defects near depinning by replacing elastic shear stresses by viscoelastic

ones, while retaining elastic compressional forces. Of course the resulting model that assumes a

fixed density of dislocations becomes inapplicable at large driving forces where dislocations heal as

the lattice reorders. For the case of interest here of a scalar model describing only deformations

along the direction of motion, the viscoelastic model of a driven disordered medium is

∂tu = c11∂
2
xu + c66

∫ t

−∞
dt′e−(t−t′)/τs∂2

yv(t′) + F + h(r)Y (u − γ(r)) , (20)

with v = ∂tu. This model naturally incorporates the anisotropy and channel-like structure of

the driven medium, where shear deformations due to gradients in the displacement in the direc-

tions transverse to the mean motion (∂yu 6= 0) are most effective at generating the large stresses

responsible for the unbinding of topological defects. It is instructive to note that due to the ex-

ponential form of stress relaxation the integro-differential equation (20) is equivalent to a second

order differential equation for the displacement,

τs∂
2
t u + γeff∂tu = c11∂

2
xu + η∂2

yv + F + h(r)Y (u − γ(r)) , (21)
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with γeff an effective friction [18]. In other words the effect of a finite density of dislocations in

the driven lattice yields ”inertial effects” on a scale controlled by the time τs ∼ 1/nf . The purely

viscous model obtained from Eq. (21) with c11 = 0 was analyzed in detail in Ref. [24] where

it was shown that if τs and η = c66τs are tuned independently, then τs is a strongly irrelevant

parameter in the RG sense. This allows us to consider a simplified form of the equation for the

driven medium obtained from Eq. (21) with τs = 0, but η = c66τs finite, leading to the general

anisotropic viscoelastic model introduced in Eq. (15).

IV. MEAN-FIELD SOLUTION

The mean-field approximation for the VE model is obtained in the limit of infinite-range elastic

and viscous interactions. To set up the mean field theory, it is convenient to discretize space in

both the transverse and longitudinal directions, using integer vectors i for the d‖-dimensional intra-

layer index and ℓ for the d⊥-dimensional layer index. The local displacement along the direction

of motion is ui
ℓ(t). Its dynamics is governed by the equation,

∂tu
i
ℓ =

∑

〈j〉

Kij(u
i
ℓ − uj

ℓ) +
∑

〈m〉

ηℓm[u̇i
ℓ − u̇m

j ] + F + hi
ℓY (ui

ℓ − γi
ℓ) , (22)

where the dot denotes a time derivative and 〈j〉 (〈m〉) ranges over sites j (m) that are nearest

neighbor to i (ℓ). The random pinning strengths hi
ℓ are chosen independently with probability

distribution ρ(hi
ℓ) and the γi

ℓ are distributed uniformly and independently in [0, 1). For a system

with N = N‖ × N⊥ sites, one mean field theory is obtained by assuming that all sites are cou-

pled with uniform strength, both within a given channel and with other channels. Each discrete

displacement then couples to all others only through the mean velocity, v = N−1
∑

u̇i
ℓ, and the

mean displacement, u = N−1
∑

ui
ℓ. We assume that the disorder is isotropic and the system is self

averaging and look for solutions moving with stationary velocity: u = vt. Since all displacements

u are coupled, they can now be indexed by their disorder parameters γ and h, rather than the

spatial indices i and ℓ. The mean-field dynamics is governed by the equation

(1 + η)u̇(γ, h) = K(vt − u) + F + ηv + hY (u − γ). (23)

The cases K = 0 and K 6= 0 need to be discussed separately.
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FIG. 3: (a) Velocity versus driving force for the purely viscous model (K = 0, η 6= 0) with a narrow

distribution of pinning strength, ρ(h) = δ(h − 1), for η = 0, 2, 5. There is a finite depinning threshold at

FT = 1/2. In (b) the depinning and repinning forces F↑ and F↓ are shown as functions of η.

A. Mean-field theory for viscous model: K = 0, η 6= 0

When K = 0, the mean field equation becomes identical to that of a single particle discussed

in Section II driven by an effective force F + ηv (with friction 1 + η). In this case different degrees

of freedom move at different velocities even in the mean field limit. The mean field velocity is

determined by the self-consistency condition v = 〈u̇〉γ,h, where the average over the random phases

is equivalent to the average over the random times shifts tJ given in Eq. (4). For the case of a

piecewise linear pinning force using Eq. (8) we find

v =
1

1 + η

∫

dhρ(h)
1

T (h, F + ηv)
, (24)

with T (h, F ) given by Eq. (3). The mean velocity obtained by self-consistent solution of Eq. (24)

is shown in Figs. 3 and 4 for two distributions of pinning strengths.

For a narrow distribution, ρ(h) = δ(h− 1), there is a finite threshold FT = 1/2, independent of

η. The velocity is multivalued for any finite η. When the force is ramped up adiabatically from

the static state the system depins at F↑ = FT . When the force is ramped down from the sliding

state, the system repins at the lower value F↓(η). The depinning and repinning forces are shown

in Fig. 3(b). The region where unique and multivalued velocity solutions coexist extend to η = 0.

For a broad distribution with support at h = 0, e.g., ρ(h) = e−h, the threshold for depinning is

zero as some of the degrees of freedom always experience zero pinning and start moving as soon as

a force is applied. There is a critical point at (Fc, ηc). For η > ηc the analytical solution for v(F ) is

multivalued, as shown in Fig. 4. If the force is ramped up adiabatically from zero at a fixed η > ηc,

the system depins discontinuously at F↑(η), while when the force is ramped down it repins at the

lower value F↓(η), as shown in Fig. 4. The viscous model has also been studied in finite dimensions
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FIG. 4: (a) Velocity versus driving force for the purely viscous model (K = 0, η 6= 0) with a broad

distribution of pinning strength, ρ(h) = e−h for η = 6, 16. In this case there are no stable static (pinned

states). The velocity is single valued for η < ηc and multi-valued for η > ηc. In this case when F is ramped

up from zero, the velocity jumps discontinuously at F↑ where the system goes from the ”slow-moving” to the

”fast-moving” state. Here and below ”coexistence” refers to multistability of the solutions to the equations

of motion. When F is then ramped down from within the fast-moving state the jump in v occurs at the

lower value F↓. The forces F↓ and F↑ become equal at the critical point, as shown in frame (b).

by mapping it onto the nonequilibrium random field Ising model (RFIM) [24]. In the mapping, the

local velocities correspond to spin degrees of freedom, the driving force is the applied magnetic field

and the mean velocity maps onto the magnetization. The RFIM has a critical point separating a

region where the magnetization versus applied field curve displays hysteresis with a discontinuous

jump to a region where there is no jump in the hysteresis curve [48, 49]. In the viscous model

the critical point separates a region where the velocity curve is smooth and continuous from the

region where the ”depinning” (from ”slow-moving” to ”fast-moving” states) is discontinuous and

hysteretic. The critical point is in the Ising universality class, with an upper critical dimension

dc = 6.

B. Mean-field theory for VE model: K 6= 0 and η 6= 0

When K 6= 0, all degrees of freedom are coupled by a spring-like interaction (the first term on

the right hand side of Eq. (23)) to the mean field u = vt and cannot lag much behind each other.

This forces all the periods to be the same, independent of h, and yields a nonvanishing threshold

for depinning. In this case the mean field velocity is determined by imposing 〈u(t; γ, h)−vt〉γ,h = 0.

It is useful to first review the case where K 6= 0 and η = 0. In this limit, Eq. (23) reduces to

the mean field theory of a driven elastic medium worked out by Fisher and collaborators [10]. No

moving solution exists above a finite threshold force FT . For the piecewise linear pinning force this
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is given by

FT = 〈 h2

2(K + h)
〉h . (25)

For F > FT there is a unique moving solution that has a universal dependence on F near FT ,

where it vanishes as v ∼ (F − FT )β . In mean-field the critical exponent β depends on the shape

of the pinning force: β = 1 for the discontinuous piecewise linear force and β = 3/2 for generic

smooth forces. Using a functional RG expansion in ǫ = 4−d, Narayan and Fisher [10] showed that

the discontinuous force captures a crucial intrinsic discontinuity of the large scale, low-frequency

dynamics, giving the general result β = 1 − ǫ/6 + O(ǫ2), in reasonable agreement with numerical

simulations in two and three dimensions [33, 34]. For simplicity and to reflect the “jerkiness” of

the motion in finite-dimensional systems at low velocities, we use piecewise linear pinning below.

When η > 0 the nature of the depinning differs qualitatively from the η = 0 case, in that

hysteresis in the dynamics can take place. Again, no self-consistent moving solution exists for

F < FT , with FT independent of η. Above threshold, both unique and multi-valued moving

solutions exist, depending on the values of the parameters: η, K, and the shape of the disorder

distribution, ρ(h). To obtain the mean field solution in the sliding state, we examine the motion

during one period T = 1/v during which the displacement advances by 1. Eq. (23) is is easily

solved for 0 ≤ u ≤ 1 and γ = 0, with the result,

u(t; γ = 0, h) =
Kvt + F + ηv + h/2

(1 + η)λ
− Kv

(1 + η)λ2
+ Ae−λt , (26)

where λ = (K + h)/(1 + η). At long times, regardless of the initial condition, u(t) approaches a

periodic function of period T = 1/v with jumps in its time derivative at times tJ + nT , with n an

integer. The constant A is determined by requiring that if u(tJ +nT ) = n, then u(tJ +(n+1)T ) =

n + 1. Writing u(t; γ, h) = vt + ũ, it is easy to see that for an arbitrary value of γ, the solution ũ

will have the form ũ = ũ(vt− γ, h). The mean velocity is then obtained from 〈ũ(vt− γ, h)〉γ,h = 0.

Averaging ũ over γ is equivalent to averaging ũ for a fixed γ over a time period, T , with the result,

〈ũ〉γ =

∫ tJ+(n+1)T

tJ+nT

dt

T
ũ(v − γt, h)

=
F + ηv

K
− h2

2K(K + h)
− (K + 2h)v

λ(K + h)
− h2

K(K + h)

1

eλ/v − 1
. (27)

Finally, averaging over h and using the consistency condition, we obtain

F − FT = v[1 − M(η,K)] +
〈 h2

K(K + h)

1

e(K+h)/(1+η)v − 1

〉

h
, (28)
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FIG. 5: (a) Velocity versus driving force for the VE model with K = 1 and a broad distribution of pinning

strength, ρ(h) = e−h. The velocity is continuous and single-valued for η < ηc and becomes multivalued for

η > ηc. The dashed line on he curve for η = 15 indicates the value F↓ where the system repins when the

drive is ramped down from the sliding state. Frame (b) shows the depinning and repinning forces F↑ and F↓

as functions of η. The tricritical point at (Fc, ηc) separates continuous from hysteretic depinning. Pinned

and sliding states coexist in the region F↓ < F < F↑.

with FT the threshold force given in Eq. (25) and M given by

M(η,K) = (1 + η)

〈

h2

(K + h)2

〉

h

. (29)

As in the purely elastic case (η = 0) only static solutions exist for F < FT . For F > FT there

is a unique sliding solution, provided M(η,K) < 1, with mean velocity near threshold given by

v ∼ F − FT

1 − M(η,K)
∼ (1 + ηc)

F − FT

ηc − η
, (30)

giving β = 1, as in the purely elastic case. The critical line ηc(K) separating unique from multi-

valued sliding solutions is determined by M(η,K) = 1,

ηc(K) =

〈

h2

(K + h)2

〉−1

h

− 1 . (31)

The velocity-force curves and a phase diagram are shown in Fig. 5 for ρ(h) = e−h. There is

a tricritical point at (ηc, Fc = FT ). In contrast to the purely viscous model with K = 0, for

finite long-time elasticity (K > 0) the behavior is independent of the shape of the pinning force

distribution, ρ(h). For η < ηc, a continuous depinning transition at FT separates a pinned state

from a sliding state with unique velocity. In finite dimensions, this transition is likely to remain

in the same universality class as the depinning of an elastic medium (η = 0). In our mean-field

example, the linear response diverges at ηc, v(η = ηc) ∼ 1/ ln(F − FT ). For η > ηc there is

hysteresis with coexistence of stuck and sliding states.
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Numerical simulations of the VE model in two dimensions (d‖ = d⊥ = 1) indicate a strong

crossover (possibly a tricritical point) at a critical value of ηc from continuous to hysteretic depin-

ning [27]. Although it is always difficult to establish conclusively on the basis of numerics that

hysteresis survives in the limit of infinite systems, the size of the hysteresis loop evaluated nu-

merically does appear to saturate to a finite value at large system sizes, indicating that the MF

approximation may indeed capture the correct finite-dimensional physics.

V. RELATIONSHIP TO OTHER MODELS AND TO EXPERIMENTS

Other models of driven systems with inertial-type couplings have been proposed in the literature.

It is useful to discuss in some detail their relationship to the viscoelastic model considered here.

In the context of charge density waves, Littlewood [15] and Levy and collaborators [16, 17]

modified the Fukuyama-Lee-Rice model [4] that describes the phase of the CDW electrons as an

overdamped elastic manifold driven through quenched disorder by incorporating the coupling of

the CDW electrons to normal carriers. This was realized via a global coupling in the equation of

motion for the phase to the mean velocity of the CDW, not unlike what obtained by a mean-field

approximation of our viscous coupling. The model was argued to account for the switching and

non-switching behavior observed in experiments.

Schwarz and Fisher [19, 25] recently considered a model of crack propagation in heterogeneous

solids that incorporates stress overshoot, that is the fact that a moving segment of the crack

can sometimes overshoot one or more potential static configurations before settling in a new one,

inducing motion of neighboring segments. These effects may arise from elastic waves that can carry

stress from one region to another of the driven medium. Stress overshoots, just like topological

defects in a driven disordered lattice, have an effect similar to that of local inertia and were modeled

by Fisher and Schwarz by adding couplings to gradients in the local crack velocity in the equation

of motion for a driven elastic crack. These authors considered an automaton model where time

is discrete. It is straightforward to define an automaton version of our VE model, where both

the displacement ui and time are discrete, as shown in Ref. [26]. It is then apparent that the

automaton version of the viscoeleastic model given in Ref. [26] is identical in its dynamics to the

model of crack propagation with stress overshoot studied by Schwarz and Fisher, provided the

strength M of the stress overshoot is identified with the combination η/(1 + η). The two models

differ in the type of pinning considered as the random force used in by Schwarz and Fisher is not

periodic. We find, however, that the two models have identical mean-field behavior, with a mean-
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FIG. 6: Mean-field solution of the VE model with a piecewise parabolic pinning potential, ρ(h) = δ(h−h0)
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field tricritical point separating continuous from hysteretic dynamical transitions. The connection

between the viscoelastic and the stress-overshoot model is important because it stresses that distinct

physical mechanisms (inertia, nonlocal stress propagation, unbound topological defects) at play in

different physical systems can be described generically by a coarse-grained model that includes a

coupling to local velocities of the driven manifold. Finally, in a very recent paper, Maimon and

Schwarz suggested that out of equilibrium a new type of generic hysteresis is possible even when the

phase transition remains continuous [51]. Driven models with both elastic and dissipative velocity

couplings may therefore belong to a novel universality class that exhibits features of both first and

second order equilibrium phase transitions. They clearly deserve further study.

We now turn briefly to simulations and experiments. For comparison with experiments it is

useful to point out that the tricritical point of the viscoelastic model can also be obtained by

tuning the applied force and the disorder strength, rather than the applied force and the viscosity.

Since the phase diagram does not depend on the form of the disorder distribution, ρ(h), we choose

for convenience a sharp distribution, ρ(h) = δ(h − h0). The phase diagram in the (F, h0) plane

is shown in Fig. 6. For weak disorder the depinning is continuous, while for strong disorder it

becomes hysteretic, with a region of coexistence of pinned and moving degrees of freedom. The

tricritical point is at (hc, Fc = FT ), with hc = K/(
√

1 + η − 1).

Simulations of two-dimensional driven vortex lattices clearly show a crossover as a function

of disorder strength from an elastic regime to a regime where the dynamics near depinning is

spatially inhomogeneous and plastic, with coexistence of pinned and moving degrees of freedom
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[39, 40, 52, 53]. In fact a bimodal distribution of local velocity was identified in Ref. [40] as

the signature of plastic depinning. This local plasticity does not, however, lead to hysteresis in

the macroscopic dc response in two dimension: the mean velocity remains continuous and single-

valued, although it acquires a characteristic concave-up ward form near depinning that cannot

be described by the exponent β < 1 predicted by elastic models in all dimensions. Hysteresis is,

however, observed in simulations of three-dimensional layered vortex arrays where the couplings

across layers are weaker than the in-layer ones [50]. In this case the phase diagram is qualitatively

similar to that obtained for the viscoelastic model.

Recent experiments in NbSe2 have argued that memory effects originally attributed in this

system to ”plasticity’ of the driven vortex lattice [54]are actually due edge contamination effects

[55, 56, 57]. In the experiments a metastable disordered vortex phase is injected in a stable

ordered bulk vortex lattice. Memory effects may then arise in the macroscopic dynamics during

the annealing of the injected disordered phase. Edge contamination does not, however, explain the

plasticity seen in simulations, where periodic boundary conditions are used [40]. A possible scenario

may be that while in the experiments the vortex lattice in the bulk is always in the ordered phase,

in the simulations the vortex lattice in the bulk of the sample may be strongly disordered even

in the absence of drive. Such a disordered vortex lattice would then naturally respond plastically

to an external drive. Finally, it is worth mentioning one experimental situation where hysteresis

of the type obtained in our model is indeed observed in the macroscopic response. This occurs

in the context of charge density waves, driven by both a dc and an ac field. In this case the dc

response exhibits mode-locking steps. The ”depinning” from such mode-locked steps was found to

be hysteretic [58].
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