
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1995

An Evaluation of Design Tradeoffs in a High Performance Media-An Evaluation of Design Tradeoffs in a High Performance Media-

on-Demand Server on-Demand Server

Divyesh Jadav
Syracuse University and CASE Center

Chutimet Srinilta
Syracuse University and CASE Center

Alok Choudhary
Syracuse University and CASE Center

P. B. Berra
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Jadav, Divyesh; Srinilta, Chutimet; Choudhary, Alok; and Berra, P. B., "An Evaluation of Design Tradeoffs in
a High Performance Media-on-Demand Server" (1995). Electrical Engineering and Computer Science. 92.
https://surface.syr.edu/eecs/92

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/92?utm_source=surface.syr.edu%2Feecs%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

An Evaluation of Design Tradeo�s in a High PerformanceMedia-on-Demand Server �Divyesh Jadav Chutimet Srinilta Alok ChoudharyP. Bruce BerraDepartment of Electrical and Computer EngineeringandCASE CenterSyracuse UniversitySyracuse, NY 13244AbstractOne of the key components of a multi-user multimedia-on-demand system is the data server.Digitalization of traditionally analog data such as video and audio, and the feasibility of ob-taining network bandwidths above the gigabit-per-second range are two important advancesthat have made possible the realization, in the near future, of interactive distributed multime-dia systems. Secondary-to-main memory I/O technology has not kept pace with advances innetworking, main memory and CPU processing power. Consequently, the performance of theserver has a direct bearing on the overall performance of such a system.In this paper we present a high-performance solution to the I/O retrieval problem in a dis-tributed multimedia system. We develop a model for the architecture of a server for such asystem. Parallelism of data retrieval is achieved by striping the data across multiple disks. Weidentify the design parameters that a�ect the throughput of the server. We have implementedour model on the Intel Paragon parallel computer. We have performed an extensive performanceevaluation of how the parameters identi�ed a�ect the data retrieval e�ciency of the server. Theresults of component-wise instrumentation of the server operation are presented and analyzed.The performance of any server ultimately depends on the data access patterns. Two modi�-cations of the basic retrieval algorithm that exploit data access patterns in order to improvesystem throughput and response time are presented. Based on our experiments, a dynamicadmission control policy that takes server workload into account is proposed.KeywordsParallel Input-Output Media-on-Demand Server StripingReal-time data retrieval Data Access patterns�This work is supported by Intel Corporation, NSF Young Investigator Award CCR-9357840, and the New YorkCenter for Advanced Technology in Computer Applications and Software Engineering (CASE Center) at SyracuseUniversity. The authors thank the Caltech CCSF facilities for providing access to the Intel Paragon.1

1 Introduction1.1 MotivationDigitalization of traditionally analog data such as video and audio, and the feasibility of obtainingnetworking bandwidths above the gigabit-per-second range are two key advances that have madepossible the realization, in the near future, of interactive distributed multimedia systems. A Mul-timedia Information System requires the integration of communication, storage and presentationmechanisms for diverse data types including text, images, audio and video, to provide a singleuni�ed information system [BCG+92].The reason why multimedia data processing is di�cult is that such data di�ers markedly fromthe unimedia data (text) that conventional computers are built to handle [RaV92] :� Multiple data streams : A multimedia object can consist of text, audio, video and imagedata. These data types have very di�erent storage space and retrieval rate requirements. Thedesign choices include storing data of the same type together, or storing data belonging tothe same object together. In either case, multimedia data adds a whole new dimension to themechanisms used to store, retrieve and manipulate the data.� Real-time retrieval requirements: Video and audio data are characterized by the fact thatthey must be presented to the user, and hence retrieved and transported, in real-time. Inaddition, compound objects (objects consisting of more than one media type) usually requiretwo or more data types to be synchronized as the object is played out.� Large data size: The size of a typical video or audio object is much larger than that of atypical text object. For example, a two hour movie stored in MPEG-1 [Gal91] format requiresover 1 gigabytes of storage.Multimedia information systems have been found to be useful in areas such as education,medicine, entertainment and space research. In this paper, we focus on one such application,media-on-demand in a distributed environment. This term refers to making it possible for mul-tiple viewers to retrieve multimedia data in real time. We use video data for our purposes. Theimplications of such a system on the technology and the infrastructure needed are tremendous.The storage of even a modest hundred movies requires almost a terabyte of storage capacity in theserver. Similarly, gigabyte/sec and terabyte/ sec bandwidth networks are necessary to carry themovies to the consumers.In the absence of adequate hardware support, past and present interactive digital multimediasystems have been forced to make compromises such as providing single-user instead of multi-user2

support, small-window displays instead of full-screen display of video and image data, the use oflossy compression techniques and low audio/video resolution. Recent advances in underlying hard-ware technologies, however, obviate the need for such compromises. For example, AsynchronousTransfer Mode (ATM) technology is increasingly becoming the candidate of choice for the high-speed networks capable of carrying multimedia data, as it has the requisite speed and the abilityto carry voice and other data in a common format that is equally and equitably e�cient for both[Lan94]. Compression and decompression of multimedia data can now be done on the y at low costdirectly in hardware. The capacity of secondary storage is approaching gigabytes/disk, while disksizes and price/byte of storage decrease. Massively parallel processors of gigaops CPU capacityand with terabytes of storage space are commercially available.In spite of these technological advances, there is one bottleneck that plagues the realization ofsuch a system : the speed of data transfer from the secondary data storage to main memory. Sec-ondary to main memory data transfer time in the most popular form of secondary storage, magneticdisks, is still governed by the seek and rotational latencies of these devices. These latencies havenot decreased commensurately with the advances in other areas of computer hardware. Moreover,the data transfer rates of magnetic disks are low compared to those of other forms of secondarystorage. Multimedia information systems are inherently I/O intensive, and it is critical to reducethe ill-e�ects of this bottleneck. Techniques for doing so are the subject of this paper.1.2 Related WorkResearchers have proposed various approaches for the storage and retrieval of multimedia data. An-derson et al. [AOG92] have proposed �le system design techniques for providing hard performanceguarantees. Reddy and Wyllie [ReW93, ReW94] have proposed a disk arm scheduling approach formultimedia data, and characterized the disk-level tradeo�s in a multimedia server. Rangan et al.[RaV92, RVR92] have proposed a model based on constrained block allocation, which is basicallynon-contiguous disk allocation in which the time taken to retrieve successive stream blocks doesnot exceed the the playback duration of a stream block. Contiguous allocation of disk blocks fora media stream is desirable, for it amortizes the cost of a single seek and rotational delay over theretrieval of a number of media blocks, thus minimizing the deleterious e�ects of disk arm movementon media data retrieval. However, contiguous allocation causes fragmentation of disk space if theentire stream is stored on a single disk. Moreover, if a stream is stored on a single disk, the maxi-mum retrieval bandwidth is restricted by the data transfer rate of the disk. Ghandeharizadeh andRamos [GhR93] get around these problems by striping media data across several disks in a roundrobin fashion. The e�ective retrieval bandwidth is then proportional to the number of disks used.3

Our model is similar to this model in using data striping, round robin distribution of successivestream fragments and contiguous allocation within a given fragment. [RVR92] categorize real timeclients into 2 classes, those that require hard and soft performance guarantees, respectively. Forthe latter class, the worst case assumptions made in admitting new users are relaxed based on theobserved server load to increase the number of users that can be supported. Most previous workhas concentrated on minimizing rotational and seek overheads in retrieving data. Our approachis to increase the granularity of data retrieved so that the random e�ects of disk overheads forma smaller fraction of request service time. Moreover, little attention has been paid to the issueof tuning server performance based on user access patterns. [PRP94, LV94] have proposed ap-proaches for inter-server information caching in a distributed environment with multiple servers.We have developed techniques for intra-server information caching that exploit data access patternsto maximize the number of simultaneous streams that a multimedia server can source.1.3 Our Research ContributionsIn this paper, we propose a model for a server in a distributed video-on-demand application. Anintegrated approach to the storage and retrieval of video data so as to provide real-time service,is presented. Our model uses parallelism of retrieval to address the problem of the low speed ofdata transfer from secondary-storage to main memory. Two modi�cations of the basic retrievalalgorithm, the Local Disk Stream Scheduling (LDSS) algorithm, and the Local Memory StreamScheduling (LMSS) algorithm are presented.In order to the analyze the applicability of our model, we have implemented it on the IntelParagon [Int93] parallel computer. Various parameters a�ect the server throughput. We performedan extensive performance evaluation of the server operation over a range of parameter values. Westudied the e�ect of varying the bu�er space allocated to each stream on the frequency of dataretrieval. We studied the e�ects of varying the stripe factor and the con�guration of the server onthe intra-server tra�c. Based on the results, we identify the important parameters that must beconsidered in designing a multimedia server, and the various possible tradeo�s.The rest of this paper is organized as follows : Section 2 presents a general overview of our model.In Section 3 we describe the architecture of the server. Section 4 describes the data organization,access and scheduling policies. We present and analyze performance results in Section 5. In section6, we develop two modi�cations of the basic retrieval algorithm that improve server throughputby exploiting user access patterns. A dynamic admission control policy is developed in Section 7.Section 8 summarizes the paper. 4

ATM Switch

 ATM Switch

High Speed WAN

 LAN

Gateway Remote Clients

High
Performance

Multimedia
Data

Server

CPU

RAM

DISK

 Network
Interface

Server
NodeFigure 1: Block diagram of a Distributed Multimedia system2 Overview of the Distributed Multimedia SystemFigure 1 shows the overall architecture of the system which we consider.At the heart of the system is a high-performance server optimized for fast I/O. A parallelmachine is a good candidate for such a server because of its ability to serve multiple clients si-multaneously, its high disk and node memory, and the parallelism of data retrieval that can beobtained by data striping. In this model, we assume that the server is connected to a high-speedwide-area network, for example, using ATM switches and a �ber optic network. The remote clientsare computers with tens of megabytes of main memory and hundreds of megabytes of secondarystorage.2.1 Assumptions regarding the DataWe assume that the data are stored at the server in compressed digital form. As the multimediaindustry evolves, standards are being enacted. For instance, the MPEG-1 standard is suitable fora digital video data rate of 1.5 Mbits/sec [Gal91], while MPEG-2 is a digital video standard being�nalized for supporting applications such as HDTV requiring higher bandwidths of 15 Mbits/secand beyond. We assume the MPEG-1 standard for the purpose of this paper. The decompressionof the data is done at the remote client's multimedia terminal , which is an intelligent computerwith hardware such as a microphone, digital video camera, high-resolution graphics display, stereo5

speakers and a sophisticated cable decoder. The cable decoder is the interface to the high-speedwide-area network. It has tens of kilobytes of bu�er space and compression and decompressionhardware built into it [Per94]. Such intelligent terminals are an example of how the digitalizationand integration being brought about by multimedia concepts is blurring the classical boundariesbetween the computer, communication and consumer electronics industries [Aok94].3 The High Performance Multimedia Server3.1 ArchitectureThe goal of a server for the type of application described above is to maximize the number ofsimultaneous real-time streams that can be sourced to clients. As explained above, the adventof multimedia applications strains the resources of a uniprocessor computer system for even asingle-user mode of operation. When the server has to handle multiple requests from multipleusers simultaneously, it is clear that the server must be considerably more powerful than a PC orworkstation-type system. At the very least, the server should have terabytes of secondary storageand gigabytes of main memory. The server may also be required to perform fast compression ofmultimedia data. Hence it should have good oating-point and scalar arithmetic performance. Aparallel computer with multiple independent nodes interconnected by a high-speed interconnectionnetwork is a good candidate for these requirements. Complementary views have been expressed tothis e�ect in the context of high performance relational database systems [Sto86, DeG92].At the same time, it must be noted that most parallel computers available until recently haveconcentrated on minimizing the time required to handle workloads similar to those found in the sci-enti�c computing domain. Hence, the emphasis was laid on performing fast arithmetic and e�cienthandling of vector operands. On the other hand, multimedia-type applications require fast dataretrieval and real-time guarantees. I/O constitutes a severe bottleneck in contemporary parallelcomputers and is currently the topic of vigorous research. A comprehensive survey of the problemsin high-performance I/O appears in[RoC94]. Secondly, parallel computers have traditionally beenexpensive on account of their high-end nature and the comparatively small user community ascompared to that of PCs. The advent of multimedia applications has brought the esoteric parallelmachines in direct competition with volume-produced PCs and workstations. This is borne by thefact that vendors are building multimedia servers based on both conventional parallel processors aswell as PC technology. For instance, companies like Oracle and Silicon Graphics advocate the useof powerful parallel computers to build multimedia servers; while companies like Microsoft, Inteland Compaq claim to achieve equivalent functionality at a lower cost by building servers throughinterconnecting the bulk-produced chips used in PCs [HPC94]. An example of the latter approach6

is Microsoft's Tiger �le system, which uses a high-speed communication fabric to interconnect IntelPentium-processor based nodes.We propose a logical model for a continuous media server, which is independent of the architec-tural implementation. The same model can be implemented on a MPP-like machine or a collectionof PCs/workstations interconnected by high-speed links. In this paper, we have used the MPPapproach to validate our work. We present our results for the Intel Paragon.Accordingly, the architecture of the server is that of a parallel computer with a high-capacitymagnetic disk(s) per node, with the nodes being connected by a high-speed interconnection network.Each node is a computer in its own right, with a CPU, RAM and secondary storage. In addition,each node has an interface with the interconnection network. Consequently, a node can operateindependently of other nodes or two or more nodes can cooperate to solve the same problem inparallel. This model allows one to stripe the multimedia data across the magnetic disks of theserver. This allows its retrieval to proceed in parallel, thus helping the server to satisfy real-timerequirements. In addition, the shrinking size and cost of RAM makes it possible to have hundredsof megabytes of main memory per node; memory capacity of this range is an advantage for bu�eringmultimedia data during secondary-memory storage and retrieval.3.2 Logical Model of the ServerFigure 2 shows a block diagram of the logical view of the proposed server. In the �gure, node I1 isserving a stream whose data is stored on nodes S1 and S3, node I2 is serving a stream whose datais stored on nodes S1, S2 and S4, and node I3 is serving a stream whose data is stored on nodes S4and S5.The physical server nodes are divided into three classes based on functionality : Object Man-ager A, Interface I , and Server S nodes. In the �gure, dotted lines indicate control tra�c, whilethe solid lines indicate data tra�c. In a typical request-response scenario, the object manager nodewould receive a request for an object, M . The server node(s) on which the object resides would beidenti�ed by the object manager. If the resource requirements of the request are consistent withthe system load at that time, then the request is accepted. An interface node to serve the stream ischosen by the object manager, and the interface node then takes over the authority and authorityof serving the stream. To that end, it retrieves the stream fragments from the server nodes andtransmits them at the required rate to the client. The three types of nodes are explained in greaterdetail below :1. The Object Manager node is at the top of the server's control hierarchy. The ObjectManager receives all incoming requests for media objects. It has knowledge of which Server7

A

I

I

I

S

S

S

S

S

1

2

3

5

4

3

 2

1

Disks

All S
nodes

All S
nodes

Interface Nodes
Server Nodes

Object Manager
 Node

High

Speed

WAN

.... .
..Figure 2: Logical Model of the Server. Example communication patterns are shown: dark linesindicate data, dotted lines indicate control informationnodes an object resides on and the workload of the Interface nodes. Based on this knowledge,it delegates the responsibility of serving a request to one of the Interface nodes. The ObjectManager node also logs data request patterns , and uses this information to optimize serverresponse time and throughput. Before accepting a request, the Object Manager communi-cates with the selected Interface nodes to ensure that the new request, if accepted, can besuccessfully served, while at the same time ensuring that existing requests continue to beserved at the required rate 1.2. Interface Nodes are responsible for scheduling and serving stream requests that have beenaccepted. Their main function is to request the striped data from the server nodes, order thepackets received from the server nodes, and send the packets over the high-speed wide areanetwork to the clients. E�cient bu�er management algorithms are vital towards achievingthese functions. An interface node can also use its local secondary storage to source frequentlyaccessed data objects.3. Server Nodes actually store multimedia data on their secondary storage in a striped fashion,and retrieve and transmit the data to an interface node when requested to do so. It is to benoted that the disk-per-node assumption is not literal : a node can have a disk-array[DK+92],1We have developed algorithms for performing these functions. However, they are not the topic of this paper.8

Symbol Description UnitsRpl Required playback rate bytes/secPI Size of packets sent by an I node bytes�I Duration of a packet sent by an I node secBI Bu�er size at an I node bytesPS Size of packets sent by a S node bytes�S Duration of data in BI secTf Period of issuing fetches to S nodes from I node secS Stripe factor -Table 1: The parameters used in this paperor a number of independent disks for greater I/O throughput.4 Data Access and Scheduling4.1 Parameters Used and Scheduling ConstraintsAs mentioned earlier, the data is compressed and striped across the server nodes in a round-robinfashion. The number of nodes across which an object is striped is called the stripe factor . Since thestripe fragments on any given server node's disk are not consecutive fragments, it is not necessaryto store them contiguously. Disk scheduling algorithms to optimize retrieval from the disk surfacehave been proposed [ReW93], and can be used in our model. We are concerned with harnessing theparallelism provided by striped storage and investigating the bu�ering policies for the data. Table1 shows the parameters used by our model.�I is the time for which a packet sent by an I node to a client will last at the client. Hence thisis also the deadline by which the next packet from the I node must be received at the client. Itsvalue is given by: �I = PIRpl (1)Once the requested stripe fragments from the S nodes have arrived at the destination I node,the latter arranges them in the proper sequence and continues sending packets of size PI to theclient no less than every �I seconds. The bu�er at the I node will last for �S time, before whichthe next set of stripe fragments must have arrived from the S nodes.The average time to retrieve PS bytes from a S node is given by�io = �rq + �avgseek + �avgrot + �trPS + �nwPS (2)where �rq is the time delay for a request from an I node to reach a S node, �avgseek and �avgrot arethe average seek and rotational latencies for the disks being used, �trPS is the disk data transfer9

δ

S

maxt

Interface Node Buffer of size IB

S
δt +

δ
t

ioFigure 3: Time relationships of Interface-Server node tra�ctime for Ps bytes, and �nwPS is the network latency to transport Ps bytes from a S node to an Inode.Thus, if the playout of an I node bu�er is started at time t, then the latest time by which therequests for the next set of stripe fragments must be issued to the S nodes is :tmax = t + �S � �io (3)This is illustrated in �gure 3 . Note that equation 2 uses average seek and rotational latenciesfor disk accesses. Since these latencies are variable, there will be boundary conditions when thetime to retrieve PS bytes is much more (less) than the average value. However, the e�ect of thisdeviation from the average value on the overall service time depends on the relative magnitudesof the other components of the service time. Our approach is based on the fact that when thegranularity of data read from disk is large, the e�ect of random disk seek and rotational overheadsis reduced. While it is true that doing so increases bu�ering requirements, contemporary processorshave large main memories, and using such processors is well worth the gain obtained in makingdisk service time more predictable. Of course, if some clients require strict performance guarantees,then one can categorize users into those requiring hard and soft deadlines as in[VG+94], and usethe maximum values of the disk overheads for admitting users of the latter kind.5 Performance EvaluationWe have implemented our logical server model on the Intel Paragon parallel computer. The IntelParagon [Hwa93] is a mesh-based architecture with Intel i860XP microprocessors. Interproces-sor communication is done using wormhole routing [NiM93, MTR94]. Due to storage space andavailability of real-world data limitations, the disk access part was simulated. We have assumed gi-10

Description ValueRequired playback rate (Rpl) 1.5 Mbits/secSize of packets sent by an I node (PI) 64 KbytesMinimum disk seek time 1 msecTime for one rotation 10.1 msAverage rotational latency 8.03 msEvaluation machine 56 node Intel ParagonTable 2: The parameter values used for the simulationgabytes of disk space per node, and a disk data transfer rate of 10 Mbytes/sec. Currently availablemagnetic disks have data transfer rates of a few Mbytes/sec. In general, for higher data transferrate and rotational speed of the disk, the higher the disk cost. Thus, it might be better to have anarray of cheaper but slower disks than a single fast disk. For example, one could use an array of4 disks to achieve the 10 Mbytes/sec data transfer rate we have assumed above. In practice, theexact type and con�guration of disks to use is an implementation decision. We used a playbackrate (Rpl) equal to the MPEG-1 rate of 1.5 Mbits/sec. Table 2 shows the values of the parametersde�ned in table 1 that we used for our simulation. It should be noted that except for the simulationof the disk access, the rest of the server operations were implemented including the scheduler anddata transfer over the interconnection network. The disk access time was simulated by elapsingthe system timer on each server node. The playback time for each stream varied between 4 and 5minutes, depending on the time of arrival of the request for that stream.The data retrieval process as explained above, whereby an interface node serving a streamretrieves stripe fragments from the server nodes on which the data is stored in each service round,is called the Remote Disk Stream Scheduling (RDSS) algorithm. In the worst case, each user requestis for a di�erent data stream; which requires use of the RDSS scheduling technique. Consequently,this is the technique for which the experiments were performed. Two modi�cations of the RDSSscheme, which exploit user access patterns are explained, and their performance is compared withthat of the RDSS scheme in section 6.The parameters that were varied were the stripe factor (S), the request size to the server nodes(PS), the bu�er size at the interface nodes (BI), and the ratio of the number of server nodes to thenumber of interface nodes. Disk retrieval was simulated by assuming that the stripe fragments arestored on the disk using a random placement model [KJ+84]. The load on the server was variedby increasing the number of streams that could be supported per interface node, incrementally inunits of 5 streams. Readings were taken for 5 to 50 streams per interface node.We measured the components of stream retrieval for the server. For any stream that is beingserved, the process of retrieving a set of stripe fragments from the S nodes is made up of a number of11

activities. The various time components are, in order, time for the fetch request from the interfacenode to reach the server node, time that the request has to wait at the server node while requestswith earlier deadlines are served, the actual service time to retrieve the data from the disk, and�nally, the time for the retrieved data to reach the requesting interface node.The communication time over the network is the sum of two factors - the network latencyin the absence of blocking, and the blocking time due to link contention in the interconnectionnetwork. For a given message size and interconnection network, the former is �xed; while the latterdepends on the network tra�c. The network blocking time was dynamically recorded as follows: for each request sent by an I node to a S node, the time delay between the issuing of the datarequest and the arrival of the packets from the S node was measured. The sum of all the otherdelays was subtracted from this round trip request delay to give the network blocking time. Thus,the network blocking time includes the bu�ering and copying overheads associated with messages,when multiple messages contend for the network (the network communication time in the absenceof blocking includes the bu�ering and copying overhead for one message under ideal conditions).We present below the detailed experimental results. For each experiment, we have plotted twographs : the average of the delay components over all packets of all streams, and the maximumof the delay components over all packets of all streams. The reasons for using these measures areexplained in the following subsections along with the performance results.5.1 Bu�ering vs. Frequency of Retrieval Tradeo�In the �rst set of experiments, we �xed the stripe factor and varied the size of the packets requestedfrom the server nodes, PS . Due to the periodic nature of media retrieval, the server services multipleclients by proceeding in service rounds. During each service round, the server retrieves a sequenceof media blocks for each client stream. With reference to our model, a service round correspondsto the retrieval of S media fragments by an interface node, for each stream being served by it, (Sis the stripe factor) from the server nodes at which the stream concerned is stored. The retrieveddata of each stream is stored in its stream bu�er at the interface node serving the stream. Theinterface node then periodically sends out chunks of media data from the stream bu�er to the clientso that the playback rate requirements are satis�ed. Given this mode of operation, varying thevalue of PS , keeping the stripe factor �xed involves a tradeo� between stream bu�er requirementsat the interface node, and the frequency of issuing fetches to the server nodes. For larger valuesof PS , the the data retrieved from the S nodes lasts longer; consequently, longer is the duration ofa service round at the I node. Hence, the frequency of media fragment retrieval is lower. On theother hand, larger the value of PS , larger is the bu�ering requirement at an I node for each stream.12

For this experiment, we used a server con�guration of 6 I nodes and 35 S nodes. The graphsin �gure 4 show the average component delays as a function of number of streams per I node, forPS equal to 40, 80, 120 and 160 kilobytes respectively, for a stripe factor of 4. The componentsdepicted are, from bottom to top,1. Network communication time in the absence of blocking, NC .2. Disk data transfer time, DR.3. Disk seek time, DS .4. Disk rotation time, DR.5. Network blocking time, NQ.6. S node queueing delay, SQ.The total service time for a request to a S node for a stripe fragment is the sum of these sixcomponents. This is denoted by Rtot.Note that NC depends only on the value of PS and the network bandwidth. We benchmarkedthe Paragon over a number of message sizes in the range of interest to us, and obtained a nearlyconstant bandwidth of 13.8 Mbytes/sec. The results are not presented here due to space limitations.DT depends only on the value of PS . Given a value of PS , these two components are �xed. Themeasured disk seek and rotational times (DS and DR) were averaged for all the requests. Sincemedia blocks are assumed to be uniformly distributed over the disk surface, these two componentsvary very little in the graphs (the variation is too small to be noticed in the graphs. Moreover,in many cases depicted, disk seek and rotational latencies are insigni�cant compared to the otherdelays). The S node queueing delay, SQ, is a measure of the time that a request has to wait at a Snode before it can obtain service.We note from the graphs that the total delay in retrieving media blocks, Rtot, increases as theworkload on the server increases, and that this behavior occurs at all four values of PS . We alsosee that, at a given server load, as the granularity of PS is increased, the total time to retrievemedia blocks increases. The reason for this is that NC and DT are directly proportional to thevalue of PS . Lastly, we observe that among the four values of PS , for PS = 40 kB, SQ dominatesat higher workloads, while for larger values of PS , it is the network blocking time that dominatesat higher workloads. The former behavior is due to the fact that given a particular S node whichstores fragments for a stream being served, for a small value PS , the frequency of fragment requestsobserved by the S node for that stream is greater than that for larger values of PS . Thus, over aninterval of time (greater than a service round), the number of disk requests for a stream is greater13

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

10

20

30

40

50

60

70

80

90

100

110

120

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 40 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a
b

c

d
e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

10

20

30

40

50

60

70

80

90

100

110

120

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 80 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

10

20

30

40

50

60

70

80

90

100

110

120

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 120 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

10

20

30

40

50

60

70

80

90

100

110

120

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 160 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c

d

e

f

Figure 4: E�ect of varying frequency of fetching on average delays. The graphs show the averageserver delays as a function of the number of streams supported per interface node for 6 I nodes, 35S nodes, stripe factor of 4. The 4 graphs are for server request sizes of 40 kB, 80 kB, 120 kB and160 kB respectively. 14

for a smaller value of PS . Since each disk access incurs seek and rotational overheads, and theire�ect is more pronounced for smaller retrieval sizes, the disk utilization is higher for small values ofPS . On the other hand, for large values of PS (like 160 kB) the frequency of disk accesses is lower,but the network blocking e�ect dominates due to large message sizes.Figure 5 shows the maximum component delays for the same parameter values as in �gure 4.Note that given a value of PS , the network communication time and the disk transfer time is thesame in both the average case and in the maximum case. The motivation for studying maximumcomponent delays is that di�erent clients may have di�erent quality of service (QOS) requirements,whereby some clients may be willing to bear occasional loss or long delays of packets, while othersmay have hard deadlines which cannot be missed. In such a situation, in order to provide hard real-time guarantees for the latter class of clients, it is necessary to design the server so as to minimizeinstantaneous large delays, and also to minimize the variation in media data retrieval time due tovariations in server workloads. Accordingly, depending on the client mix, a design that gives slowlyvarying maximum retrieval delays at di�erent workloads but higher average retrieval delays may bepreferred over a design that provides lower average retrieval delays but may cause wide variationsin maximum delays over the range of the anticipated workloads.In this case, at a stream load of 50, PS = 40 kB experienced the largest total retrieval delay(Rtot), while PS = 160 kB experienced the smallest total retrieval delay. This is in contrast to thetrend in �gure 4, where Rtot increases as the value of PS increases at a stream load of 50. Onereason for this is that in the average case (�gure 4), the network and S node blocking delays (NQand SQ respectively) are comparable in magnitude to the �xed delays (NC and DT respectively) ata given value of PS . Hence the variation of Rtot due to variation of PS is a�ected by changes in bothNQ and SQ, as well as by changes in NC and DT . On the other hand, in the maximum delay caseof �gure 5, changes in NQ and SQ dominate Rtot, causing changes in NC and DT to have little orno e�ect on Rtot as the value of PS is varied. Moreover, at low PS , SQ increases faster than it doesat high PS as the workload is increased. Consequently, a low value of PS gives larger maximumdelays than a high value of PS at high stream loads. Note however, that at low stream loads (ofless than 30 streams), as in the average case, smaller values of PS resulted in lower maximum delaythan larger values of PS at a given stream load. Both these observations can be explained from thesummary graphs of �gure 6, which show the variation of maximum delays due to network blockingand server queueing with change in the value of PS , at both low and high stream loads (15 and 50streams per I node respectively).With reference to �gure 6, observe that at low stream loads, larger the value of PS , larger is thevalue of NQ. On the other hand, at high stream loads, the network blocking e�ect is more or lessconstant as PS varies; this is so because the network gets saturated. Consider now the queueing15

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800
Ti

m
e

(m
s)

Maximum Delay components
(Pi = 64 kB, Ps = 40 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a,b c d
e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Ti
m

e
(m

s)

Maximum Delay components
(Pi = 64 kB, Ps = 80 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a b
c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Ti
m

e
(m

s)

Maximum Delay components
(Pi = 64 kB, Ps = 120 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a b
c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Ti
m

e
(m

s)

Maximum Delay components
(Pi = 64 kB, Ps = 160 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a bc
d

e

fFigure 5: E�ect of varying frequency of fetching on maximum delays. The graphs show the max-imum server delays as a function of the number of streams supported per interface node for 6 Inodes, 35 S nodes, stripe factor of 4. The 4 graphs are for server request sizes of 40 kB, 80 kB, 120kB and 160 kB respectively. 16

40.0 80.0 120.0 160.0
Ps (kBytes)

0.0

25.0

50.0

75.0

100.0

125.0
Ti

m
e

(m
s)

Effect of Ps on Maximum blocking times (Low load)
(Pi = 64 kB, stripe = 4)

S node queueing delay
n/w blocking time

40.0 80.0 120.0 160.0
Ps (kBytes)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

Ti
m

e
(m

s)

Effect of Ps on Maximum blocking times (High load)
(Pi = 64 kB, stripe = 4)

S node queueing delay
n/w blocking time

Figure 6: Summary of E�ect of varying frequency of fetching on maximum S node queueing andnetwork blocking delays at low and high loadsdelay at the servers. At low stream load, the queueing delay for PS = 40 kB is lower than forPS = 160 kB, while that for PS = 80 kB and 120 kB is lower than that for PS = 40 kB. For lowPS and low stream load, the disk is idle most of the time, and hence the delay seen by a servicerequest is low. At high PS and low stream load also the disk is idle most of the time; however sincethe transfer time increases, the queueing delay increases. On the other hand, at low PS and highload, the disk is highly utilized; moreover, the frequency of service requests is high. Since the disksspend a lot of the time seeking and rotating, SQ for PS = 40 kB is very high. Increasing the valueof PS at high load results in greater SQ than in the case of high PS and low load, but the value ofSQ is lower than it is in the case of low PS and high load. This is so because the frequency of diskfetches is lower at high PS , hence disk utilization is lower. In conclusion, we note from �gure 5,that for PS = 80 kB, the sum of the dominant component delays in the maximum case is close tominimum for both low and high stream loads. This suggests that, for the range of values of stripefragments studied, PS = 80 kB is a good operating point.5.2 E�ect of Stripe factorIn the second set of experiments, we �xed the total amount of data retrieved per service round foreach stream, and varied the stripe factor. Thus, the value of PS varies so that the total amountof data retrieved is constant. In other words, the size of the stream bu�er at the interface nodes(BI) is �xed for each stream. The same con�guration of 6 I nodes and 35 S nodes was used. As17

before, we collected the average and the maximum component delays as a function of the numberof streams served per interface node. Figure 7 shows the results for a stream bu�er size of 640kilobytes and stripe factors of 2, 4, 6 and 8. This corresponds to PS values of 320, 160, 106 and 80kilobytes respectively.In this case we observe that in general, smaller the stripe factor, larger is the total delay for agiven number of streams. This is due to the fact that low stripe factor implies large S node requestsize, which in turn implies larger disk transfer and network communication time. An increase inthese times increases Rtot. Also, observe that for the low stripe factor of 2, the network blockingtime in general is higher than the network blocking time for higher stripe factors. This can beattributed to the large message size (320 kB) for this stripe factor as compared to the message sizesfor higher stripe factors.Figure 8 shows the maximum component delays for the same con�guration as above.In this case, we see that the values of network blocking time (NQ) and S node queueing delay(SQ) are much greater than those of the other delays. Hence, the variations in the other delaysdue to changes in stripe factor are negligible in comparison to the variations in the blocking delays.For a stripe factor of 2, NQ is more or less constant over the range of stream loads. This can beattributed to the large message size of 320 kB which causes extensive blocking irrespective of loadpatterns. On the other hand, for a stripe factor of 8, NQ is low for stream loads below 35 streams,and then increases rapidly. With stripe factor 8, the messages are smaller (80 kB) as compared tothe message size for stripe factor 2 (320 kB). Although the number of messages in an interval oftime equal to a service round is greater for higher stripe factors, their smaller size results in smallermaximum delays. However, at higher stream loads, the performance penalty due to the increasednumber of messages outweighs the advantages of smaller message size. This is so because eachmessage requires scheduling, processing and bu�ering (copying) overhead. At high loads, theseoverheads for the larger number of messages cause higher maximum network delays.The variation of the maximum network and S node queueing delays as a function of stripe factoris depicted in �gure 9.The graph on the left is for a relatively low stream load per interface node (15 streams,) whilethe graph on the right is for a higher load (50 streams). In both cases, we observe that NQ isgreater than SQ. SQ varies little over the range of stripe factors. The reason for this behavior isthat the total amount of data retrieved in a service round for a stream is constant, hence it lasts forapproximately the same time at the interface node during playout. Consequently, the frequency ofrequests to the S nodes for any given stream is the same in all four cases. Higher values of stripefactor give a slightly greater SQ; this is so because the number of S nodes associated with a streamincreases, thus increasing the scheduling and processing delay of media retrieval. As explained18

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(m

s)
Average Delay components

(Pi = 64 kB, Ps =320 kB, stripe 2)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c
d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 160 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 106 kB, stripe 6)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a
b

c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 80 kB, stripe 8)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a
b
c
d

e

fFigure 7: E�ect of stripe factor on average delays. The graphs show the average server delays asa function of the number of streams supported per interface node for 6 I nodes, 35 S nodes, andstripe factors of 2, 4, 6 and 8. The corresponding values of PS are 320 kB, 160 kB, 106 kB and 80kB respectively. 19

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

Ti
m

e
(m

s)
Maximum Delay components

(Pi = 64 kB, Ps = 320 kB, stripe 2)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c
d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

Ti
m

e
(m

s)

Maximum Delay components
(Pi = 64 kB, Ps = 160 kB, stripe 4)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a b
c

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

Ti
m

e
(m

s)

Maximum Delay components
(Pi = 64 kB, Ps = 106 kB, stripe 6)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a
c

b

d

e

f

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

Ti
m

e
(m

s)

Maximum Delay components
(Pi = 64 kB, Ps = 80 kB, stripe 8)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a b c
d

e

fFigure 8: E�ect of stripe factor on maximum delays. The graphs show the maximum server delaysas a function of the number of streams supported per interface node for 6 I nodes, 35 S nodes, andstripe factors of 2, 4, 6 and 8. The corresponding values of PS are 320 kB, 160 kB, 106 kB and 80kB respectively. 20

2.0 4.0 6.0 8.0
Stripe factor

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0
Ti

m
e

(m
s)

Effect of stripe factor on Maximum blocking times (Low load)
(Pi = 64 kB)

S node queueing delay
n/w blocking time

2.0 4.0 6.0 8.0
Stripe factor

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

Ti
m

e
(m

s)

Effect of stripe factor on Maximum blocking times (High load)
(Pi = 64 kB)

S node queueing delay
n/w blocking time

Figure 9: Summary of E�ect of stripe factor on maximum S node queueing and network blockingdelays at low and high loadsabove, increasing the stripe factor causes NQ to decrease at low stream loads, while increasing thestripe factor causes NQ to increase at higher stream loads.5.3 Con�guration tradeo�sIn a third set of experiments, we investigated the tradeo�s involved in varying the ratio of interfacenodes to server nodes, given a certain number of total nodes. We used a total of 41 nodes, withstripe factor of 4 and a PS value of 64 kB. In the �rst case, the server was con�gured as 8 I nodesand 33 S nodes, while in the second case, it was con�gured as 6 I nodes and 35 S nodes. Thus theratio of the number of S nodes to the number of I nodes was approximately 4:1 and 6:1, respectively.Figure 10 shows the component delays as a function of stream load for the two cases. We observethat in the former case, the S node queueing delay is the largest individual component, while inthe latter case, the network blocking time is the largest component. This is because the number ofS nodes to store media data decreases in the �rst case, while at the same time the total number ofstreams that must be served increases. Hence the server nodes become the throughput bottleneck.6 Exploiting Data Access PatternsIt is natural that certain objects in a database are accessed more frequently than other objects. Forexample, in a video-on-demand application, it is highly likely that the demand for newly releasedmovies will be higher than that for older movies. We present two modi�cations of the basic retrieval21

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

25

50

75

100

125

150

175

200

225
Ti

m
e

(m
s)

Average Delay components
(Pi = 64 kB, Ps = 160 kB, stripe 4, ratio of S nodes to I nodes = 4:1)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

0 5 10 15 20 25 30 35 40 45 50 55
Number of streams per I node

0

25

50

75

100

125

150

175

200

225

Ti
m

e
(m

s)

Average Delay components
(Pi = 64 kB, Ps = 160 kB, stripe 4, ratio of S nodes to I nodes = 6:1)

n/w communication time (a)
disk transfer time (b)
disk seek time (c)
disk rotational time (d)
n/w blocking time (e)
S node queueing delay (f)

a

b

c
d

e

fFigure 10: E�ect of the ratio of number of S nodes to number of I nodes for the same total numberof nodes. Figure on the left is for a ratio of 4 : 1, while that on the right is for a ratio of 6 : 1algorithm that address this issue. The basic algorithm does not take frequency of data access intoaccount, while the next two exploit this feature to reduce the response time to new requests.6.1 Remote Disk Stream Scheduling Algorithm (RDSS)In this algorithm, each video stream is scheduled by explicitly retrieving stripe fragments fromthe S nodes. In this approach the I/O scheduler takes no advantage of the possibility that thesame multimedia object is being used by multiple users simultaneously. Consequently, when manyobjects have this reference pattern, this policy will create excess interconnection-network and disktra�c. However, it is the simplest to implement.6.2 Local Disk Stream Scheduling Algorithm (LDSS)This algorithm and the next one depend on being able to detect that some objects are being accessedmore frequently than others. This function can be performed by the object manager node (nodeA in �gure 2). Since all new requests for streams come to this node, it can log the object accesspatterns over a speci�ed time window, �t. If any object is accessed at a rate above a threshold,Thpop, then that object is classi�ed as a popular object .Having identi�ed an object as being popular, when the next request for that object comes in,the stripe fragments are retrieved from the S nodes in the usual way. However, in addition tosending packets of size PI to the client, the stripe fragments retrieved from the S nodes are written22

to the local disk at the corresponding I node. Thus, when the next request for the object comesin, the object can be streamed from the local disk of the I node. This has the bene�t of reducinginterconnection-network and (S) node disk tra�c, and also improving the overall response time ofthe system. Note that the overhead of storing the stripe fragments on local disk is marginal, sincedisk writes are non-blocking and can proceed in the background.6.3 (Local) Memory Stream Scheduling Algorithm (LMSS)This algorithm goes a step further in reducing system response time for popular objects. In thiscase, a popular object is stored on the I node backing store as in the LDSS scheme. In addition,the �rst few packets of the object are stored in the main memory of the I node, so that when arequest comes in, it can be served immediately once it has been accepted.In both the LDSS and LMSS schemes, it is also necessary to keep track of when the frequencyof access of a object falls below the threshold separating popular object and other objects. In thatcase, the disk space occupied by that object at the I node can be used to store another popularobject.6.4 Comparison of RDSS, LDSS and LMSS schemesWe noted the performance of the algorithms for a server con�guration of 6 interface nodes and24 server nodes, and a stripe factor of 4. The composition of the requests was varied as follows: starting from requests for unique media objects, the percentage of requests for the same ob-ject was successively increased. Figure 11 shows the maximum number of streams that could besimultaneously supported using each of the three policies.We observe that for a low percentage of requests for the same object, the RDSS algorithmoutperforms the other two algorithms. This is so because in the latter two cases we allocate adedicated I node for the popular object. For a low percentage of requests for the popular object,the dedicated node is underutilized : it sources less streams than its full capacity, while a normalI node in its place could have sourced the maximum number of streams that such a node cansource. With increasing amounts of requests for the same object, however, the LDSS and LMSSalgorithms outperform the RDSS algorithm as they reduce the load on the server nodes causedby frequently accessing the same object. Between the LDSS and LMSS algorithms, the latterclearly outperforms the former for di�erent values of the percentage of requests for a popular object.Lastly, the performance of the RDSS algorithm deteriorates rapidly as the percentage of requestsfor the popular object is increased, due to the corresponding increase in the load of the S nodes onwhich the popular object is stored. 23

160

180

200

220

240

260

280

300

320

0 5 10 15 20 25 30

N
o
.

o
f

s
t
r
e
a
m
s

% requests for same object

RDSS
LDSS
LMSS

Figure 11: Maximum number of streams that can be supported for each algorithm for 6 I nodesand 24 S nodes, for varying number of requests for the same object, on the Intel Paragon7 A Dynamic Admission Control AlgorithmIn this section we discuss how dynamic knowledge of server workload can be used to develop anadmission control algorithm for accepting client requests. When a client requests a stream from theserver, the server commits to servicing the client only if it can guarantee the real time bandwidthrequired by the new stream, while at the same time continuing to serve existing streams withoutdegradation in service. The subsystem of the server's software that is responsible for this decisionis called the admission control policy.With reference to the RDSS scheme, equation 2 gives the average theoretical time to retrievePS bytes from a S node. However, this equation does not take into account the network and Snode blocking times, which have been shown to be critical in determining the retrieval time. Totake this e�ect into account, the server can be modeled abstractly as a weighted undirected bipartitegraph,citett G = (I; S; E), where I is the set of interface nodes, S is the set of server nodes, and Eis the set of edges connecting nodes in I to nodes in S. An edge connecting nodes i and j has aweight wij , whose value is calculated as explained below. Given this model, an interface node canaccept a new client request if the following conditions are satis�ed :7.1 Su�cient Bu�er SpaceIf an I node is serving n streams, and BItot is the total bu�er space at the interface node (used aswell as unused), then in order to start serving a new stream request , M , there should be su�cient24

bu�er space for the new stream : BItot > nXj=0BIj +BIM (4)7.2 Su�cient Retrieval CapacityThe weight wij of edge ij of the graph G = (I; S; E) represents the average time to retrieve PS bytesfrom a server node under existing server workload i.e. at the time of invocation of the admissioncontrol algorithm. This is a more accurate estimation of retrieval time than �io of equation 2, whichgives the average retrieval time in the absence of blocking e�ects. In order to estimate the valueof wij ,two possibilities exist. The candidate I node may already be retrieving fragments (in thecourse of serving existing streams) from some or all of the S nodes storing the data of the newstream. In that case, it can directly estimate the value of wij for the connection to server nodeSj by using past history (for example, the average of the last m time delays to retrieve fragmentsfrom Sj). For the remaining S nodes storing the new stream's data, communication is required.Each server node keeps track of the actual time (including the queueing time) taken to retrieve thelast m stripe fragments. The average of these m values gives the average fragment retrieval time atthat S node. The second component that contributes to wij is the interconnection network delay.It is the sum of the time to send a request to the S node (�rq) and the time to transfer PS bytesover the network (inclusive of the network blocking time). The candidate I node sends a dummyrequest to the remaining S nodes storing the requested stream. Each S node sends a dummy datapacket of size PS to the I node. The round trip time then gives the network cost of retrieval. Inaddition, each S node sends the estimated retrieval time in the dummy message to the I node.This time, when added to the measured network time, gives the value of wij .The condition to be satis�ed for the retrieval capacity can now be stated. The candidate Inode determines the value of wij for each of the S server nodes (recall that S is the stripe factor ofa stream) storing the requested streams. For example, �gure 12 shows node I2 (candidate node)trying to determine if it can accept a request for a stream stored on nodes S1, S3, S4, and S6.An interface node incurs operating system overhead due to sending and receiving packets,copying data and scheduling transfers. Let the net operating system overhead at the candidate Inode be denoted by �ov. Recall that �S denotes the time for which the data retrieved in a serviceround lasts at an interface node. Then, a candidate interface node i can accept a request for a newclient stream if, and only if, the maximum edge weight among all the j server nodes on which the25

I
S

I

I

S

S

S

S

S

1

2

3

 1

2

3

4

5

6

w

w

w

w

 21

 23

 26

 24

I SFigure 12: Abstract model of the server - a bipartite graph with two sets of nodes (I and S), withedge weights representing the time to retrieve PS bytes from a server node. Figure shows admissioncontrol policy trying to determine if node I2 can accept a client request for sourcing a stream whosedata is stored on nodes S1, S3, S4, and S6.new stream's data is striped does not exceed the permissible retrieval time :max(wij) < �S � �ov (5)The cost of using a dynamic admission control policy such as this one is the overhead of main-taining history of data retrieval delays and communication costs between server nodes to determineretrieval delay when no history exists. Consequently, the length of the interval over which historyis maintained is a crucial design parameter. We are in the process of determining suitable valuesfor this parameter.8 ConclusionsWe now summarize the tradeo�s involved in choosing values for the design parameters for a media-on-demand server.1. Bu�ering requirements vs. Frequency of data retrieval.Given a stripe factor, the bu�er space needed at an I node to source a client stream is inverselyproportional to the frequency of media retrieval from the S nodes. Smaller the bu�er spaceavailable at an I node for a stream, smaller is the size of the stripe fragments. The averagetotal retrieval time was found to be directly proportional to the value of PS . While small26

values of PS have the advantages of low bu�ering requirements and low average total retrievaltime, they give the worst maximum retrieval times at high stream loads. Large values of PSresult in lower variation in both the average as well as total retrieval times at both low andhigh loads, and will thus be attractive if su�cient bu�er space is available and clients requirea uniform (high) quality of service under all load conditions.2. E�ect of varying stripe factorIn practice, the stream bu�er space at an I node will be limited. Note that each stream thatan I node has to source requires a stream bu�er. Hence, smaller the bu�er per stream, largeris the number of streams that the server can source. Given a stream bu�er of a certain size,there is a tradeo� in the choice of the stripe factor used. We observed that larger the stripefactor, greater is the parallelism of data retrieval and lesser is the average total retrieval timefor a stream. A high stripe factor implies that the total number of messages owing throughthe network and the number of S nodes serving a given stream increases. This increases theprocessing, scheduling and bu�ering overheads. Consequently, high stripe factors result inhigh maximum blocking delays at high stream loads.3. Ratio of S nodes to I nodesEconomic factors can limit the total number of nodes available to the designer of a multimediaserver. Given a �xed number of nodes, interesting tradeo�s are possible in designating thenodes as server nodes or interface nodes. Since it is the interface nodes that actually sourcethe client streams, it is desirable that their number be large, so that the total streamingcapacity of the server is high. On the other hand, since it is the server nodes that actuallystore the media data, it is desirable that their number be large also. We showed how a low Sto I ratio resulted in higher average total retrieval time compared to a high S to I ratio. Wesaw that the S node queueing delay is much higher for a low S/I ratio than it is for a highS/I ratio. Given a �xed total number of nodes and a certain ratio of S nodes to I nodes, thedesigner can increase the ratio so that more storage space is available. Although the totalnumber of streams that the server can source will decrease, the designer can a�ord to choosedisks with lower performance so that the same quality of service can be guaranteed to clientsat a lower net server cost.4. Caching Tradeo�sIt is natural to assume that all the data objects in a media-on-demand database will notbe accessed with the same frequency. The LDSS and LMSS scheduling schemes showed thebene�t of being able to dynamically recon�gure the server so that an I node also becomes27

a S node. This could be of use in cases where some media objects are accessed with a highfrequency. The throughput of the server can then be increased by migrating the frequentlyaccessed media object from the S nodes on which it is stored to local disk(s) at an I node.The I node could then be dedicated to serving requests for the popular media object. Aneven better gain in performance is attained if it is possible to store a substantial part ofthe data of the popular object in main memory at the interface node. The price that mustbe paid for the performance gain is operating system overhead and increased complexity ofscheduling software for trapping access patterns, migrating and storing the popular object;the possible need for expensive high-performance disk arrays at the interface nodes, and theneed for larger main memory at the interface nodes.In this paper we have investigated and evaluated the e�ects of varying the design parametersin a media-on-demand server. We have shown that di�erent tradeo�s are possible by choosingdi�erent values for these parameters. We should how data access patterns can be exploited toimprove server throughput. A dynamic admission control policy that takes existing workload intoaccount was developed. The di�erent components of server operation a�ect each other in complexways. In conclusion, we note that the choice of values for the parameters is guided by quality ofservice requirements of clients, anticipated and actual load conditions, access patterns of clients,quantity and quality of server resources, and economic considerations.References[BCG+92] P. B. Berra, C.-Y. Chen, A. Ghafoor and T. Little. Issues in networking and data man-agement of distributed multimedia systems. In proceedings of the First InternationalSymposium on High Performance Distributed Computing , September 1992.[RaV92] P. V. Rangan and H. Vin. E�cient storage techniques for digital continuous multime-dia. IEEE Transactions on Knowledge and Data Engineering , Vol. 5, No. 6, August1993.[Lan94] J. Lane. ATM knits voice, data on any net. IEEE Spectrum, February 1994.[Gal91] D. Le Gall. MPEG: a video compression standard for multimedia applications. Com-munications of the ACM , April 1991.[ReW93] A. Reddy and J. Wyllie. Disk-scheduling in a multimedia I/O system. Proceedings ofthe 1st ACM Intl. Conference on Multimedia, August 1993, pg. 225.28

[ReW94] A. Reddy and J. Wyllie. I/O issues in a multimedia system. IEEE Computer , March1994.[RVR92] P. V. Rangan, H. Vin and S. Ramanathan. Designing an on-demand multimedia ser-vice. IEEE Communications, Vol 30, No. 7, July 1992.[GhR93] S. Ghandeharizadeh and L. Ramos. Continuous retrieval of multimedia data usingparallelism. IEEE Trans. on Knowledge and Data Engineering, Vol. 5, No. 4, August1993.[AOG92] D. Anderson, Y. Osawa and R. Govindan. A �le system for continuous media. ACMTrans. on Computer Systems, Vol. 10, No. 4, November 1992.[PRP94] C. Papidimitriou, S. Ramanathan and P. V. Rangan. Information caching for deliveryof personalized video programs on home entertainment channels. Proc. of the Intl.Conference on Multimedia Systems and Computing, May 1994.[LV94] T. Little and D. Venkatesh. Prospects for interactive video-on-demand. IEEE Multi-media, vol. 1, number 3 (Fall 1994).[VG+94] H. Vin, A. Goyal, et. al. An observation-based admission control algorithm for multi-media servers. Proc. of the Intl. Conference on Multimedia Systems and Computing,May 1994.[DK+92] A. L. C. Drapecu, R. Katz, G. Gibson, et. al. RAID-II: a scalable storage architecturefor high-bandwidth network �le service. University of California at Berkeley technicalreport UCB:CSD-92-672, 1992.[Int93] Intel Corporation. Paragon OSF/1 User's Guide, Intel Supercomputer Systems Divi-sion, February 1993.[Per94] T. Perry. Technology 1994: Consumer Electronics. IEEE Spectrum, January 1994, pg.30[Aok94] T. Aoki. Digitalization and integration portend a change in life-style. IEEE Spectrum,January 1994, pg. 34.[Hwa93] K. Hwang. Multiprocessors and multicomputers. Advanced Computer Architecture:Parallelism, Scalability, Programmability. , McGraw Hill, 1993.[KJ+84] M. McKusick, W. Joy, S. Le�er and R. Fabry. A fast �le system for UNIX. ACMTransactions on Computer Systems, 2(3), August 1984.29

[NiM93] L. Ni and P. McKinley. A survey of wormhole techniques in direct networks. IEEEComputer , February 1993.[HPC94] HPCwire (electronic magazine), article number 4097, May 1994.[Sto86] M. Stonebraker. The case for shared-nothing. Database Engineering , Vol. 9, No. 1,1986.[DeG92] D. DeWitt and J. Gray. Parallel database systems: the future of high-performancedatabase systems. Communications of the ACM , Vol. 35, No. 6, June 1992.[RoC94] J. Rosario and A. Choudhary. High-performance I/O for parallel computers: problemsand prospects. IEEE Computer , March 1994.[MTR94] P. McKinley, Y. Tsai and D. Robinson. A survey of collective communication inwormhole-routed massively parallel computers. Technical Report MSU-CPS-94-35,Dept. of Computer Science, Michigan State University, June 1994.[Liu68] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill Book Company,1968.

30

	An Evaluation of Design Tradeoffs in a High Performance Media-on-Demand Server
	Recommended Citation

	tmp.1286291883.pdf.ZRS1H

