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Abstract

This paper considers a general heteroskedastic error component model
using panel data, and derives a joint LM test for homoskedasticity against
the alternative of heteroskedasticity in both error components. It contrasts
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in one of the error components. Monte Carlo results show that mislead-
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1 Introduction

Mazodier and Trognon (1978) seem to be the �rst to deal with the problem
of heteroskedasticity in panel data. Since then, several papers have followed,
see Rao, Kaplan and Cochran (1981), Magnus (1982), Baltagi (1988), Balt-
agi and Gri¢ n (1988), Randolph (1988), Wansbeek (1989), Li and Stengos
(1994), Lejeune (1996), Holly and Gardiol (2000), Roy (2002) and Phillips
(2003). These papers usually consider a regression model with one-way error
component disturbances: uit = �i + vit , i = 1; :::; N , t = 1; :::; T , where the
index i refers to the N individuals and the index t to the T time series obser-
vations. Both Mazodier and Trognon (1978) and Baltagi and Gri¢ n (1988)
were concerned with the estimation of a model allowing for heteroskedasticity
on the individual-speci�c error term, i.e., assuming that �i �

�
0; �2�i

�
while

vit � IID (0; �2v) : In contrast, Rao, Kaplan and Cochran (1981), Magnus
(1982), Baltagi (1988) and Wansbeek (1989) adopted a symmetrically oppo-
site speci�cation allowing for heteroskedasticity on the remainder error term,
i.e., assuming that �i � IID

�
0; �2�

�
while vit �

�
0; �2vi

�
: Randolph (1988)

allowed for a more general heteroskedastic error component model assum-
ing that both the individual and remainder error terms were heteroskedastic,
i.e., �i �

�
0; �2�i

�
and vit �

�
0; �2vit

�
, with the latter varying with every

observation over time and individuals. As Lejeune (1996) pointed out, if
heteroskedasticity is say due to di¤erences in size across individuals, �rms
or countries, then both error components are expected to be heteroskedas-
tic and it may be di¢ cult to argue that only one component of the error
term is heteroskedastic but not the other. Early on, Verbon (1980) derived
a Lagrange multiplier test where the null hypothesis is that of a standard
normally distributed homoskedastic model against the heteroskedastic alter-
native �i �

�
0; �2�i

�
and vit �

�
0; �2vi

�
: In Verbon�s model, however, �2�i

and �2vi are, up to a multiplicative constant, identical parametric functions
of a vector of time invariant exogenous variables z0i, i.e., �

2
�i
= �2�f (z

0
i�2) and

�2vi = �
2
vf (z

0
i�1) : Lejeune (1996) on the other hand, dealt with maximum like-

lihood estimation and Lagrange multiplier testing of a general heteroskedas-
tic one-way error components regression model assuming that �i �

�
0; �2�i

�
and vit �

�
0; �2vit

�
where �2�i and �

2
vit
are distinct parametric functions of

exogenous variables z0it and f
0
i , i.e., �

2
vit
= �2vhv (z

0
it�1) and �

2
�i
= �2�h� (f

0
i�2).

In the context of incomplete panels, Lejeune (1996) derived two joint LM
tests for no individual e¤ects and homoskedasticity in the remainder error
term. The �rst LM test considers a random e¤ects one-way error compo-
nent model with �i � IIN

�
0; �2�

�
and a remainder error term that is het-

eroskedastic vit � N
�
0; �2vit

�
with �2vit = �

2
vhv (z

0
it�1) : The joint hypothesis

1



�1 = �
2
� = 0 renders OLS the restricted MLE. Lejeune argued that there is

no need to consider a variance function for �i since one is testing �
2
� equal to

zero. While the computation of the LM test statistic is simpli�ed under this
assumption, i.e., �i � IIN

�
0; �2�

�
; this is not in the original spirit of Leje-

une�s ML estimation where both �i and vit have general variance functions.
Lejeune�s second LM test considers a �xed e¤ects one-way error component
model where �i is a �xed parameter to be estimated and the remainder error
term is heteroskedastic with vit � N

�
0; �2vit

�
and �2vit = �2vhv (z

0
it�1) : The

joint hypothesis is �i = �1 = 0 for all i = 1; 2; ::; N: This renders OLS the
restricted MLE.
With regards to estimation, Li and Stengos (1994) suggested an adap-

tive estimation procedure for an error component model allowing for het-
eroskedasticity of unknown form on the remainder error term, i.e., assuming
that �i � IID

�
0; �2�

�
while vit �

�
0; �2vit

�
, where �2vit is a nonparametric

function f (z0it) of a vector of exogenous variables z
0
it. Li and Stengos (1994)

also suggested a robust version of the Breusch and Pagan (1980) LM test for
no random individual e¤ects �2� = 0 by allowing for adaptive heteroskedastic-
ity of unknown form on the remainder error term. Holly and Gardiol (2000)
proposed a Rao score test for homoskedasticity assuming the existence of
individual e¤ects. The unrestricted model assumes that �i � N

�
0; �2�i

�
and vit � IIN (0; �2v) where �2�i is a parametric function of exogenous vari-
ables f 0i , i.e., �

2
�i
= �2�h�(f

0
i�2): Under the null hypothesis �2 = 0, with

h�(0) = 1 and the restricted model reverts to the homoskedastic one-way
error component model. Roy (2002) dealt with adaptive estimation of an
error component model assuming heteroskedasticity of unknown form for the
individual-speci�c error term, i.e., assuming that �i �

�
0; �2�i

�
while vit

� IID (0; �2v), where �
2
�i
is a nonparametric function f (z0i:) of a vector of

individual means of exogenous variables z0it with z
0
i: =

TP
t=1

z0it=T: More re-

cently, Phillips (2003) followed Mazodier and Trognon (1978) in considering
a one-way strati�ed error component model. As unobserved heterogeneity
occurs through individual-speci�c variances changing across strata, Phillips
provided an EM algorithm for estimating this model and suggested a boot-
strap test for identifying the number of strata.
In the spirit of the general heteroskedastic model of Randolph (1988) and

Lejeune (1996), this paper derives a joint Lagrange multiplier test for ho-
moskedasticity, i.e., �1 = �2 = 0. Under the null hypothesis, the model is a
homoskedastic one-way error component regression model and is estimated
by restricted MLE. Note that this is di¤erent from Lejeune (1996), where
under the null, �2� = 0, so that the restricted MLE is OLS and not MLE on a
one-way homoskedastic error component model. Allowing for �2� > 0 is more
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likely to be the case in panel data where heterogeneity across the individuals
is likely to be present even if heteroskedasticity is not. The model under the
null is exactly that of Holly and Gardiol (2000) but it is more general under
the alternative since it does not assume a homoskedastic remainder error
term. We also derive an LM test for the null hypothesis of homoskedasticity
of the individual random e¤ects assuming homoskedasticity of the remainder
error term, i.e., �2 = 0 j �1 = 0. Not surprisingly, we get the Holly and Gar-
diol (2000) LM test. In addition, we derive an LM test for the null hypothesis
of homoskedasticity of the remainder error term assuming homoskedasticity
of the individual e¤ects, i.e., �1 = 0 j �2 = 0: The rest of the paper is or-
ganized as follows: Section 2 reviews the general heteroskedastic one-way
error component model. Section 3 derives the marginal and joint Lagrange
multiplier tests described above. Section 4 performs Monte Carlo simulations
comparing the size and power of these LM tests. Section 5 concludes.

2 The general heteroskedastic one-way error
component model

We consider the following regression model:

yit = x
0
it� + uit , uit = �i + vit , i = 1; :::; N , t = 1; :::; T (1)

where yit, uit, �i and vit are scalars, x
0
it is a (1� k�) vector of strictly ex-

ogenous regressors (the �rst element being a constant) and � is a (k� � 1)
vector of parameters. The index i refers to the N individuals and the index t
to the T observations of each individual i. The total number of observations
is NT . The error terms �i and vit are assumed mutually independent and
normally distributed according to:

vit � N
�
0; �2vit

�
, �2vit = �

2
vhv (z

0
it�1) , i = 1; :::; N , t = 1; :::; T

�i � N
�
0; �2�i

�
, �2�i = �

2
�h� (f

0
i�2) , i = 1; :::; N

(2)

where hv (:) and h� (:) are arbitrary non-indexed (strictly) positive twice con-
tinuously di¤erentiable functions1 satisfying hv (:) > 0; h� (:::) > 0, hv (0) =
1, h� (0) = 1 and h(1)v (0) 6= 0 , h(1)� (0) 6= 0 where h(1)� (x) denotes the �rst
derivative of h� (x) with respect to x: z0it and f

0
i are respectively (1� k�1)

and (1� k�2) vectors of strictly exogenous regressors while �1 and �2 are re-
spectively (k�1 � 1) and (k�2 � 1) vectors of parameters2. We will denote by

1Di¤erent choices are possible for the variance functions hv (:::) and h� (:). Among
them, the additive and the multiplicative heteroskedastic forms appear to be attractive.
See Breusch and Pagan (1979).

2If both �1 = 0 and �2 = 0, system (1)-(2) reduces to the classical homoskedastic
one-way error component model.
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' =
�
�2v; �

2
�; �

0
1; �

0
2

�0 �� �'p	0 ; p = 1; :::; 4� the vector of variance-speci�c
parameters.
Staking the T observations of each individual i, (1) may be written as:

yi = Xi� + ui , ui = �T�i + vi , i = 1; :::; N (3)

where �T is a (T � 1) vector of ones, yi, ui and vi are (T � 1) vectors and Xi

a (T � k�) matrix of regressors. From (2), the (T � T ) covariance matrix 
i
of ui may be written as:


i = �
2
vdiag (hv (Zi�1)) + �

2
�JTh� (f

0
i�2) , i = 1; :::; N (4)

where JT = �T �0T and Zi is a (T � k�1) matrix of regressors with a typical row
being z0it. Here, diag (hv (Zi�1)) denotes a diagonal (T � T ) matrix with its
t-th diagonal element being the t-th element of the (T � 1) vector hv (Zi�1) :
Finally, stacking again the above vectors and matrices, we obtain the general
matrix form of the model:

y = X� + u , u = Z��+ v , Z� = IN 
 �T (5)


 (�) = �2vdiag (hv (Z�1)) + �
2
�Z�diag (h� (F�2))Z

0
� (6)

y, u and v are (NT � 1) vectors, � is the (N � 1) vector of individual e¤ects
X;Z and F are respectively (NT � k�), (NT � k�1) and (N � k�2) matrix
of regressors and 
 is the (NT �NT ) block-diagonal covariance matrix of
u. Here, diag (hv (Z�1)) denotes a diagonal (NT �NT ) matrix with its it-th
diagonal element being the it-th element of the (NT � 1) vector hv (Z�1) :
Similarly, diag (h� (F�2)) denotes a diagonal (N �N) matrix with its i-th
diagonal element being the i-th element of the (N � 1) vector h� (F�2) :

3 The marginal and joint Lagrange Multi-
plier tests

Based on equations (3)-(4), the log-likelihood function L may be written as:

L(yjX;Z; F ; �; �2v; �2�; �1; �2) = �
NT

2
ln (2�)� 1

2

NX
i=1

ln j
ij �
1

2

NX
i=1

u0i

�1
i ui

(7)
where ui = yi � Xi�. Following Magnus (1978) and Lejeune (1996), the in-
formation matrix is given by 	NT = �E0 [HjX;Z; F ] with E0 [:] denoting
expectation taken with respect to the true distribution. H is the hessian ma-
trix with elements

�
H�� =

@2L
@�@�0

�
;
�
H�'p =

@2L
@�@'0p

�
and

�
H'p'q =

@2L
@'p@'

0
q

�
.
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The information matrix 	NT is block diagonal between the � and ' para-
meters. Therefore, the Lagrange Multiplier (LM) statistic for testing, H0 :
' = 0; may be written as:

LM'=0 = eg0' �e	NT'' ��1 eg' (8)

(see Breusch and Pagan (1980) p. 245) where g' is the gradient of the log-
likelihood with respect to ', 	NT'' is the ' block of the information matrix ande denotes quantities evaluated under the null. Under the null, this statistic
is asymptotically distributed as a �2 with k' degrees of freedom, k' being
the number of parameters in the vector ':

3.1 Marginal LM test for �2 = 0 assuming �1 = 0

For the Mazodier and Trognon (1978), Baltagi and Gri¢ n (1988) and Roy
(2002) papers, the remainder error term is assumed to be homoskedastic,
i.e., �1 is assumed to be zero and the covariance matrix 
i in (4) becomes:


i = �
2
vIT + �

2
�JTh� (f

0
i�2)

Testing for homoskedasticity in this model amounts to testing:

Ha
0 : �2 = 0 j �2� > 0; �2v > 0; �1 = 0

the LM statistic for Ha
0 is given by

3:

LM�2=0 =
1

2e�41S 0F (F 0F )�1 F 0S (9)

with e�21 = �Te�2� + e�2v� where e�2� and e�2v are the restricted ML estimates of �2�
and �2v, F =

�
IN � JN

�
F with JN = JN=N and S is a (N � 1) vector with

typical element Si = eu0iJT eui. The eui�s are vectors of restricted ML residuals
obtained from a one-way error component model with no heteroskedasticity.
These can be obtained from standard regression packages, for e.g., using xtreg
in Stata with the mle option. F is the matrix of regressors (N � k�2) with
typical row f 0i : Under the null H

a
0 , this statistic is asymptotically distributed

as �2 with (k�2) degrees of freedom. This statistic is exactly identical to the
Rao score statistic proposed by Holly and Gardiol (2000). The LM statistic
(9) is simply one half the explained sum of squares (ESS) from the arti�cial

least squares regression of
�
1e�21S � �N

�
on F:

3Technical appendices giving the derivation of all LM tests considered in this paper are
not reproduced here to save space and can be obtained upon request from the authors.
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3.2 Marginal LM test for �1 = 0 assuming �2 = 0

For the Rao, Kaplan and Cochran (1981), Magnus (1982), Baltagi (1988),
Wansbeek (1989) and Li and Stengos (1994) papers, the individual error
component is assumed to be homoskedastic, i.e., �2 is assumed to be zero
and the covariance matrix 
i in (4) becomes:


i = �
2
vdiag (hv (Zi�1)) + �

2
�JT , i = 1; :::; N

Testing for homoskedasticity amounts to testing

Hb
0 : �1 = 0 j �2� > 0; �2v > 0; �2 = 0

the LM statistic for Hb
0 is given by:

LM�1=0 =
1

2
GZ (Z 0MZ)

�1
Z 0G

0
(10)

where

G =
h�eu0e
�1�� �eu0e
�1�i� �e�21 � e�2��e�21e�2v �0NT

and

M =
he
�1 � e
�1i� �e�4v + e�41 (T � 1)

Te�41e�4v
�
JNT

where � stands for the Hadamard product, i.e., an element-by-element mul-
tiplication. Z is the matrix of (NT � k�1) regressors. Under the null, the
covariance matrix is: e
 = e�21P + e�2vQ where P = IN 
 JT and Q =
IN 
 ET , see Baltagi (2005). P and Q are the Between and Within trans-
formations and ET = IT � JT while JT = JT=T . Under the null Hb

0,
this statistic is asymptotically distributed as �2 with (k�1) degrees of free-
dom. The LM statistic (10) is approximately equal4 to one half the ex-
plained sum of squares (ESS) from the arti�cial least squares regression of�h�e
�1eu�� �e
�1eu�i =�(e�21�e�2�)e�21e�2v

�
� �NT

�
on Z:

As a special case of this heteroskedasticity speci�cation, one may only
want the variance of vit to vary with i = 1; :::; N; so that �i � IID

�
0; �2�

�
while vit �

�
0; �2vi

�
: In this particular case, �2 � 0 and diag (hv (Zi�1)) is

replaced by hv (h0i�1) IT where h
0
i is a (1� k�1) vector of strictly exogenous

regressors. So, the covariance matrix 
i becomes:


i = �
2
vhv (h

0
i�1) IT + �

2
�JT , i = 1; :::; N

4This approximation of the LM statistic by one half of the ESS from the arti�cial
regression seems to perform well even when T is small and the di¤erence between the exact
formula and the approximation becomes negligible when T increases. Our simulations show
that this approximation does not a¤ect the size and power of the test signi�cantly.

6



Testing for homoskedasticity amounts to testing Hb
0; but the alternative is

now di¤erent. For this reason we call the null Hb
0

0 to distinguish this special
case from the more general alternative in Hb

0: The corresponding LM statistic
is given by:

LM�1=0 =
1

2a
S 0H (H 0H)

�1
H 0S (11)

where

a =
e�4v + e�41 (T � 1)e�41e�4v , H =

�
IN � JN

�
H and S =

�
1e�41S + 1e�4vS�

�
with S denoting an (N � 1) vector with typical element Si = eu0iJT eui and S�
denoting an (N � 1) vector with typical element S�i = eu0iET eui. The eui�s are
vectors of restricted ML residuals obtained from a one-way error component
model with no heteroskedasticity. H is the matrix of regressors (N � k�2)
with typical row h0i: Under the null, this statistic is asymptotically distributed
as �2 with (k�1) degrees of freedom. The LM statistic (11) is simply one half
the explained sum of squares (ESS) from the arti�cial least squares regression

of
�

1p
a
S � �N

�
on H:

3.3 Joint LM test

For the general heteroskedastic one-way error component model described
by equations (3)-(4), testing for homoskedasticity in this model amounts to
jointly testing:

Hc
0 : �1 = 0 and �2 = 0 j �2� > 0; �2v > 0

Under the null Hc
0, the variance-covariance matrix of ui is given by:


i = �
2
vIT + �

2
�JT = �

2
1JT + �

2
vET

see Baltagi (2005), where �21 =
�
T�2� + �

2
v

�
; ET = IT � JT and JT = JT=T:

The corresponding LM statistic is given by:

LM�1=0;�2=0 =
1

2
GZ (Z 0MZ)

�1
Z 0G0 (12)

+
1

2e�41GZ (Z 0MZ)�1 Z 0 (F 
 �T )
he�i�1 (F 0 
 �0T )Z (Z 0MZ)�1 Z 0G0

� Te�41GZ (Z 0MZ)�1 Z 0 (F 
 �T )
he�i�1 F 0S

+
T 2

2e�41S 0F
he�i�1 F 0S

7



where G, Z, M; F and S were de�ned above. Also,

Z = (INT � JNT )Z

and he�i�1 = �T 2 (F 0F )� 1e�41 (F 0 
 �0T )Z (Z 0MZ)�1 Z 0 (F 
 �T )
��1

Under the null Hc
0, this statistic is asymptotically distributed as �

2 with
(k�1 + k�2) degrees of freedom.
The expression (12) may be computationally cumbersome and the asso-

ciated arti�cial regression is not easy to obtain5. But, if one ignores the last
term in the expression for e�, one getshe�i�1 ' �T 2 (F 0F )��1
and, as the two middle terms of (12) tend to zero, as T gets large, the joint
LM test can be approximated by:

LM�1=0;�2=0 ' 1

2
GZ (Z 0MZ)

�1
Z 0G0 (13)

+
1

2e�41S 0F (F 0F )�1 F 0S
i.e., the joint LM test can be approximated by the sum of the two marginal
LM tests LM�1=0 and LM�2=0.
So, the joint LM test (12) is approximatively6 the sum of one half the ex-

plained sum of squares from the arti�cial least squares regressions of�
1e�21S � �N

�
on F and one half the explained sum of squares from the arti-

�cial least squares regression of
�h�e
�1eu�� �e
�1eu�i =�(e�21�e�2�)e�21e�2v

�
� �NT

�
on Z:

5We cannot derive arti�cial regressions a la Davidson and MacKinnon (1990, 2003) since
we cannot derive the jacobian of the variance-covariance matrix 
i when �2vit depends on
t. In that case, and as already shown by Mazodier and Trognon (1978, p. 456), both
characteristic roots and characteristic vectors of 
i do depend on the variances (the �2��s
and the �2vit�s) which are unknown. Moreover, this dependance is generally intricate, so
that it would not help much in that respect if we knew �2� and �

2
vit .

6This approximation performs well in our simulations even when T is small and im-
proves as T gets large. It does not change the size and power of the test signi�cantly.
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4 Monte Carlo results

The design of our Monte Carlo experiments follows closely that of Li and
Stengos (1994) and Roy (2002) for panel data, which in turn adapted it
from Rilstone (1991) and Delgado (1992) for cross-section data. Consider the
following simple regression model:

yit = �0 + �1xit + �i + vit , i = 1; :::; N , t = 1; :::; T (14)

where
xit = wi;t + 0:5wi;t�1 (15)

We generate wi;t as i:i:d U (0; 2) : The parameters �0 and �1 are assigned
values 5 and 0.5 respectively. We choose N = 50 and N = 200 and T = 5
and 10: For each xi; we generate T + 10 observations and drop the �rst ten
observations in order to reduce the dependency on initial values.

� Case 1: For the Roy (2002) set up, we generate vit as i:i:d N (0; �2v)
and �i � N

�
0; �2�i

�
where8<:
�2�i = �

2
�i
(xi:) = �

2
� (1 + ��xi:)

2

or
�2�i = �

2
�i
(xi:) = �

2
� exp (��xi:)

(16)

where xi: is the individual mean of xit: Denoting the expected variance
of �i by �2�i and following Roy (2002), we �x the expected total variance
�2 = �2�i + �

2
v = 8 to make it comparable across the di¤erent data

generating processes. We let �2v take the values 2 and 6. For each �xed
value of �2v; �� is assigned values 0, 1, 2 and 3 with �� = 0 denoting
the homoskedastic individual speci�c error. For a �xed value of �2v; we
obtain a value of �2�i = (8� �2v) and using a speci�c value of ��; we
get the corresponding value for �2� from (16). Of course, we can choose
a quadratic or an exponential heteroskedastic speci�cation for �2�i =
�2�h� (f

0
i�2) with h� (f

0
i�2) = (1 + ��xi:)

2 or h� (f 0i�2) = exp (��xi:) :
For case 1, the appropriate hypothesis to test is Ha

0 : �2 = 0 j �2� >
0; �2v > 0; �1 = 0:

� Case 2: For the Li and Stengos (1994) set up, we generate �i as i:i:d
N
�
0; �2�

�
and vit � N

�
0; �2vit

�
where8<: �2vit = �

2
vit
(xit) = �

2
v (1 + �vxit)

2

or
�2vit = �

2
vit
(xit) = �

2
v exp (�vxit)

(17)
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Denoting the expected variance of vit by �2vit and following Li and
Stengos (1994), we set the expected total variance �2 = �2�+�2vit = 8 to
make it comparable across the di¤erent data generating processes. We
let �2� take the values 2 and 6. For each �xed value of �

2
�; �v is assigned

values 0, 1, 2 and 3 with �v = 0 denoting the homoskedastic remainder
error term. For a �xed value of �2�; we obtain a value of �2vit = (8�
�2�) and using a speci�c value of �v; we get the corresponding value
for �2v from (17). Again, we can choose a quadratic or an exponential
heteroskedastic speci�cation for �2vit = �2vhv (z

0
it�1) with hv (z

0
it�1) =

(1 + �vxit)
2 or hv (z0it�1) = exp (�vxit) : For case 2, the appropriate

hypothesis to test is Hb
0 : �1 = 0 j �2� > 0; �2v > 0; �2 = 0.

� Case 3: For the special case where the variance of vit varies only with
i = 1; 2; ::; N , we generate �i as i:i:d N

�
0; �2�

�
and vit � N

�
0; �2vi

�
where 8<: �2vi = �

2
vi
(xi:) = �

2
v (1 + �vxi:)

2

or
�2vi = �

2
vi
(xi:) = �

2
v exp (�vxi:)

(18)

We let �2� take the values 2 and 6 and for each �xed value of �
2
�; �v is

assigned values 0, 1, 2 and 3 with �v = 0 denoting the homoskedastic
remainder error term. For a �xed value of �2�; we obtain a value of
�2vi = (8� �

2
�) and using a speci�c value of �v; we get the corresponding

value for �2v from (18). For case 3, the appropriate hypothesis to test
is Hb

0

0 : �1 = 0 j �2� > 0; �2v > 0; �2 = 0.

� Case 4: We generate �i � N
�
0; �2�i

�
and vit � N

�
0; �2vit

�
where

8>>>><>>>>:
�2�i = �

2
�i
(xi:) = �

2
� (1 + ��xi:)

2

�2vit = �
2
vit
(xit) = �

2
v (1 + �vxit)

2

or
�2�i = �

2
�i
(xi:) = �

2
� exp (��xi:)

�2vit = �
2
vit
(xit) = �

2
v exp (�vxit)

(19)

and we set the expected total variance �2 = �2�i + �
2
vit
= 8 to make it

comparable across the di¤erent data generating processes. We let �2�i
take the values 2 and 6. For each �xed value of �2�i ; �� is assigned values
0, 1, 2 and 3 with �� = 0 denoting the homoskedastic individual speci�c
error term. For a �xed value of �2�i ; we obtain a value of �

2
vit
= (8��2�i)

and using a speci�c value of ��; we get the corresponding value for
�2� from (19). Second, for each �xed value of �2�i , we obtain the
corresponding value for �2vit. �v is assigned values 0, 1, 2 and 3, with
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�v = 0 denoting the homoskedastic remainder error term. For a speci�c
value of �v; we get the corresponding value for �2v from (19). For case
4, the appropriate hypothesis to test is Hc

0 : �1 = 0 and �2 = 0 j
�2� > 0; �

2
v > 0.

For each replication, we compute the restricted one-way error component
MLE. Using the eu�s, i.e., the vectors of restricted ML residuals and e�2� ande�2v which are the corresponding restricted ML estimates of �2� and �2v, we
compute the marginal and joint LM tests derived above for Ha

0 , H
b
0, H

b
0

0 and
Hc
0. For each experiment, 5000 replications are performed and we obtain the

empirical size for each test at the 5% level.

[Put Table 1]

Table 1 reports the percentage of rejections of the null hypothesis based
on nominal critical values in 5000 replications at the 5% signi�cance level. We
�rst look at case 1, for (N; T ) = (50,5) and (E

h
�2�i

i
= �2�i = 6; E

�
�2vit
�
=

�2v = 2). This is the set up of Roy (2002) where homoskedasticity is assumed
on the remainder error term, i.e., �1 = 0. The parameter (��) determines
the degree of heteroskedasticity on the random individual speci�c e¤ect �i.
When we test the null hypothesis Ha

0 : �2 = 0 j �2� > 0; �2v > 0; �1 = 0,
we use the the marginal LM test de�ned in (9) and also derived by Holly
and Gardiol (2000). When there is no heteroskedasticity, i.e., �� = 0, we get
�2 = 0, and the null Ha

0 is true. Table 1 shows that the empirical size of this
test is not signi�cantly di¤erent from 5%. However, the power of this test
is poor especially for small �� and the quadratic form of heteroskedasticity.
For example, for a low degree of heteroskedasticity (�� = 1), the power is
24:1% for the quadratic type of heteroskedasticity and 33:6% for the expo-
nential type of heteroskedasticity. This power increases with the degree of
heteroskedasticity and for �� = 3; it yields 41% rejection of the null of ho-
moskedasticity for the quadratic form and 98:4% for the exponential form of
heteroskedasticity. The power for the exponential form of heteroskedasticity
is better than that of the quadratic case. Doubling the size of T from 5 to
10, does not help in improving the power of this test7. However, increas-
ing N from 50 to 200 improves the power drastically, see Fig. 1. For case
1, Ha

0 is the right test to perform, while testing for H
b
0 or H

b
0

0 is checking
for the wrong form of heteroskedasticity on the wrong error component. As
expected, the marginal tests derived in (10) and (11) yield a rejection rate
for the null between 4:6% and 5:6% for Hb

0 and for H
b
0

0 : In other words, the

7Table 2 showing results for T = 10 and N = 50; 200 can be obtained upon request
from the authors.
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power of these tests is close to the nominal size of 5%: If we interpret these
results as not rejecting a homoskedastic error component model, we reach
the wrong conclusion whenever �� is di¤erent from zero. If we perform the
joint LM test de�ned in (12) for Hc

0 : �1 = 0 and �2 = 0 j �2� > 0; �2v > 0
under case 1, the size is not signi�cantly di¤erent from 5% and the power is
a little lower than that of the right marginal test for Ha

0 de�ned in (9). Note
that, with the joint LM test, we are overtesting in case 1 and still performing
a close second to the preferred marginal LM test. For example, when �� = 3;
the joint LM test yield a rejection of the null in 31:8% for the quadratic form
of heteroskedasticity and 96% for the exponential form of heteroskedasticity.
These are below the 41% and 98:4% rejection rates reported above for the
marginal test de�ned in (9).

For case 2, for (N; T ) = (50,5) and
�
E
h
�2�i

i
= �2� = 6; E

�
�2vit
�
= �2vit = 2

�
;

this is the set up of Li and Stengos (1994) where homoskedasticity is assumed
on the individual error term, i.e., �2 = 0. The parameter (�v) determines the
degree of heteroskedasticity on the remainder error term vit. When we test
the null hypothesis Hb

0 : �1 = 0 j �2� > 0; �2v > 0; �2 = 0, we use the the
marginal LM test de�ned in (10). When there is no heteroskedasticity, i.e.,
�v = 0, we get �1 = 0, and the null Hb

0 is true. Table 1 shows that the em-
pirical size of this test is not signi�cantly di¤erent from 5%. Also, the power
of this test is excellent, yielding 99:4 to 100% rejection rates for �v 6= 0 for
the quadratic form as well as the exponential form of heteroskedasticity. For
case 2, testing Hb

0 is the right hypothesis test to perform, while testing for
Ha
0 is checking for the wrong form of heteroskedasticity on the wrong error

component. As expected, the marginal test derived in (9) yields a rejection
rate for the null between 4:1% and 4:7% for Ha

0 under the quadratic form of
heteroskedasticity and between 4:3% and 6:1% under the exponential form
of heteroskedasticity. In other words, the power of this test is close to the
nominal size of 5%, except when �2� = 2 and �v is larger than 2 for the
exponential form of heteroskedasticity. If we interpret these results as not
rejecting a homoskedastic error component model, we reach the wrong con-
clusion whenever �v is di¤erent from zero. If we perform the joint LM test
for Hc

0 : �1 = 0 and �2 = 0 j �2� > 0; �2v > 0 under case 2, the size is not sig-
ni�cantly di¤erent from 5% and the power is above 98:7%. Note that, with
the joint LM test, we are overtesting in case 2 and still performing about
the same as the preferred test (10). For case 2, the Monte Carlo design is
more in favor of the test in (10) for Hb

0 than the test in (11) for H
b
0

0 . The
latter test is still testing for heteroskedasticity in the remainder error form
but misspeci�es that it does not vary over time but only over individuals.
This test has empirical size that is not signi�cantly di¤erent from 5%. Its
power is good exceeding 78:8% for the quadratic form of heteroskedasticity
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and 90:3% for the exponential form of heteroskedasticity.
For case 3, for (N; T ) = (50,5) and

�
E
h
�2�i

i
= �2� = 6; E

�
�2vit
�
= �2vi = 2

�
.

This is the set up in line with the heteroskedastic form of Baltagi (1988) and
Wansbeek (1989) where homoskedasticity is assumed on the individual error
term, i.e., �2 = 0 just like case 2. However, unlike case 2, the parameter (�v)
determines the degree of heteroskedasticity on the remainder error term vit
which now varies only over i and not over t. In this case, vit � N

�
0; �2vi

�
.

The design is in �avor of testing the null hypothesis Hb
0

0 with the LM test
de�ned in (11). Table 1 shows that the empirical size of this test is 5:6% for
T = 5 and 5:2% for T = 10, so it is close to its nominal size (5%). However,
its power is good exceeding 83% for the quadratic form of heteroskedasticity
and 94% for the exponential form of heteroskedasticity. For case 3, testing
for Ha

0 is checking for the wrong form of heteroskedasticity on the wrong
error component. As expected, the marginal test derived in (9) yields a re-
jection rate for the null between 4:3% and 5:4% for Ha

0 under the quadratic
form of heteroskedasticity and between 4:3% and 7% under the exponential
form of heteroskedasticity. In other words, the power of this test is close
to the nominal size of 5%, except when �2� = 2 and �v is larger than 1. If
we interpret these results as not rejecting a homoskedastic error component
model, we reach the wrong conclusion whenever �v is di¤erent from zero. If
we perform the joint LM test for Hc

0 : �1 = 0 and �2 = 0 j �2� > 0; �2v > 0
under case 3, the size is not signi�cantly di¤erent from 5%. However, the
power is poor for the quadratic form of heteroskedasticity varying between
15% and 57%. The power is much higher for the exponential form of het-
eroskedasticity varying between 20% and 99:9%. Note that, with the joint
LM test, we are overtesting in case 3 and not performing as well as the pre-
ferred marginal test (11). For case 3, the Monte Carlo design is more in favor
of the test in (11) for Hb

0

0 than the test in (10) for H
b
0. The latter test is still

testing for heteroskedasticity in the remainder error form, but misspeci�es its
form, assuming that it varies over time and individuals when it only varies
over individuals. This test has empirical size not signi�cantly di¤erent from
the 5% level. Its power is low for the quadratic form of heteroskedasticity
varying between 19:8% and 68:4%, while it is better for the exponential form
of heteroskedasticity varying between 26:4% and 99:9%.
Table 1 also reports the percentage of rejections of the null hypothesis in

5000 replications at the 5% signi�cance level for case 4. This is the general
heteroskedastic set up of Lejeune (1996). The design is in favor of testing
the null hypothesis Hc

0 : �1 = 0 and �2 = 0 j �2� > 0; �2v > 0 with the

joint LM test de�ned by (12). For (N; T ) = (50,5) and (E
h
�2�i

i
= �2�i = 6;

E
�
�2vit
�
= �2vit = 2), the empirical size of this test is between 4:3% and 5:1%;
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so it is not signi�cantly di¤erent from the 5% level. Its power is excellent as
long as �v is di¤erent from zero. In fact, the power for �v > 0 always exceeds
98:7%. Low power occurs for �v = 0 and �� 6= 0: This power can be as low as
18% for �v = 0 and �� = 1 for the quadratic form of heteroskedasticity and
25:9% for the exponential form of heteroskedasticity. In general, the test has
more power under the exponential form of heteroskedasticity rather than the
quadratic form. The marginal LM tests are designed to test for heteroskedas-
ticity in one error component assuming homoskedasticity on the other error
component. Obviously, the design for case 4 is not in the marginal LM tests
favor if the other error component is heteroskedastic and this shows in Table
1. When �� = 0, but �v 6= 0, the marginal test for Ha

0 given by (9) yield
power between 4:1% and 5:1% for the quadratic form of heteroskedasticity
and between 4:3% and 6:1% for the exponential form of heteroskedasticity.
When �v = 0, but �� 6= 0, the marginal test for Hb

0 given by (10) and H
b
0

0

given by (11) yield power between 4:5% and 5:1% for the quadratic form of
heteroskedasticity and for the exponential form of heteroskedasticity.

[Put Fig. 1]

Fig. 1 replicates Table 1 for T = 5 and N = 200. Larger N is more
likely encountered in micro-panels. As clear from Fig. 1, the power of these
tests improves drastically as we increase N . However, it is still the case that
performing the wrong test for heteroskedasticity yields misleading results.

5 Conclusion

For the random error component model popular in panel data applications,
the researcher does not know whether heteroskedasticity is absent from both
error components or whether it is in one or both components. This paper
derived a joint as well as marginal LM tests for homoskedasticity against het-
eroskedasticity in one or both error components. Monte Carlo experiments
show that this joint LM test performs well when both error components are
heteroskedastic, and it performs second best when one of the components is
homoskedastic while the other is not. In contrast, the marginal LM tests per-
form best when heteroskedasticity is present in the right error component.
They yield misleading results if heteroskedasticity is present in the wrong
error component.
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 Table 1 – Size and power of joint and marginal LM tests - T=5, 5000 replications 
                 
 Quadratic heteroskedasticity Exponential heteroskedasticity 

 
aH0  bH0  '

0
bH  cH0  aH0  bH0  '

0
bH  cH0  

 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200
Case 1 µλ  [ ] [ ] 2,6 2222 ==== vvitii

EE σσσσ µµ  [ ] [ ] 2,6 2222 ==== vvitii
EE σσσσ µµ  

0 4.3 4.4 5.3 4.6 5.6 5.3 5.1 4.5 4.3 4.4 5.3 4.6 5.6 5.3 5.1 4.5
1 24.1 77.5 4.9 4.9 4.8 4.6 18.0 66.7 33.6 91.4 4.8 4.5 4.7 5.2 26.2 85.6
2 35.6 91.1 5.3 4.5 5.2 5.3 27.5 85.1 82.7 100.0 5.3 5.0 5.1 5.6 74.5 100.0
3 41.0 94.8 4.5 4.3 5.5 5.5 31.8 90.3 98.4 100.0 4.4 5.5 5.5 5.9 96.0 100.0
  [ ] [ ] 6,2 2222 ==== vvitii

EE σσσσ µµ  [ ] [ ] 6,2 2222 ==== vvitii
EE σσσσ µµ  

0 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1
1 12.8 43.1 4.9 5.4 4.8 5.8 10.2 34.1 17.5 61.5 5.1 5.8 5.0 6.5 13.8 51.5
2 18.0 59.4 5.7 5.2 5.0 6.9 14.4 48.2 50.0 98.2 5.8 7.3 5.9 12.4 41.4 96.6
3 20.6 67.8 4.7 5.1 5.5 7.6 15.9 57.7 73.9 99.9 5.7 10.0 8.3 21.5 65.0 99.9

Case 2 vλ  [ ] [ ] 2,6 2222 ====
ititi vvEE σσσσ µµ  [ ] [ ] 2,6 2222 ====

ititi vvEE σσσσ µµ  

0 4.3 4.5 5.3 4.6 5.6 5.3 5.1 4.5 4.3 4.4 5.3 4.6 5.6 5.3 5.1 4.5
1 4.1 5.1 99.4 100.0 78.8 100.0 98.7 100.0 4.3 5.8 99.9 100.0 90.3 100.0 99.8 100.0
2 4.7 5.6 100.0 100.0 91.5 100.0 99.9 100.0 5.3 7.4 100.0 100.0 99.8 100.0 100.0 100.0
3 4.7 5.9 100.0 100.0 94.4 100.0 100.0 100.0 6.1 9.4 100.0 100.0 99.9 100.0 100.0 100.0

  [ ] [ ] 6,2 2222 ====
ititi vvEE σσσσ µµ  [ ] [ ] 6,2 2222 ====

ititi vvEE σσσσ µµ  

0 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1
1 7.7 17.9 99.7 100.0 79.1 100.0 99.2 100.0 9.3 25.9 100.0 100.0 90.7 100.0 99.9 100.0
2 9.0 23.6 100.0 100.0 92.1 100.0 99.9 100.0 18.3 63.7 100.0 100.0 99.8 100.0 100.0 100.0
3 9.4 27.7 100.0 100.0 94.9 100.0 100.0 100.0 27.4 83.2 100.0 100.0 99.9 100.0 100.0 100.0

Case 3 vλ  [ ] [ ] 2,6 2222 ====
iiti vvEE σσσσ µµ  [ ] [ ] 2,6 2222 ====

iiti vvEE σσσσ µµ  

0 4.3 4.4 5.3 4.6 5.6 5.3 5.1 4.5 4.3 4.4 5.3 4.6 5.6 5.3 5.1 4.5
1 4.3 4.8 44.9 95.0 82.4 100.0 34.6 90.6 4.4 5.8 59.7 99.5 93.7 100.0 50.3 98.7
2 4.6 5.7 60.6 99.4 95.5 100.0 51.4 98.6 5.5 8.1 97.8 100.0 100.0 100.0 96.0 100.0
3 4.7 6.0 68.4 99.7 97.6 100.0 57.4 99.3 7.0 11.4 99.9 100.0 100.0 100.0 99.9 100.0

  [ ] [ ] 6,2 2222 ====
iiti vvEE σσσσ µµ  [ ] [ ] 6,2 2222 ====

iiti vvEE σσσσ µµ  

0 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1
1 7.7 18.9 42.5 93.9 83.3 100.0 34.2 89.7 9.5 27.1 56.5 99.2 94.1 100.0 49.0 98.5
2 9.8 26.4 58.5 99.0 95.7 100.0 49.6 98.3 23.6 72.3 97.2 100.0 100.0 100.0 95.5 100.0
3 10.1 30.8 65.6 99.6 98.0 100.0 55.8 99.1 40.4 93.4 99.9 100.0 100.0 100.0 99.9 100.0

 
 



Table 1 (continued) 
                  
  Quadratic heteroskedasticity Exponential heteroskedasticity 

  
aH0  bH0  '

0
bH  cH0  aH0  bH0  '

0
bH  cH0  

Case 4 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200 N=50 N=200

µλ  
vλ  [ ] [ ] 2,6 2222 ====

ititii vvEE σσσσ µµ  [ ] [ ] 2,6 2222 ====
ititii vvEE σσσσ µµ  

0 0 4.3 4.4 5.3 4.6 5.6 5.4 5.1 4.5 4.3 4.4 5.3 4.6 5.6 5.4 5.1 4.5
0 1 4.1 5.1 99.4 100.0 78.8 100.0 98.7 100.0 4.3 5.3 99.9 100.0 90.3 100.0 99.8 100.0
0 2 4.7 5.6 100.0 100.0 91.5 100.0 99.9 100.0 5.3 7.3 100.0 100.0 99.8 100.0 100.0 100.0
0 3 4.7 5.9 100.0 100.0 94.4 100.0 100.0 100.0 6.1 8.8 100.0 100.0 99.9 100.0 100.0 100.0
1 0 23.9 77.4 4.5 4.9 4.9 4.9 18.0 67.8 33.5 92.1 4.5 5.0 4.9 5.0 25.9 86.6
1 1 25.9 81.7 99.5 100.0 79.7 99.9 99.1 100.0 37.3 94.8 99.9 100.0 90.8 100.0 99.9 100.0
1 2 27.9 82.6 99.9 100.0 92.3 100.0 99.9 100.0 40.3 95.9 100.0 100.0 99.8 100.0 100.0 100.0
1 3 28.4 82.5 100.0 100.0 94.8 100.0 99.9 100.0 42.8 96.7 100.0 100.0 99.9 100.0 100.0 100.0
2 0 35.6 91.4 4.9 5.2 4.9 5.3 27.0 85.4 83.3 100.0 5.0 5.2 5.1 5.5 75.1 99.9
2 1 39.0 93.6 99.5 100.0 79.9 99.9 99.5 100.0 85.8 100.0 99.9 100.0 91.8 100.0 100.0 100.0
2 2 39.1 94.2 99.9 100.0 92.1 100.0 99.9 100.0 87.7 100.0 100.0 100.0 99.9 100.0 100.0 100.0
2 3 39.7 94.3 100.0 100.0 95.3 100.0 100.0 100.0 89.2 100.0 100.0 100.0 99.9 100.0 100.0 100.0
3 0 40.4 95.3 4.6 5.1 5.3 5.5 30.8 90.9 98.0 100.0 4.7 5.5 5.1 6.3 95.4 100.0
3 1 42.7 96.5 99.6 100.0 81.5 99.9 99.6 100.0 98.8 100.0 100.0 100.0 92.7 100.0 100.0 100.0
3 2 44.6 96.7 100.0 100.0 92.5 100.0 100.0 100.0 98.9 100.0 100.0 100.0 99.8 100.0 100.0 100.0
3 3 44.3 97.1 100.0 100.0 94.8 100.0 100.0 100.0 99.1 100.0 100.0 100.0 99.9 100.0 100.0 100.0

µλ  
vλ  [ ] [ ] 6,2 2222 ====

ititii vvEE σσσσ µµ  [ ] [ ] 6,2 2222 ====
ititii vvEE σσσσ µµ  

0 0 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1 4.6 4.8 5.2 4.9 5.5 5.1 4.6 5.1
0 1 7.7 17.9 99.7 100.0 79.1 100.0 99.2 100.0 9.3 25.9 100.0 100.0 90.7 100.0 99.9 100.0
0 2 9.0 23.6 100.0 100.0 92.1 100.0 99.9 100.0 18.3 63.7 100.0 100.0 99.8 100.0 100.0 100.0
0 3 9.3 27.7 100.0 100.0 94.9 100.0 100.0 100.0 27.4 83.2 100.0 100.0 99.9 100.0 100.0 100.0
1 0 12.4 43.7 4.8 5.1 4.9 6.5 9.8 34.6 17.2 62.2 4.9 5.4 5.1 7.2 13.6 51.5
1 1 25.5 80.5 99.8 100.0 83.6 100.0 99.5 100.0 36.1 94.2 100.0 100.0 92.9 100.0 99.9 100.0
1 2 29.9 86.3 100.0 100.0 94.0 100.0 100.0 100.0 54.4 99.4 100.0 100.0 99.9 100.0 100.0 100.0
1 3 31.8 88.4 100.0 100.0 95.9 100.0 100.0 100.0 63.4 99.9 100.0 100.0 99.9 100.0 100.0 100.0
2 0 18.5 60.2 5.0 5.9 5.6 6.6 14.4 49.5 50.3 98.3 5.3 7.9 6.9 12.7 40.8 96.5
2 1 33.5 89.8 99.9 100.0 84.3 100.0 99.7 100.0 72.6 100.0 99.9 100.0 95.4 100.0 100.0 100.0
2 2 37.1 93.8 100.0 100.0 94.5 100.0 100.0 100.0 84.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0
2 3 39.4 94.9 100.0 100.0 96.7 100.0 100.0 100.0 90.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3 0 20.0 66.9 5.2 5.9 5.3 7.5 15.5 56.2 74.1 99.9 6.2 10.7 8.1 22.2 65.6 99.9
3 1 36.5 93.8 99.8 100.0 86.1 100.0 99.7 100.0 89.7 100.0 100.0 100.0 96.4 100.0 100.0 100.0
3 2 40.5 95.8 100.0 100.0 94.7 100.0 100.0 100.0 95.8 100.0 100.0 100.0 99.9 100.0 100.0 100.0
3 3 43.0 96.4 100.0 100.0 96.6 100.0 100.0 100.0 97.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0



 Table 2 – Size and power of joint and marginal LM tests - N=50, T=10, 5000 replications 
                 
 Quadratic heteroskedasticity Exponential heteroskedasticity 

 
aH0  bH0  '

0
bH  cH0  aH0  bH0  '

0
bH  cH0  

                 
Case 1 µλ  [ ] [ ] 2,6 2222 ==== vvitii

EE σσσσ µµ  [ ] [ ] 2,6 2222 ==== vvitii
EE σσσσ µµ  

0  5.4 5.1 5.2 5.2 5.4 5.1 5.2 5.1
1  11.7 5.0 5.0 8.9 16.3 4.9 4.9 12.0
2  14.8 4.6 4.7 11.6 49.6 4.7 4.6 37.7
3  18.3 4.9 4.6 13.8 81.1 4.8 4.6 70.8
  [ ] [ ] 6,2 2222 ==== vvitii

EE σσσσ µµ  [ ] [ ] 6,2 2222 ==== vvitii
EE σσσσ µµ  

0  5.0 4.8 5.1 4.8 5.0 4.8 5.1 4.9
1  9.0 4.8 5.0 7.0 11.5 4.9 5.0 8.7
2  10.8 4.4 4.7 8.4 32.0 4.5 4.8 24.1
3  12.2 4.9 4.6 9.5 59.2 4.9 4.9 48.1

Case 2 vλ  [ ] [ ] 2,6 2222 ====
ititi vvEE σσσσ µµ  [ ] [ ] 2,6 2222 ====

ititi vvEE σσσσ µµ  

0  5.4 5.1 5.2 5.1 5.4 5.1 5.2 5.1
1  5.1 100.0 74.4 100.0 5.2 100.0 85.9 100.0
2  4.3 100.0 85.6 100.0 4.3 100.0 97.3 100.0
3  4.4 100.0 89.7 100.0 4.3 100.0 97.0 100.0

  [ ] [ ] 6,2 2222 ====
ititi vvEE σσσσ µµ  [ ] [ ] 6,2 2222 ====

ititi vvEE σσσσ µµ  

0  5.0 4.8 5.1 4.9 5.0 4.8 5.1 4.9
1  5.0 100.0 74.6 100.0 5.0 100.0 85.8 100.0
2  4.8 100.0 85.7 100.0 5.5 100.0 97.4 100.0
3  4.8 100.0 89.7 100.0 6.1 100.0 97.0 100.0

Case 3 vλ  [ ] [ ] 2,6 2222 ====
iiti vvEE σσσσ µµ  [ ] [ ] 2,6 2222 ====

iiti vvEE σσσσ µµ  

0  5.4 5.1 5.2 5.1 5.4 5.1 5.2 5.1
1  5.0 19.8 82.3 15.0 4.9 26.4 94.1 20.1
2  4.4 25.9 94.9 19.5 4.4 68.0 100.0 58.2
3  4.4 29.9 97.6 23.1 4.4 91.9 100.0 86.5

  [ ] [ ] 6,2 2222 ====
iiti vvEE σσσσ µµ  [ ] [ ] 6,2 2222 ====

iiti vvEE σσσσ µµ  

0  5.0 4.8 5.1 4.9 5.0 4.8 5.1 4.8
1  4.9 19.3 82.3 14.3 5.0 25.6 94.4 19.7
2  4.9 25.1 94.9 18.8 6.7 66.9 100.0 58.4
3  4.9 28.9 97.6 22.3 9.3 90.9 100.0 86.1

 
 



Table 2 (continued) 
                  
  Quadratic heteroskedasticity Exponential heteroskedasticity 

  
aH0  bH0  '

0
bH  cH0  aH0  bH0  '

0
bH  cH0  

Case 4                 

µλ  
vλ  [ ] [ ] 2,6 2222 ====

ititii vvEE σσσσ µµ  [ ] [ ] 2,6 2222 ====
ititii vvEE σσσσ µµ  

0 0  5.4 5.1 5.2 5.1  5.4 5.1 5.2 5.1
0 1  5.1 100.0 74.5 100.0  5.2 100.0 85.9 100.0
0 2  4.3 100.0 85.6 100.0  4.3 100.0 97.3 100.0
0 3  4.4 100.0 89.7 100.0  4.3 100.0 97.0 100.0
1 0  11.4 4.5 5.1 8.8  15.4 4.5 5.1 11.5
1 1  11.9 100.0 75.1 100.0  16.5 100.0 85.6 100.0
1 2  12.0 100.0 86.6 100.0  16.9 100.0 97.8 100.0
1 3  11.6 100.0 90.6 100.0  16.4 100.0 97.0 100.0
2 0  15.9 4.8 5.0 11.8  49.9 4.7 5.0 38.5
2 1  17.6 100.0 74.0 100.0  52.5 100.0 84.9 100.0
2 2  16.8 100.0 86.6 100.0  51.5 100.0 97.8 100.0
2 3  16.5 100.0 89.7 100.0  51.7 100.0 97.2 100.0
3 0  17.8 4.8 5.1 13.3  81.2 4.9 5.1 69.9   
3 1  19.8 100.0 75.7 100.0  83.4 100.0 86.6 100.0   
3 2  18.7 100.0 86.7 100.0  82.5 100.0 97.8 100.0   
3 3  18.5 100.0 90.1 100.0  82.3 100.0 97.4 100.0   

µλ  
vλ  [ ] [ ] 6,2 2222 ====

ititii vvEE σσσσ µµ  [ ] [ ] 6,2 2222 ====
ititii vvEE σσσσ µµ     

0 0  5.0 4.8 5.1 4.8  5.0 4.8 5.1 4.8   
0 1  5.0 100.0 74.6 100.0  5.0 100.0 85.8 100.0   
0 2  4.8 100.0 85.7 100.0  5.5 100.0 97.9 100.0   
0 3  4.8 100.0 89.7 100.0  6.1 100.0 97.0 100.0   
1 0  8.1 4.5 5.2 7.0  10.2 4.5 5.3 8.6   
1 1  11.2 100.0 76.9 100.0  15.6 100.0 86.9 100.0   
1 2  12.7 100.0 87.6 100.0  19.8 100.0 98.0 100.0   
1 3  12.1 100.0 91.1 100.0  21.9 100.0 97.2 100.0   
2 0  11.4 5.2 5.2 9.2  32.7 5.2 5.4 25.2   
2 1  15.6 100.0 76.1 100.0  43.5 100.0 86.9 100.0   
2 2  17.0 100.0 87.6 100.0  47.7 100.0 98.0 100.0   
2 3  15.9 100.0 90.6 100.0  50.4 100.0 97.4 100.0
3 0  12.1 4.8 5.2 9.5  59.2 4.8 5.5 47.4
3 1  18.1 100.0 77.8 100.0  70.0 100.0 89.7 100.0
3 2  17.4 100.0 88.0 100.0  73.2 100.0 98.3 100.0
3 3  17.8 100.0 90.9 100.0  75.7 100.0 97.7 100.0
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