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ABSTRACT 

Hannah Blair 

IMPACTS OF SHIP NOISE ON THE NIGHTTIME FORAGING BEHAVIORS OF THE 

NORTH ATLANTIC HUMPBACK WHALE (MEGAPTERA NOVAEANGLIAE) 

 

 

The humpback whale (Megaptera novaeangliae) is an endangered baleen whale species 

with a cosmopolitan distribution. The coastal habitat of this species result in significant exposure 

to anthropogenic noise from human activities. Previous research in the well-studied Pacific 

populations has demonstrated changes in calling behavior in response to noise, but noise impacts 

on other critical behaviors such as foraging have not yet been investigated. This study examines 

the impacts of ship noise on the nighttime bottom foraging behavior of humpback whales in the 

North Atlantic – a region with substantial human activity including high levels of noise from 

commercial shipping traffic. Data were collected from 2006 to 2009 in the Stellwagen Bank 

National Marine Sanctuary in the southern Gulf of Maine during June and July. Data included 

underwater kinematic movement and acoustic recordings of surrounding environmental noise 

collected using an archival tag attached to nine individual whales. Here I use series of linear 

mixed models to assess the effects of ship noise on eight metrics of nighttime feeding behaviors. 

Fixed effects included the presence versus absence of ship noise, received level of ship noise, 

and the before, during or after ship noise exposure period. These variables had significant 

influence on three metrics: dive descent rate, ascent rate, and number of rolls indicative of 

feeding events. Descent rate decreased as noise level increased, while ascent rate was 

significantly faster in the during or after period when compared to the before period. The number 

of rolls significantly increased in the after exposure period, but at the greatest received levels, 

feeding rolls were completely absent during dives. These findings indicate that humpback whales 



 

on Stellwagen Bank show small, but significant, changes in foraging activity when exposed to 

ship noise. This study supports the hypothesis that environmental noise has an impact on the 

nighttime foraging activities of this species.  
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INTRODUCTION 

Anthropogenic Noise 

A rapidly expanding human population has resulted in increasingly fewer places on earth 

that remain completely untouched by human impacts (Vitousek et al. 1997). Increasing quantities 

of resources are required to support this population, including more land for food production, 

more fish harvested, more raw materials for making products, and rapidly increasing habitat 

destruction and degradation (Naylor et al. 2000; Imhoff et al. 2004). A growing human 

population also means more waste is produced, more chemical runoff enters the environment, 

and more carbon dioxide is released by the burning of fossil fuels (Halpern et al. 2008). While 

many of these effects are readily observable, some more cryptic effects require further 

investigation. Human disturbance may be perceived as a source of predation risk by animals, 

with similar indirect implications for fitness and population dynamics (Frid & Dill 2002). 

Another such less obvious, but potentially serious, source of human disturbance is noise 

pollution, commonly referred to as anthropogenic noise. 

Anthropogenic noise, sound generated by humans and human activity, has become 

increasingly widespread throughout the world in both terrestrial and marine environments 

(Slabbekoorn et al. 2010; Francis & Barber 2013). This noise may be chronic or acute, and each 

has different implications for the environment (Hildebrand 2004). Chronic anthropogenic noise 

is typically low in pitch (<1 kHz), and is generated from passing automobile and airplane traffic, 

from shipping vessel engines, and from multiple sources within urban centers (Barber et al. 

2010). Acute sources are high-intensity, including pile driving or explosions resulting from 

operations such as seismic exploration (Hildebrand 2004).  
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Noise pollution has the potential to substantially impact animal species. Studies have 

been conducted on a variety of effects, investigating influences of noise on movement, stress 

levels, and behavior (Blickley & Patricelli 2010). Even species that do not rely on sound for 

communication can be impacted either directly or indirectly through noise pollution. For 

example, Kunc et al. (2014) found that common cuttlefish flashed colors more frequently during 

ship noise playbacks. Urban centers have been targeted by multiple studies, as the noise 

generated by vehicles, machinery, and other noise associated with urban development is an 

obvious point source (Patricelli & Blickley 2006; Slabbekoorn & Ripmeester 2008). However, 

railways and highways extend from concentrated urban areas, bringing with them the noise of 

trains and vehicles (Bee & Swanson 2007). Even areas that at first appear pristine often have 

planes flying overhead or, in the case of marine systems, ship traffic generating noise (Frisk 

2012). 

 

Animal Responses to Anthropogenic Noise 

Movement 

Anthropogenic noise may lead to changes in movement and migration patterns, or in 

extreme cases, to complete abandonment of certain habitats. Kelly et al. (1988) found that ringed 

seals (Phoca hispida) abandoned breathing holes and lairs at higher than normal rates when 

exposed to anthropogenic noise. Abandonment of these resources may increase their risk of 

predation and likely decreases their foraging ability. Some studies of fish responses to 

anthropogenic noise have demonstrated changes in small-scale movements; for example, ship 

noise appears to disrupt schooling behavior in bluefin tuna (Thunnus thynnus) (Sarà et al. 2007). 
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Noise pollution may effect large-scale movements as well. A study by Francis et al. 

(2011) considered occupancy of two species of flycatchers in urban habitats. While one species 

increased the frequency and amplitude of its calls, the habitat occupancy of the other 

significantly declined in response to an increase in background noise amplitude, demonstrating a 

higher sensitivity to anthropogenic noise in the second species. In some instances, anthropogenic 

noise may cause species to avoid or abandon critical habitats such as breeding grounds, as 

observed in the migratory gray whale (Eschrichtius robustus) by Gard (1974). The habitat 

desertion demonstrated by these studies is troubling, as it indicates that noise pollution can 

degrade a habitat to the point that it becomes unsuitable for the animal.  

Stress Responses 

In addition to the variety of documented behavioral changes, physiological changes in 

noise exposure have been observed in a variety of species. Wright et al. (2007) compiled a 

review of how the subtle aspects and annoyances of anthropogenic noise that are difficult to 

study may act as secondary stressors.  They concluded that exposure to noise pollution could 

cause noticeable physiological changes, suggesting that even short-term exposure could result in 

long-term consequences.  

A study of North Atlantic right whales in the Bay of Fundy tested levels of stress-related 

fecal hormone metabolites in whale feces during a period of decreased vessel traffic after 

terrorist attacks on 9/11 in the United States compared to levels following the reinstatement of 

the heavy ship traffic noise that is normal for the Bay of Fundy area (Rolland et al. 2012). They 

found that the decrease in vessel noise corresponded to a decrease in fecal hormone metabolites, 

suggesting that noise pollution does increase stress in North Atlantic right whales. Similarly, 

increases in glucocorticoid stress hormones have been observed in anurans (wood frogs, 
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Lithobates sylvaticus) and galliform birds (greater sage grouse, Centrocercus urophasianus) in 

the presence of noise (Tennessen et al. 2014; Blickley et al. 2012). Romano et al. (2004) found 

that blood levels of adrenaline hormones increased in odontocetes exposed to intense noise. 

Stress on these and other animals from anthropogenic noise could affect immune system function 

or the conservation of energy, among other physiological responses to stress, and thus could have 

significant impacts on survival.  

Communication 

A major focus of noise impact studies is to examine the effects of noise on animal 

communication systems – in particular, the effects on acoustic communication (Brumm & 

Slabbekoorn 2005). Low-frequency anthropogenic noise may mask all or part of acoustic signals, 

increasing the level of background noise and inhibiting the ability of conspecifics to receive them 

(Barber et al. 2010). This decrease in the signal-to-noise ratio, or the level of the signal strength 

compared to the level of background noise, prompted researchers to investigate modifications of 

acoustic signals in the presence of anthropogenic noise (Brumm & Slabbekoorn 2005). These 

studies consist of both observational studies of responses to anthropogenic noise in the wild and 

through controlled experimental exposure of animals through playbacks (Morley et al. 2014).  

In response to noise exposure, some species adjust signal frequency components in order 

to emphasize the part of the vocalization that is outside of the masking noise frequency band. 

These responses have been seen in a wide range of organisms, ranging from invertebrates, to 

avian and mammalian species. In increased traffic noise, Chorthippus biguttulus grasshoppers 

increased the peak frequency of their calls (Lampe et al. 2012). Similarly, several species of 

oscine bird including great tits (Parus major), song sparrows (Melospiza melodia), and house 

finches (Carpodacus mexicanus) have been observed to increase the minimum frequency of their 
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songs in response to low-frequency urban noise (Slabbekoorn & Peet 2003; Wood & Yezerinac 

2006; Fernández-Juricic et al. 2005). These same frequency shifts are observed in mammals 

including bats (Brazilian free-tailed bat, Tadarida brasiliensis), whales (North Atlantic right 

whale, Eubalaena glacialis), and humans (Gillam & McCracken 2007; Parks et al. 2007; 

Lombard 1911). 

Several species have been observed to maintain their signal-to-noise ratio in increased 

background noise by raising the amplitude or intensity of their calls (Zollinger & Brumm 2011). 

This response, first described as the Lombard effect in humans, has been observed in more than 

sixteen species of mammals and birds (Lombard 1911; Brumm & Zollinger 2011). For example, 

in response to broadcasts of increasing intensity levels of white noise, male nightingales 

(Luscinia megarhynchos) increased the sound level of their songs (Brumm & Todt 2002). Under 

similar playback conditions captive common marmosets (Callithrix jacchus) increased the 

intensity level of their calls in correlation with the increasing intensity of the broadcasted white 

noise (Brumm et al. 2004). This amplitude modulation has also been observed in high-frequency 

echolocation pulses. The Brazilian free-tailed bat (Tadarida brasiliensis) increased pulse 

amplitude with increased levels of broadband and band-limited noise playbacks, which 

respectively completely masked or partially masked the two loudest harmonics of the pulses 

(Tressler & Smotherman 2009). Though a few investigations have tested the responses of 

invertebrate groups, as of now the Lombard effect has only been observed in mammals and 

birds, with limited evidence in anurans (Love & Bee 2010; Brumm & Zollinger 2011; 

Cunnington & Fahrig 2010). 

Other observed vocal modifications include a change in the duration of signals or in the 

timing of delivery in the presence of anthropogenic noise. Kaiser and Hammers (2009) examined 
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how male Amazonian treefrogs (Dendropsophus triangulum) reacted to broadcasted playbacks 

of motorcycle noise and music, and found that their call rates were almost doubled in response to 

both.  However, other anuran species decrease the rate of their calls in anthropogenic noise 

playbacks (Sun & Narins 2005). In addition to an increase in call amplitude, Brumm et al. (2004) 

found that the common marmosets also increased the duration of each syllable of their calls in 

correlation with the increasing intensity of the broadcasted white noise. Different kinds of 

temporal changes may be observed in the same species, possibly depending on the type of 

vocalization or the type of noise. Male humpback whales (Megaptera novaeangliae) lengthen the 

duration of their songs when exposed to playbacks of low-frequency sonar (Miller et al. 2000). 

In contrast, humpback whales off of southeastern Alaska increased the length of time between 

individual feeding vocalizations in the presence of vessel noise (Hanser 2009). 

Though these three methods of vocal modifications in noise have been presented 

independently of each other it is common for two or more of these responses to co-occur, as in 

Brumm et al. (2004). Beluga whales (Delphinapterus leucas) displayed both a reduced calling 

rate and increased vocalization mean frequency as vessels approach, with the more-persistent 

response seen to a large ferry than to smaller motorboats (Lesage et al. 1999). Scheifele et al. 

(2005) found that beluga whales also demonstrate the Lombard effect by varying the intensity of 

their calls in the presence of anthropogenic noise. North Atlantic right whales also exhibit both 

frequency and amplitude modification, vocalizing at a greater intensity and higher average 

fundamental frequency in periods of increased environmental noise as well as lowering the call 

rate (Parks et al. 2007; Parks et al. 2011).  

All animal species have evolved in environments with background noise from natural 

sources, including wind, precipitation, and/or sounds from other species (Hildebrand 2004). 
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However, some of these environments are noisier than others. Animals living in these 

environments are adapted to the propagation conditions and natural background noise of their 

habitats, and are more likely to exhibit flexibility to some degree of increased environmental 

noise (Wiley & Richards 1982). For example, in their study comparing the frequencies of urban 

and nonurban congeneric songbird species, Hu & Cardoso (2009) suggested that species that 

naturally sing at higher minimum frequencies are pre-adapted to live in urban environments. In 

addition, low frequency sound may travel for large distances in the ocean, and many marine 

animals studied such as cetaceans demonstrate acoustic plasticity, likely as an adaptation for 

noisy marine habitats (Tyack & Clark 2000). 

While these species may possess adaptive advantages for dealing with some noise 

exposure, these modifications may not be sufficient to avoid masking in all situations or in 

higher levels of noise. In some cases, the costs of modifications may begin to outweigh the 

benefits (Read et al. 2014). In addition, not all species are able to respond to the challenges of 

communicating in high-noise areas. Lengagne (2008) found that male European tree frogs (Hyla 

arborea) decreased their calling activity in traffic noise with no indication of other vocal 

plasticity, which has implications for mate choice in this species. This may also have an impact 

on individuals meant to receive signals - for example, females trying to locate or evaluate 

advertising males. Multiple studies have investigated this issue with insects: traffic noise 

playbacks limited female field crickets’ (Gryllus bimaculatus) ability to locate calling males, 

possibly lowering the reproductive potential of the species (Schmidt et al. 2014). Similarly, 

responses of Drosophila montana females to male courtship songs decreased when exposed to 

high levels of environmental noise in the same frequency band as the songs (Samarra et al. 
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2009). These studies demonstrate a possible reason for decreased reproductive success for 

species that utilize communication to determine mate choice. 

 

Foraging Behavior 

Fewer studies have investigated changes in foraging behavior where foraging efforts 

were the focus. A number of species, particularly bats and odontocetes, utilize active acoustics to 

localize prey using echolocation (Barber et al. 2010). In a study investigating variation in call 

structure of Brazilian free-tailed bats (Tadarida brasiliensis), Gillam and McCracken (2007) 

found that they increased the frequency of their echolocation calls in response to other high-

frequency environmental sounds. There is some evidence that sperm whales (Physeter 

macrocephalus) decrease the rate of foraging events when exposed to airgun noise, and they may 

delay foraging dives altogether in the presence of intense anthropogenic noise (Miller et al. 

2009).  

Other species use passive listening for prey cues, low-intensity adventitious noise 

produced by movement (Barber et al. 2010). An experiment studying the greater mouse-eared 

bat (Myotis myotis) demonstrated that bats avoid excessive environmental noise and that areas 

near highways are less suitable for bat foraging (Schaub et al. 2008). Similarly, Mcclure et al. 

(2013) found a significant decline in bird abundance near roadsides that was directly attributed to 

traffic noise. These analyses suggest that intense and high-frequency noise pollution, in addition 

to low-frequency noise, could be detrimental to the foraging efficiency of many species. 

Further concerns related to foraging relate to impacts on predator-prey dynamics. Chan et 

al. (2010) tested whether noise pollution could increase a species’ risk of predation. They 

allowed a simulated predator to approach Caribbean hermit crabs (Coenobita clypeatus) in 
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silence and under the influence of boat motor noise, and found that the predator could get 

significantly closer to the crabs during the broadcast of boat noise. The authors suggested that the 

noise could be masking the sound of the predator’s approach, or the noise distracted the crab.  

 Less research has been done on the impacts of noise on foraging behavior in marine 

environments. Playbacks of industrial noise caused temporary interruptions to feeding in both 

gray whales and orcas (Orcinus orca), suggesting an increased energy expenditure (Malme et al. 

1988; Williams et al. 2006). Close ship passage or ship noise may also disrupt feeding events in 

beaked whales and result in decreased foraging time in blue whales (Balaenoptera musculus) 

(Soto et al. 2006; McKenna 2011). However, other investigations of foraging blue whales and fin 

whales (Balaenoptera physalus) found no obvious behavioral responses to loud low-frequency 

sound (Croll et al. 2001). These studies used surface behaviors to judge behavioral transitional 

states; however, the majority of marine mammal foraging occurs beneath the ocean’s surface. 

One species of marine mammal, the humpback whale, has feeding grounds located in highly 

urbanized coastal water. However, no study has been published investigating how noise may 

impact the foraging behavior of this species, despite evidence of modifications to vocal 

behaviors. Therefore this thesis will investigate how noise affects the foraging behavior of 

humpback whales, both at and below the surface. 

 

Humpback Whales 

The humpback whale is a baleen whale species with a cosmopolitan distribution 

(Clapham & Mead 1999). This species travels great distances along coastlines, with many 

populations moving from temperate or polar summer feeding grounds to tropical breeding 

grounds in the winter (Clapham & Mead 1999). Humpback whales exhibit a variety of 
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vocalizations, including long, complex songs and a repertoire of non-song vocalizations (Clark & 

Clapham 2004). Certain populations, including the whales inhabiting the North Atlantic, appear 

to be genetically distinct from other humpbacks whales (Jackson et al. 2014). 

Despite near extermination from commercial whaling, humpback whale populations have 

shown a remarkable recovery in the last two to three decades (Clapham et al. 1999; Perry et al. 

1999). However, this species still faces conservation challenges in the form of habitat 

degradation due to human activities. These include collisions with vessels and entanglement with 

fishing gear (Wiley et al. 1995; Robbins & Mattila 2001; Cassoff et al. 2011). The proximity to 

land also exposes humpback whales to anthropogenic noise from commercial shipping, seismic 

exploration, and naval exercises (Clapham et al. 1999; Hatch & Wright 2007; Todd et al. 1996).  

Humpback whales have a relatively diverse diet compared to other mysticete whales, 

which includes invertebrates and various sizes of schooling bait fish (Laerm & Wenzel 1997; 

Witteveen et al. 2012).  Humpback whales show equally diverse foraging techniques, with 

variation based on prey type, the environment, the population, or time of day (Jurasz & Jurasz 

1979; Friedlaender et al. 2009). Within the Gulf of Maine, humpback whales show a variety of 

foraging techniques (Hain et al. 1995; Friedlaender et al. 2009; Allen et al. 2013). The first is 

lunge feeding, during which whales energetically lunge through prey aggregations and engulf 

large volumes of water and prey before pushing water out through baleen plates (Stimpert et al. 

2007; Ware et al. 2011). Vocalizations termed “megapclicks” were observed to be associated 

with nighttime feeding lunges in the Gulf of Maine population, with a possible biosonar or prey 

manipulation function (Stimpert et al. 2007). Two additional foraging behaviors are frequently 

associated with lunge feeding. In bubble net or bubble cloud feeding, whales expel air 

underwater to produce bubbles that surround fish schools before lunging through them (Hain et 
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al. 1982; Wiley et al. 2011). Lobtail feeding, in which whales slap the surface of the water with 

their flukes, may also produce a corralling effect (Allen et al. 2013). 

Another foraging method observed in Gulf of Maine humpback whales is bottom side-

roll feeding. Hain et al. (1995) presented the first evidence that humpback whales may be 

feeding on sand lance (Ammodytes sp.) on the sea floor, based on scuffing along the jaws of 

some individuals and co-occurring sand lance distributions in the Stellwagen Bank National 

Marine Sanctuary. This behavior is the primary feeding technique used during nighttime feeding 

in this population, though it has been observed during the day as well (Ware et al. 2006). When 

bottom feeding, the whale descends to the sea floor, where it swims along the bottom, 

occasionally performing lateral body rolls thought to be feeding events on sand lance in or just 

above the substrate (Ware et al. 2014). There is some evidence that this behavior might be 

cooperative, as pairs of whales often feed together (Parks et al. 2014; Ware et al. 2014). 

The vocalizations associated with foraging vary among populations and depending upon 

foraging strategy. Some are specific to feeding techniques, discussed above. Other documented 

calls include moans, grunts, and the low-frequency pulse trains linked to bubble net feeding 

(Thompson et al. 1986). Non-vocalized sounds such as surface generated impacts and blowhole-

associated sounds have also been observed on feeding grounds (Hanser 2009). While songs have 

been recorded on feeding grounds, it is the non-song calls produced in these areas that are 

typically associated with foraging (Clark & Clapham 2004).     

 

Hypothesis 

 In the oceans, ship noise is a chief contributor to low-frequency anthropogenic noise 

(Hildebrand 2004). Little research on humpback whale responses to anthropogenic noise has 
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been conducted in the North Atlantic Ocean. The region around the North American eastern 

seaboard is predicted to be increasingly impacted by human activity, and this region has some of 

the densest concentrations of shipping lanes in the world (Halpern et al. 2008). This immense 

level of vessel traffic in turn generates a large amount of noise. I hypothesize that humpback 

whales alter their foraging behavior in the presence of ship noise. I predict that whales will 

engage in fewer feeding events and shorten dive times in the presence of noise. The goal of this 

research is to compare feeding behaviors during periods of no noise against those in periods of 

ship noise. The conclusions from this study will provide information on the potential for 

plasticity in humpback whale foraging behavior in response to noise and implications of ship 

noise on the foraging efficiency of this species. 

 

MATERIALS AND METHODS 

Field Data Collection 

Field data were collected in the southern Gulf of Maine in the vicinity of the Gerry E. 

Studds Stellwagen Bank National Marine Sanctuary off the coast of Massachusetts during June 

and July from 2006 to 2010 and 2012 and April 2009 and 2010. The data were collected using 

archival digital acoustic recording tags, DTAGS (Johnson & Tyack 2003), to simultaneously 

record kinematic behavior of the whale and the acoustic environment. These archival tags 

contained accelerometers, a three-axis magnetometer to record pitch, roll, and heading, and a 

pressure sensor sampled at 50 Hz. The tags also contained a hydrophone to continuously record 

acoustic data (sampling rate 96 kHz, system sensitivity -171 dB re 1 μPa (Stimpert et al. 2011)). 

The tags included a high pass filter at 400 Hz to minimize the contribution of flow noise to the 
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recording. The tags also contained a VHF radio beacon to allow for tracking of the tagged whale 

and for tag recovery.  

Tags were placed high on the back of animals, anterior to the dorsal fin, using either a 15 

m bow-mounted cantilevered pole from a 7 m rigid-hulled inflatable boat (RHIB) (2006-2010) or 

a 7 m handheld pole from a 4m RHIB (2010) (Figure 1). Tags were attached via suction cups and 

deployed for up to 24 hours. Following placement of the tag during the daytime hours, 

behavioral focal follows of the tagged animal were conducted from RHIBs at a distance of 100-

400 m. At night, support vessels (the 70 m R/V Nancy Foster (2006-2009) or 21 m R/V 

Stellwagen (2009-2010) followed from a greater distance, maintaining proximity by the tag’s 

VHF signal. Following the recovery of the tag, the data were downloaded for calibration and 

analysis (Johnson & Tyack 2003).  
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Figure 1: A handheld 7 m carbon fiber pole is used to place the DTAG onto a humpback whale’s 

back. (Photo credit: A. Stimpert, NOAA Fisheries Permit #14245)  

 

Data Analysis 

Before-During-After Impact Analysis 

The statistical design for this experiment was a before-during-after (BDA) analysis of the 

impact of ship noise on the foraging behaviors of humpback whales. This design uses a pre-

exposure or “before” period as a control, where the natural behavioral state is assumed to be 

undisturbed. Any significant effect of the disturbance evident during the exposure period or post-

exposure may then be tested for (Underwood 1992; Smith 2002). This method is commonly used 

in environmental studies examining possibly altered behavioral states caused by human 

disturbances (Miller et al. 2000; Lemon et al. 2006; Lengagne 2008).  
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Tag Record Selection 

During daytime hours ship noise was almost continuously detected on the tags, resulting 

in few periods with no ship noise to act as a control. If two or more ship passages occurred very 

close to each other in time or overlapped, the behaviors occurring during a ship noise event could 

not be accurately compared to behaviors occurring in a non-ship noise period. This made a BDA 

analysis of impact impossible during the daytime hours, therefore, data were restricted to 

nighttime hours. Tag recordings selected for analysis contained data occurring between sunset 

and sunrise (approximately 2015-0515 hr in June and July and 1730-0600 hr in April, 

www.almanac.com). Selected records also included five or more feeding dives by the tagged 

whale and the passage of at least one large ship. For the purposes of this study, dives were 

defined as dives deeper than 10 m showing clear behaviors associated with bottom feeding 

(Ware et al. 2014).  

 

Dive Measurements 

Whale behaviors recorded by DTAG sensors were visualized and quantified using the 

software application TrackPlot (Ware et al. 2006). TrackPlot utilizes the heading, pitch, roll, 

depth, and time data from the DTAG to create a dead reckoned pseudotrack of the whale’s three-

dimensional path (Ware et al. 2006). This pseudotrack is represented by a ribbon marked by a 

chevron pattern on the dorsal surface to indicate travel direction and orientation (Figure 2A). A 

side roll exceeding 40 degrees from a vertical orientation of the dorsal ridge is signified by the 

yellow coloration of the ribbon (Figure 2B).  

Analysis of nighttime periods restricted analysis to bottom feeding, as humpback whales 

forage exclusively on the bottom at night in this habitat (Friedlaender et al. 2009). Bottom 
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feeding consists of highly stereotyped bottom side roll dives, which allow for intra and inter-

individual comparison of dive parameters (Ware et al. 2014). Using TrackPlot, I extracted eight 

dive behavior measurements: the total duration of each dive from surface to surface (s), the 

bottom time of each dive defined as the time between the end of the descent and the beginning of 

the ascent (s), the rate of descent and ascent (m/s), the maximum depth of each dive (m), the 

number of bottom side roll events, the time between dives (s), and the surface time immediately 

following each dive (s) (Figure 2B). Each of these metrics was tested to determine any change in 

behavior correlated with the presence and intensity of vessel noise. Depth profiles alone were 

also examined in MATLAB R2013a (MathWorks 2013). 
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Figure 2: A) Still image from TrackPlot displaying part of the ribbon track for animal 

mn06_192a. B) A TrackPlot still demonstrating the dive measurements for one bottom-feeding 

dive for animal mn08_182a. 

 

 

Vessel Noise 

Ship presence was determined by the detection of vessel noise in DTAG hydrophone 

recordings (Figure 3). All recordings were decimated to 16 kHz in MATLAB R2013a to 

B 

A 
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standardize sampling rates and for ease of analysis. Files were viewed in and received level (RL) 

was measured using RavenPro 1.5 (Bioacoustics Research Program 2014). Time periods with 

noise of a ship detected were defined as the “during” exposure period. Time periods of the same 

duration as the “during” period immediately preceding and following the “during” period were 

defined as the “before” and “after” exposure periods respectively. Sound pressure level (SPL) 

measurements to quantify the absolute RL of ship noise on each tag record were taken for a one-

minute period. RL was measured in the 2-3 kHz frequency band during the bottom time periods 

of each dive to minimize flow noise. The one-minute period occurred directly following the end 

of the whale’s descent or as soon afterward as feasible, to minimize the interference of acoustic 

energy from whale vocalizations and sand grating caused by the rolling behaviors. 

 

Figure 3: Spectrogram from RavenPro 1.5 displaying a ship noise period. Yellow and orange 

indicates more acoustic energy; purple indicates less acoustic energy. The yellow-orange vertical 

lines are indicative of surfacings, while areas between surfacings are dives. The large orange area 

indicates a ship passage, marked as the “During” exposure period. 
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Statistical Analysis  

All statistical analyses were performed in R version 2.15.3 (R Core Team 2013). The 

dependent variable data were square root transformed to achieve a normal or near-normal 

distribution of model residuals. A series of linear mixed-effects models were applied to the data 

using the lmer function in the lme4 package. The full model included three fixed effects with two 

interactions: 

Y = β0 + β1SN*RL + β2BDA*RL + REsubject + REyear 

where the dependent variable (Y) was the dive measurement, SN was a binomial factor 

representing in ship noise exposure period (1) or in a period of no ship noise (0), RL was 

received level measured in dB re 1 μPa, and BDA is a factor representing the before (1), during 

(0), and after (2) noise exposure categories. Two random effects applied to all models were the 

individual (REsubject) and the year the tag record was from (REyear) to account for any by-

individual or by-year sources of variation.  

Models were first evaluated by likelihood ratio tests, where each candidate model was 

tested against a null model without fixed effects (Winter 2013). For each dive measurement the 

significance of each of the fixed effects combinations, of additive candidate models, and of 

interactions was also examined. Best model fit was evaluated using the differences in Akaike’s 

Information Criterion corrected for small sample sizes (AICc) (Burnham & Anderson 2002). 

Akaike weights (wi) for each model were calculated based on AICc values (Wagenmakers & 

Farrell 2004). Variable importance values were then calculated by summing weights of all 

models including a particular variable (Burnham & Anderson 2002). A follow-up analysis was 

conducted to determine direction of affected behaviors in BDA periods using post-hoc pairwise 

comparisons of least-square means.  
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RESULTS 

Tag Record Selection 

A total of nine tag records from years 2006 (three records), 2008 (three records), and 

2009 (three records) met the selection requirements and were used in the analysis (Table 1). A 

total of 171 dives across the nine records were included in the analysis. Of these, 61 occurred in 

ship noise exposure periods while 110 occurred in no ship noise. Of the individuals, one whale 

(‘Division’) had two tag records from two different years (Table 1).  

 

Table 1. Tag records used in analysis 

Year Tag ID Animal 
Tag Duration 

(hh:mm) 

Dates 

(mm/dd) 

Tag On Time 

(hh:mm) 

Tag Off Time 

(hh:mm) 

2006 mn06_192a Division 22:06 07/11 - 07/12 08:13 06:19 

2006 mn06_195a Fulcrum 10:43 07/14 - 07/15 14:17 01:00 

2006 mn06_196a Dyad 21:47 07/15 - 07/16 08:51 06:38 

2008 mn08_182a Lavalier 18:31 06/30 - 07/01  10:28 05:00 

2008 mn08_184b Nile 12:32 07/02 - 07/03 13:37 02:10 

2008 mn08_189a Falcon 17:00 07/07 - 07/08 14:29 07:30 

2009 mn09_108a Division 17:31 04/18 - 04/19  17:43 11:15 

2009 mn09_201a Entropy 15:07 07/20 - 07/21  09:47 00:55 

2009 mn09_206b Samovar 18:44 07/25 - 07/26  16:18 11:03 

 

Linear Mixed Effect Models 

Of the eight dive measurements evaluated, descent rate, ascent rate, and number of 

bottom side rolls were significantly affected by one or more of the independent variables tested. 

In a linear mixed effect model with descent rate as the dependent variable, four candidate models 

have the best fit (ΔAICc < 2) (Table 2). Likelihood ratio tests support the non-significance of all 

interactions tested (p-value > 0.05). Coefficients for all variables are displayed in Table 5. 

Variable importance values indicate that the received level of ship nose is the most important of 
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the examined variables influencing descent rate (Table 6). Descent rate tended to decrease as 

received level increased (Table 5).  

 

Table 2. Mixed-effect models used to assess change in descent rate. Bolded models indicate 

ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and BDA = 

before, during, or after exposure period. k indicates number of free parameters in each model. 

 

Models for Descent Rate k AICc ΔAICc wi 

SN, RL 6 -304.97 0 0.28 

RL 5 -304.50 0.47 0.22 

SN, RL, BDA 7 -303.76 1.21 0.15 

BDA, RL 7 -303.76 1.21 0.15 

SNxRL 7 -302.79 2.17 0.09 

SNxRL, BDA 8 -301.58 3.39 0.05 

SNxRL, BDAxRL 9 -299.42 5.55 0.02 

SN, BDAxRL 9 -299.42 5.55 0.02 

BDAxRL 9 -299.42 5.55 0.02 

Null (random effects only) 4 -289.32 15.65 <0.01 

SN 5 -288.60 16.37 <0.01 

BDA 6 -288.06 16.90 <0.01 

  

 

In a linear mixed effect model with ascent rate as the dependent variable, two candidate 

models have the best fit (ΔAICc < 2) (Table 3). Likelihood ratio tests support the non-

significance of all interactions tested (p-value > 0.05). Coefficients for all variables are displayed 

in Table 5. The variable importance values indicate that the BDA exposure period and the 

received level are the most important of the examined variables influencing ascent rate (Table 6). 

Comparisons of least squares means in the before, during, and after exposure periods 

demonstrate a significantly slower ascent rate before ship noise exposure than in the during 

period (estimate = -0.06, p-value < 0.05) and marginally significantly slower than in the after 

periods (estimate = -0.05, p-value = 0.05). Ascent rate is not significantly lower in the after 

period than it is in the during period (estimate = -0.005).  
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Table 3. Mixed-effect models used to assess change in ascent rate. Bolded models indicate 

ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and BDA = 

before, during, or after exposure period. k indicates number of free parameters in each model.   

 

Models for Ascent Rate k AICc ΔAICc wi 

SN, RL, BDA 7 -200.92 0 0.30 

BDA, RL 7 -200.92 0 0.30 

SNxRL, BDA 8 -198.75 2.17 0.10 

SN, RL 6 -197.48 3.43 0.05 

BDA 6 -197.46 3.46 0.05 

SNxRL, BDAxRL 9 -196.67 4.24 0.04 

SN, BDAxRL 9 -196.67 4.24 0.04 

BDAxRL 9 -196.67 4.24 0.04 

RL 5 -196.19 4.72 0.03 

SNxRL 7 -195.65 5.27 0.02 

Null (random effects only) 4 -195.22 5.70 0.02 

SN 5 -193.27 7.65 0.01 

 

In a linear mixed effect model with number of bottom side rolls per dive as the dependent 

variable, three candidate models have the best fit (ΔAICc < 2) (Table 4). Likelihood ratio tests 

support the non-significance of all interactions tested (p-value > 0.05). Coefficients for all 

variables are displayed in Table 5. Variable importance suggests that the BDA exposure period 

and the received level are the most important of the examined variables influencing number of 

bottom side rolls (Table 6). A comparison of least squares means in the before, during, and after 

exposure periods demonstrates a significantly higher number of rolls after ship noise exposure 

than in the before exposure period (estimate = 0.31, p-value < 0.05). Mean number of rolls in the 

during exposure period is not significantly different from either the before or after periods. 

Overall, the number of rolls tends to decrease as received level increases (Table 5). 

Likelihood ratio comparisons of models support no significant effect of either the 

presence or intensity of ship noise on dive duration, bottom time, maximum depth, time between 
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dives, or surface time following dives. Likewise, AICc differences for models of these variables 

suggest poor model fit (Tables I-V, Appendix I).   

 

Table 4. Mixed-effect models used to assess change in number of rolls. Bolded models indicate 

ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and BDA = 

before, during, or after exposure period. k indicates number of free parameters in each model.  

 

Models for Number of Rolls k AICc ΔAICc wi 

SN, RL, BDA 7 323.84 0 0.27 

BDA, RL 7 323.84 0 0.27 

BDA 6 324.97 1.13 0.15 

SNxRL, BDA 8 326.03 2.19 0.09 

RL 5 326.89 3.05 0.06 

SNxRL, BDAxRL 9 328.18 4.34 0.03 

SN, BDAxRL 9 328.18 4.34 0.03 

BDAxRL 9 328.18 4.34 0.03 

Null (random effects only) 4 328.46 4.62 0.03 

SN, RL 6 328.55 4.71 0.03 

SN 5 330.24 6.40 0.01 

SNxRL 7 330.62 6.78 0.01 
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Table 5. Model coefficients, standard errors and t-values for best model fits for descent rate, 

ascent rate and number of rolls. BDA1 and BDA2 represent the slope for the categorical effect 

between the during period and the before period (BDA1) and between the during period and the 

after period (BDA2). Additive models with all three fixed effects tested (SN, RL, and BDA) are 

excluded as they are redundant to another model (Table 2, 3, and 4).   

 

Response Model Variable Estimate Std. Error t-value 

Descent Rate SN, RL (Intercept)   1.750 0.161 10.895 

  
SN 0.030 0.017 1.630 

  
RL -0.008 0.002 -4.475 

 
RL (Intercept)   1.607 0.136 11.826 

 
  RL -0.006 0.001 -4.306 

 
BDA, RL (Intercept)   1.764 0.171 10.339 

  
BDA1 -0.034 0.018 -4.391 

  
BDA2 -0.016 0.021 -1.861 

  
RL -0.008 0.002 -0.763 

Ascent Rate BDA, RL (Intercept)   1.588 0.230 6.910 

  
BDA1 -0.063 0.024 2.561 

  
BDA2 -0.005 0.029 -0.174 

  
RL -0.006 0.002 -2.425 

Number of Rolls BDA, RL (Intercept)   3.794 1.058 3.588 

  
BDA1 -0.180 0.117 -1.539 

  
BDA2 0.128 0.137 0.937 

 
  RL -0.022 0.012 -1.889 

 
BDA (Intercept)   1.819 0.141 12.898 

  
BDA1 -0.064 0.101 -0.627 

    BDA2 0.261 0.118 2.208 
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Table 6. Variable importance for descent rate, ascent rate and number of rolls  

Response Variable  Variable Importance 

Descent Rate RL 0.80 

 
SN 0.44 

 
BDA 0.37 

 
SNxRL 0.16 

 
BDAxRL 0.05 

Ascent Rate BDA 0.76 

 

RL 0.69 

 

SN 0.40 

 

SNxRL 0.16 

 

BDAxRL 0.11 

Number of Rolls BDA 0.78 

 
RL 0.62 

 
SN 0.33 

 
SNxRL 0.13 

  BDAxRL 0.09 

  

 

Dive Responses to Intense Ship Noise 

 In some individuals, one or more abnormal dives were observed in the presence of ship 

noise, usually during the peak intensity of a ship noise period. These dives were characterized by 

an absence of bottom side rolls despite a maximum depth close to that of the feeding dives 

occurring directly before or after, though some of the no-roll dives were shallower than the 

surrounding dives (Figure 5). 

Whales did not demonstrate bottom side rolls in 10 out of 171 dives. Of the 10 dives with 

no rolling behavior exhibited, six occurred in ship noise exposure periods while four occurred in 

no ship noise. A McNemar’s test with continuity correction indicates that the percentage of dives 

with no rolls significantly differed in periods of ship noise exposure versus in periods of no ship 

noise (McNemar’s X
2
 (1, N = 171) = 87.51, p-value < 0.01) (Figure 6). Of the whales that 
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demonstrated atypical dives in a noise period, it was either the dive at which RL was most 

intense for the night overall or it was a dive during the ship noise period of greatest intensity for 

the night. 
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Figure 4. A) Spectrogram and B) depth profile of whale mn08_182a demonstrating atypical dive in presence of ship noise  
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Figure 5. A McNemar’s test demonstrating significantly different proportions of non-roll dives in 

noise exposure conditions versus non-noise conditions.  
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DISCUSSION 

 

 

The impact of anthropogenic noise on the behavioral ecology of marine animals is an 

area of increasing conservation concern. While numerous studies have demonstrated behavioral 

modifications of acoustic communication in noise, relatively few have assessed behavioral 

changes in foraging behavior. This study investigated eight metrics of stereotyped humpback 

whale bottom feeding dives to assess whether humpback whales modify their foraging efforts in 

the presence of ship noise. These metrics were the total duration of each dive from surface to 

surface, the bottom time of each dive between the end of the descent and the beginning of the 

ascent, the rate of descent and ascent, the maximum depth of each dive, the number of bottom 

side roll events, the time between dives, and the surface time immediately following each dive. 

Of these, three were found to be significantly modified in the presence of noise: descent rate, 

ascent rate, and the number of feeding rolls at the bottom of the dive.  

When exposed to ship noise, the descent rate of dives decreased as received level of ship 

noise increased. Of the variables examined, the intensity of received ship noise is most likely to 

be important in whether this response will be observed. For the rate of ascent at the end of 

feeding dives, it was the BDA exposure period that was most influential. Ascent rate was 

significantly increased in periods during and post-exposure than in the dives immediately 

preceding exposure periods.  

In addition to changes in descent and ascent rate, the number of bottom side rolls 

indicative of feeding events on sand lance was altered in the presence of ship noise. Of the 

variables tested, the BDA exposure period was again the most important to model fit, though 

received level was also a strong indicator. Number of rolls were significantly higher in the after 
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period than the before period, and overall number of rolls decreased as received level increased. 

In addition, there is evidence that intensity of ship noise was correlated with abnormal dives with 

a complete cessation of feeding as evidenced by no bottom side rolls, with these occurring during 

particularly loud or close passes of vessels. These results are some of the first evidence to 

demonstrate statistically significant alterations in baleen whale foraging behavior from ship noise 

exposure.  

 There are a few issues to be considered for this study. First, these models were applied to 

a relatively small sample size of nine individuals. Though all efforts were made to correct for 

small sample sizes in statistical tests, data from more individuals would give better support for 

the hypothesis that ship noise affects foraging behavior. In addition, behavioral effects were only 

tested at night due to near continuous ship noise during the day. This restriction made measuring 

behavioral changes more feasible and made metrics easier to compare. However, given the 

differing feeding techniques utilized by this humpback population during the day as well as the 

greater occurrence of shipping vessels, it is possible that different responses could be observed in 

the daytime (Friedlaender et al. 2009). Another matter is that the responses of the group of 

individuals tested were not compared to a control group. However, this would be difficult to do 

in this particular study; it is not known whether other humpback populations utilize this foraging 

technique, and a control population would likely have to be in a different region with fewer 

shipping lanes as in Parks et al. (2007). Finally, because this study concerned only nighttime 

foraging behavior, range of vessels to whales was unknown due to lack of GPS positions for the 

whales at night. This could certainly have implications, as some of the effects observed could 

have been compounded by proximity to the vessels themselves, rather than the higher intensity 
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noise closer ships produce. An effect of vessel proximity has been observed in both odontocetes 

and mysticetes (Pirotta et al. 2015; Mckenna 2009).   

Since we have observed significant alterations in feeding behaviors at night, we must 

consider whether they are also occurring during the day. As previously stated, during the daytime 

hours ship passages were frequent enough that a before-during-after analysis would have been 

difficult. If similar behavioral responses are extrapolated to daytime foraging, when frequency of 

ship passages increases, there is a possibility of an overall increase in energetic expenditure in 

whales caused by faster rates along with missed feeding opportunities.    

In this study, humpback whales dove more slowly as the intensity of ship noise increased. 

Ascents through the water column significantly increased in the presence of ship noise, and 

remained increased for a time even after the ship noise had ceased. Feeding events ceased 

altogether at some threshold of received level, but were overall increased in the after period. 

Although these results demonstrate statistical significance, it is unknown what the biological 

significance of these changes might be. The effect sizes estimated by the strongest models tended 

to be small, and more research must be done in order to see if whales suffer a real survival 

impact. However, it is notable that statistically significant reactions were observed despite this 

population’s near constant exposure to chronic shipping noise, especially since heavy shipping 

traffic in the North Atlantic has existed for many years and is only increasing (Hildebrand 2004).   

There are a number of possible explanations for the behavioral responses observed. A 

decreased descent rate in noise may indicate caution on the part of the whale, which requires 

access to the surface to breathe. The increased ascent rates could be part of a startle response to 

louder noise, ship proximity, or both. The continued effect into the after exposure period, 

however, suggests that caution or need to reach the surface to breathe may also play a roll. There 
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seems to be a threshold-received level where a disturbance is meaningful to the whale, though 

that threshold may vary by individual. This threshold represents where a whale might consider a 

ship a potential threat, or where the acoustic disturbance reaches an intensity level that incites a 

quickened pace or distracts from feeding. An increase in bottom side rolls in the after exposure 

period was not predicted. This behavior could be explained, however, by a perceived increased 

need to make up for missed foraging opportunities during ship noise exposure.  

A unique vocalization termed a “paired burst” is frequently given by humpback whales 

bottom feeding under low light conditions in this population (Parks et al. 2014). This sound is 

hypothesized to function in either communicating with conspecifics, to actively affect sand lance 

prey, or a combination of the two. It is conceivable that this signal is necessary or at least highly 

advantageous for efficient bottom feeding in low light conditions. The masking of all or part of 

this acoustic signal by intense ship noise is a possible explanation for the cessation of bottom 

side rolls in periods of ship noise exposure.  

An additional explanation for these non-roll dives in periods of intense noise could be the 

response of the prey species, sand lance. In the Gulf of Maine region sand lance density is 

positively correlated with a sand seafloor substrate, into which this species seeks refuge in 

response to a perceived threat (Hazen et al. 2009). If sand lance are retreating into the substrate 

in response to high noise levels, this could put them out of easy reach of the bottom-side-roll 

feeding maneuver. This would explain why, despite diving to the sea floor, the whales did not 

engage in rolling behavior.  

Humpback whales are a highly adaptable species, able to exploit multiple food sources 

and utilize different foraging techniques to feed on them. They frequently occupy habitat near 

urbanized coastlines worldwide, which exposes them to regular risk from human impacts like 
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anthropogenic noise. This species has already been observed to alter certain vocalizations in 

response to noise, demonstrating vocal plasticity (Miller et al. 2000). This thesis provides 

evidence that North Atlantic humpback whales also alter foraging behaviors in anthropogenic 

noise. Given their adaptability, it would make sense that this population could be habituated to 

non-fatal sources of human disturbance. It is especially interesting, therefore, that small 

alterations to foraging behaviors are still detectable despite chronic ship noise exposure in this 

habitat. When considering that these behavioral changes were observed at night when there are 

fewer ship passages as compared to the daytime hours and there is the addition of visual stimuli, 

this becomes a potential cause for concern for this species, and should be investigated further.  

Frid & Dill (2002) argue that the way animals respond to the human disturbance stimuli 

is analogous to an antipredator response, which is costly in terms of energy and missed 

opportunities for foraging and reproducing and indirectly affects fitness. Cetaceans function as 

apex predators in a variety of marine ecosystems; thus, any significant alterations to their 

foraging or overall survival may reverberate through the trophic levels of the community. 

Changes in fine-scale foraging behavior caused by anthropogenic noise should also be 

investigated in other marine predators, as any major impacts to foraging efficiency in these 

species could have detrimental effects for marine ecosystems.  
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APPENDIX I 

SUPPLEMENTARY MATERIAL 

Table I. Mixed-effect models used to assess change in duration of dive. Bolded models indicate 

ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and BDA = 

before, during, or after exposure period. k indicates number of free parameters in each model. 

 

Models for Dive Time k AICc ΔAICc wi 

Null (random effects only) 4 749.78 0 0.35 

BDA 6 751.40 1.61 0.16 

RL 5 751.60 1.82 0.14 

SN 5 751.69 1.90 0.14 

BDA, RL 7 753.53 3.74 0.05 

SN, RL, BDA 7 753.53 3.74 0.05 

SN, RL 6 753.72 3.93 0.05 

SNxRL, BDA 8 755.70 5.91 0.02 

SNxRL 7 755.88 6.10 0.02 

BDAxRL 9 757.48 7.69 <0.01 

SN, BDAxRL 9 757.48 7.69 <0.01 

SNxRL, BDAxRL 9 757.48 7.69 <0.01 

 

 

Table II. Mixed-effect models used to assess change in bottom time. Bolded models indicate 

ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and BDA = 

before, during, or after exposure period. k indicates number of free parameters in each model. 

 

Models for Bottom Time k AICc ΔAICc wi 

BDA 6 835.16 0 0.26 

Null (random effects only) 4 835.76 0.61 0.19 

RL 5 836.59 1.43 0.13 

BDA, RL 7 836.90 1.74 0.11 

SN, RL, BDA 7 836.90 1.74 0.11 

SN 5 837.37 2.22 0.08 

SN, RL 6 838.72 3.57 0.04 

SNxRL, BDA 8 839.06 3.90 0.04 

SNxRL 7 840.88 5.72 0.01 

BDAxRL 9 841.26 6.11 0.01 

SN, BDAxRL 9 841.26 6.11 0.01 

SNxRL, BDAxRL 9 841.26 6.11 0.01 
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Table III. Mixed-effect models used to assess change in maximum depth. Bolded models 

indicate ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and 

BDA = before, during, or after exposure period. k indicates number of free parameters in each 

model. 

 

Models for Maximum Depth k AICc ΔAICc wi 

SN 5 81.57 0 0.16 

Null (random effects only) 4 81.57 <0.01 0.16 

BDA 6 82.24 0.67 0.11 

SNxRL, BDAxRL 9 82.34 0.77 0.11 

SN, BDAxRL 9 82.34 0.77 0.11 

BDAxRL 9 82.34 0.77 0.11 

RL 5 83.08 1.51 0.08 

SN, RL 6 83.71 2.14 0.05 

SN, RL, BDA 7 84.38 2.80 0.04 

BDA, RL 7 84.38 2.80 0.04 

SNxRL 7 85.88 4.31 0.02 

SNxRL, BDA 8 86.55 4.98 0.01 

 

 

Table IV. Mixed-effect models used to assess change in time between dives. Bolded models 

indicate ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and 

BDA = before, during, or after exposure period. k indicates number of free parameters in each 

model. 

 

Models for Time Between k AICc ΔAICc wi 

Null (random effects only) 4 739.03 0 0.41 

SN 5 740.68 1.65 0.18 

RL 5 741.07 2.04 0.15 

SN, RL 6 742.08 3.04 0.09 

BDA 6 742.73 3.70 0.06 

SN, RL, BDA 7 744.10 5.07 0.03 

BDA, RL 7 744.10 5.07 0.03 

SNxRL 7 744.24 5.21 0.03 

SNxRL, BDA 8 746.28 7.25 0.01 

SNxRL, BDAxRL 9 748.34 9.31 <0.01 

SN, BDAxRL 9 748.34 9.31 <0.01 

BDAxRL 9 748.34 9.31 <0.01 
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Table V. Mixed-effect models used to assess change in surface time. Bolded models indicate 

ΔAICc < 2. SN = Ship noise present or absent, RL = received level of ship noise, and BDA = 

before, during, or after exposure period. k indicates number of free parameters in each model. 

 

Models for Surface Time k AICc ΔAICc wi 

Null (random effects only) 4 696.81 0 0.34 

RL 5 697.45 0.64 0.25 

SN 5 698.89 2.08 0.12 

SN, RL 6 699.21 2.40 0.10 

BDA 6 700.81 4.00 0.05 

SN, RL, BDA 7 701.26 4.45 0.04 

BDA, RL 7 701.26 4.45 0.04 

SNxRL 7 701.26 4.45 0.04 

SNxRL, BDA 8 703.37 6.56 0.01 

SNxRL, BDAxRL 9 704.25 7.44 0.01 

SN, BDAxRL 9 704.25 7.44 0.01 

BDAxRL 9 704.25 7.44 0.01 
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