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ESSAYS ON OPERATIONAL FLEXIBILITIES IN PRODUCTION PLANNING 

UNDER SUPPLY AND QUALITY UNCERTAINTY 

 

ABSTRACT 

This dissertation investigates the use of operational flexibilities in production 

planning in order to mitigate the negative effects of supply and quality uncertainty. 

Uncertainties in supply and quality are commonly experienced among agro-businesses, 

and in particular, in the wine industry. The goal of the dissertation is to provide 

prescriptive solutions in mitigating such risks from the lives of agricultural businesses. 

 

The first essay of the dissertation examines the impact of supply and quality 

uncertainty on the investment decisions made by winemakers who lease vineyard space 

to grow their own fruit. At the end of the growing season, the winemaker receives an 

uncertain amount of high- and low-quality grapes, due to varying growing conditions 

such as adverse weather conditions, diseases and natural disasters. High-quality grapes 

are used in the making of a high-end (reserve) wine, and low-quality grapes are used for 

the production of a low-end wine. In this study, we investigate the benefits of the 

downward substitution flexibility, where the winemaker uses its excess high-quality 

grapes for the production of its low-end wine. In addition, we examine the influence of, 

and the interrelationships between, three forms of operational flexibilities: downward 

substitution, price-setting, and fruit trading flexibilities.  

 



 

 

The second essay of the dissertation investigates the use of advance selling to 

mitigate quality risk in wine production. This essay examines the influence of quality 

uncertainty on winemakers’ decisions regarding the allocation of its wine for retail 

operations. Specifically, we study what proportion of the wine should be sold through 

regular distribution channels versus what proportion should be sold as “wine futures” in 

advance of bottling. Due to the intricacies of the production method, the quality of wine 

may vary from the moment aging begins in the barrel to the time it is bottled and sold to 

the general public. This study examines the use of wine futures, whereby a winemaker 

sells its wine while it is still in the barrel in order to reduce the quality rating risk at the 

time of distribution. Overall, wine futures not only allow the winemaker to pass on the 

quality rating risk established through expert tastings to consumers but also let them 

bring in cash for immediate reinvestment into the next vintage. 
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CHAPTER 1:  INTRODUCTION 

In this dissertation, we study the use of operational flexibilities to mitigate the 

negative effects of supply and quality uncertainty that are commonly experienced among 

agro-businesses, and in particular, in the wine industry.  

In the United States, the wine industry accounts for 8.4% of world wine production 

making the U.S. fourth largest wine producer in the world.1 While the ‘art of 

winemaking’ in the ‘new world’ has been refined to the point that rivaled that of the more 

established ‘old world’ wineries in France, winemakers still face factors that are beyond 

their control such as: natural disasters, variations in the climate, and diseases.  

This dissertation finds motivation from local wineries in the state of New York. The 

Finger Lakes region of upstate New York represents one of the fastest growing 

winemaking appellations in the United States and ranks second only to California in 

terms of wine production.2 In recent years, the popularity of wine from this region has 

increased dramatically due to the exposure it has received from the national media 

resulting from the high-quality wine that are being produced. One of the most popular 

wines in this region is the Pinot Noir Barrel Reserve by Heart and Hands Wine Company. 

While many critics believed that Pinot Noir grapes are too vulnerable in the harsh winters 

of the upstate New York, Heart and Hands Wine Company has managed to overcome this 

skepticism, and has produced a high-quality Pinot Noir wine that received many positive 

                                                 
1 Wine America – The National Association of American Wineries, reported that from July 2006 to June 
2007, 661,288,503 gallons of wine was produced in the US, making US the fourth largest wine 
producing country behind, Italy, France and Spain.  
2 Wine America – The National Association of American Wineries, reported that from July 2006 to June 

2007, California produced 589,632,004 gallons of wine, New York produced 28,551,434 gallons of wine 

and Washington produced 20,264,144 gallons of wine (Data from U.S. Tax and Trade Bureau). 
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accolades from influential wine critics, such as Eric Asimov of The New York Times. 

Heart and Hands Wine Company has been able to produce excellent wines due to its 

winemaking skills. We develop mathematical models to assist Heart and Hands Wine 

Company and other winemakers to succeed in business, and help them grow in a healthy 

and steady manner. These models are intended to help winemakers make challenging 

production decisions while facing uncertainty in supply and quality.   

This dissertation presents two essays that examine the use of supply chain 

managements tools and techniques to assist winemakers in making decisions under 

various forms of uncertainty. The first essay of this dissertation investigates the use of 

operational flexibilities to reduce the effect of supply and quality uncertainty. The second 

essay of this dissertation considers the use of advance selling in the form of wine futures 

that can be used to reduce quality risks, while maximizing revenue from wine production 

and sales.  

1.1 Overview of Essay 1 

This essay examines the interrelationships among three forms of operational 

flexibilities—downward substitution, price setting, and fruit trading—that are valuable to 

an agricultural firm, specifically to a winemaker, operating under supply and quality 

uncertainty. The firm initially leases farm space (i.e., vineyard) in order to grow its fruit 

(i.e., grapes) before the harvest season begins. At the end of the harvesting season, the 

firm obtains two grades of a fruit that are used in making two different end products of 

differing quality sold to two customer segments. High-quality fruit is used in making a 

high-end wine (typically referred to as premium or reserve wines) and low-quality fruit is 
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used in making a low-end wine. The high-grade fruit is downward substitutable—it can 

be used in the production of the low-quality end product. 

This study makes three sets of contributions to the field of supply chain planning 

under random supply and quality. First, it shows the interrelationships between the 

above-mentioned three forms of operational flexibilities. Contradicting the common 

notion, we show that pricing flexibility plays a complementary role to downward-

substitution flexibility, increasing its utilization beyond the levels of exogenous price 

models. Second, the study characterizes the impact of these flexibilities on the firm’s 

vineyard lease. The addition of fruit-trading flexibility reduces the amount of vineyard 

lease, however, the complementary behavior of pricing and downward substitution can 

create an incentive for a higher initial investment. Third, the essay demonstrates the 

influence of the variation in supply and quality and their correlation on the amount of 

vineyard lease, expected profit, expected amount and probability of downward 

substitution. For example, variation in quality does not influence the probability of fruit 

trading. The firm benefits most from downward substitution in the presence of limited 

supply variation and significant quality variation.  

1.2 Overview of Essay 2 

This essay examines the use of wine futures and advance selling as a form of 

operational flexibility to mitigate quality rating risk in wine production. At the end of a 

harvest season, the winemaker obtains a certain number of barrels of wine that can be 

produced for a particular vintage. Fine wine is generally aged in barrels for two years; 

during this aging period, the quality of wine can fluctuate depending on the quality of 
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grapes, the skills of the winemaker, the process used in wine making, and the aging 

conditions. After the first year of aging, expert reviewers (e.g., Robert Parker Jr., James 

Suckling, Eric Asimov) are invited to taste the wine while still in barrel. These experts 

generate the barrel rating for the wine. The barrel rating score provides an indication 

about the potential quality of this wine, and offers clues regarding whether it would be a 

success or a failure. At this point the winemaker must make two decisions: the percentage 

of its wine to be sold as futures and the price of wine futures. After one more year of 

aging, the wine is bottled, and the reviewers provide another review of the wine, and 

assign a bottle rating that influences the market price of the wine.  

Advance selling in the form of wine futures offers several benefits to the winemaker. 

It enables the firm to pass on the risk of holding inventory that is uncertain in value to the 

consumers. It also allows the firm to recuperate the monetary investment early in the 

production process. Advance selling comes with risks as well. If the bottle score 

appreciates beyond the barrel rating, the winemaker might lose the opportunity of 

collecting greater revenues and obtaining a higher overall profit in the future. 
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CHAPTER 2:  PRODUCTION PLANNING UNDER SUPPLY AND QUALITY UNCERTAINTY 

WITH TWO CUSTOMERS SEGMENTS AND DOWNWARD SUBSTITUTION 

2.1 Introduction 

This essay investigates the interactions between three forms of operational 

flexibility—downward-substitution, price-setting and fruit-trading flexibilities—for an 

agricultural firm that faces supply and quality uncertainty. Our work finds motivation 

from a boutique winery located in the State of New York, and is gaining popularity for its 

Pinot Noir wines among wine connoisseurs. The firm leases vineyard in order to grow its 

fruit. Leasing farm space is common among agricultural businesses (see Kazaz 2004, 

Şaşmaz and Bilgiç 2010, Kazaz and Webster 2011), particularly among wine producers. 

Unlike owning the land, leasing farm space is economical for an agro-business because it 

requires a smaller initial capital investment. As explained by an executive at one of the 

largest wine producers (and distributors) in the world, leasing farm space reduces the 

potential negative effects of supply and quality problems on the financial performance of 

the business. For example, when the firm obtains a smaller amount of crop, or 

experiences quality problems in its grapes, its return on equity is less affected. Thus, 

leasing farm space is less risky for the operating environment of the wine producer. 

We investigate the impact of quality uncertainty, which along with supply 

uncertainty, is one of the most common challenges faced by a winemaker. Specifically, 

we examine the decisions made by the winemaker who obtains two grades of fruit crops 

(grapes) at the end of a growing season: high-quality fruit and low-quality fruit. The 
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amount of these two grades of crops is uncertain for two reasons. First, supply 

uncertainty influences the overall amount of crop obtained, i.e., the sum of high-quality 

and low-quality crops is not known prior to the growing season. Second, quality 

uncertainty changes the proportion of high-quality vs. low-quality grades of fruit in the 

amount of total grape supply. Thus, we formulate the problem using two random 

variables: one variable represents the randomness in supply, corresponding to the random 

yield of the total crop, and another random variable represents the randomness in the 

proportion of high-quality versus low-quality grapes. We make no assumptions regarding 

the distribution of these two random variables. Moreover, we do not require these two 

random variables to be independent, and allow them to be correlated in our model. 

Quality uncertainty in the fruit supply creates a natural segmentation for the wine 

producer. At the beginning of each growing season, this firm leases vineyard to grow its 

grapes; for the winemaker motivating our problem, this would be Pinot Noir grapes. At 

the end of the growing season, the firm obtains two grades of fruit: high-quality and low-

quality grapes. The winemaker then produces two different types of end-product (wine). 

A premium wine is produced by using solely high-quality grapes, and is marketed 

towards a customer segment with a higher willingness to pay. We refer to this customer 

segment as the high-end market segment. One key characteristic of this market segment 

is that the price-elasticity of the demand function is significantly lower.3 A regular wine is 

produced for the general public, populated with similar products with a lower selling 

                                                 
3 Several factors contribute to the creation of high-end segment that has consumers with low price elasticity 

for this winery: recent wins at several blind-tasting competitions nationwide, a CBS Morning Show 

coverage for its outstanding Pinot Noir, a positive review from the second-most influential critic, Eric 

Asimov of the New York Times, and a book entitled “Summer in Glass” by Dawson (2011).    
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price. We describe these consumers as the low-end market segment. The regular wine for 

the low-end market is generally produced by using low-quality grapes.  

Our study investigates the influence of and the interrelationship between the 

following three forms of flexibilities that are present in the life of a winemaker: 

1. Downward substitution flexibility: The firm can use some of its high-quality 

grapes in the making of the low-end wine. The main emphasis of the essay is the 

use of downward substitution, and therefore, the study focuses on identifying the 

conditions under which the firm benefits from this flexibility. In the analysis, we 

report on the expected amount of high-quality crops used for the making of low-

end product as well as the probability of downward substitution. 

2. Pricing flexibility: The high-end customer segment exhibits a low price-elasticity 

in its demand function, and the firm determines its selling price for its premium 

wine sold in the high-end customer segment. Reserve wines are generally 

considered as premium products as they have unique tastes. For the high-end 

products such as reserve wines, winemakers can influence the demand by 

appropriately choosing the selling price. The firm does not have the same price-

setting flexibility for its regular wine targeted for the low-end market segment, 

which is populated with many similar products at a lower price level. We 

specifically examine the influence of the price-setting flexibility in the high-end 

segment on the downward-substitution flexibility. We compare our results from 

an endogenous price model with those developed under a model that uses 

exogenous prices. 
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3. Fruit-trading flexibility: The firm can purchase additional fruit from the open 

market, or sell its excess fruit in the open market. This implies that, in the event of 

low crop realizations, the firm can obtain additional high-quality and low-quality 

grapes from other growers. Alternatively, in the event of excess fruit supply, the 

firm can sell its high-quality and low-quality grapes in the open market.4 We 

consider the influence of the fruit-trading flexibility on the firm’s downward 

substitution decisions. 

The essay makes three sets of main contributions. First, we show the interactions 

between these three forms of flexibilities. While earlier research reports that pricing and 

downward-substitution flexibilities play a substitutable role, our study proves that these 

two flexibilities show a complementary behavior. Pricing encourages the firm to 

downward substitute a greater amount of its high-quality fruit and exercise it more often. 

Second, our study shows the impact of these three flexibilities on the firm’s choice of 

initial vineyard lease. While fruit-trading flexibility generally reduces the amount of 

vineyard lease, the pricing and downward substitution flexibilities can create an incentive 

for a larger initial investment. Third, the essay demonstrates the influence of the variance 

in supply and quality and the correlation between these two uncertainties on the firm’s 

initial vineyard lease investment, expected profits, expected amount and probability of 

downward substitution. We show that variation in quality does not influence the 

                                                 
4 Participating wineries help establish the fruit-trading costs through the support of the Cornell University 

Cooperative Extension prior to the growing season. For example, the 2010 fruit trading costs for popular 

grapes are established as follows: High-quality Riesling grapes can be purchased at $1900/ton, sold at 

$1100/ton, whereas low-quality Riesling grapes can be purchased at $1500/ton and sold at $700/ton; high-

quality Chardonnay grapes can be purchased at $1450/ton, sold at $1050/ton, and low-quality Chardonnay 

grapes can be purchased at $1200/ton, and sold at $900/ton; high-quality Cabernet Franc grapes can be 

purchased at $1500/ton, sold at $800/ton, and low-quality Cabernet Franc grapes can be purchased at 

$1200/ton, and sold at $750/ton . 
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probability of fruit trading, and that the firm benefits more from downward substitution 

under significant variation in quality and limited variation in supply. 

The essay is organized as follows: Section 2.2 presents a literature review. Section 2.3 

introduces the model. Section 2.4 examines the relationship between the downward 

substitution and fruit-trading flexibilities with exogenous prices in both market segments. 

Section 2.5 demonstrates the influence of the price-setting flexibility. Section 2.6 shows 

the impact of the three forms of operational flexibilities on vineyard lease. Section 2.7 

demonstrates the influence of quality and supply uncertainty and their correlation using 

numerical illustrations. Section 2.8 compares our model with price-setting in the high-end 

segment to previous literature that allows for price-setting in both segments. Section 2.9 

provides conclusions. All proofs are derivations are presented in the Appendix in Section 

2.10. 

2.2 Literature Review 

Earlier research in the area of production planning has given particular interest to 

solving the optimal production problem under supply uncertainty. Yano and Lee (1995) 

provide an extensive review on lot sizing problem with random yield. Gerchak et al. 

(1988) and Henig and Gerchak (1990) consider a periodic review production model with 

random yield and demand. They provide a detailed analysis of a single-period problem 

and show that the optimal production policy is not affected by yield variability.  

In addition to the above publications, many studies have focused on the notion of 

using pricing and production recourse to mitigate supply and demand uncertainty. Van 

Mieghem and Dada (1999), Petruzzi and Dada (1999), Dana and Petruzzi (2001), 
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Federgruen and Heching (1999, 2002) and Kocabıyıkoğlu and Popescu (2011) show that 

the producer uses production and pricing decisions to mitigate demand risk under 

deterministic supply. Furthermore, Van Mieghem and Dada (1999) demonstrate that, 

under postponed pricing, production postponement has little benefits to the producer.  

While many have studied the price-setting problem under demand uncertainty, few 

have investigated the problem under supply uncertainty. Li and Zheng (2006) is the first 

to consider the price-setting problem under supply uncertainty. They investigate a single-

product periodic-review model, where price is set at the beginning of each period, and 

excess demand is not lost, but backlogged. Tang and Yin (2007) also examine a firm’s 

pricing decisions under supply uncertainty, but limit the analysis to a linear demand 

function in a single market and a discrete uniform distribution representing random 

supply. Our study departs from these two studies in four ways: (1) our model features co-

production that leads to the making of two different end-products and market 

segmentation; (2) we incorporate quality uncertainty and emphasize downward 

substitution; (3) unlike the backlogged demand feature of Li and Zheng (2006), our 

formulation considers lost sales; and (4) we do not make restrictive assumptions 

regarding the demand function and distribution of uncertainty in our technical 

derivations. Moreover, we limit the firm’s ability to set price in one segment alone in 

order to reflect the real-world scenario of limited number of consumers with low price 

elasticity.  

In recent times, there has been an emergence of research that considers the option of 

utilizing a secondary source of supply that allows the firm to adjust its production level. 
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Jones et al. (2001) investigate the production planning decisions for the hybrid seed corn 

production under random yield and demand; they allow the firm to use an external supply 

source after the yield is realized. Kazaz (2004) extends this work by incorporating a 

yield-dependent cost and selling price in the olive oil industry. Kazaz and Webster (2011) 

incorporate the price-setting and the fruit-trading flexibilities under a yield-dependent 

cost structure. Our essay departs from these studies as it features: (1) a co-production 

system that leads to market segmentation, (2) quality uncertainty, and (3) downward 

substitution. 

There is a considerable amount of studies that investigate co-production systems. 

Bitran and Dasu (1992) investigate the ordering policies for multiple items with 

stochastic yield and substitutable demand using a dynamic programming formulation. 

Bitran and Gilbert (1994) extend this work by considering the production decisions in the 

semiconductor industry, and provide several practical heuristics with conditions for 

downward substitution decisions. Nahmias and Moinzadeh (1997) also investigate the 

problem of downward substitution of randomly-graded yield by formulating a continuous 

review EOQ-type model. Bassok et al. (1999) consider the production planning problem 

under downward-substitutable random demand in a single period. Their study shows that 

a greedy allocation policy is optimal, and demonstrates the conditions under which 

downward substitution is beneficial. Hsu and Bassok (1999) examine a similar problem 

by incorporating random yield. Their study shows that optimal solutions can be achieved 

by using several methods, and, computationally, the greedy algorithm is the most 

efficient solution approach. One main characteristic that is common among these works 
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in the area of co-production is that prices are exogenous. Moreover, they ignore the 

influence of a secondary source of supply. 

Other studies in the area of co-production include the work of Gerchak et al. (1996), 

which investigates a parallel production process, where one process produces randomly-

graded yield, while the other produces only low-grade yield. Ӧner and Bilgiç (2008) 

consider products that cannot be substituted, but extend the economic lot scheduling 

model to include uncontrolled co-production. Motivated from the beef industry, 

Boyabatli et al. (2011), study the procurement problem with fixed proportions 

technology, i.e., the proportion of high-quality vs. low-quality output is fixed. They 

characterize optimal sourcing strategies based on long-term contracts and procuring from 

the spot market. Boyabatli (2011) extends this study on fixed proportions technology and 

investigates the procurement problem with multiple quantity- flexible contracts, 

demonstrating the benefits of dual sourcing. This essay differs from these papers as it 

features pricing flexibility and random proportions.   

Beyond the realm of exogenous price, Bish and Wang (2004) investigate the joint 

quantity and price-setting problem under perfect supply and uncertain demand for two 

products, and show that the firm can benefit from investment in flexible resources. The 

closest match for our study is Tomlin and Wang (2008) who also examine the pricing and 

operational recourse in a co-production system. They show that the producer benefits 

more from adopting recourse pricing policy, i.e., delaying the pricing decision until after 

all uncertainty is realized, than from adopting a downward substitution policy. Our 
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current work studies a similar problem to Tomlin and Wang (2008), but differs from their 

work in the following ways:  

1. We study a production planning problem with co-production that allows for the 

utilization of the open market. We also investigate the impact of trading 

flexibilities on the optimal investment, downward substitution, and pricing 

decisions; 

2. Our work resembles the real-world scenario that the firm has the ability to set the 

selling price only in the high-end segment of the market as the consumers tend to 

be less sensitive to changes in price.  

3. Tomlin and Wang (2008) examine only the influence of quality uncertainty, 

whereas our study investigates the influence both supply and quality uncertainty, 

and shows the influence of both supply and quality variation on the optimal 

downward substitution and fruit trading decisions.  

4. We do not consider the problem of demand uncertainty as it has been shown in 

Tomlin and Wang (2008) that pricing and operational recourse dominate advance 

pricing and allocation decisions.  

2.3 Problem Definition and the Model 

This section presents the modeling approach used in the agricultural firm that experiences 

supply and quality uncertainty, and produces two different products to serve its two 

customer segments. The problem is formulated as a two-stage stochastic program. In the 

first stage, corresponding to the growing season, the firm determines the amount of farm 

space to be leased, denoted Q, at a unit cost of cl in order to maximize expected profit in 



 25 

the presence of supply and quality uncertainty. At the end of the growing season, the firm 

realizes two grades of fruit influenced by two separate random variables. Randomness in 

the total crop supply is represented with a stochastically proportional random variable u , 

and its realization is denoted with u defined on a support [ul, uh]. Randomness in quality 

refers to the proportion of high-grade versus low-grade fruit obtained from the leased 

farm space, and is described by a stochastically proportional variable  defined on a 

support [αl, αh], where α is the realized proportion of the high- uality fruit crop and (1     

α) is the proportion of low-quality fruit crop. Our model allows for correlation to exist 

between the supply and quality random variables as they follow a joint probability 

density function (pdf) g(u, α) and a cumulative distribution function (cdf) G(u, α). Thus, 

the first-stage objective function can be written as follows: 

    
0

max , ,l
Q

E Q c Q E PA Q u 


                                                       (2.1) 

where PA(Q, u ,α) is the optimal profit from the second stage given realizations u and α.  

At the end of the first stage (growing season), the firm collects two grades of fruit 

supply; the realized amount of high-quality fruit crop is Quα and the realized amount of 

low-quality fruit crop is Qu(1     α). Quality uncertainty creates this natural market 

segmentation for the winemaker where the firm produces two versions of the final 

product in order to serve two customer segments classified as high-end and low-end 

segments. A premium wine is produced from higher quality grapes, targeting a high-end 

customer segment that is less sensitive to the selling price. A regular wine is produced 

from the low-quality grapes, targeting a more price-sensitive low-end market segment. 

The pressing cost of high-quality fruit to obtain premium wine is defined as cpH and the 
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pressing cost of low-quality fruit to make regular wine as cpL. 

At the beginning of the second stage, the winemaker makes five sets of decisions: the 

optimal values of (1) the selling price of high-quality final product pH, (2) the amount 

fruit crop (realized supply of high- and low-quality fruit supply) to be used in the 

production of high- and low-quality final products, denoted qIH and qIL, respectively, (3) 

the amount of additional high- and low-quality fruit to be purchased from other growers 

in the open market denoted qBH and qBL, at unit costs of bH and bL, respectively, (4) the 

amount of high- and low-quality fruit supply to be sold in the open market without being 

converted to the final product denoted qSH and qSL¸at unit selling prices of sH and sL, 

respectively, and (5) the amount of high-quality fruit to be downward substituted for the 

production of low-end product, denoted w. It is important to note that the values of bH, sH, 

bL and sL are available to the firm prior to the growing season (see footnote 2). Due to the 

differences in fruit quality, we have sH > sL and bH > bL. In addition, bH > sH, and bL > sL, 

which reflects the fact that the firm cannot make profit from buying the fruit in the open 

market and immediately selling it in the same market (i.e., no arbitrage). As a 

consequence of the inequalities in open market buying and selling prices, we have the 

following constraints: 

qIH + qSH + w = Quα,           (2.2) 

                               qIL + qSL  = Qu(1     α).           (2.3) 

Constraint (2.2) states that realized high-quality fruit yield is  allocated among internal 

production, open market selling, and downward substitution (i.e., it is never more 

profitable to simply discard fruit rather than selling in the open market, and it is never 
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profitable to buy high-quality fruit for the purposes of downward substitution). Similarly, 

constraint (2.3) states that realized low-quality fruit yield is allocated among internal 

production and open market selling. 

The demand in each customer segment is represented by DH(pH) and DL, respectively. 

In the high-end customer segment, we assume that the demand is price-sensitive, and is 

decreasing in pH. We denote the inverse of demand function pH(DH), and assume that the 

revenue function in the high-end customer segment (i.e., pH(DH)DH)) is concave, i.e., 

2pH'(DH) + pH''(DH)DH ≤ 0. 

The second-stage problem can be described as maximizing profit from the production 

and sale of the two end products for a given realization of high- and low-quality fruit, 

Quα and Qu(1 – α), respectively.   

  PA(Q, u, )   =

    

 

  

 

, , , ,
, , , 0

min ,

max s.t. (2) & (3)
min ,H IH IL BH

BL SH SL

H IH BH H H

pH IH BH H BH H SH

p q q q
L IL BL Lq q q w

pL IL BL L BL L SL

p q q D p

c q q b q s q

p q q w D

c q q w b q s q



  
 

     
 

   
 

     

          

=
     

       , , , 0

min{ ( ), }

min{ , (1 )}

max
1H IH IL

IH H H

IL L

H pH H H H H H IH H

p q q w
L pL L L L L IL L L Hq D p Qu

q D Qu

w Qu

p c b D p b s q s Qu

p c b D b s q s Qu b s w












 



       
 

         

.    (2.4) 

We develop and analyze eleven variants of the problem in order to identify the 

interactions among the three forms of flexibility. We make the following assumption 

regarding profit margins. 
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A1: The firm makes profit from buying low-quality fruit, converting it into final product, 

and selling the final product, i.e., pL     cpL     bL > 0. Similarly, for models in which the 

high-end price is exogenous, pH     cpH     bH > 0. 

Table 2.1 provides the list of flexibilities included in each of these eleven models. 

 

Flexibility \ Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

Downward substitution  ●  ●  ●  ●  ●  

Fruit trading   ● ●   ● ●   ● 

Pricing in high-end     ● ● ● ● ● ● ● 

Pricing in low-end         ● ● ● 

Table 2.1. Flexibilities included in each of the eleven model variants. 

 

M1 does not feature any of the three flexibilities, and M8 is the model described in 

(2.1) – (2.4). M2 and M4 feature the downward substitution flexibility under exogenous 

prices, and M6 and M8 under the pricing flexibility in the high-end segment. M3 and M4 

feature the fruit-trading flexibility under exogenous prices, and M7 and M8 under the 

pricing flexibility in the high-end segment. M9, M10 and M11 are developed in Section 

2.8 in order to provide a comparison of the pricing flexibility present only in the high-end 

segment, representing the life of a winemaker, with the hypothetical scenario when the 

firm can set prices in both segments; M10 corresponds to the model of Tomlin and Wang 

(2008).  

Before proceeding with the analysis of the stochastic supply and quality problem 

presented in (2.1) – (2.4), we briefly examine the properties of the problem with 

deterministic supply and quality. In the deterministic variant of the problem, we replace 
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the supply random variable u  with its mean u  and the quality random variable  with 

its mean  . The firm leases Q units of farm space, and realizes high-quality crop yield of 

Qu and low-quality crop yield of (1 )Qu  . Eliminating the trading and downward 

substitution flexibilities, i.e., qBH = qSH = qBL = qSL = w = 0, the firm converts its entire 

crop to the final products. Assuming no demand restriction in the low-end segment, the 

selling price in the high-end clears the production, i.e., Qu = qIH  = DH(pH), and the firm 

converts its entire crop of the low-quality fruit to the low-end product to be sold in the 

low-end segment, i.e., (1 )Qu   = qIL = DL. Appendix B provides derivations for the 

optimal amount of farm space to be leased and the corresponding profit under 

deterministic supply and quality. The analysis leads to the following observations: (1) 

Expected profit under stochastic supply and quality is less than that of the deterministic 

supply and quality; (2) Closed-form expressions can be provided when a demand 

function is defined. When demand in each market segment is linear, for example, the 

optimal amount of farm space and the corresponding profit under stochastic supply and 

quality decreases in the coefficient of variation, denoted cv[uα].  

Under deterministic supply and quality, the firm engages in the lease opportunity only 

when the unit leasing cost is less than the expected fruit purchasing cost. 

Remark 2.1. a) If the unit cost of leasing is greater than or equal to the expected buying 

cost of high and low-quality fruit from other growers, i.e.,    1l H Lc b E u b E u      , 

then the firm relies solely on fruit purchasing and does not lease vineyard space (Q
*
 = 0). 

b) If the unit cost of leasing is smaller than or equal to the expected fruit selling revenue 

in the open market, i.e.,    1l H Lc s E u s E u      , then the firm leases as much as it 
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can because the optimal value of Q
*
 approaches infinity. c) If 

       1 1H L l H Ls E u s E u c b E u b E u               , then Q
*
 > 0 and is finite. 

Under stochastic supply and quality, however, the firm can invest in vineyard lease 

even if the expected cost of buying fruit is less than the unit cost of leasing. We next 

proceed with the analysis of stochastic supply and quality.  

2.4 Fruit-Trading Flexibility and Downward Substitution (with Exogenous Pricing) 

In this section, we treat price in both market segments as exogenous in order to 

identify the relationship between fruit-trading and downward substitution flexibilities in 

the presence of supply and quality uncertainty. This is accomplished with the comparison 

of M1 through M4.  

2.4.1 The Case of No Trading (Buying or Selling) of Fruit 

To create a benchmark for the benefits of additional flexibilities, we begin by 

investigating a classic production planning problem under supply and quality uncertainty, 

where the firm does not have the flexibility to downward substitute or trade once the fruit 

yield is realized (M1). We define the following regions of supply and quality random 

realizations for a given lease amount: 

R1(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : Quα > DH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : Quα > DH and Qu(1 – α)  DL}  

The firm converts its entire crop yield into the final product when the realized high- or 
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low-quality crop is less than their respective demand, i.e., when Quα ≤ DH or Qu(1     α) ≤ 

DL. This situation is represented by regions R1(Q)  and R2(Q) for the high-end fruit and 

R1(Q) and R3(Q)  for the low-end fruit. On the other hand, when the realized yield of 

high- or low-quality crop is high and is greater than the demand, i.e., Quα > DH or Qu(1     

α) > DL, the firm converts only the portion of the crop that would satisfy the demand to 

the final product; these are represented by regions R3(Q) and R4(Q)  for the high-end 

fruit and R2(Q)  and R4(Q) for the low-end fruit. 

Using the above definition of four regions of realized crop supply, the optimal 

second-stage decisions for M1 can be expressed as follows: 
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We next analyze M2, which adds downward substitution flexibility to M1. 

Downward substitution is beneficial only in region R3(Q) where the firm experiences an 

excess amount of high-quality fruit and an insufficient amount of low-quality fruit. We 

denote the shortage in the low-end as , i.e.,  

 = DL – Qu(1 – ),  

and divide region R3(Q) into the following sub-regions: 

R3a(Q) = {(u, α) : DH < Quα  DH +  and Qu(1 – α) < DL} 

R3b(Q) = {(u, α) : DH +  < Quα and Qu(1 – α) < DL} 

Region R3a(Q) represents a situation in which the excess yield of high-quality fruit is not 

sufficient to cover the shortages of the low-end final product and thus the firm converts 
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all the excess high-quality fruit into low-end final product, i.e., w
*
 = Quα     DH. Region 

R3b(Q)  represents the scenario in which there is a high yield realization of high-quality 

crop and thus the firm converts a portion of the remaining high-quality fruit to satisfy the 

demand of low-end final product, i.e., w
*
 =  = DL     Qu(1     α). Figure 2.1 illustrates the 

uses of the high-end fruit with the boundary between R3a and R3b at (DH + )/Q. 

Using the above four regions of realized crop supply, the optimal second-stage 

decisions for M2 are:  
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.   (2.5) 

2.4.2 Incorporating Fruit-Trading Flexibility (Buying qBH ,qBL ≥ 0 and Selling qSH,  

qSL ≥ 0) 

We next incorporate the flexibility for the firm to trade fruit in the open market 

without downward substitution, as featured in M3. In this scenario, it follows from 

assumption A1 that the firm buys fruit from the open market when the realized amount of 

internally grown fruit is less than the demand, i.e., qBH
* 

= DH – Quα ≥ 0 and qBL
*
 = DL – 

Qu(1– α) =  ≥ 0. Alternatively, when the realized amount of fruit crop exceeds the 

desired demand level, then the firm sells the unused crop in the open market, i.e., qSH
*
 = 

Quα – DH  ≥ 0 and qSL
*
 = Qu(1– α) – DL = – ≥ 0. Accordingly, the optimal second-stage 

decisions for M3 are:  
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Figure 2.1. Optimal downward substitution quantity under exogenous pricing.  

 

Next, we analyze M4 where the firm has both the flexibility to downward substitute 

and trade fruit in the open market. In this model, the downward substitution option is 

only viable when savings from the utilization of high-quality fruit crop in the making of 

the low-end product outweighs the selling price of high-quality crop in the open market, 

i.e., w
*
 > 0 if and only if sH  < bL. Otherwise, downward substitution does not occur as it 

is more beneficial for the firm to sell the excess crop in the open market. It is important to 
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note that sH < bL for the winemakers motivating our study (see popular grapes prices in 

footnote 2). Therefore, to investigate the benefit from downward substitution, for the 

remainder of this essay, we assume sH  < bL. The objective function in (2.4) can be 

rewritten as: 
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Similar to the case where there is no trading option, the firm benefits from downward 

substitution when the realization of high-quality crop is high and there is an insufficient 

amount of low-quality fruit. In region R3a(Q), the excess amount of high-quality crop is 

smaller than the shortage in the low-quality fruit, and thus, the firm benefits from 

downward substitution, i.e., w
*
 = Quα − DH, and saves (bL – sH)(Quα – DH) from 

purchasing additional low-quality fruit from the open market. On the other hand, in 

region R3b(Q), the supply of high-quality crop is sufficiently high to cover the shortage 

in the low-quality fruit; specifically, w
*
 = DL − Qu(1– α)  =  with a resulting savings of 

(bL – sH). Accordingly, the optimal second-stage decisions for M4 can be expressed as 

follows: 
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It is common wisdom that the introduction of an additional form of flexibility, as in 

the form of fruit-trading flexibility, would reduce the utilization of other forms of 

flexibility (e.g., downward substitution) present in the environment (e.g., Van Mieghem 

and Dada 1999, Jones et al. 2001, Kazaz 2004, and Tomlin and Wang 2008). However, 

as shown in the following proposition, the additional flexibility to trade fruit in the open 

market does not influence the probability of downward substitution and the expected 

amount of downward substitution. Thus, in the absence of the pricing flexibility, these 

two forms of flexibility neither present a substitutable role, nor play a complementary 

role to each other.   

Proposition 2.1. In the absence of pricing flexibility, for a given Q, the probability of 

downward substitution and the expected amount of downward substitution does not 

change with the additional flexibility of fruit-trading in the open market. 
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2.5. The Combination of Downward Substitution, Pricing, and Fruit-Trading 

Flexibilities  

In this section, we develop the structural properties of M5, M6, M7 and M8, where 

the firm has the pricing flexibility in the high-end segment.  

2.5.1 Price-Setting Flexibility in the High-End Segment and Downward Substitution 

We begin our analysis by assuming that the firm does not have the ability to acquire 

or sell fruit in the open market, or downward substitute its high-quality fruit for the 

production of its low-end product, which corresponds to M5, i.e. qBH = qSH = qBL = qSL = 

w = 0. Under the price-setting flexibility in the high-end market segment, the amount of 

high-quality fruit realization influences the pricing and quantity decisions. When the 

realized amount of high-quality fruit is high, the firm has the ability to set the profit-

maximizing price and convert only the amount of fruit that corresponds to the demand at 

the profit-maximizing price. On the other hand, when the high-quality fruit realization is 

limited, the firm converts all the realized supply into the final product and sells at the 

market clearing price. In the case of low-end product, the optimal production decision 

follows our analysis of the case presented in Section 2.4.1.  

In the following proposition, we define a threshold for the production amount in the 

high-end segment. The threshold, denoted TPH, is the optimal amount of high-end 

product to produce when there is no constraint on the supply of high-quality fruit. 

Proposition 2.2. The threshold for the amount of high-end product to be produced from 

the internal resource for M5 is  * *'H H pH H HTP p c D p     . 

We use the threshold amount to define the following regions of supply and quality 
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random realizations for a given lease amount and high-end selling price: 

R1(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : Quα > TPH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : Quα > TPH and Qu(1 – α)  DL}  

In regions R1(Q) and R2(Q), the firm sets the high-end price to clear the market, 

pH(Qu). In regions R3(Q) and R4(Q), the firm has excess supply of high-quality fruit 

and sets the high-end price to sell the threshold quantity. The optimal second-stage 

quantity decisions for M5 are  
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and the optimal high-end price is pH
*
 = pH(qIH

*
). 

We next investigate M6 which incorporates downward substitution in addition to the 

pricing flexibility in the high-end segment. The second-stage problem in M6 can be 

rewritten as:

 

  
  

   
 

 , , 0
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( , , ) max min
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IH H H
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H pH IH L pL IL
p q q

L ILq D p Qu

q D Qu

Qu q
PA Q u p c q p c q

D q













 

              
       

 

When Qu(1 – )  DL, which corresponds to regions R2(Q) and R4(Q) above, the 

low-end market has sufficient supply; there is no downward substitution and the optimal 

decisions that apply in R2(Q) and R4(Q) for M5 are also optimal for M6.  
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To consider the case of Qu(1 – ) < DL, we require a threshold quantity. Recall that 

TPH is the optimal high-end production quantity for M5 when there is no limit on high-

end supply. We similarly define a threshold production amount for M6. In particular,

D

HTP  denotes the optimal high-end production amount when high-quality fruit that is not 

used for high-end production gains unit profit pL – cPL through downward substitution. 

The threshold in the presence of downward substitution is smaller than the threshold 

without downward substitution. 

Proposition 2.3. The threshold for the amount of high-end product to be produced from 

the internal resource for M6 is     * *'D

H H pH L pL H H HTP p c p c D p TP      . 

 Recall that  = DL – Qu(1 – ) is the low-end shortage amount. We replace regions 

R1(Q) and R3(Q) with the following sub-regions: 

R1a(Q) = {(u, α) : Quα  D

HTP and Qu(1 – α) < DL} 

R1b(Q) = {(u, α) : D

HTP < Quα  D

HTP   and Qu(1 – α) < DL} 

R3a(Q) = {(u, α) : D

HTP  < Quα  TPH +  and Qu(1 – α) < DL} 

R3b(Q) = {(u, α) : TPH +  < Quα and Qu(1 – α) < DL} 

An interesting transition occurs between region R1b(Q) and R3a(Q). In region 

R1b(Q) the firm is able to produce the optimal high-end threshold quantity under 

downward substitution ( D

HTP ), then downward substitute the balance to satisfy a portion 

of the shortage in the low-end segment (). In region R3a(Q), the firm has more than 

enough to cover D

HTP  and the shortage . However, once the firm has allocated D

HTP  to 

high-end production and has downward substituted the quantity , the change in profit 
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associated with allocating more volume to the high end segment is positive, and thus the 

firm allocates the balance of high-quality fruit to high-end production (up to TPH; see 

Figure 2.2).5 Accordingly, the optimal second-stage quantity decisions for M6 are  

 
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   (2.7) 

and the optimal high-end price is pH
*
 = pH(qIH

*
). 

In order to assess the impact of pricing flexibility on downward substitution, we 

compare M6 where the firm is free to set the high-end product price with M2 where price 

is exogenous. To isolate the effect of pricing flexibility, we set the exogenous high-end 

product price to the price that maximizes the high-end product profit when the low-end is 

ignored, i.e., the exogenous high-end product price for M2 is pH = pH(TPH). The 

following proposition shows that pricing flexibility in the high-end segment leads to a 

higher probability of downward substitution and a higher expected amount of fruit 

utilized in the making of the low-end product.  

Proposition 2.4. For a given Q, the price-setting flexibility in the high-end segment 

increases the probability of downward substitution and the expected amount of fruit 

downward substituted.  

                                                 
5 This is the optimal allocation because, in the event that the total allocated to the high end is less than TPH, 

the firm would lose profit if a portion of the downward substitution amount is shifted to high-end 

production (follows from the definition of
D

HTP ). 
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Figure 2.2. Optimal downward substitution quantity under endogenous pricing.  

 

2.5.2 Price-Setting Flexibility in the High-End Segment and the Fruit-Trading 

Flexibility  

M7 features the fruit-trading flexibility in the presence of pricing flexibility in the 

high-end segment. We begin our analysis by analyzing the firm’s ability to buy and sell 

fruit in the open market independently. Similar to the exogenous model, the firm would 

benefit from buying additional fruit from the open market when the fruit supply of high- 

or low-quality crop is low. On the other hand, when the supply of the high- or low-quality 

fruit is high, the firm can use the open market to gain additional revenue from selling its 

excess fruit crop. It should be noted here that, because the firm does not set price in the 

low-end segment, the structural properties pertaining to this segment decisions remain the 

same with those developed under exogenous price. The following proposition establishes 

a threshold for selling high-quality fruit in the open market, denoted TSH , and another 
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threshold for buying high-quality fruit from the open market, denoted TBH .  

Proposition 2.5. The threshold for the amount of high-quality fruit to be sold in the open 

market is 

  * *'H H pH H H HTS p c s D p       

and the threshold for the amount of high-quality fruit to be purchased in the open market 

is 

 * *'H H pH H H H HTB p c b D p TS       . 

 When high-end fruit supply is below TBH, the firm purchases up to TBH in the open 

market. When high-end fruit supply is above TSH, the firm sells the excess in the open 

market. As noted above, the rules for open market buying and selling of low-quality fruit 

follow the rules for M3. This leads to six regions of supply and random quality random 

realizations (see Figure 2.3). 

R1(Q) = {(u, α) : Quα ≤ TBH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ TBH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : TBH < Quα ≤ TSH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : TBH < Quα ≤ TSH and Qu(1 – α)  DL}  

R5(Q) = {(u, α) : Quα > TSH and Qu(1 – α) < DL} 

R6(Q) = {(u, α) : Quα > TSH and Qu(1 – α)  DL}. 

Accordingly, the optimal second-stage quantity decisions for M7 are 
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and the optimal high-end price is pH
*
 = pH(qIH

*
 + qBH

*
). 

Proposition 2.6. For a given Q, the price-setting flexibility in the high-end segment 

decreases the probability of fruit trading and the expected amount of fruit trading.  

 

Figure 2.3. Different regions of u, α realization under endogenous pricing and trading in 

M7 (HQ in the figure refers to high-quality fruit and LQ refers to low-quality fruit). 

 

We next compare M7 and M3. To provide a fair comparison, we set the exogenous 

price of M3 in the high-end segment to be in the interval of pH(TBH) and pH(TSH). The 

following proposition shows that the firm engages in fruit trading less frequently in the 

presence of the price-setting flexibility in the high-end segment. The result indicates that 
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price-setting flexibility in the high-end segment and the fruit-trading flexibility play a 

substitutable role in the life of a winemaker. 

2.5.3 Price-Setting in the High-End Segment, Fruit-Trading and Downward-

Substitution Flexibilities 

M8, as presented in (2.1) – (2.4), features all three flexibilities: price-setting in the 

high-end segment, fruit-trading, and downward substitution. The second-stage objective 

function in (2.4) can be rewritten as:     
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When Qu(1 – )  DL, which corresponds to regions R2(Q), R4(Q), and R6(Q) 

above, the low-end market has sufficient supply; there is no downward substitution and 

the optimal decisions that apply in R2(Q), R4(Q), and R6(Q) for M7 are also optimal for 

M8.  

To consider the case of Qu(1 – ) < DL, we require a threshold quantity. Recall that 

D

HTP  is the optimal high-end production amount when high-quality fruit that is not used 

for high-end production gains unit profit pL – cPL through downward substitution. We 

similarly define a threshold production amount for M8. In particular, DT

HTP denotes the 

optimal high-end production amount when high-quality fruit that is not used for high-end 

production saves the open market purchase cost bL through downward substitution (the 

firm prefers to downward substitute over selling high-quality fruit in the open market 
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because sH < bL). The production threshold in the presence of downward substitution 

DT

HTP is smaller than the threshold without downward substitution (TSH). 

Proposition 2.7. The threshold for the amount of high-end product to be produced from 

the internal resource for M8 is 

    * *'DT

H H pH L H HTP p c b D p     < TPH,  

and  

 DT

H H H HTB TP TS TP   ,  

and 

D DT

H HTP TP . 

 Recall that  = DL – Qu(1 – ) is the low-end shortage amount. We replace regions 

R3(Q) and R5(Q) with the following sub-regions: 

R3a(Q) = {(u, α) : TBH < Quα ≤ DT

HTP and Qu(1 – α) < DL} 

R3b(Q) = {(u, α) : DT

HTP < Quα ≤ DT

HTP  and Qu(1 – α) < DL} 

R5a(Q) = {(u, α) : DT

HTP < Quα  TSH +  and Qu(1 – α) < DL} 

R5b(Q) = {(u, α) : Quα > TSH +  and Qu(1 – α) < DL} 

Similar to M5, an interesting transition occurs between region R3b(Q) and R5a(Q) 

(see Figure 2.4). In region R3b(Q) the firm is able to produce the optimal high-end 

threshold quantity under downward substitution with trading flexibility ( DT

HTP ), then 

downward substitute the balance to satisfy a portion of the shortage in the low-end 

segment (). In region R5a(Q), the firm has more than enough to cover DT

HTP  and the 
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shortage . However, once the firm has allocated DT

HTP to high-end production and has 

downward substituted the quantity , the change in profit associated with allocating more 

volume to the high end is positive, and thus the firm allocates the balance of high- quality 

fruit to high-end production. Accordingly, the optimal second-stage quantity decisions for 

M8 are  
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.    (2.8) 

and the optimal high-end price is pH
*
 = pH(qIH

*
 + qBH

*
). 

We next compare M4 and M8 in order to examine the effect of the price-setting 

flexibility on the two other flexibilities. Similar to the comparison between M2 and M6, 

we fix the selling price in the high-end segment for M4 to be equal to the profit 

maximizing price pH(TPH). The following proposition shows that in the presence of fruit-
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trading flexibility, pricing flexibility in the high-end segment leads to a higher probability 

of downward substitution and a higher expected amount of fruit utilized in the making of 

the low-end product. 

Proposition 2.8. For a given Q, the price-setting flexibility in the high-end segment 

increases the probability of downward substitution and the expected amount of fruit 

downward substituted. 

Recall that when a firm does not have pricing flexibility, fruit-trading and downward-

substitution flexibilities are neither complements nor substitutes (i.e., the amount and 

likelihood of downward substitution does not change when fruit-trading flexibility is 

introduced; see Proposition 2.2.1). To assess the relationship between fruit-trading and 

downward-substitution flexibilities in the presence of pricing flexibility in the high-end 

segment, we next compare M6 and M8. 

 

 

Figure 2.4. Optimal downward substitution quantity under endogenous pricing and fruit-

trading.  
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Proposition 2.9. a) For a given Q, in the presence of price-setting flexibility in the high-

end segment, the downward substitution threshold with fruit-trading flexibility is higher 

than the downward substitution threshold without fruit-trading flexibility; b) For a given 

Q, in the presence of the price-setting flexibility in the high-end segment, fruit-trading 

flexibility decreases the probability of downward substitution and the expected amount of 

fruit downward substituted. 

The above proposition shows that the winemaker benefits more from downward 

substitution in the absence of fruit-trading flexibility. Because the firm engages in 

downward substitution at an earlier realization of high-quality fruit in the absence of 

fruit-trading flexibility, it experiences a higher probability of downward substitution and 

utilizes a greater (expected) amount of grapes for downward substitution. Furthermore, 

the above proposition shows that with the presence of the price-setting flexibility, fruit-

trading and downward-substitution flexibility play a substitutable role. This result 

contradicts the earlier finding in the absence of the price-setting flexibility. Proposition 

2.1 has shown that the fruit-trading flexibility does not influence the probability of 

downward substitution and the expected amount of downward substitution in the absence 

of price-setting flexibility. However, when the price-setting flexibility is included in the 

high-end segment, Proposition 2.9 shows that fruit trading and downward substitution 

flexibilities play a substitutable role. 

Figure 2.5 provides a summary of the relationship between the three forms of 

flexibilities presented in this study. From Figure 2.5, and our analysis in this section, it is 

clear that price-setting flexibility in the high-end segment and downward substitution 
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flexibility play a complementary role with or without the fruit-trading flexibility. Our 

study proves that the winemaker benefits more by engaging in downward substitution at 

an earlier high-quality crop realization in the presence of the price-setting flexibility. In 

Section 2.8, we compare our model to a model that allows for price setting in both market 

segments, and analytically demonstrate its effect on downward substitution.  

 

 

Figure 2.5. The relationship between downward-substitution, fruit-trading and price-

setting flexibilities. 

2.5.4 The Impact of Quality and Supply Uncertainty 

This section investigates the impact of increasing variance in supply or quality 

uncertainty on the probability of downward substitution and fruit trading. We begin our 

discussion with downward substitution. Proposition 2.8 has established that price-setting 

flexibility increases the likelihood of downward substitution. In order for the firm to 

engage in downward substitution, the high-quality fruit realization has to be greater than 
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DH in models M2 and M4, TPH
D
 in M6, and TPH

DT
 in M8. Let us denote TDSj the 

threshold point for downward substitution in model j {M2, M4, M6, M8}. The 

following proposition describes how the probability of downward substitution changes 

with increasing variance in either u  or  when the other random variable is fixed at its 

mean. The proposition applies to any probability distribution that can be standardized, 

i.e., random variable X with mean  and standard deviation  can be written as X =  + 

Z where Z is the corresponding standardized random variable with mean 0 and standard 

deviation 1. The class of distributions that can be standardized includes distributions such 

as normal (standardized pdf = (z) =
20.51

2

ze



, z  (-, )), truncated normal 

(standardized pdf = (z) =  
20.51

/
2

a

z

a

e z dz






 , z  [-a, a]), and uniform (standardized 

pdf = (z) =
1

2 3
, z  3, 3 

 
). We let u and  denote the standard deviation of u  

and  , respectively. 

Proposition 2.10. For a probability distribution that can be standardized: a) When u 

= = 0, u > TDSj/Q, and  1u  < DL/Q for j {M2, M4, M6, M8}, the probability 

of downward substitution is equal to 1, and the probability of downward substitution is 

non-increasing in u (with  = 0) and in (with u = 0). b) When u = = 0, u < 

TDSj/Q or  1u  > DL/Q for j {M2, M4, M6, M8}, the probability of downward 

substitution is equal to 0, and the probability of downward substitution is non-decreasing 

in  (with u = 0). 
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Let us denote the probability that the firm engages in fruit trading as P(FT > 0) when 

at least one of the four decision variables related with fruit trading qBH, qSH, qBL, or qSL 

takes a positive value. It is important to remind that, when quality uncertainty is ignored 

as in earlier publications (e.g. Kazaz 2004, Kazaz and Webster 2011), the firm does not 

engage in fruit trading with probability 1 under significant supply uncertainty. 

Considering the high-end fruit as the only product in the model, this means that fruit 

trading does not occur when TBH < Qu  < TSH; and, when the supply random variable 

shows significant variation, it is clear that 0 < P(FT > 0) < 1. However, as shown in the 

following proposition, fruit trading occurs with probability 1, i.e., P(FT > 0) = 1 in M3, 

M4, and M7. Thus, the probability of fruit trading is not influenced by supply and quality 

variance. In the case of M3 and M4, this result is a consequence of the lack of price-

setting flexibility, whereas in M7, the result is due to the lack of downward substitution 

flexibility. In M8, which includes both pricing and downward substitution flexibilities, 

changes in supply variation can affect the probability of fruit trading. However, the 

probability of fruit trading is unaffected by changes in quality variation.  

Proposition 2.11. a) In M3, M4, and M7, the probability of fruit trading always equals 

1; b) For a probability distribution that can be standardized: In M8, when u = 0 and 

(TPH
DT

 + DL)/Q < u < (TSH + DL)/Q, the probability of fruit trading is 0, and its value is 

non-decreasing in u.   

2.6 Impact of Flexibilities on Vineyard Lease  

This section analyzes the firm’s vineyard lease investment decisions. Incorporating 

the optimal second-stage decisions developed in Section 2.5 into the first-stage objective 
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function, we first prove the concavity of the objective function of all models under supply 

and quality uncertainty; thus, each model has a unique optimal solution for its vineyard 

lease quantity that can be obtained from the first-order condition. 

Proposition 2.12. The first-stage objective functions in M1 through M8 are concave in 

Q.  

The following remark shows that uncertainty in supply and quality reduces the 

expected profit, but the addition of flexibilities increase the expected profit.  

Remark 2.2. 
 

 

* * *

2 3 4
* * *

1 8
* * *

5 6 7

,

,

M M M

M M d

M M M

E E E
E E

E E E

               
           

               

 where Π d
*
 

and E[Πj
*
] are the optimal profit under deterministic and stochastic supply and quality, 

respectively.   

We next present the analysis regarding how the initial vineyard lease investment 

decision, denoted Qj
*
 for each model j = M1, …, M8, varies with the introduction of 

different flexibilities. We begin our discussion with the inclusion of the fruit-trading 

flexibility. 

Proposition 2.13. For any model with fruit-trading flexibility (i.e., j  {M3, M4, M7, 

M8}),  

* * * *

0,  0,  0,  0
j j j j

H L H L

Q Q Q Q

b b s s

   
   

   
. 

The above proposition implies that the introduction of fruit-trading flexibility on the 

optimal vineyard lease is ambiguous. The reason is that a model without fruit-trading 

flexibility is equivalent to a model with fruit-trading flexibility but with a very high 
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buying cost and a very low selling cost (i.e., not optimal to buy or sell in the open 

market). Thus, the introduction of fruit-trading flexibility can be viewed as a decrease in 

the buying cost, which puts downward pressure on the optimal vineyard lease, and an 

increase in the selling price, which puts upward pressure on the optimal vineyard lease. 

Depending on problem parameters, the optimal vineyard lease could increase or decrease 

when the fruit-trading flexibility is introduced. However, if the salvage values of excess 

fruit are sufficiently high, then it follows from Proposition 2.13 that the introduction of 

fruit-trading flexibility reduces the optimal lease. 

Corollary 2.1. If in models without fruit-trading flexibility (i.e., M1, M2, M5, M7), the 

firm is able to salvage excess high-quality fruit at sH and low-quality fruit at sL, then the 

flexibility to buy fruit in the open market reduces the optimal lease, i.e., QM3
*
 < QM1

*
, 

QM4
*
 < QM2

*
, QM7

*
 < QM5

*
, QM8

*
 < QM6

*
. 

The value gained from fruit trading decreases in the spread (or difference) between 

the buying cost and selling revenue from the open market, denoted δH and δL for the high-

quality and low-quality fruit, respectively. Let us define mH and mL as reference prices, 

where sH = mH – δH /2, bH = mH + δH /2, sL = mL – δL /2, and bL = mL + δL /2.  

Remark 2.3. The optimal expected profit is decreasing in δH and δL in all models that 

feature fruit-trading flexibility, i.e., M3, M4, M7 and M8.  

The above remark shows that the value from fruit trading diminishes with increasing 

spread between the buying cost of fruit and selling revenue from the fruit in the open 

market. The result follows from the fact that, at the optimal decision, a decrease in spread 

H or L will increase expected profit with no change in the decision variables (due to 
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lower buying and high selling prices). And profit increases further when decisions are re-

optimized at the new lower spread. 

While the inclusion of the fruit-trading flexibility decreases the vineyard lease when 

the firm can salvage its excess fruit at the open market price, the introduction of 

downward substitution can both increase and decrease the optimal vineyard lease. We 

next consider the impact of pricing flexibility in the high-end segment on vineyard lease. 

In order to have a fair comparison of the exogenous and endogenous price models, we set 

the exogenous price in the high-end market in M1 to pH(TPH). And for M3, which 

includes fruit trading flexibility, we consider the cases of exogenous price in high-end 

market at the buying and selling thresholds pH(TBH) and pH(TSH). In the presence of the 

fruit-trading flexibility, the following proposition states that the introduction of pricing 

flexibility decreases the optimal vineyard lease when the exogenous price is relatively 

low (i.e., at pH(TSH)), and increases the optimal vineyard lease when the exogenous price 

is relatively high (i.e., at pH(TBH)). In the absence of fruit-trading flexibility, the 

directional effect is ambiguous. However, the introduction of pricing flexibility decreases 

the optimal vineyard lease under the special case of linear demand and uniform demand.  

Proposition 2.14. a) When the exogenous price in the high-end segment in M3 is equal to 

pH(TBH), pricing flexibility increases vineyard lease in the presence of fruit-trading 

flexibility, i.e., QM7
*
 > QM3

*
; b) When the exogenous price in the high-end segment in M3 

is equal to pH(TSH), pricing flexibility decreases vineyard lease in the presence of fruit-

trading flexibility, i.e., QM7
*
 < QM3

*
; c) When exogenous price in the high-end segment in 
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M1 is pH(TPH), pricing flexibility reduces vineyard lease in the absence of fruit-trading 

flexibility, QM5
*
 < QM1

*
, under linear demand and uniform distribution.  

The consequence of the above proposition is that, when compared to the exogenous 

price models, the pricing flexibility generally reduces the firm’s vineyard lease 

investment regardless of the presence of the fruit-trading flexibility. However, when the 

exogenous price is high, and thus, the high-end demand is low, the addition of the pricing 

flexibility leads to an increase in the optimal vineyard lease decision.  

Like the pricing flexibility, the inclusion of the downward substitution flexibility does 

not generate a definitive directional effect for an arbitrary pdf defining the randomness in 

supply and quality. Recall that Proposition 2.4 has shown that downward substitution and 

pricing flexibilities can play a complementary role, and can create the incentive for the 

firm to make a higher initial investment, despite the fact that the firm downward 

substitutes more units with higher probability. Thus, their combined effect is not 

unidirectional. Therefore, we next present numerical illustrations that demonstrate their 

influence.   

2.7 Numerical Illustrations 

This section presents numerical illustrations that demonstrate how quality and supply 

uncertainty, and their correlation, influence optimal vineyard lease, associated expected 

profit, expected amount of high-quality fruit downward substituted, and the probability of 

downward substitution in various models. We use the following cost parameters: cl = 10, 

cH = 20, cL = 15, bH = 50, bL = 45, sH = 18, sL = 13. We consider linear demand functions 

DH(pH) = 100,000 − 200pH and DL = 120,000 − 300pL, which represent the demand 
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characteristics in the wine industry: (1) the market size for high-end segment is lower 

than that of the low-end segment, and (2) consumers’ price sensitivity is higher in the 

low-end segment. Given these parameters, we first establish the profit-maximizing price 

and quantity in each segment in Table 2.2.  

 

 

No Trading Trading 

 

*

Hp  HTP  * ( )H Hp TS  HTB  * ( )H Hp TS  HTS  

No Downward substitution 260 48,000 285 43,000 269 46,200 

Downward substitution 356.25 28,750 - - 282.5 43,500 

Table 2.2. Profit-maximizing price and demand. 

 

We use the profit-maximizing price as the exogenous price for the high-end segment 

in M1 – M4, and in the low-end segment in M1 – M8, i.e., pH = 260, pL = 207.5, DH(pH) = 

48,000 and DL = 57,750. Table 2.3 provides the comprehensive list of computational 

results, and reports the optimal vineyard lease, expected profit, expected amount of 

downward substitution (denoted E[w
*
]), and the probability of downward substation 

(denoted P(w
*
 > 0)) in each model for various levels of supply and quality uncertainty.  

Numerical illustrations confirm our earlier analytical results: (1) price-setting and 

downward substitution flexibilities play a complementary role; (2) fruit trading plays a 

substitutable role with pricing and downward substitution flexibilities; (3) fruit-trading 

flexibility reduces the optimal vineyard lease, and specifically, we have QM4
*
 < {QM1

*
, 

QM2
*
, QM3

*
}, QM3

*
 < QM1

*
, QM7

*
 < QM5

*
; (4) pricing flexibility decreases the optimal 
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vineyard lease, i.e., QM5
*
 < QM1

 *
, QM6

*
 < QM2

 *
, QM7

*
 < QM3

 *
, and QM8

*
 < QM4

 *
; (5) 

vineyard lease when all flexibilities are present (M8) is not always smaller than M6 that 

features pricing and downward substitution flexibilities; indeed, for lower supply 

variations QM6
*
 < QM8

*
, and for higher supply variations QM8

*
 < QM6

 *
. 

Because our numerical illustrations support our earlier analytical results, the 

following discussion emphasizes the impact of supply and quality uncertainty on the 

three flexibilities. Focusing on the percentage change in the expected profit when a 

flexibility is added into the model, our numerical illustrations demonstrate that the 

inclusion of price-setting and downward substitution flexibilities provides the biggest 

impact. In the absence of fruit-trading flexibility, downward substitution can increase 

expected profit of a winemaker by as much 9.82% in the presence of pricing flexibility in 

the high-end segment. The results also demonstrate that downward substitution is most 

beneficial under high quality variation and limited supply variation, i.e., when α and u are 

uniformly distributed in [0.1, 0.9] and [0.4, 0.6], respectively. However, the impact of 

downward substitution is significantly reduced under the following conditions: (1) in the 

presence of fruit-trading flexibility due to the substitutable role these two flexibilities 

play, and (2) under limited quality and significant supply variances. We next summarize 

the findings regarding the impact of quality and supply variations, and their correlation in 

these numerical illustrations.  
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Table 2.3. Summary of numerical results for M1-M8 correlation (expected profits are in 10
6
). 

Supply Quality

Uncertainty Uncertainty

u ~ Uniform α ~ Uniform Q* E[Π(Q*)] Q* E[Π(Q*)] E[w*] P(w* > 0) Q* E[Π(Q*)] Q* E[Π(Q*)] E[w*] P(w* > 0)

[0.4, 0.6] [0.4, 0.6] 266039 19.734 250060 20.041 1862.80 0.329 256056 20.387 245356 20.437 2025.41 0.358

[0.4, 0.6] [0.3, 0.7] 299466 19.229 257878 19.775 3926.24 0.383 279930 20.289 251444 20.386 4278.67 0.408

[0.4, 0.6] [0.2, 0.8] 342514 18.394 262937 19.243 6559.12 0.409 303179 20.139 254316 20.298 7051.54 0.431

[0.4, 0.6] [0.1, 0.9] 365217 17.175 262583 18.585 9692.22 0.432 305490 19.948 252703 20.196 10172.70 0.452

[0.3, 0.7] [0.4, 0.6] 299466 19.229 294555 19.417 988.94 0.184 279930 20.289 277164 20.318 1068.34 0.205

[0.3, 0.7] [0.3, 0.7] 316438 18.840 298625 19.269 2361.83 0.249 290786 20.220 280129 20.290 2634.59 0.284

[0.3, 0.7] [0.2, 0.8] 350153 18.133 309323 18.915 4541.68 0.314 309902 20.094 286630 20.225 5064.75 0.347

[0.3, 0.7] [0.1, 0.9] 373316 16.991 313027 18.313 7549.73 0.356 312265 19.915 285902 20.129 8130.12 0.386

[0.2, 0.8] [0.4, 0.6] 342514 18.394 339272 18.506 582.40 0.113 303179 20.139 300514 20.157 657.52 0.127

[0.2, 0.8] [0.3, 0.7] 350153 18.133 341902 18.415 1485.05 0.168 309902 20.094 303160 20.139 1674.84 0.190

[0.2, 0.8] [0.2, 0.8] 368661 17.605 348889 18.186 3114.29 0.240 323151 20.003 309405 20.096 3508.84 0.271

[0.2, 0.8] [0.1, 0.9] 389889 16.615 356783 17.698 5808.04 0.300 326128 19.847 310622 20.015 6290.59 0.327

[0.1, 0.9] [0.4, 0.6] 365217 17.175 361760 17.253 409.65 0.079 305490 19.948 302805 19.961 489.41 0.095

[0.1, 0.9] [0.3, 0.7] 373316 16.991 364564 17.190 1044.56 0.118 312265 19.915 305472 19.948 1246.62 0.141

[0.1, 0.9] [0.2, 0.8] 389889 16.615 371673 17.028 2200.97 0.173 326128 19.847 311991 19.916 2621.92 0.206

[0.1, 0.9] [0.1, 0.9] 415045 15.842 384136 16.657 4364.64 0.239 336172 19.718 317351 19.850 4957.05 0.264

Supply Quality

Uncertainty Uncertainty

u ~ Uniform α ~ Uniform Q* E[Π(Q*)] Q* E[Π(Q*)] E[w*] P(w* > 0) Q* E[Π(Q*)] Q* E[Π(Q*)] E[w*] P(w* > 0)

[0.4, 0.6] [0.4, 0.6] 261799 19.750 227655 20.241 4269.96 0.562 252563 20.407 240386 20.465 2660.53 0.421

[0.4, 0.6] [0.3, 0.7] 284633 19.312 229519 20.149 6420.86 0.525 272992 20.316 244867 20.426 4900.48 0.443

[0.4, 0.6] [0.2, 0.8] 310476 18.641 234270 19.873 8705.33 0.500 294617 20.176 248319 20.348 7555.72 0.452

[0.4, 0.6] [0.1, 0.9] 330083 17.650 237493 19.383 11316.70 0.491 296863 19.993 247235 20.252 10613.00 0.466

[0.3, 0.7] [0.4, 0.6] 284633 19.312 265483 19.707 3234.35 0.349 272992 20.316 269494 20.350 1575.30 0.264

[0.3, 0.7] [0.3, 0.7] 296442 19.008 266228 19.664 4637.67 0.392 284131 20.252 272714 20.328 3192.15 0.322

[0.3, 0.7] [0.2, 0.8] 319575 18.420 270607 19.483 6911.77 0.417 301151 20.132 278480 20.271 5640.50 0.373

[0.3, 0.7] [0.1, 0.9] 337721 17.480 275965 19.066 9598.48 0.428 303447 19.961 278396 20.182 8664.31 0.404

[0.2, 0.8] [0.4, 0.6] 310476 18.641 301157 18.922 2587.46 0.303 294617 20.176 291475 20.197 983.68 0.170

[0.2, 0.8] [0.3, 0.7] 319575 18.420 302712 18.893 3517.35 0.307 301151 20.132 293743 20.182 2090.72 0.225

[0.2, 0.8] [0.2, 0.8] 337879 17.968 307547 18.774 5319.34 0.349 313921 20.044 299370 20.143 4025.18 0.300

[0.2, 0.8] [0.1, 0.9] 353342 17.133 315236 18.449 7942.77 0.378 316907 19.895 301533 20.069 6811.81 0.349

[0.1, 0.9] [0.4, 0.6] 330083 17.650 321525 17.848 1855.84 0.229 296863 19.993 293697 20.009 732.18 0.127

[0.1, 0.9] [0.3, 0.7] 337721 17.480 323074 17.819 2577.00 0.240 303447 19.961 295982 19.997 1556.18 0.168

[0.1, 0.9] [0.2, 0.8] 353342 17.133 327810 17.721 3963.28 0.282 316907 19.895 301786 19.969 3017.84 0.230

[0.1, 0.9] [0.1, 0.9] 373282 16.440 338025 17.460 6291.10 0.329 325886 19.771 307110 19.908 5389.58 0.285

M7 M8

M1 M2 M3 M4

M5 M6
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Influence of Quality Uncertainty: (1) Higher variation in quality decreases expected 

profits in all models; (2) Higher variation in quality generally increases vineyard lease. 

This result is consistent in M1 – M3 under exogenous price, and in M5 – M7 in the 

presence of pricing flexibility. However, vineyard lease exhibits both an increasing and 

decreasing behavior in quality variance in M4 and M8 due to the complementary 

behavior between pricing and downward substitution flexibilities. At limited supply 

variances, increasing quality variance initially increases the optimal vineyard lease, but 

with higher quality variations, it starts decreasing the optimal vineyard lease; (3) 

Variation in quality increases the expected amount of downward substitution in all 

models. 

Influence of supply uncertainty: (1) Higher supply variation reduces expected profit in all 

models; (2) Vineyard lease increases in supply variation; (3) Both expected amount of 

high-quality fruit downward substituted and the probability of downward substitution 

decrease in supply variation. While the result might appear to be surprising at a first look, 

it can be explained by the fact that, with higher supply variation, there is more of the crop 

for both high-quality and low-quality fruit, diminishing the need for downward 

substitution; (4) The firm leases a smaller vineyard when supply variation is low under 

downward substitution flexibility than it does under fruit-trading flexibility (i.e., QM2
*
 < 

QM3
*
); it leases a greater vineyard under downward substitution flexibility when supply 

variation is high than it does under fruit-trading flexibility (i.e., QM2
*
 > QM3

*
). 

We investigate the impact of correlation between supply and quality uncertainty, 

denoted with ρ. In our analysis, we restrict the conditional variance of quality for a given 
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u, denoted Var[α│u], to be constant for a given u; this allows the overall quality variance, 

denoted Var[α], to change with respect to ρ (technical details of our derivations are 

provided in Appendix ). In the wine industry, supply and quality can typically have a 

positive correlation6; therefore, we restrict our numerical illustrations to the various levels 

of positive correlations. Table 2.4 presents the results of the numerical illustrations with 

various values of the correlation coefficient. In these calculations, supply random 

variable is distributed uniformly on [0.25, 0.75], but correlation changes the distribution 

of α.  

Influence of correlation between supply and quality: (1) Expected profit decreases with 

higher values of correlation. The result is a conse uence of a “distributional effect” which 

stems from the expansion in the tails of the distribution for quality uncertainty. With 

higher correlation, the overall quality variance increases, resulting in a higher quality risk 

and a lower the expected profit; (2) Without downward substitution flexibility, an 

increase in correlation causes an increase in vineyard lease, which can be explained again 

by the same distributional effect. Downward substitution, however, can cause a decrease 

in the amount of vineyard lease with higher values of the correlation coefficient. This is 

because downward substitution flexibility takes advantage of the expansion in tails of 

quality uncertainty distribution, and negates the detrimental consequences of 

distributional effect; (3) In the presence of downward substitution flexibility, an increase 

in correlation has similar effects with those presented for quality uncertainty. 

                                                 
6 The positive correlation between supply (abundance of grapes) and quality (high scores) can be 

exemplified by the 2005 vintage in Bordeaux wines. The unusually high number of sunny and warm days 

resulted in the highest amount of fruit crop with the highest ratings achieved from the two most influential 

publications: the Wine Spectator and the Wine Advocate. 
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Specifically, while the probability of high-quality fruit downward substituted increases in 

correlation (due to higher quality variation), the expected amount of downward 

substitution can exhibit a decreasing behavior with higher values of correlation (see 

models M2 and M6). The latter has the same characteristics of downward substitution 

behavior. 

 

 
 

Table 2.4. Summary of numerical results for models under increasing correlation 

(expected profits are in 10
6
). 

2.8. Discussion on Price-Setting in Both Segments and Downward-Substitution 

Flexibilities 

Earlier analysis has shown that the pricing flexibility in the high-end segment 

increases the level of downward substitution. If the firm has the pricing flexibility in the 

low-end segment as well, does this additional flexibility lead to another increase in 

downward substitution? We next investigate the impact of pricing flexibility in the low-

end segment on the conditions for downward substitution using models M9 and M10. It 

should be stated here that, in the motivating application of this study, the winemaker 

cannot set a selling price for its low-end product. However, such a comparison sheds light 

ρ Q
*

E [Π(Q
*
)] Q

*
E [Π(Q

*
)] E [w

*
] P (w

* 
> 0) Q

*
E [Π(Q

*
)] Q

*
E [Π(Q

*
)] E [w

*
] P (w

* 
> 0)

0.25 343634 18.365 320124 18.702 1929.72 0.226 310954 20.145 292740 20.205 2405.78 0.262

0.375 347603 18.313 318223 18.621 1877.90 0.228 314081 20.141 290951 20.201 2470.78 0.265

0.5 351191 18.203 315448 18.513 2015.53 0.232 316996 20.131 288401 20.194 2726.79 0.271

ρ Q
*

E [Π(Q
*
)] Q

*
E [Π(Q

*
)] E [w

*
] P (w

*
 > 0) Q

*
E [Π(Q

*
)] Q

*
E [Π(Q

*
)] E [w

*
] P (w

* 
> 0)

0.25 319967 18.679 284720 19.235 4093.85 0.359 303970 20.182 284631 20.249 2903.42 0.298

0.375 323700 18.665 283174 19.194 4010.78 0.363 307133 20.180 283015 20.247 2949.20 0.300

0.5 327217 18.602 281003 19.131 4087.78 0.368 310078 20.172 280800 20.242 3177.14 0.304

M1 M2 M3 M4

M5 M6 M7 M8
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into the similarities and differences of our model with an earlier model established in 

Tomlin and Wang (2008) where the firm has the price-setting flexibility in both 

segments.  

With price-setting flexibility in both the high- and low-end segments, downward 

substitution occurs when the marginal revenues from the two market segments are equal. 

The following proposition defines the threshold for the production amount in the low-end 

segment.  

Proposition 2.15. The threshold for the amount of low-quality fruit to be produced from 

the internal resource for M9 is  * *'L L pL L LTP p c D p     . 

When the realized amount of low-quality grapes is less than the production threshold 

(i.e., Qu(1–α) ≤ TPL), the firm charges a market-clearing price pL(Qu(1–α)). However, 

when there is excess amount of low-quality fruit (i.e., Qu(1–α) > TPL), the firm sells TPL 

at price pL(TPL). Adapting the regions for the low-end threshold quantity, we have the 

following regions for M9: 

R1(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α) < TPL } 

R2(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α)  TPL } 

R3(Q) = {(u, α) : Quα > TPH and Qu(1 – α) < TPL } 

R4(Q) = {(u, α) : Quα > TPH and Qu(1 – α)  TPL }  

The optimal second-stage quantity decisions for M9 are  
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and the optimal prices are pH
*
 = pH(qIH

*
) and pL

*
 = pH(qIL

*
).  

In the analysis of M10, equivalent to the model of Tomlin and Wang (2008), we 

follow a similar approach, and equate the marginal revenues from the two market 

segments in order to obtain the critical quality realization that would trigger the 

downward substitution decision. When there is insufficient low-quality fruit to fulfill the 

threshold, i.e., Qu(1–α) < TPL, the revenue and the marginal revenue become: 

       , , 1 1L L pLQ u p Qu c Qu        . 

Moreover, the critical quality realization for downward substitution can be obtained by 

setting the marginal return from the low-end segment to the marginal return in the high-

end segment 

   , , / , , /L HQ u Q u            . 

Considering the case when the price in the low-end segment of M6 is equal to the 

profit-maximizing price of M10, we show that the probability of downward substitution 

in M10 is always greater than or equal to that of M6. This is because the profit-

maximizing price in the low-end segment, denoted pL
*
 is smaller than or equal to the 

market-clearing price of pL(Qu(1– α)), and thus, TPH
D
 of M10 is smaller than that of M6. 

Downward substitution continues to take place until the high-quality fruit exceeds TPH.  
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Proposition 2.16. For a given Q, P(w
*
 > 0) in M10 is greater than or equal to that of 

M6.    

Section 2.5.4 has shown that the firm always engages in fruit trading in M3, M4, and 

M7 with probability 1 under supply and quality uncertainty, and in M8 with probability 1 

under quality uncertainty alone. The following proposition shows that: (1) quality 

uncertainty influences the probability of fruit trading, (2) the probability of fruit trading is 

not always equal to 1 under significant supply and quality variation when the firm can set 

prices in both segments as in M11.  

Proposition 2.17. For a probability distribution that can be standardized: a) When u 

= = 0 in M11, and (TBH/QM11) <u < (TSH/QM11) and (TBL/QM11) <  1u  < 

(TSL/QM11), the probability of fruit trading is equal to 1, and is non-increasing in u (with 

 = 0) and in (with u = 0). b) When u = = 0, u < (TBH/QM11), or u > 

(TSH/QM11), or  1u  < (TBL/QM11), or  1u  > (TSL/QM11) in M11, the probability 

of fruit trading is equal to 0, and is non-decreasing in  (with u = 0). 

2.9 Conclusions 

The essay examines the interactions between the three forms of operational flexibility 

available to agricultural firms in mitigating supply and quality uncertainty. These 

flexibilities are: (1) downward substitution, where high-quality fruit can be used in the 

making of a low-end product, (2) price-setting, where the firm can influence the demand 

of the high-end product by appropriately selecting the selling price in the high-end 

segment (in which consumers are less price-elastic); and (3) fruit trading flexibility, 
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where the firm can purchase additional fruit in the event of lower supply realizations, or 

sell some of its excess fruit in the open market for revenue. The essay provides a 

comprehensive analysis that demonstrates the interrelationships between these three 

forms of operational flexibilities.  

The essay makes three sets of main contributions. First, the study identifies the 

interrelationships between the above three forms of flexibilities; not all flexibilities 

exhibit a substitutable role. Our essay proves that pricing and downward substitution 

flexibilities play a complementary role. Pricing flexibility enables the firm to engage in 

downward substitution early and frequently, yielding higher expected amount and 

probability of downward substitution. Fruit trading flexibility, on the other hand, does not 

influence downward substitution in the absence of pricing flexibility, but plays a 

substitutable role to downward substitution in the presence of pricing flexibility. It also 

exhibits a substitutable role to pricing flexibility.   

Second, our results provide insight into how these three forms of flexibilities 

influence the winemaker’s initial vineyard investment. The inclusion of fruit trading 

generally decreases the optimal amount of vineyard lease. Pricing and downward 

substitution flexibilities (and their combination), however, can lead to both an increase 

and a decrease in the optimal vineyard lease. The latter occurs under limited supply and 

significant quality variances.  

Our third contribution relates to the impact of the variation in supply and quality 

uncertainty on vineyard lease, expected profits, expected amount and probability of 

downward substitution. Variation in quality uncertainty does not influence the probability 
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of fruit trading, always decreases the expected profits, and increases the expected amount 

of downward substitution. Higher variations in quality generally increases vineyard lease, 

but can also show a decreasing behavior in the presence of downward substitution 

flexibility. Variation in supply generally increases the firm’s vineyard lease, reduces 

expected profits, and decreases the expected amount and probability of downward 

substitution in all models. Significant variation in quality and limited variation in supply 

makes downward substitution more attractive; they reduce the need to rely on vineyard 

lease. While increasing quality variation generally increases the probability of downward 

substitution, the likelihood of a crop supply and demand mismatch is reduced at lower 

supply realizations; therefore, the probability of downward substitution can exhibit a 

decreasing behavior in quality variance in the presence of low supply variations. The 

correlation coefficient mimics the reactions observed under increasing quality variation. 

2.10 Future Research Directions 

This study develops a model to examine the influence of supply and quality 

uncertainty on three forms of operational flexibility: Downward substitution, price-

setting, and fruit-trading flexibilities. In this section, we discuss possible extensions to the 

original model in order to provide future research directions.  

The current model assumes a deterministic demand function for both customer 

segments. Demand uncertainty can be incorporated into our modeling approach and the 

ensuing analysis. Due to the dynamics of the present world economy, as evident from the 

recent collapse of the European economy and the rise of the Chinese and Indian markets 

as the new economic powerhouses, one can argue that the demand for luxury products 
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such as wine may not be deterministic, but in fact should resemble the unpredictable 

nature of the world economy. Therefore, to incorporate demand uncertainty into our 

existing model, we can describe the high- and low-end demand as DH(pH, εH) and DL(εL), 

where εH and εL are the respective random error terms. To analyze the problem, we can 

utilize the price-elasticity of lost sales probability conditions developed in Kocabıyıkoğlu 

and Popescu (2011) in order to arrive at sufficient conditions that lead to unique optimal 

solutions for the simultaneous price and quantity decisions under demand uncertainty. 

Using these price-elasticity of lost sales probability conditions, we can obtain a new set 

of production, downward substitution and fruit-trading thresholds that define the 

winemaker’s downward substitution, pricing and fruit-trading decisions. We intuit that 

the inclusion of demand uncertainty will not alter the underlying structural properties of 

the production and downward substitution thresholds established by Proposition 2.7. If 

they do, however, the study can develop the set of conditions that would retain the 

characteristics of the optimal decisions presented in this study.  

A winemaker does not have the price-setting flexibility in the low-end market in the 

current model. Incorporating demand uncertainty into the model is expected to increase 

the probability and frequency of the mismatch between supply and demand in the low-

end market segment beyond the reported levels in our model. As a result, we conjecture 

that incorporating demand uncertainty into the model while retaining supply and quality 

uncertainty will create additional incentives for the winemaker to utilize the downward 

substitution flexibility more frequently in order to offset the shortages in the low-end 

market segment.  
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 2.11 Appendix 

Proof of Proposition 2.1: In M2, with the absence of price-setting and fruit-trading 

flexibility, the winemaker engages in downward substitution when there high-quality 

fruit realization is higher than the high-end demand and the low-quality fruit realization is 

below the low-end demand i.e. Quα > DH and Qu(1−α) ≤ DL. Therefore it is possible to 

see that downward substitution occurs when DH/Qα < u ≤ DL/Qu(1−α). 

In M4, with the absence of price-setting flexibility, due to the fact that downward 

substitution can only occurs when sH ≤ bL, the winemaker is better off when downward 

substituting excess high-quality fruit for the production of low-end wine comparing to 

selling the high-quality fruit in the open market. Therefore, in M4 downward substitution 

occurs when Quα > DH and Qu(1−α) ≤ DL or DH/Qα < u ≤ DL/Qu(1−α). This is 

equivalent to the M2. From this analysis it is possible to say that the introduction of fruit-

trading flexibility does not change the probability of downward substitution or the 

expected amount of downward substitution.  

Proof of Proposition 2.2: The high-end threshold production quantity is obtained by 

maximizing  

     H H pH H Hp p c D p    

(i.e., it is optimal for the firm to set the production quantity equal to demand). The profit 

function is concave because pHDH(pH) is concave by assumption. Thus the optimal price 

and threshold production quantity are given by the first-order condition 

       ' ' 0H H pH H H H Hp p c D p D p     , 

which can be rewritten as  
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   * *'H H pH H HTP p c D p   .  

Proof of Proposition 2.3: The proof is similar to the proof of Proposition 2.2, but the 

profit function now includes the margin from the low-end segment, pL – cpL.  The high-

end profit function is  

          H H pH H H L pL H Hp p c D p p c Qu D p      . 

The profit function is concave because pHDH(pH) is concave by assumption. Thus the 

optimal price and threshold production quantity are given by the first-order condition 

        ' ' 0H H pH L pL H H H Hp p c p c D p D p       , 

which can be rewritten as  

    * *'D

H H pH L pL H HTP p c p c D p     . 

From the proof of Proposition 2.2, the optimal price for M5 (without downward 

substitution) satisfies 

       M5 M5 M5 M5

M5 ' ' 0H H pH H H H Hp p c D p D p     . 

As shown above, the optimal price for M6 (with downward substitution) satisfies 

           M6 M6 M6 M6 M6

M6 ' ' ' 0H H pH H H H H L pL H Hp p c D p D p p c D p       . 

Thus, from DH(p) < 0, it follows that  

           M5 M5 M5 M5 M5

M6 ' ' ' 0H H pH H H H H L pL H Hp p c D p D p p c D p       , 

which implies M6 M5

H Hp p and    M6 M5D

H H H H H HTP D p D p TP   .  
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Proof of Proposition 2.4: Recall that  =DL – Qu. For M2 at exogenous high-end 

product price pH = pH(TPH) and high-end product demand DH = TPH, the optimal quantity 

decisions are 

 

    

   

    

  

* * *

,0, 1                 if  and 1

,0,                            if  and 1

, , , , 1   if +  and 1  

, , 1                   i

H L

L H L

IH IL H H H H L

H

Qu Qu Qu TP Qu D

Qu D Qu TP Qu D
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TP Qu

   
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   



   

  

       

   

   

f +  and 1

,0,                               if  and 1

H L

H L H L

TP Qu Qu D

TP D Qu TP Qu D

 

 








   


  

 

(see (2.5)). For M6, the optimal quantity decisions are 
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(see (2.7)). We see that the optimal quantity decisions for M2 and M6 are identical when 

Qu( 1 – )  DL. However, when Qu( 1 – ) < DL, we see that w
*
 > 0 iff Qu > TPH for 

M2 and that w
*
 > 0 iff Qu > D

HTP  for M6. From D

HTP < TPH (see Proposition 2.3), it 

follows that the probability of downward substitution is higher for M6 than for M2. 

Furthermore, for any Q, u, and , we see that * *

6 2M Mw w  (with strict inequality for some 

parameter values), and thus the expected amount of fruit downward substituted is greater 

with price flexibility (M6) and without price flexibility (M2).  
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Proof of Proposition 2.5: The proof is similar to the proofs of propositions 2 and 3. 

Given excess high-quality fruit supply, the high-end profit function is  

        H H pH H H H H Hp p c D p s Qu D p     . 

The first-order condition yields TSH. Given a shortage of high-quality fruit supply, the 

high-end profit function is  

        H H pH H pH H H Hp p c Qu p c b D p Qu        , 

The first-order condition yields TBH. The inequality TBH < TSH, follows from bH > sH.  

Proof of Proposition 2.6: For M3, the firm buys quantity DH – Qu of fruit in the open 

market iff Qu < DH and sells quantity Qu – DH of fruit in the open market iff Qu > 

DH. For M7, the firm buys quantity TBH – Qu  of fruit in the open market iff Qu < TBH 

and sells quantity Qu – TSH of fruit in the open market iff Qu > TSH. The result 

follows from TBH < DH < TSH.  

Proof of Proposition 2.7: The proof is similar to the proof of Proposition 2.3, but the 

profit function replaces the margin from the low-end segment (pL – cpL) with the cost of 

purchasing low-quality fruit in the open market (bL). The high-end profit function is  

        H H pH H H L H Hp p c D p b Qu D p     . 

The profit function is concave because pHDH(pH) is concave by assumption. Thus the 

optimal price and threshold production quantity are given by the first-order condition 

       ' ' 0H H pH L H H H Hp p c b D p D p      , 

which can be rewritten as  

   * *'DT

H H pH L H HTP p c b D p    . 
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The inequality,  * *'DT

H H H H H pH H H HTB TP TS TP p c s D p         , follows from bH 

> bL > sH > 0. 

 Recall that     * *'D

H H pH L pL H HTP p c p c D p     (see Proposition 2.3). From bL < 

pL – cpL (see assumption (A1)), it follows that DT D

H HTP TP .  

Proof of Proposition 2.8 Recall that  =DL – Qu. For M4, at exogenous high-end 

product price pH = pH(TPH) and high-end product demand DH = TPH, the optimal quantity 

decisions are given in (2.6). For M8, the optimal quantity decisions are given in (2.8).  

(see (2.6)).  

We see that the optimal quantity decisions for M4 and M8 are identical when Qu( 1 – 

)  DL. However, when Qu( 1 – ) < DL, we see that w
*
 > 0 iff Qu > TPH for M4 and 

that w
*
 > 0 iff Qu > DT

HTP  for M8. From DT

HTP < TPH (see Proposition 2.7), it follows that 

the probability of downward substitution is higher for M8 than for M4. Furthermore, for 

any Q, u, and , we see that * *

M8 M4w w  (with strict inequality for some parameter 

values), and thus the expected amount of fruit downward substituted is greater with price 

flexibility (M8) than without price flexibility (M4).  

Proof of Proposition 2.9: For M6, the production threshold (and downward substitution 

threshold) is  

    * *'D

H H pH L pL H HTP p c p c D p      

(see Proposition 2.3). For M8, the production threshold (and downward substitution 

threshold) is DT

HTP , and for M6, the production threshold is D

HTP . From DT D

H HTP TP  (see 
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Proposition 2.7), it follows that the probability of downward substitution is greater 

without fruit-trading flexibility (M6) and with fruit-trading flexibility (M8). Furthermore, 

for any Q, u, and , * *

M6 M8w w  (with strict inequality for some parameter values), and 

thus the expected amount of fruit downward substituted is greater without fruit-trading 

flexibility (M6) than with fruit-trading flexibility (M8).  

Proof of Proposition 2.10: a) If u = = 0, then by the definition of TDSj, there is 

downward substitution when u > TDSj/Q and  1u  < DL/Q, i.e., the probability of 

downward substitution is equal to 1.  

We will now show that the probability of downward substitution is non-increasing in 

u (with  = 0). Because the probability distribution of u can be standardized, the cdf of 

u can be written as u

u

u u



 
  

 
 where u(z) is the corresponding standardized cdf. Let u1 

=
jTDS

Q
 and u2 =

 1

LD

Q 
 and note that u1 <u < u2. Accordingly, the probability of 

downward substitution is   1 2,P u u u  = 2 2
u u

u u

u u u u

 

    
    

   
. From 

2 / 0u

u

u u




 
   
 

 (due to u2 > u ) and 1 / 0u

u

u u




 
   
 

 (due to u1 < u ), it follows 

that   1 2, / 0uP u u u     , and thus the probability of downward substitution is non-

increasing in u. Similar arguments, which are also illustrated in part b) below, can be 

used to show that the probability of downward substitution is non-increasing in  (with 

u = 0). 
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b) If u = = 0, then by the definition of TDSj, there is no downward substitution 

when u < TDSj/Q or  1u  > DL/Q, i.e., the probability of downward substitution is 

equal to 0.  

We will now show that the probability of downward substitution is non-decreasing in 

  (with u = 0). Because the probability distribution of  can be standardized, the cdf of 

 can be written as 



 



 
  

 
 where (z) is the corresponding standardized cdf. Let 

1 = max ,1
j L

TDS D

Qu Qu

 
 

 
 and note that 1 > . Accordingly, the probability of 

downward substitution is  1P    = 11 



 



 
  

 
. From 1 / 0



 




 
   
 

 (due 

to 1 > ), it follows that  1 / 0P       , and thus the probability of downward 

substitution is non-decreasing in .  

Proof of Proposition 2.11: The proof of part a) follows from the definition of the trading 

threshold values. The proof of b) is similar to the proof of Proposition 2.10. We omit the 

details.  

Proof of Proposition 2.12: a) The expected profit for model M8 can be written as: 
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Let us define the boundary points: u1(Q,α) = TBH/Qα, u2(Q,α) = TSH/Qα, u3(Q,α) = 

TPH
DT

/Qα, u4(Q) = (TPH
DT

+DL)/Q, u5(Q) = (TSH+DL)/Q and α1(Q,u) = 1 – (DL/Qu)   

Note that: u1
'
(Q,α) = ∂u1(Q,α)/∂Q ≤ 0, u2

'
(Q,α) = ∂u2(Q,α)/∂Q ≤ 0 , u3

'
(Q,α) = 

∂u3(Q,α)/∂Q ≤ 0, u4
'
(Q) = ∂u4(Q)/∂Q ≤ 0, u5

'
(Q) = ∂u5(Q)/∂Q ≤ 0 and α1

'
(Q,u )= 

∂α1(Q,u)/∂Q > 0. 

Taking the first-order derivative of the first-stage objective function E[ΠM8(Q)] gives:  
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From the first-order condition at boundary points: u1(Q,α), u2(Q,α), u3(Q,α), u4(Q) 

and u5(Q), the optimal price must satisfies: 
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Taking the second-order derivative of the first-stage objective function E[ΠM8(Q)] gives: 
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Because the derivatives at the boundary point of each region, the second-order 

derivatives cancel out, yielding the following expression:  
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The above is negative because of the assumption that 2pi′(qi) + pi′′ (qi) ≤ 0, and 

∂
2
E[ΠM8(Q)]/∂Q

2
  < 0. Thus, M8 first-stage objective function is continuous and concave 

in the amount of vineyard lease Q.  

b) In model M7, the optimal second stage decision can be divided into the following sets:  

R1(Q) = {(u, α) : Quα ≤ TBH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ TBH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : TBH < Quα ≤ TSH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : TBH < Quα ≤ TSH and Qu(1 – α)  DL}  

R5(Q) = {(u, α) : Quα > TSH and Qu(1 – α) < DL} 

R6(Q) = {(u, α) : Quα > TSH and Qu(1 – α)  DL}. 

Accordingly, the optimal second-stage quantity decisions for M7 are: 
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Therefore, the first-stage objective function can be written as:  
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Rewriting the first-stage objective function according to the returns from high and low-

end segments: 
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Taking the first-order derivative of the first-stage objective function provides:
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Similar to part a) let us define the boundary points: α1(Q,u) = 1 – (DL/Qu), α2(Q,u) = 

TBH/Qu and α3(Q,u) = TSH/Qu; and note that α1
'
(Q,u ) = ∂α1(Q,u)/∂Q > 0, α2

'
(Q,u ) = 

∂α2(Q,u)/∂Q ≤ 0 and α3
'
(Q,u ) = ∂α3(Q,u)/∂Q ≤ 0 . 

From the first-order condition, at the boundary point α2(Q,u) and α3(Q,u), the optimal 

price satisfies: 
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Therefore, taking the second-order derivative of M7 objective function gives: 
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The above expression is negative because 2pi′(qi) + pi′′ (qi) ≤ 0 and because bL > sL; thus 

∂
2
E[ΠM7(Q)]/∂Q

2
 < 0 and the first-stage objective function in M7 is continuous and 

concave the amount of vineyard lease Q.  

c) The optimal second-stage decisions for model M6 can be divided into the following 

sets: 

R1a(Q) = {(u, α) : Quα  D

HTP and Qu(1 – α) < DL} 

R1b(Q) = {(u, α) : D

HTP < Quα  D

HTP   and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α)  DL} 
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R3a(Q) = {(u, α) : D

HTP  < Quα  TPH +  and Qu(1 – α) < DL} 

R3b(Q) = {(u, α) : TPH +  < Quα and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : Quα > TPH and Qu(1 – α)  DL}  

As a result of this the first-stage objective function of model M6 can be written as: 
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.  

The proof can be completed by setting the cost of purchasing fruit in the open market to 

be infinitely high and the revenue from selling the fruit in the open market to be 0 in 

model M8, i.e. bH =bL = ∞ and sH = sL = 0. From Proposition 2.5 and Proposition 2.7, it is 

possible to show that pH(TPH) = pH(TSH), pH(TBH) = ∞ and pH(TPH
D
) = pH(TPH

DT
), 

resulting in TPH = TSH , TBH = 0 and TPH
D 

= TPH
DT

. Furthermore, as the cost of buying 

fruit in the low-end segment is infinitely high, and the selling price of the fruit is zero, the 

fruit-trading flexibility in the low-end segment becomes unattractive for the winemaker, 
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resulting in qBL and qSL to equal 0. As a result of this analysis, regions R1(Q) and R2(Q) 

from model M8 collapses to 0 while regions R3a(Q), R3b(Q), R4(Q), R5a(Q) R5b(Q) 

and R6(Q)  in model M8 are equivalent to regions R1a(Q), R1b(Q), R2(Q), R3a(Q) 

R3b(Q) and R4(Q) of model M6 respectively. From this analysis the first-stage objective 

function of model M8 can be written as:   
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As the first stage objective function of both models are now identical, i.e. E[Π
M6

(Q)] = 

E[Π
M8

(Q)], the proof that model M8 is continuous and concave in the vineyard lease Q 

holds true for model M6.  

d) The optimal second-stage decisions for model M5 can be divided into the following 

sets: 

R1(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ TPH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : Quα > TPH and Qu(1 – α) < DL} 
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R4(Q) = {(u, α) : Quα > TPH and Qu(1 – α)  DL}  

The first-stage objective function of model M5 can be written as: 
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The proof can be completed by setting the cost of purchasing fruit in the open market to 

be infinitely high and the selling price of the fruit in the open market to be 0 in model 

M7, i.e. bH =bL = ∞ and sH = sL = 0.  From Proposition 2.5, it is possible to show that 

pH(TPH) = pH(TSH), pH(TBH) = ∞ resulting in TPH = TSH and TBH = 0. Furthermore as the 

cost of buying fruit in the low-end segment is infinitely high and the selling price of the 

fruit is 0, the fruit-trading flexibility in the low-end segment becomes unattractive for the 

winemaker, resulting in qBL and qSL to equal 0. As a result, regions R1(Q) and R2(Q) 

from model M7 collapses to 0 awhile region while regions R3(Q), R4(Q), R5a(Q) 

R5b(Q) and R6(Q)  in model M7 are equivalent to regions R1(Q), R2(Q), R3(Q) and 

R4(Q) of model M5 respectively. The first-stage objective function can then be written 

as:    



 84 

   

  

   
 

 

  

 
 

 

  

   
 

 

  

 
 

 

M7 M5

R1

R2

R3

R4

,
1

,

,
1

,

H pH

Q L pL

H pH

Q L pL L

l

H H pH H

Q L pL

H H pH H

Q L pL L

E Q E Q

p Qu c Qu
g u dud

p c Qu

p Qu c Qu
g u dud

p c D
c Q

p TP c TP
g u dud

p c Qu

p TP c TP
g u dud

p c D

 
 



 
 

 


 

        

 
 
   
 

 
 
  
 

  
 
 
   
 

 
 
  
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Because the first-stage objective functions of both model are identical, i.e. E[ΠM5(Q)] = 

E[ΠM7(Q)], the proof that model M7 is continuous and concave in the vineyard lease Q 

holds true for model M5.  

e) The expected profit for model M4 can be written as: 
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Let us define the boundary points: u6(Q,α) = DH/Qα, u7(Q) = (DH+DL)/Q and α1(Q,u) = 1 

– (DL/Qu)   

Note that: u6
'
(Q,α) = ∂u6(Q,α)/∂Q ≤ 0, u7

'
(Q) = ∂u7(Q)/∂Q ≤ 0 and α1

'
(Q,u ) = ∂α1(Q,u)/∂Q 

> 0. 

Taking the first-order derivative of the first-stage objective function E[ΠM4(Q)] gives:  
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Taking the second-order derivative of the first-stage objective provides: 
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Observe that, because bH > sH, bL > sL and bH > bL, while u6
'
(Q,α) and u7

'
(Q,α) are 

negative, the second-order derivative of model M4 first stage objective function is 

negative, i.e. ∂
2
E[ΠM4(Q)]/∂Q

2
 < 0 , and thus M4 first stage objective function is 

continuous and concave in the amount of vineyard lease Q.  

f) In model M3, the optimal second stage decision can be divided into the following sets:  

R1(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : Quα > DH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : Quα > DH and Qu(1 – α)  DL}  

Accordingly, the optimal second-stage quantity decisions for M7 are: 
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Therefore, the first-stage objective function can be written as:  
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Rewriting the first-stage objective function according to the returns from high and low-

end segments: 
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Taking the first-order derivative of the above expression gives: 
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Let us define the boundary points: α1(Q,u) = 1 – (DL/Qu), α4(Q,u) = DH/Qu and note that, 

α1
'
(Q,u ) = ∂α1(Q,u)/∂Q > 0 and α4

'
(Q,u ) = ∂α4(Q,u)/∂Q ≤ 0. 

Therefore taking the second-order derivative of M3 first-stage objective function gives: 
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Observe that, because bH > sH, bL > sL, α1
'
(Q,u) > 0 and α6

'
(Q,u) < 0, the second-order 

derivative of model M3 first stage objective function is negative, i.e. ∂
2
E[ΠM3(Q)]/∂Q

2
 < 

0, and thus, the first-stage objective function of M3 is continuous and concave in the 

amount of vineyard lease Q.  

g) In model M2, the optimal second stage decision can be divided into the following sets:  

R1(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α)  DL} 
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R3a(Q) = {(u, α) : DH < Quα  DH +  and Qu(1 – α) < DL} 

R3b(Q) = {(u, α) : DH +  < Quα and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : Quα > DH and Qu(1 – α)  DL}  

The proof can be completed by setting the cost of purchasing fruit in the open market to 

be infinitely high and the selling price of the fruit in the open market to be 0 in model 

M4, i.e. bH =bL = ∞ and sH = sL = 0. It is possible to show that the fruit-trading flexibility 

in the low-end segment becomes unattractive for the winemaker, resulting in qBL and qSL 

to equal 0. As a result, the returns from all five regions in model M4 become identical to 

the returns in the five regions of model M2. Therefore, the first-stage objective function 

of the model can be written as:   
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Therefore, as the first stage objective function of both model are equivalent, i.e. 

E[ΠM4(Q)] = E[ΠM2(Q)], the proof that model M4 is continuous and concave in the 

vineyard lease Q holds true for model M2.  

h) In model M1, the optimal second stage decision can be divided into the following sets:  

R1(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α) < DL} 
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R2(Q) = {(u, α) : Quα ≤ DH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : Quα > DH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : Quα > DH and Qu(1 – α)  DL}  

The proof can be completed by setting the cost of purchasing fruit in the open market to 

be infinitely high and the selling price of the fruit in the open market to be 0 in model 

M3, i.e. bH =bL = ∞ and sH = sL = 0. In this case, fruit-trading in the low-end segment 

becomes unattractive, resulting in qBL = qSL = 0. As a result, the returns from all four 

regions in model M3 become identical to the returns in the four regions of model M1. 

Therefore the first-stage objective function can be written as:   
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,

,
1

,

H pH L pL

Q

H pH L pL L

Q

l
H pH H H

Q L pL

H pH H H L pL L

Q

E Q E Q

p c Qu p c Qu g u dud

p c Qu p c D g u dud

c Q p c D p
g u dud

p c Qu

p c D p p c D g u dud

   

  

 


 

        

     
  

 
     

  
 

     
  
    

 
     

 

















 

Because the first-stage objective function of both models are equivalent, i.e. E[Π
M3

(Q)] = 

E[Π
M1

(Q)], the proof that model M3 is continuous and concave in the vineyard lease Q 

holds true for model M1. 

Proof of Proposition 2.13: By the implicit function theorem, for parameter a  {bH, bL, 

sH, sL},  
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 

 

2 **

2 * 2

/

/

jj

j

E Q Q aQ

a E Q Q

       
    

 

,  j  {M3, M4, M7, M8}      (2.9) 

From Proposition 2.12,  2 * 2/ 0jE Q Q    
  , so the sign of (2.9) is determined by the 

sign of  2 * /jE Q Q a    
  . Consider the case of a = bH. At the optimal lease quantity 

for model j, there exists a set of realizations of  ,u  , denoted BH, where the firm buys 

high-quality fruit from the open market. The optimal expected profit can be decomposed 

into two terms—one term that includes parameter bH and another term, denoted A
*
(Q

*
j), 

that does not include bH (i.e., ∂
2
A

*
(Q

*
j)/∂Q∂a = 0) and thus  

          * * * * * *,

H

j H pH H H H H H j

B

E Q p c D p b D p Q u g u dud A         
    . 

Accordingly,  

  
 

 
 * * *

,

H

j j

H

B

E Q A Q
b u g u dud

Q Q
  

      
   

  
 

 
2 *

, 0

H

j

H B

E Q
u g u dud

Q b
  

  
   
   . 

A similar approach can be used to show 

* * *

 0,  0,  0
j j j

L H L

Q Q Q

b s s

  
  

  
. We omit the 

details.   

Proof of Corollary 2.1: i) The first-stage objective function for model M1 when the firm 

can sell its fruit in the open market can be written as follows: 
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         
 

       
 

       
 

       
 

M1

R1

R2

R3

R4

1 ,

1 ,

1 ,

1 ,

l H pH L pL

Q

H pH L pL L L L

Q

H pH H H H L pL

Q

H pH H H H L pL L L L

Q

E Q c Q p c Qu p c Qu g u dud

p c Qu p c s D s Qu g u dud

p c s D s Qu p c Qu g u dud

p c s D s Qu p c s D s Qu g u dud

   

   

   

   

            

       
 

       
 

         
 







  

The first-order derivative of the first-stage objective function in model M1 is equal to:

 
 

   
 

 

     
 

     
 

   
 

M1

R1

R2

R3

R4

/ ,
1

1 ,

1 ,

1 ,

H pH

l

Q L pL

H pH L

Q

H L pL

Q

H L

Q

p c u
E Q Q c g u dud

p c u

p c u s u g u dud

s u p c u g u dud

s u s u g u dud


 



   

   

   

 
        
   
 

    
 

    
 

    









 

Equating the above first-order derivative to zero provides QM1
*
 where at Q = QM1

*
, we 

have  

       
 

     
 

     
 

   
 

*
M1

*
M1

*
M1

*
M1

R1

R2

R3

R4

1 ,

1 ,

1 ,

1 ,

l H pH L pL

Q

H pH L

Q

H L pL

Q

H L

Q

c p c u p c u g u dud

p c u s u g u dud

s u p c u g u dud

s u s u g u dud

   

   

   

   

     
 

    
 

    
 

    









 

 We next consider the objective function of model M3: 
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 
 

   
 

 

       
 

       
 

 

M3

R1

R2

R3

,
1

1 ,

1 ,

H pH H H H

l

Q L pL L L L

H pH H H H L pL L L L

Q

H pH H H H L pL L L L

Q

H pH H H H

p c b D b Qu
E Q c Q g u dud

p c b D b Qu

p c b D b Qu p c s D s Qu g u dud

p c s D s Qu p c b D b Qu g u dud

p c s D s Qu


 



   

   

   
      
     
 

         
 

         
 

   







     
 R4

1 ,L pL L L L

Q

p c s D s Qu g u dud        
 

 

The first-order derivative of model M3 is: 

     
 

   
 

   
 

   
 

M3

R1

R2

R3

R4

/ 1 ,

1 ,

1 ,

1 ,

l H L

Q

H L

Q

H L

Q

H L

Q

E Q Q c b u b u g u dud

b u s u g u dud

s u b u g u dud

s u s u g u dud

   

   

   

   

             

    

    

    








 

Evaluating the first-order derivative at Q = QM1
*
 and substituting the above expression for 

cl provides: 

 
 

   
 

 

   
 

     
 

*
M1

*
M1

*
M1

*
M1

M3

R1

R2

R3

/ ,
1

,

1 ,

0

H pH H

Q Q

Q L pL L

H pH H

Q

L pL L

Q

p c b u
E Q Q g u dud

p c b u

p c b u g u dud

p c b u g u dud


 



  

  



  
       
    
 

   
 

    
 









 

because pH – cpH – bH > 0 and pL – cpL – bL > 0. This implies that QM3
*
 is less than QM1

*
. 

ii) The first-stage objective function for  M2 can be written as: 
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         
 

       
 

      
 

       
 

 

M2

R1

R2

R3a

R3b

1 ,

1 ,

,

,

l H pH L pL

Q

H pH L pL L L L

Q

H pH H L pL H

Q

H pH H H H L L pL L

Q

H pH H H

E Q c Q p c Qu p c Qu g u dud

p c Qu p c s D s Qu g u dud

p c D p c Qu D g u dud

p c D s Qu D D p c D g u dud

p c s D s

   

   

 

 

            

       
 

     
 

       
 

   









     
 R4

1 ,H L pL L L L

Q

Qu p c s D s Qu g u dud        
 

 

and the first-order derivative is equal to: 

         
 

     
 

   
 

   
 

   
 

M2

R1

R2 R3a

R3b R4

/ 1 ,

1 , ,

, 1 ,

l H pH L pL

Q

H pH L L pL

Q Q

H H L

Q Q

E Q Q c p c u p c u g u dud

p c u s u g u dud p c u g u dud

s u g u dud s u s u g u dud

   

     

     

              

        
   

     



 

 
 

Equating the above first-order derivative to zero provides QM2
*
 where at Q = QM2

*
, we 

have  

       
 

     
 

   
 

   
 

   
 

*
M2

* *
M 2 M 2

* *
M2 M2

R1

R2 R3a

R3b R4

1 ,

1 , ,

, 1 ,

l H pH L pL

Q

H pH L L pL

Q Q

H H L

Q Q

c p c u p c u g u dud

p c u s u g u dud p c u g u dud

s u g u dud s u s u g u dud

   

     

     

     
 

        
   

     



 

 

 

 We next consider the objective function of model M4: 
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 
 

   
 

 

       
 

      
 

   

M4

R1

R2

R3a

,
1

1 ,

,

H pH H H H

l

Q L pL L L L

H pH H H H L pL L L L

Q

H pH H H L pL L H

Q

H pH H H H H L L

p c b D b Qu
E Q c Q g u dud

p c b D b Qu

p c b D b Qu p c s D s Qu g u dud

p c s D p c b Qu D g u dud

p c s D s Qu D D p


 



   

 

   
      
     
 

         
 

       
 

       







   
 

       
 

R3b

R4

,

1 ,

pL L L

Q

H pH H H H L pL L L L

Q

c b D g u dud

p c s D s Qu p c s D s Qu g u dud

 

   

 
 

         
 





 

The first-order derivative of model M4 is: 

     
 

   
 

   
 

   
 

   
 

M4

R1

R2 R3a

R3b R4

/ 1 ,

1 , ,

, 1

l H L

Q

H L L pL

Q Q

H H L

Q Q

E Q Q c b u b u g u dud

b u s u g u dud p c u g u dud

s u g u dud s u s u g u du

   

     

   

             

         

      



 

   

Evaluating the first-order derivative at Q = QM2
*
 and substituting the above expression 

for cl provides: 

 
 

   
 

 

   
 

*
M2

*
M2

*
M2

M4

R1

R2

/ ,
1

,

0

H pH H

Q Q

Q L pL L

H pH H

Q

p c b u
E Q Q g u dud

p c b u

p c b u g u dud


 



  



  
       
    
 

   
 





   

because pH – cpH – bH > 0 and pL – cpL – bL > 0. This implies that QM4
*
 is less than QM2

*
. 

iii) The first-stage objective function for models M5 and M7 can be written as: 

   M5

R1( ) ... R4( )

( , , ) ,l

Q Q

E Q c Q PA Q u g u dud  
 

       , 
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and    M7

R1( ) ... R6( )

( , , ) ,l

Q Q

E Q c Q PA Q u g u dud  
 

       .  

Similar to the proof of Proposition 2.13 i), for the purpose of comparison, we allow for 

the winemaker to sell (salvage) fruits in model M5. Therefore, with the ability to sell 

excess fruit in the open market, the winemaker sets the profit maximizing price, pH = 

pH(TSH) and sells TSH amount of high-end wine. The first-derivative of the first-stage 

objective function then can be written as: 

 
    

   
 

    
 

 

      

    

'

M5

R1( )

'

R2( )

R3( )

R4( )

/ ,
1

,
1

1 ,

1 ,

H H pH

l

Q L pL

H H pH

Q L

H L pL

Q

H L

Q

p Qu Qu p Qu c u
E Q Q c g u dud

p c u

p Qu Qu p Qu c u
g u dud

s u

s u p c u g u dud

s u s u g u dud

   
 



   
 



   

   

   
         

    

   
  

   

   

  









 

As the production threshold is TSH in model M5, the bounds on regions R3(Q) and R4(Q) 

are equivalent to the bounds on regions R5(Q) and R6(Q) in model M7. Furthermore, due 

to continuity of the model, it is possible to split regions R1(Q) and R2(Q) in model M5 

into four separate regions with bounds that correspond to regions R1(Q), R2(Q), R3(Q) 

and R4(Q) of  M7. Therefore we can re-write the first-derivative of the M5 objective 

function as:  
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 

    

   
 

    
 

 

      

    

M5

'

R1( ) R3( )

'

R2( ) R4( )
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/

,
1

,
1

1 ,
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H H pH

Q Q L pL

H H pH

Q Q L

H L pL

Q

H L

Q

E Q Q c

p Qu Qu p Qu c u
g u dud
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   
 



   
 



   

   





      

   
  

    

   
  

   

   

  









 

and,  

      

    

    

   
 

    
 

 

    

M7

R1( )

R2( )

'

R3( )

'

R4( )

/ 1 ,

1 ,

,
1

,
1

1 ,

l H L

Q

H L

Q

H H pH

Q L pL

H H pH

Q L

H L

E Q Q c b u b u g u dud

b u s u g u dud

p Qu Qu p Qu c u
g u dud

p c u

p Qu Qu p Qu c u
g u dud

s u

s u b u g u d

   

   

   
 



   
 



  

         

  

   
  

    

   
  

   

  









    

R5( )

R6( )

1 ,

Q

H L

Q

ud

s u s u g u dud



     





 

To see the relationship between models M5 and M7, we evaluate the first-derivative of 

the objective function in model M7 at the optimal Q for model M5. Let QM5
*
 be the value 

of Q that maximizes the expected profit in model M5, i.e.  M5 /E Q Q     = 0.  
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 

 

 

   

 

 

 
 

    

*
M5 *

M5

*
M5

'

M7

R1( )

'

R2( )

/ ,

1

,

1 ,

H

H

H pH
Q Q

Q

L L pL

H

H

H pHQ

L L pL

p Qu Qu
b u

p Qu cE Q Q g u dud

b p c u

p Qu Qu
b u g u dud

p Qu c

b p c u g u

 


  



 
  







   
                 
 

       

    
            

    
 





 
*
M5R5( )Q

dud 

 

As, pH′(Quα) + pH(Quα) ˗ cpH ≥ pH(TSH) – cpH > bH and pL – cpL > bL, the first-derivative 

of the objective function in model M7 evaluated at Q = QM5
* 
is negative, i.e. 

 
*
M5

M7 /
Q Q

E Q Q


     < 0. Therefore, at optimal vineyard lease in model M5, the 

objective function of model M7 is decreasing. Due to the concavity of model M7, the 

optimal solution for model M7 must have already been reached, and thus QM5
*
< QM7

*
. 

iv) The proof is similar to the one presented in part ii) when models M2 and M4 are 

compared. First, observe that when the firm can sell its excess fruit, TPH of model M6 

becomes equivalent to TSH of model M8. Second, the downward substitution thresholds 

become equivalent in models M6 and M8 when pL – cpL – bL = 0, i.e, TPH
D
 = TPH

DT
.  

The optimal second-stage quantity decisions for model M6 are:  
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 
   

 
   

* * * *

* * *

,0,0,0,
                                               if , R1

1 ,0,0

,0,0,0,
                                    if , R2

,0, 1

, , , ,

, ,

L L

IH BH SH

IL BL SL

Qu
u Q

Qu

Qu
u Q

D Qu D

Qu

q q w q

q q q











 
 

 

 
 

  

 
  

 

 
   

 
   

 

,0,0,0,
                                               if , R3

1 ,0,0

,0, ,0,
                                if , R3

1 ,0,0

,0,0,0,
          

,0, 1

DT DT

H H

L L

u a Q
Qu

TP Qu TP
u b Q

Qu

Qu

D Qu D















 
 

 

 
   

 
 

  
   

 

 
   

 

 
   

   

                         if , R4

,0, 1 ,0,
                      if , R5

1 ,0,0

,0, 1 , ,
      if , R5

1 ,0,0

,0,0, ,

1 ,0, 1

L L

H L H L

H H

L

u Q

Qu D D Qu
u a Q

Qu

TS D Qu Qu TS D
u b Q

Qu

TS Qu TS

Qu Qu D















 



   
 

  

    
 

  

 


   
                           if , R6u Q



























 



 

The only difference in the expected profit expressions of models M8 and M6 are in 

regions R1(Q) and R2(Q). The first-stage objective function for model M6 is: 
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 

  

   
 

 

  

 
 

 
 

  

   
 

 

  
  
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 
 
   
 

 
 
    
 
  
 

 
 
   
 

 

  


     







 
 

  

 
 

 
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


 
 
    
 
  
 

   
 
  
 

 
 
    
 
   

 











 
 

 
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,

1

H

Q L pL L L

L
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g u dud

p c s D

s Qu


 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
      
     



 

The difference in the first-order derivatives for models M8 and M6, evaluated at QM6
*
 is: 

   

 

 
 

   

* *
M6 M6
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'

R1 R 2
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Q Q Q Q
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Q Q H

E Q E Q

Q Q

b p Qu Qu
u g u dud

p Qu

 
  



 



          
 

  
  

    

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Therefore, QM8
*
< QM6

*
.  

Proof of Proposition 2.14: The optimal second-stage decisions in model M7 can be 

classified in the following regions: 

R1(Q) = {(u, α) : Quα ≤ TBH and Qu(1 – α) < DL} 

R2(Q) = {(u, α) : Quα ≤ TBH and Qu(1 – α)  DL} 

R3(Q) = {(u, α) : TBH < Quα ≤ TSH and Qu(1 – α) < DL} 

R4(Q) = {(u, α) : TBH < Quα ≤ TSH and Qu(1 – α)  DL}  

R5(Q) = {(u, α) : Quα > TSH and Qu(1 – α) < DL} 

R6(Q) = {(u, α) : Quα > TSH and Qu(1 – α)  DL}. 

It must be noted that the price-setting flexibility is only available for the high-end 

segment, and the expected revenue from the low-end segment remains the same for both 

models. Thus, for the purposes of simplification, the low-end revenue function can be 

omitted from this proof.   

a) Let pH = pH(TBH) and therefore DH = TBH. It is possible to rewrite the first-stage 

objective function of model M3 as:  

 

      
   
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   
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  
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  







           

    
 

    
 







 
And the first-stage objective function of model M7 can be written as:  
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      
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  
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  







           

  
 

    
 







 

Because the demand in model M3 is DH = TBH of model M7, the firm buys additional 

fruit in regions R1(Q) and R2(Q) in both models. In regions R3(Q) and R4(Q), the return 

from the high-end segment in model M3 is (pH(TBH) ˗ cpH ˗ sH) TBH + sHQuα, whereas in 

model M7, the return in the high-end segment is (pH(Quα) ˗ cpH)Quα. Lastly, optimal 

second-stage decisions and the corresponding returns are equal in regions R5(Q) and 

R6(Q) in both models.  Therefore, let ΛM7-M3 be the difference between the expected 

returns in models M7 and M3, i.e. ΛM7-M3 = E[ΠM7(Q)] ˗ E[ΠM3(Q)], where: 
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 







 
  
    
 

  
 
   
 





 

Taking the first-order derivative of ΛM7-M3 w.r.t. Q provides: 

       
   

'M7 M3

R3 R4

,H H pH H

Q Q

p Qu Qu p Qu c s u g u dud
Q

     



     
   .  

From Proposition 2.5, it is possible to show that the first-order condition ∂Π(q)/ ∂q = 

pH
′
(q)q + pH(q) – cpH  – sH = 0, yields the production threshold TSH. Therefore as pH

′
(Quα) 

< 0,  and in region R3(Q) and R4(Q) where Quα ≤ TSH, it is clear that pH
′
(Quα)Quα + 

pH(Quα) – cpH  – sH ≥ 0. As a result, the first-order derivate of ΛM7-M3 must be positive, 
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i.e.    M7 M3 /E Q E Q Q             ≥ 0. This implies that 

   
* *
M3 M3

M7 M3

Q Q Q Q

E Q E Q

Q Q 

         
 

≥ 0. Therefore, QM7
*
 is greater than QM3

*
.  

b) Let pH = pH(TSH) and therefore DH = TSH. It is possible to rewrite the first-stage 

objective function of model M3 as:  

 

      
   

    
   

    
   

M3

R1 R2

R3 R4

R5 R6

,

,

,

l H H pH H H H

Q Q

H H pH H H H

Q Q

H H pH H H H

Q Q

E Q c Q p TS c b TS b Qu g u dud

p TS c b TS b Qu g u dud

p TS c s TS s Qu g u dud

  

  

  







           

    
 

    
 







 
The proof is similar to the one presented for part a). Let us compare the optimal second-

stage decisions in both models. Because the demand in model M3 is DH = TSH of model 

M7, the firm buys additional fruit in regions R1(Q), R2(Q), R3(Q) and R4(Q) in model 

M3, but purchases additional fruit only in regions R1(Q) and R2(Q) in model M7. In 

regions R1(Q) and R2(Q) of model M3, the return in the high-end segment is (pH(TSH) ˗ 

cpH ˗ bH) TSH + bHQuα, whereas in model M7, the return in the high-end segment is 

(pH(TBH) ˗ cpH ˗ bH) TBH + bHQuα. In regions R3(Q) and R4(Q), the return from the high-

end segment in model M3 is (pH(TSH) ˗ cpH ˗ bH) TSH + bHQuα, whereas in model M7, the 

return in the high-end segment is (pH(Quα) ˗ cpH)Quα. Lastly, the optimal second-stage 

decisions and the corresponding returns are equal in regions R5(Q) and R6(Q) in both 

models. Therefore, let ΛM7-M3 be the difference between the expected returns in models 

M7 and M3, i.e. ΛM7-M3 = E[ΠM7(Q)] ˗ E[ΠM3(Q)], where: 
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  

  
 

   

  

  
 

   

M7 M3

R1 R2

R3 R4

,

,

H H pH H H

Q Q H H pH H H

H pH

Q Q H H pH H H H

p TB c b TB
g u dud

p TS c b TS

p Qu c Qu
g u dud

p TS c b TS b Qu

 

 
 









  
  
   
 

 
 
    
 




 

Taking the first-order derivative of ΛM7-M3 w.r.t. Q provides: 

       
   

'M7 M3

R3 R4

,H H pH H

Q Q

p Qu Qu p Qu c b u g u dud
Q

     



     
  

 

From Proposition 2.5, it is possible to show that the first order condition ∂Π(q)/ ∂q = 

pH
′
(q)q + pH(q) – cpH  – bH = 0, yields the production threshold TBH. Therefore as 

pH
′
(Quα) < 0 and in region R3(Q) and R4(Q) where Quα > TBH, it is clear that 

pH
′
(Quα)Quα + pH(Quα) – cpH  – bH < 0. As a result, the first-order derivate of ΛM7-M3 

must be negative, i.e.    M7 M3 /E Q E Q Q             < 0. This implies that 

   
* *
M3 M3

M7 M3

Q Q Q Q

E Q E Q

Q Q 

         
 

< 0. Therefore, QM7
*
 is smaller than QM3

*
.  

c) For the purposes of a fair comparison, let pH = pH(TPH) and therefore DH = TPH, and 

the first-stage objective function for model M1 can be written as follows: 

          
 

      
 

        
 

      
 

M1

R1

R2

R3

R4

1 ,

,

1 ,

,

l H H pH L pL

Q

H H pH L pL L

Q

H H pH H L pL

Q

H H pH H L pL L

Q

E Q c Q p TP c Qu p c Qu g u dud

p TP c Qu p c D g u dud

p TP c TP p c Qu g u dud

p TP c TP p c D g u dud

   

  

  

 

            

    
 

     
 

    
 







  
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Next, we consider the first-stage objective function of model M5, which can be expressed 

as follows: 

          
 

      
 

        
 

      
 

M5

R1

R2

R3

R4

1 ,

,

1 ,

,

l H pH L pL

Q

H pH L pL L

Q

H H pH H L pL

Q

H H pH H L pL L

Q

E Q c Q p Qu c Qu p c Qu g u dud

p Qu c Qu p c D g u dud

p TP c TP p c Qu g u dud

p TP c TP p c D g u dud

    

   

  

 

            

    
 

     
 

    
 








 

Let ΛM5-M1 be the difference between the expected returns in models M5 and M1, i.e. 

ΛM5-M1 = E[ΠM5(Q)] ˗ E[ΠM1(Q)], where: 

       
   

M5 M1

R1 R2

,H pH H H pH

Q Q

p Qu c Qu p TP c Qu g u dud    



     
 

 

Assuming demand in the high-end segment is linear, let DH = aH  ˗ βHpH. The winemaker 

can set a profit maximizing price in the high-end segment as pH = (aH  + βHcpH)/2βH, 

while setting a production target TPH = (aH  ˗ βHcpH)/2. When high-quality crop 

realization is below the production target, i.e. Quα < TPH, the firm sets the market-

clearing price pH(Quα) = (aH  ˗ Quα)/βH.  

Rewriting ΛM5-M1 with linear demand gives: 

 
   

M5 M1

R1 R2

,
2

H H pHH
pH pH

H HQ Q

a ca Qu
c Qu c Qu g u dud


   

 




    
        

    


 

Taking the first-order derivative of ΛM5-M1 w.r.t. Q provides: 
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 
   

 
   

 
   

M5 M1

R1 R2

R1 R2

R1 R2

,

2

2
,

2

2
,

2

H
pH

H H

Q Q H H pH

pH

H

H H pHH

H HQ Q

H H pH

H HQ Q

a Qu u
c u Qu

g u dud
Q a c

c u

a ca Qu
u g u dud

a c Qu
u g u dud

 
 

 
 







  

 

 
  

 









    
     

     


   
   
   

  
   

  

  
   

  







 

As, TPH = (aH  ˗ βHcpH)/2, it is possible to rewrite the first-order derivate of ΛM5-M1 w.r.t. 

Q as follows: 

   
   

M5 M1

R1 R2

2 ,H

Q Q

TP Qu u g u dud
Q

   




      

From the above expression, it is possible to show that the first-order derivate of ΛM5-M1 is 

negative when Quα > TPH/2. Furthermore with a uniformly distributed g(u,α), it is 

possible to see that uα has a higher value when Quα > TPH/2 than when Quα < TPH/2. As 

a result, │TPH ˗ 2Quα│is higher when Quα > TPH/2, resulting in the first-order derivate 

of ΛM5-M1 to be negative, i.e.    M5 M1 /E Q E Q Q             < 0. This implies that 

   
* *
M1 M1

M5 M1

Q Q Q Q

E Q E Q

Q Q 

         
 

<0. Therefore, QM5
*
 is smaller than QM1

*
.  

Proof of Proposition 2.15: The proof is identical to the proof of Proposition 2.2 except 

that high-end demand and processing cost is replaced with low-end demand and 

processing cost.  

Proof of Proposition 2.16: The result follows from the fact that the market-clearing price 

in in the low-end segment, denoted pL(Qu(1 – α)) > pL
*
 when Qu(1 – α) ≤ TPL, and thus, 
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pL(Qu(1 – α)) – cpL ≥ pL
*
 – cpL, which leads to the fact that the threshold for downward 

substitution TPH
D
 (for a given Q) in model M10 to be smaller than that of M6. Because 

the upper threshold for downward substitution remains to be the same TPH point in both 

models, downward substitution occurs in a larger interval of Quα values in model M10. 

For the same pdf, this implies that P(w
*
 > 0) is greater than or equal to that of model M6.  

Proof of Proposition 2.17:  

The proof follows from Proposition 2.10 by replacing the downward substitution with the 

no fruit trading region. We omit the details.  

Notes on correlation analysis: 

For our numerical analysis, we will want to change the variance of α|u without changing 

the variance of u. Random variables u and z are independent with mean normalized to 

0.5, i.e., E[u] = E[z] = 0.5. However, we allow 2 2

u z  . Let  τ= Z

u




and define    

      

(1 )u z      

Due to independence, we have [ ] 0.25E uz  (follows from   u ZE u z    = 0). 

Note that  

[ (1 ) ] 0.5E u z       

 =    
1/2 1/2

2 22 2 2 21 1u Z u              
     
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       

   2 2

0.5 1 0.25

1 0.25

u u

u

E u E u u

E u E uz

       

  

            

      

. Thus, 

 
1/2

22 1

u
u

u






 


    
 

  
 

. Assuming that the correlation is nonnegative (i.e., 

u  0, γ  0), solving the above equation for γ yields 

 
   

1/2
2 2 2 2 2

2 2 2

1

1 1 1

u u u
u

u u u

  


  

     


   

  
  

   
.  The mean and variance of α 

given realization u are: 

   1 1 0.5E u u u              and    
2 22 21 1Z uVar u            .  

Notes on deterministic quality and supply: 

For the problem variant with deterministic supply and quality, we assume the firm 

converts all of its fruit crop into the final product, i.e., qIH = Qu and qIL =  1Qu  . 

The first-stage objective function, denoted  Q , can be expressed as follows:     

         1l H pH L pLQ c Q p Qu c Qu p c Qu          . 

Remark B1. a) The optimal amount of farm space to be leased, denoted by Q
0
, under 

deterministic supply and quality satisfies 
 

         
20 0 0' 1H H l pH L pLp Q u u p Q u Q u c c u p c u           ; (2.10) 

b) the optimal deterministic profit, denoted by 
0( )Q , is  

     
2

0 0 0'HQ p Q u Q u    , (2.11)  

We next analyze the firm’s objective function under supply and  uality uncertainty:  
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        

     

,

1 ,

h h

l l

h h

l l

u

l pH H

u

u

L pL

u

E Q c c E u Q p Qu Qu g u d du

p c Qu g u d du









    

  

      

  

 

 

 

      ( ) ,
h h

l l

u

H H

u

Q p Qu p Qu Qu g u d du





            (2.12) 

Proposition B1. a) The first-stage objective function  in (2.12) is concave in Q, and the 

optimal amount of farm space to be leased satisfies 

 

   
 

 

   
2

,
1'

h h

l l

u
l pHH

u L pLH

c c E up Qu u
g u d du

p c E up Qu Q u





 
 

 

  
  
          

  ; (2.13) 

b) the optimal profit is  

   * * * 2'( )( ) ,
h h

l l

u

H

u

E Q p Q u Q u g u dud





      
    , (2.14) 

and is less than its deterministic equivalent;  

Proof of Proposition B1: a) Expected profit is concave in Q because the demand 

function is concave, i.e.,  

          
2 32 2/ 2 '' , 0

h h

l l

u

H H

u

E Q Q p Qu u p Qu Q u g u d du





                  

and thus the first-order condition 

 
      

       
2

1

' ,

0

h h

l l

l pH L pL

u

H H

u

E Q
c c E u p c E u

Q

p Qu u p Qu Q u g u d du





 

     
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b) From the first-order condition, we have 
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Substituting this expression in (2.12) provides (2.14). From the fact that pH(Quα)Quα is 

concave in u and α, it follows from Jensen’s ine uality that 
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   ( )H Hp Qu Qu E p Qu Qu    > 0, and thus (Q
0
) – E[(Q

*
)]  ( Q

*
) – 

E[(Q
*
)] > 0.  

The above proposition provides general results regarding the behavior of the optimal 

amount of farm space to be leased and the optimal profit expression under deterministic 

and stochastic supply and quality. Because the demand function is not described by a 

specific function, a closed-form expression is not provided for the optimal decisions; 

however, one can provide them for specific demand functions. The following analysis 

shows the optimal amount of farm space to be leased and the optimal profit of the firm 

under deterministic and stochastic supply and quality using linear demand, i.e., DH(pH) = 

aH – βHpH.  

Remark B2. a) The optimal amount of farm space to be leased under deterministic 

supply and quality is 
       

0
/ 1 /
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Q

u
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

     
  ; b) 
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The optimal deterministic profit is 

         
2
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Proof of Remark B2: The deterministic objective function 
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is concave in Q because  
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. The first-order condition provides the deterministic optimal 

amount of farm space to be leased: 
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deterministic optimal amount of farm space to be leased back into the objective function 

leads to 
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.   

Proposition B2. Under stochastic supply and quality: a) The first-stage objective 

function is concave in Q, and the optimal amount of farm space to be leased is 
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

; b) The optimal 
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amount of farm space to be leased is less than that of the deterministic supply and 

quality, i.e., 
* 0Q Q ; c) The optimal profit is 

 
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, 

and is less than its deterministic equivalent; d) The optimal amount of farm space to be 

leased and the optimal profit are both decreasing in the variance of supply and quality 

uncertainty.  

Proof of Proposition B2:  
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Therefore, the first-order condition, when equated to zero, provides the optimal amount 

of farm space to be leased:  
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b) Observe that the above optimal amount of farm space to be leased can also be 

expressed as:  
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c) Substituting 
*Q  back into the objective function provides 
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Moreover, 
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d) Because 
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optimal amount of farm space to be leased and the optimal profit are monotonically 

decreasing in the variance term of supply and quality uncertainty.  

Denoting the coefficient of variation in supply uncertainty as 

     /cv u Var u E u   , the optimal amount of farm space to be leased can also be 

expressed as follows: 
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Therefore, the optimal amount of farm space to be leased is decreasing in coefficient of 

variation, and because we keep the mean fixed, it decreases in supply and quality 

variation under random supply and quality. Similarly, the optimal value of the objective 

function is decreasing in the coefficient of variation, 
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and is less than its deterministic equivalent.  
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CHAPTER 3: WINE FUTURES AND ADVANCE SELLING UNDER QUALITY UNCERTAINTY 

3.1 Introduction 

This essay examines the use of advance selling as a form of operational flexibility 

to mitigate quality-rating risk in wine production. The motivation for this study stems 

from the desire of Heart and Hands Wine Company in upstate New York to allocate a 

portion of their popular Pinot Noir wine to be sold in advance as wine futures. The 

study is targeted to assist the rapid growth of the United States wine industry and help 

winemakers mitigate the risk in their revenue cash flows.  

Over the last decade, the number of wineries in the United States has more than 

doubled, from 2,688 in 1999 to over 6,000 in 2009.7 With the increasing popularity of 

California wines, some of the more established wineries in the Napa Valley region 

have been sold off to large international corporations that benefit from the economies 

of scale and superior spending power. On the other hand, many wineries in the United 

States are still privately-owned and operate as family businesses with limited 

financial resources. While these smaller boutique wineries have been successful in the 

production of high quality wines and establishing themselves  among wine 

enthusiasts as something of a ‘cult status’, they have also struggled financially due to 

high costs and uncertainties that are inherent to wine production.  

The production process of wine begins at harvest, where winemakers obtain 

grapes that vary in quality between each growing season. Once the grapes are sorted, 

pressed and fermented, the wine is aged in barrels for two years before it can be 

                                                 
7 Statistics provided by the Alcohol and Tobacco Tax & Trade Bureau (TTB). 
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bottled and sold to the general public. During these two years, the winemakers bear the 

risks of having their equity tied up in inventory that fluctuates in value depending on the 

quality of the final product. Therefore, in recent times, to reduce the risk of having cash 

tied up as wine in barrels, many winemakers have begun adopting the traditional French 

‘en primeur’ system, where they set aside a large portion of their total wine production to 

be sold as ‘wine futures.’ 

In this study, we investigate the impact of quality rating uncertainty that the wine 

receives from external reviewers and tasting experts. Specifically, we examine the 

decision made by the winemaker who obtains two ratings for the wine: First for the 

barrel rating when the wine is in the early stage of its aging process, and a second bottle 

rating when the wine is bottled and is ready to be sold to consumers. We consider a 

winemaker who, at harvest, obtains a certain number of barrels of wine. After eight to ten 

months of barrel aging, outside journalists and independent reviewers are invited to the 

cellars to taste the wine while still in barrels. At this point the quality of the wine in the 

barrels is uncertain due to the varying quality of the grapes that the winemaker can obtain 

each year.  

The most influential reviewer is Robert Parker Jr. of The Wine Advocate, and his 

rating is often seen as the industry benchmark. The potential barrel score out of 100 that 

he gives to the wine would usually determine whether the wine would be a success or a 

failure.  The review by Parker marks the beginning of ‘en primeur campaign’ for that 

vintage. At this point, the winemaker has to make an important decision in terms of the 

proportion of the total wine production that should be allocated to be sold as futures, and 
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the price they should charge for the wine futures. Wines with high reviews in the 

upper 90s are highly sought after by merchants, collectors and investors and can be 

sold at higher prices. Figure 3.1 illustrates the effect of the barrel rating Robert Parker 

gives to wine on price of the wine futures. 

 

 

Figure 3.1. The prices of 2010 Bordeaux futures and their corresponding ratings from 

Robert Parker.8 

 

At the end of the ‘en primeur campaign,’ the wine undergoes one more year of 

barrel aging before it is bottled and sent for blind tasting, where a bottle rating out of 

100 is assigned to the wine. Similar to barrel rating, the bottle rating plays a 

significant role in determining the final price of the wine. However, unlike wine 

futures, the demand for bottled wine tends to be higher as access to bottled wine is 

not only limited to the small numbers of merchants, collectors and enthusiasts. 

                                                 
8 Data obtained from Liv-Ex.com. Liv-Ex.com is a wine trading platform that facilitates merchants and 

collectors in wine and wine futures trading, and is similar to financial market such as the NASDAQ and the 

S&P 500.  
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Bottled wine can easily be made accessible to the general everyday consumers. During 

the first stage of the aging period, the barrel rating is completely unknown to the 

winemaker and consumers. However, at the beginning of the second stage of the aging, 

i.e., once the barrel rating is revealed, the winemaker and consumers can use barrel rating 

as an indication for the potential bottle rating. To capture the relationship and the nature 

of uncertainty between the two ratings, we model the barrel rating and bottle rating as 

two random variables, where the bottle rating is conditioned on the barrel rating. This 

conditional definition of bottle rating random variable eliminates the unrealistic scenario 

where a relatively good wine can turn into a very low quality wine, and vice versa. 

Advance selling provides certain advantages to the winemaker, but it also comes at a 

risk. Wine futures allow winemakers to pass on the quality rating risk to consumers and 

gain access to cash immediately. The negative consequence of selling wine in the form of 

futures is that the firm may lose the opportunity of higher revenues that can be obtained 

from retail sales. An example of this can be seen with one of the well-known Bordeaux 

‘Premier Crus’, 1996 Chateau Lafite Rotchschild. In 1997, while this wine was still aging 

in the barrel, Robert Parker gave it a barrel rating of 91 to 93, resulting in the opening 

price of $1,400 per case. A year after establishing the barrel score, Parker tasted the wine 

again and gave it a perfect bottle rating of 100. As a consequence of this perfect bottle 

rating score, the price of the wine rose to $3,700 per case, resulting in an approximately 

150% increase in price. In this example, selling its wine early as futures, Chateau Lafite 

Rotchschild has lost the opportunity of making higher profits based on its bottle rating.  

While the winemaker may benefit from the increase in the quality of the wine during 
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the aging process, there is also the opposite risk of allocating too much wine for 

distribution through traditional retail channels. This occurs when the wine does not 

up to the expectations, making the price at the end of the aging process lower than 

that of the futures price, resulting in a loss of future revenues.  

Wine futures also exhibit some positive opportunities for consumers, but they 

come along with risks. First, wine futures enable consumers to gain access to wine 

that is rare and highly sought after at a price that is often lower than the retail price. 

Second, when consumers purchase the wine as futures, they assume the risk of 

quality-rating uncertainty from winemaker; and thus, they may lose out if the wine 

does not live up to its potential. Moreover, due to the increase in the popularity of 

wine futures, many wine merchants and investors have taken advantage of this 

unregulated market by setting up false funds and illegal schemes that induced buyers 

into buying wine futures that they did not have access to. It was recently reported that 

a wine investment firm in the United Kingdom has defrauded a total of ₤2.5 million 

from investors and collectors who were seeking to get hold of rare Bordeaux wines.9   

Our study investigates optimal production allocation for a winemaker that faces 

quality rating uncertainty from two different perspectives: (1) A risk-neutral 

perspective where the winemaker seeks to maximize the expected profit, and (2) a 

risk-averse perspective where the winemaker seeks a balance between maximizing 

the expected profit and reducing the downside risk of a decrease in quality rating. 

In this study, we address the following research questions: 

                                                 
9 Decanter Magazine, “Wine investors ‘defrauded of ₤2.5m’” October 15

th
 2010.  
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1. How should a winemaker allocate and set the price of wine futures in order to 

maximize expected profit in the presence of the barrel and bottle ratings 

uncertainty? 

2. How does risk aversion influence the firm’s decisions regarding the allocation 

of wine to be sold as wine futures and the allocation for retail distribution?  

3. What is the impact of variation, and the relationship between the random barrel 

and bottle ratings, on the winemaker’s pricing and allocation decisions? 

It is important to highlight that the winemaker and wine futures consumers in our 

modeling approach differ from the traditional description of risk aversion of and risk 

neutrality commonly presented in the industrial organization theory of economics 

literature. In industrial organization theory, large corporations can diversify their risk, and 

therefore, do not need to take actions from a risk-averse perspective. According to the 

same theory, small firms and individual consumers have limited resources, such as cash, 

legal support, etc., and can take actions that exhibit risk aversion. In our model, however, 

we investigate a segment of consumers who are affluent and are not typical examples of 

consumers in the industrial organization theory. These consumers exhibit a greater 

attraction to fine wine and take actions that do not exhibit risk aversion, but represent the 

actions of risk-neutral consumers. As a result, the consumer segment in this study is 

defined as risk neutral. The winemaker, on the other hand, can exhibit behavior that 

represents a risk-averse decision maker. This is because, the winemaker has its cash tied 

up in the aging inventory, and is concerned about its cash position in the future. 

Therefore, our description of the winemaker considers a risk-averse decision maker.   
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In the next section, we review advance selling in economics, marketing and 

operations management literature, and demonstrate how our work differs from earlier 

publications. 

 

 3.2 Literature Review 

Advance selling is a common marketing practice in which sellers offer buyers 

with opportunities to purchase the goods or services before the time of consumption. 

In marketing, early literature in advance selling focuses on the use of advance selling 

as a tool to price discriminate and manage fluctuations in demand in the airline and 

leisure industry (Gale and Holmes, 1992). Gale and Holmes (1993) illustrate that 

firms facing demand uncertainty with limited capacity can expand their output by 

adopting advance selling to induce buyers to purchase early, and thus, reduce the 

demand risk at the time of consumption. This study is similar to Gale and Holmes 

(1993), as we show that the winemaker can mitigate the demand risk by adopting 

advance selling as a form of allocation flexibility. However, we depart from their 

study by introducing the uncertainty of bottle ratings, which in turn influences both 

the allocation decision of the winemaker and the consumer valuation of the wine.    

In addition to the above publications in marketing literature, recent studies in 

advance selling have focused on the conditions in which advance selling can be 

beneficial. Shugan and Xie (2000, 2005) and Xie and Shugan (2001), show that the 

conditions in which advance selling can be beneficial to the firms as a marketing tool 

are far more general than previously thought, and not limited to firms that operate 

under a capacity constraint. Specifically, they demonstrate that the use of advance 
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selling as an effective marketing tool does not require industry-specific characteristics but 

only requires the existence of buyer uncertainty about future valuation. Fay and Xie 

(2010) extend the marketing literature in this area. By comparing the use of advance 

selling and probabilistic selling, they derive conditions under which one dominates the 

other.  

While there is an abundance of marketing literature in the area of advance selling, 

few have studied the problem from an operations and supply chain management 

perspective. Su (2007), and Su and Zhang (2008, 2009), examine the situation where 

firms participate in multiple selling periods over a finite time. Although these studies do 

not consider the use of advance selling, they shed light into the area of strategic customer 

behavior, specifically the influence of forward looking and myopic buyers on the firm’s 

pricing and selling decisions. 

In the past, there have been many studies in economics and finance (e.g. Kohn 1978) 

that illustrate the effect of speculators in the resale market. In operations management 

literature, Su (2010) considers the problem where there are both speculators and genuine 

buyers in the market, and shows that firms can gain additional benefit by mimicking the 

action of the resellers in the resale market when consumer valuations are fixed over time. 

Our study departs from Su (2010) by allowing for the quality-rating to fluctuate between 

the two selling periods, and thus in turn influences the consumer valuation of the product 

during the two selling periods. In other words, we allow for exogenous factors to 

influence consumer valuation before the time of consumption. Tang and Lim (2011) 

extend the work in this field by examining the interrelationship between speculators and 
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forward-looking consumers. They develop conditions in which sellers can benefit 

from the existence of speculators in the market. Specifically, they show that when the 

expected valuation is decreasing over time, speculators can be beneficial in 

generating future demand.  

In recent times, there has been an emergence of research that considers the use of 

various operational flexibilities to mitigate demand uncertainty. Van Mieghem and 

Dada (1999), Petruzzi and Dada (1999), Dana and Petruzzi (2001), Federgruen and 

Heching (1999, 2002) and Kocabıyıkoğlu and Popescu (2011) show that firms can 

adopt production and pricing flexibilities to mitigate demand risk under deterministic 

supply. Furthermore, Van Mieghem and Dada (1999) demonstrate that, under 

postponed pricing, production postponement has little benefits to the manufacturer. 

Our essay departs from these studies as it features: (1) Quality-rating uncertainty, (2) 

the use of advance selling in addition to pricing flexibility that can be used to mitigate 

demand risk, and (3) a risk-averse firm that benefits from recuperating income in 

advance. Moreover, we show that advance pricing and advance allocation may be 

beneficial to firms that have significant amount of cash tied up in inventory that may 

diminish in value.  

In addition to the pricing flexibility, Jones et al. (2001) and Kazaz (2004) 

illustrate that firms can also mitigate demand uncertainty through utilizing a 

secondary source of supply. Our work differs from the studies as we examine the 

problem of managing demand uncertainty through the use of advance selling as a 

secondary market for consumers, instead of adopting a secondary source of supply in 
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the production process.  

In operations and supply chain management, quality uncertainty is often seen as 

uncertainty in the production process where multiple products with varying quality are 

produced simultaneously in a single production run. Bitran and Dasu (1992), Bitran and 

Gilbert (1994), Nahmias and Moinzadeh (1997), Bassok et al. (1999), Hsu and Bassok 

(1999), Tomlin and Wang (2008) and Noparumpa et al. (2011) all examine the firm’s 

downward substitution decisions under various settings. However in this study we 

examine quality uncertainty from a different perspective. We investigate a problem where 

the quality of wine can fluctuate during the course of the aging process; and hence this 

presents the winemaker with the opportunity to allocate a proportion of the total 

production to be sold as futures in advance, and thus, reducing the risk of the variation in 

quality in future periods. 

In sum, this essay integrates the two important disciplines of business, namely 

marketing and operations management, by studying the use of advance selling from two 

different perspectives.  From a marketing perspective, it shows that advance selling can 

act as a method to price discriminate buyers, and thus, enables the winemaker to extract 

additional surplus from the consumers. From an operations management perspective, in 

the presence of quality-rating uncertainty, advance selling allows the winemaker to pass 

on the risk of holding inventory that fluctuate in value due to quality-rating uncertainty to 

the end consumers, while recuperating the necessary cash that is required for 

reinvestment early in the production process.  
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3.3 Problem Definition and the Model 

This section presents the problem definition for a winemaker that experiences 

quality-rating uncertainty during the aging process. The problem is formulated as a 

stochastic program. At time t0, which corresponds to the end of the harvest season, 

the winemaker obtains the total number of barrels of wine to be produced for that 

vintage, denoted Q. At time t1, after eight to ten months of barrel aging, the 

winemaker invites experts such as Robert Parker Jr. to taste the wine, and a barrel 

rating is revealed to both the winemaker and consumers. At this point the winemaker 

has to decide on the quantity of wine to be sold as futures, denoted qf , which 

determines the corresponding price pf, while facing the bottle rating uncertainty. The 

remaining portion of wine that is not allocated for sales as futures, denoted with qr, is 

reserved for retail sales. At the end of the aging process, alternatively at time t2, the 

wine is bottled and sent for blind tasting. At this time, the bottle rating is revealed and 

the wine is sold at a retail price pr that responds to the fluctuations in the bottle rating. 

Figure 3.2 illustrates the timeline of events that winemaker faces during the wine 

production process.  
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Figure 3.2. The timeline of events in a life of a winemaker. 

 

After the barrel rating is realized at time t1, the wine undergoes one more year of 

barrel aging. At the end of the aging process at time t2, the bottle rating of the wine is 

revealed. Similar to the barrel rating, the randomness in bottle rating is represented with a 

stochastic random variable
   s2

with realization denoted with s2 defined on a support [s2l(s1), 

s2h(s1)] that may depend on the value of barrel rating score s1. As the barrel rating s1 

provides indication to the final bottle rating s2, the random variable 
   s2

follows a 

conditional probability density function f(s2 | s1), where the expectation of the bottle score 

at the time t1 when the barrel rating is revealed, is identical to the barrel rating, i.e. E[
   s2

| 

s1] = s1. 

In this study, we let the retail price be a price that responds to the uncertainty in the 

bottle rating. Without loss of generality, we normalize units such that the price of retail 

wine is equivalent to the bottle rating of the wine, i.e.,  pr = pr(s2) = s2. It follows that the 

expected price of retail at time t1 is equivalent to the barrel score, i.e. E[pr(   s2
│s1)] = s1. 

We next introduce the modeling approach used to describe the winemaker’s demand 

for futures and retail sales. We develop a discrete choice model to describe demand for 

futures. The market size for wine futures is denoted by M. At time t1, the unit futures 

price pf is announced and each individual in the futures market assesses his/her utility of 

three choices: purchase at time t1 (i.e., a wine future), purchase at time t2 (i.e., retail 

purchase), do not purchase. The expected utilities of each choice are denoted as uf, ur, u0, 

respectively, and are defined as follows: 
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uf =  2 1| fE s s p  = s1 – pf 

ur =    2 1 2 1| |rE s s E p s s   = 0 

u0 = 0 

The value of   [0, 1] in the expression describing the utility from futures, i.e., uf, 

accounts for exogenous risk and time-value-of-money from purchasing a wine future at 

time t1 that has an uncertain value compared to the option of purchasing the final product 

with a known value at a later time t2. We see that the expected utility of a retail purchase 

is the difference between the expected value of the wine as reflected in the bottle and the 

expected retail price, which nets to zero. 

 Each individual in the futures market has idiosyncratic preferences that are captured 

by independently and identically distributed (i.i.d) Gumbel random variables with zero 

mean and scale parameter , i.e., the utilities of a random member of the market are:  

Uf = uf + f = s1 – pf + f, 

Ur = ur + r = r, and 

U0 = u0 + 0 = 0, 

which yield the multinomial logit model. Accordingly, the demand for futures is  
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.                     (3.1) 

The objective of the winemaker is to determine on the optimal quantity of wine 

that are to be sold as futures, denoted qf , and the corresponding optimal price pf  that 

maximizes expected profit while facing barrel rating and bottle rating uncertainties. In 

this study, we model the problem of uncertain valuation of future consumption by 



 129 

adopting the risk-adjusted discount rate that is common among the finance literature (e.g., 

Samuelson 1963). The risk-adjusted discount rate, denoted with ϕ, enables us to model 

the winemaker preference of selling wine as retail that depends on the associated  

exposure to risk of holding back each additional bottle of wine to be sold as retail at time 

t2. Therefore to assess the return on risky asset such as wine, we adopt the capital asset 

pricing model (CAPM). CAPM provides a theoretical framework towards determining 

the expected return of the risky asset E[r] that is based on the risk-free rate of return rf, 

the market rate of return rm and the systematic risk γ, where    f m fE r r r r     is 

independent of the quantity of wine that are allocated towards sales as futures, qf. 

Therefore, without loss of generality, for the remaining part of this study we assume that 

the winemaker’s preference towards selling wine as retail ϕ depends on exogenous 

factors that are beyond the control of the winemaker. As a consequence of this 

assumption, we limit its value to be such that  0,1 . The winemaker’s objective 

function can then be written as: 
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  .         (3.2) 

The first term pfqf in the objective function equation (3.2) refers to the revenue gain 

from selling wine as futures, the second term ϕE[pr(s2│t1)](Q - qf) refers to the 

winemaker’s expected revenue from selling wine as retail adjusted according to the 



 130 

winemaker’s preference.  

3.4 Analysis 

We begin our analysis with the structural properties of the objective function 

presented in (3.2). By demonstrating that there exists a unique optimal solution to the 

profit maximization problem, we follow a similar approach presented in Li and Huh 

(2011) in order to characterize the optimal decisions in closed-form expressions.  

We first express the price of wine futures pf as a function of the quantity of wine 

futures to be sold qf. From (3.1), pf(qf) can be expressed as follows: 

  1 1

2
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2
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(3.3) 

Therefore the objective function in  (3.2) can be written as a profit maximization 

problem in terms of a single decision variable qf: 

 1 1 1max ln
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.                                   

(3.4) 

Proposition 3.1. The objective function in (3.4) is concave in the quantity of wine to be 

sold as futures qf.  

By illustrating that the profit maximization problem is concave in the decision 

variable, we can therefore explore the unique property of the multinomial logit model 

that enables the optimal profits and the decision variables to be expressed in closed-

form expressions involving the Lambert W function (Corless et al. 1996) which for 
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any nonnegative z, W(z) is the solution w satisfying z = wz
w
.  

Proposition 3.2. In the standard multinomial logit model we can write the optimal profit 

ρ
*
, the optimal quantity of wine futures to be sold qf

*
 and the optimal selling price of wine 

futures pf
*
as: 
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* *

1 1f fp s s Q                                                    (3.7) 

From the above proposition, it is clear that the multinomial logit formulation allows 

us to characterize the optimal profit, optimal quantity allocation and optimal price of 

wine futures as closed-form expressions.  

Such a result enables us to develop insights into the factors that influence the 

winemaker optimal allocation and the optimal price of wine futures. Proposition 3.2 

demonstrates that the optimal price and quantity paths of wine futures are driven by four 

main factors: (1) the winemaker’s preference of selling wine as retail ϕ; (2) the consumer 

preference towards buying wine futures θ; (3) the quality score of wine in barrel s1; and 

(4) the degree of consumer heterogeneity in the market β. In the next section, we analyze 

the properties and the key driving forces behind the optimal allocation and pricing 

decisions.  
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3.4.1 Analysis of the optimal decision variables 

In this section, we analyze the influence of the winemaker’s preference of selling 

wine as retail ϕ, the consumer preference towards buying wine as futures θ, the barrel 

score of wine s1, and the degree of consumer heterogeneity in the market β.   

We begin our analysis by examining the case where the consumers are risk-

neutral and thus the value from the consumption of wine as futures is the same as 

consuming the wine as retail at the end of period t2. Therefore, the value of  is solely 

based on the risk-free rate of return, i.e. θ = (1+rf)
-1

. In such a case, the consumer 

preference towards the consumption of wine as futures is greater than the 

winemaker’s preference towards selling wine as retail, as θ > ϕ. 

Proposition 3.3. a) The optimal profit ρ
*
, the optimal quantity of wine futures to be sold 

qf
*
 and the optimal selling price of wine futures pf

*
 are increasing the barrel score s1 

when the consumer preference of purchasing wine as futures is higher than the 

winemaker preference from selling wine as retail, i.e. θ > ϕ. b) The optimal profit ρ
*
, the 

optimal quantity of wine futures to be sold qf
*
 and the optimal selling price of wine 

futures pf
*
 are increasing in the consumer preference of wine futures. 

From Proposition 3.3, it is possible to see that, due to the fact that the winemaker 

has a higher preference towards selling wine as fustures and that consumers are 

indifferent towards consuming wine as futures or retail, the winemaker can gain 

additional profit by charging a higher price for wine futures, while also increasing the 

quantity of futures sales. Such allocation decision is common in the French wine 

industry. For a good vintage, as many as 300 chateaux would participate in the futures 
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market, and winemakers would allocate nearly 90% of their total production towards 

sales as futures. For a bad vintage, however, the number of participating wineries in the 

the futures market can drop to less than 60 chateaux.
10 

 

In terms of pricing, our results clearly support the recent trend in Bordeaux futures 

pricing strategy. For the 2010 vintage which many wine experts regard as a very strong 

vintage, the futures price for Château Lafite Rothschild has been recorded as 30% higher 

than the much weaker 2011 vintage.11  

Next, we investigate the scenario when the consumer preference towards consuming 

wine as future is low, and they prefer to buy wine as retail, while the winemaker’s 

preference for selling wine as retail is high, i.e., θ < ϕ. 

Proposition 3.4. a) The optimal profit ρ
*
, and the optimal selling price of wine futures pf

*
 

are increasing in the barrel score s1, and the optimal quantity of wine futures to be sold 

qf
* 
is decreasing in the barrel score s1 when the consumer preference of purchasing wine 

as futures is lower than the winemaker’s preference from selling wine as retail, i.e. θ < ϕ. 

b) The optimal profit ρ
*
 , the optimal selling price of wine futures pf

*
 are increasing in the 

winemaker’s preference towards selling wine as retail, and the optimal quantity of wine 

futures to be sold qf
*
 is decreasing in  the winemaker’s preference towards selling wine 

as retail. 

In this scenario, both consumers and the winemaker prefer to buy and sell wine as 

retail, and therefore, the winemaker can only gain additional profit by increasing price of 

wine futures to offset the quantity of wine that are allocated for sales as futures. In 

                                                 
10 CNN, ‘Betting on Bordeaux wine futures’, May 1

st
, 2008. 

11 Wine Spectator, ‘Château Lafite Rothschild releases its 2011 price’, April 17
th

, 2012. 



 134 

addition, it can be shown from Proposition 3.4(b) that the above effect increases when 

the value of the winemaker’s preference to sell wine as retail ϕ increases. It must be 

noted that this scenario is less realistic than the previous case, as it is less likely in the 

real world that both the winemaker and consumers to prefer being exposed to the risk 

of uncertain bottle score, and consequently, to the uncertain retail price of wine.  

However, it must be noted that in recent years, Chateau Latour, which many 

considered to be the best winery in the world, caused some controversy by adopting 

the pricing and quantity strategy that is similar to the above. For its 2009 vintage, 

which many wine experts argue that it is one of the best wines ever produced, 

Chateau Latour has decided to hold back its allocation of wine futures, and has priced 

its wine at a much higher price than its past vintages.12 As revealed later, the reason 

behind this peculiar pricing and allocation policy is that the Chateau has decided to 

permanently shut down its future ‘en primeur’ futures campaign, stating that its 

preference to sell wine through retail was due to the advantages from gaining control 

over the sales and distribution of wine13.  

As mentioned earlier, in a more realistic setting, consumers and the winemaker 

tend to exhibit a certain degree of preference toward the time value of money that 

lead to a higher allocation and consumption of wine futures. Therefore the remaining 

part of the analysis in this section concentrates on developing insights into the 

winemaker’s optimal pricing and allocation decisions based on the scenario where the 

consumer preference towards buying wine futures is greater than the winemaker’s 

                                                 
12 Liv-Ex.com, ‘Liv-ex interview with Robert Parker, part one: Bordeaux 2009’, March 16

th
, 2012. 

13 Wine Spectator, ‘Château Latour Abandons Futures System’, April 16
th

, 2012. 
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preference towards selling wine as retail, i.e. θ > ϕ.  

We next investigate the impact of consumer heterogeneity β on the optimal price of 

futures, the optimal amount of wine allocated for futures, and the corresponding optimal 

profit. According to the Gumbel distribution, β corresponds to the dispersion of consumer 

willingness to buy wine as futures. Therefore, smaller values of β reflect the situation in 

which consumers have a similar preference towards consuming wine as futures. As a 

result, their utilities of buying wine as futures are relatively close to the mean. On the 

other hand, larger values of β correspond to the case where consumers are less 

homogenous towards their willingness to consume wine as futures. As a result, a 

proportion of consumers gain an extremely high utility from buying wine as futures 

relative to the mean, and some consumers gain a significantly lower utility relative to the 

mean.  

Proposition 3.5. When the consumer preference of purchasing wine as futures is higher 

than the winemaker’s preference from selling wine as retail, i.e. θ > ϕ, (a) The optimal 

profit ρ
 *
 and the optimal selling price of wine futures pf

*
 are initially decreasing with 

increasing values of the dispersion factor β, then they exhibit an increasing behavior in 

the dispersion factor β. The optimal quantity of wine futures to be sold qf
* 
monotonically 

decreases in the dispersion factor β; and (b) The winemaker’s optimal pricing policy for 

its wine futures can be classified in the following three regions:  

Region pf
* 

qf
* 

ρ
* 

β 

I Decrease decrease decrease β ≤ βpf
* 

II Increase decrease decrease  βpf
*
< β ≤ βρ

* 

III Increase decrease increase βρ
* 

> β 
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Figure 3.3. Impact of consumer heterogeneity on price of wine futures. 

 

Proposition 3.5 establishes two thresholds βpf
*
  and βρ

*
, that characterize the 

optimal allocation and pricing decisions for the winemaker who experiences different 

degrees of consumer heterogeneity β. βpf
*
  and βρ

*
 correspond to the degree of 
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consumer heterogeneity β that satisfy the first-order conditions of ∂pf
*
/∂β = 0 and ∂ρ

*
/∂β 

= 0, respectively.  

From Proposition 3.5 and Figure 3.3, it is possible to see that in region I, when all 

consumers are homogenous β = 0, the winemaker allocates their entire production to be 

sold as futures, i.e. qf
*
 = Q, and sets a price that clears the market. As the heterogeneity 

among consumers of wine futures increases, the winemaker decreases the price and the 

allocation of wine futures, resulting in a lower profit. This case reflects the scenario 

where some consumers that have lower willingness to pay for wine futures and find wine 

futures less attractive. As a result, the winemaker decreases the price of wine futures and 

the allocation of wine futures in order to compensate for the  reduced valuations, on 

average, that the consumers have for wine. Such actions result in the reduction of the 

winemaker’s profit.  

In region II, the heterogeneity among consumers is higher than in region I but not 

large enough for the winemaker to take full advantage of consumers with a higher 

willingness to pay. As a result, the winemaker increases the price of wine futures, but the 

increase is not significant enough to cover the loss of consumers with a lower willingness 

to pay. This result is reflected in the decreasing profit for the winemaker.   

In region III where the consumer heterogeneity is sufficiently high and is above the 

threshold βρ
*
, the winemaker takes advantage of consumers that have a very high 

willingness to pay for wine futures by charging a higher price for its wine futures while 

decreasing the wine futures allocation. In this scenario, the heterogeneity of consumers is 

sufficiently high, such that the increase in price of wine futures charged by the 
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winemaker offsets the loss in demand, and thus increases the overall profit of the 

winemaker.  

3.5 Conclusions  

The essay examines the implementation of advance selling in the wine industry as a 

form of operational flexibility in order to mitigate quality rating risk. We investigate the 

impact of various exogenous factors that influence the winemakers’ allocation between 

futures and retail sales, and its pricing decisions. The essay provides a comprehensive 

analysis that demonstrates the benefits of advance selling.  

The study makes three sets of main contributions. First, we develop an analytical 

model that investigates the implementation of advance selling in the wine industry. The 

modeling framework incorporates two forms of uncertainties: (1) Uncertain consumer 

valuations of wine futures and bottle wine, and (2) the bottle rating that is assigned to the 

wine at the end of the production process. We derive closed-form expressions for the 

optimal allocation and pricing decisions. These closed-form expressions enable us to 

investigate the underlying factors that influence the winemaker’s decisions.  

Second, our results provide insights into how barrel rating, consumer preference and 

the winemaker’s preference influence the winemaker’s allocation and pricing decisions. 

It is common for the winemaker to increase the price of wine futures, while placing a 

higher priority on sales of wine futures when the barrel rating score is high. In this 

scenario, the winemaker benefits from a higher profitability to recuperate the investment 

made early. However, we also demonstrate that in a scenario where the winemaker’s 

preference for selling wine as future is low, the firm places more emphasis on factors 
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such as control of distribution, and is less concerned about its cash position. In this 

scenario, the winemaker choses to lower its allocation of wine futures, and increases the 

price of futures.  

Our third contribution relates to the impact of consumer heterogeneity on the optimal 

allocation and pricing decision. Contrary to the common belief that the winemaker may 

be better off when consumers are more homogenous, our results demonstrate that the 

winemaker can achieve a higher level of profitability when the market is filled with 

consumers that are heterogeneous. As the consumers with the lower willingness find 

wine futures less attractive, the winemaker can charge a higher price for its wine futures 

and take advantage of the consumers whose valuations of wine futures are high. Such 

circumstance reflects the state of the world economy today. For example, despite the  

economic crises in Europe and the United States, and the emergence of the Asian 

economy exemplifies a stable global wine futures market. In this recent economic 

environment, the winemaker prefers to set a higher price for its wine futures in order to 

take advantage of the increasing affluence in the Asian market. Moreover, the winemaker 

also allocates more wine for retail sales with the hope that the traditional economic 

powerhouses would recover from the economic crises, and its consumers reenter the 

market at the retail stage.  

3.6 Future Research Directions 

In this essay, we have investigated the use of wine futures as a form of operations 

management tool that assists winemaker that is facing quality-rating risk. The current 

model assumes that the winemaker has the ability to set the price of wine futures but does 
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not have the ability to set the retail price pr once the bottle rating is revealed. This 

assumption resembles the traditional French ‘en primeur’ system where wine futures are 

traded on an established trading platform such as Liv-ex.com, resulting in the price of 

wine to be dictated by the quality of the bottled wine. United States, on the other hand, 

does not have an established market for wine futures, and this may allow winemakers to 

set their own prices for their retail wines. 

Similar to other commodities and financial instruments that are commonly traded, 

investors are actively participating in the market for wine. In the present model, we 

exclude the role of wine buyers, who view wine as a form of investment. Incorporating 

speculators into the futures market of the model can provide the opportunity to 

investigate the impact of the speculative purchase behavior prior to bottling. Specifically, 

wine investors may prefer to purchase wine that has a lower barrel rating, and thus 

inflating the demand for wine futures. On the other hand, the role of speculators may also 

damage the winemaker profitability as they may take away the proportion of consumers 

who prefer to purchase wine at retail.  

Lastly, in this essay, we have investigated the use of wine futures as a possible 

operations management tool in mitigating quality-rating risk. However, in reality, wine 

futures may also affect the winemaker’s decisions from a marketing perspective. First, 

wineries may adopt wine futures as an effective marketing tool. With successful sales of 

wine futures, wineries may experience an increase in demand for retail wine due to the 

‘hype’ that can be created from advance selling. On the other hand, by allocating too 

much wine to be sold as futures, wineries may lose certain degree of control over their 
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distribution channels. Therefore, one possible feature that may be included into this 

model is the costs and benefits of adopting wine futures from a marketing standpoint. 

 

3.7 Appendix 

Proof of Proposition 3.1. Taking the natural log of (3.1) and rearranging: 
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Proof of Proposition 3.3(a). Taking the first derivative of (3.5) with respect to s1: 
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Proof of Proposition 3.3(b). Taking the first derivative of (3.5) with respect to θ 

provides the following result: 
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Taking the first derivative of (3.6) with respect to θ provides the result: 

   1 1 1 1
* / /

'

1 0
2 2

s s s s
fp e e

s W
       



      
            

. 

Proof of Proposition 3.4(a). Similar to the proof of Proposition 3.3, we take the first 

derivative of  (3.5) with respect to s1:  
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From the definition of the Lambert Function, ( ) / ( ) / (1 ( ))dW z dz W z z W z  , the above 

expression can be written as follows: 
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Therefore as ∂ρ
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Proof of Proposition 3.4(b). Taking the first-order derivative of (3.5) with respect to ϕ 

provides: 
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As ρ
*
 is an increasing function of Q, we evaluate ∂ρ

*
/∂ϕ at the smallest value of Q that 

corresponds to Q = qf. 
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Therefore, as ∂ρ
*
/∂ϕ is equal to 0 at the smallest value of Q, ∂ρ

*
/∂ϕ is always positive.  

Taking the first-order derivative of qf
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 with respect to ϕ: 

   

 
   

 
   

 

1 1 1 1 1 1 1 1

1 1 1 1

/ / / /

' * '

1 1 1*

2* *
1 1

/ /

'

1

2
*

1

2 2 2 2

2 2
0

s s s s s s s s

f

s s s s

e e e e
s W s Q s W

q

s Q s Q

e e
s W

s Q

               

       

 

      



  

       

   

       
          

         
    

   
   

     
 

 

Taking the first derivative of (3.7) with respect to ϕ provides: 
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As ∂ρ
*
/∂ϕ > 0  and Q is less than 1, it is clear that ∂pf

*
/∂ϕ > 0 .  

Proof of Proposition 3.5. Taking the first- and second-order derivatives of (3.5) with 

respect to β provides: 
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Taking the first- and second-order derivatives of (3.7) with respect to β provides:
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CHAPTER 4: CONCLUSIONS 

This dissertation investigates the use of operational flexibilities in production 

planning under supply and quality uncertainty that are commonly experienced among 

agro-businesses, and in particular, in the wine industry. In this dissertation, we have 

developed analytical models that provide prescriptive policies and insights for a 

winemaker regarding how it can manage risks associated with supply and quality 

uncertainty.  

The first essay investigates the problem where the winemaker receives an uncertain 

amount of high- and low-quality grapes, due to varying growing conditions such as 

adverse weather conditions, diseases and natural disasters. The study examines the 

interactions between the three forms of operational flexibility available to agricultural 

firms in mitigating supply and quality uncertainty. These flexibilities are: (1) Downward 

substitution, where high-quality fruit can be used in the making of a low-end product, (2) 

price-setting, where the firm can influence the demand of the high-end product by 

appropriately selecting the selling price in the high-end segment (in which consumers 

exhibit smaller price elasticity); and (3) fruit-trading flexibility, where the firm can 

purchase additional fruit in the event of lower supply realizations, or sell some of its 

excess fruit in the open market for revenue. The essay provides a comprehensive analysis 

that demonstrates the interrelationships between these three forms of operational 

flexibilities.  

An important finding of this study reveals a surprising result for the relationship 

between the price-setting and the downward substitution flexibilities. It is commonly 
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argued that price-setting and downward substitution flexibilities are two substitutable 

tools that negatively impact each other’s utilization. Contrary to this notion, we prove 

that price-setting and downward substitution flexibilities play a complementary role to 

each other. Pricing flexibility allows the winemaker to adopt downward substitution 

flexibility more frequently, resulting in a higher expected amount and a higher 

probability of downward substitution.  

In addition to demonstrating that downward substitution flexibility is most beneficial 

in the presence of price-setting flexibility, this essay also shows how variations in supply 

and  uality influence the winemaker’s decisions. Specifically, significant variations in 

quality and limited variation in supply make downward substitution more attractive, 

reducing the need for the winemaker to rely heavily on a vineyard lease.  

The second essay examines the implementation of advance selling in the wine 

industry as a form of operational flexibility. This essay provides insights into how barrel 

rating, consumers’ preference and the winemaker’s preference influence the winemaker’s 

allocation and pricing decisions. This essay shows that, while it is typically more 

common and beneficial for the winemaker to increase the price of wine futures when the 

barrel rating is high, in a scenario where the winemaker’s preference for selling wine as 

future is low, it would be more beneficial for the winemaker to lower the allocation of 

wine futures and increase the price of futures to offset the lower quantity.  

Contrary to the common belief that the winemaker is better off when consumers are 

more homogenous, our results demonstrate that the winemaker can achieve a higher level 

of profitability when the market is filled with consumers that are heterogeneous. As the 
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consumers with a lower willingness to pay leave the market, the winemaker can charge a 

higher price for the wine futures and take advantage of the consumers whose valuations 

of wine future are high.  
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