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Abstract

A wide class of regularization problems in machine learrang statistics employ a reg-
ularization term which is obtained by composing a simplevearfunctionw with a linear
transformation. This setting includes Group Lasso methtidsFused Lasso and other total
variation methods, multi-task learning methods and mangemn this paper, we present a
general approach for computing the proximity operator of thass of regularizers, under the
assumption that the proximity operator of the functiois known in advance. Our approach
builds on a recent line of research on optimal first ordermojaiation methods and uses fixed
point iterations for numerically computing the proximitgerator. It is more general than cur-
rent approaches and, as we show with numerical simulatmmputationally more efficient
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than available first order methods which do not achieve ttienap rate. In particular, our
method outperforms state of the é)(%) methods for overlapping Group Lasso and matches
optimalO(%) methods for the Fused Lasso and tree structured Group Lasso.

1 Introduction

In this paper, we study supervised learning methods whielbased on the optimization problem

min f(x) + g(x) (1.2)

zeR4
where the functiory measures the fit of a vectarto available training data anglis a penalty
term or regularizer which encourages certain types of gwlat More precisely we lef(z) =
E(y, Az), whereE : R®* x R®* — [0,00) is an error functiony € RR*® is vector of measurements
andA € R**? a matrix, whose rows are the input vectors. This class oflagigation methods
arise in machine learning, signal processing and statiatid have a wide range of applications.

Different choices of the error function and the penalty tiorc correspond to specific meth-

ods. In this paper, we are interested in solving problen)) {&ten f is astrongly smooth convex
function (such as the square erity, Az) = ||y — Az||3) and the penalty function is obtained
as the composition of a “simple” function with a linear treorenation B, that is,

g(r) = w(Bx) (1.2)

where B is a prescribedn x d matrix andw is anondifferentiable convefunction onRR?. The
class of regularizer$ (1.2) includes a plethora of methdejisending on the choice of the function
w and of matrixB. Our motivation for studying this class of penalty funcsarises from sparsity-
inducing regularization methods which consideto be either thé; norm or a mixed;-¢, norm.
When B is the identity matrix angh = 2, the latter case corresponds to the well-known Group
Lasso method [36], for which well studied optimization teitfjues are available. Other choices
of the matrix B give rise to different kinds of Group Lasso with overlappimgups [12, 38],
which have proved to be effective in modeling structuredrspaiegression problems. Further
examples can be obtained considering composition witlf tm@rm (e.g. this includes the Fused
Lasso penalty function [32] and other total variation metth@1]) as well as composition with
orthogonally invariant norms, which are relevant, for epdanin the context of multi-task learning
[2].

A common approach to solve many optimization problems ofgéeeral form[(1]1) is via
proximal methods. These are first-order iterative methatiese computational cost per iteration
is comparable to gradient descent. In some problems in whids a simple enough form, they
can be combined with acceleration techniques [3, 26/ 28[38B,to yield significant gains in
the number of iterations required to reach a certain appration accuracy of the minimal value.
The essential step of proximal methods requires the cortipataf the proximity operator of
functiong (see Definitiom ZJ1 below). In certain cases of practicalantgnce, this operator admits
a closed form, which makes proximal methods appealing to #&®vever, in the general case
(1.2) the proximity operator may not be easily computable.ané aware of techniques to compute
this operator for only some specific choices of the functioand the matrixB. Most related to
our work are recent papers for Group Lasso with overlap [hif] Bused Lassa [19]. See also
[1),13,[14] 20| 24] for other optimization methods for struetlisparsity.

2



The main contribution of this paper is a general techniquatopute the proximity operator of
the composite regularizer (1.2) from the solution of a derlixed point problem, which depends
on the proximity operator of the functian and the matrixB. This fixed point problem can be
solved by a simple and efficient iterative scheme when thgimity operator ofw has a closed
form or can be computed in a finite number of steps. Wlias a strongly smooth function,
the above result can be used together with Nesterov’s aatetbmethod [26, 28] to provide an
efficient first-order method for solving the optimizatiomptem [1.1). Thus, our technique allows
for the application of proximal methods on a much wider clafsgptimization problems than is
currently possible. Our technique is both more general tharent approaches and also, as we
argue with numerical simulations, computationally efintidn particular, we will demonstrate that
our method outperforms state of the ék(t%) methods for overlapping Group Lasso and matches
optimal O(=;) methods for the Fused Lasso and tree structured Group Lasso.

The paper is organized as follows. In Section 2, we reviewntitéon of proximity operator
and useful facts from fixed point theory. In Sectidn 3, we asscsome examples of composite
functions of the form[(1]2) which are valuable in applicaso In Section 4, we present our tech-
nigue to compute the proximity operator for a composite lagger of the form[(1.2) and then an
algorithm to solve the associated optimization problei)(1n Sectiom b, we report our numerical
experience with this method.

2 Background

We denote by(-,-) the Euclidean inner product dR? and let| - ||, be the induced norm. If
v: R — R, for everyz € R? we denote by(z) the vector(v(z;) : i € Ny), where, for every
integerd, we uselN, as a shorthand for the sft, . .., d}. For everyp > 1, we define thé, norm

1
of z aslll, = (X en, 7).
The proximity operator on a Hilbert space was introduced loyedu in[22] 23].

Definition 2.1. Let w be a real valued convex function @&f. The proximity operator ofs is
defined, for every € R? by

) 1
prox,,(z) := argmin,cpa {§||y —z|3 + w(y)} . (2.2)

The proximity operator is well defined, because the abovemrmim exists and is unique.
Recall that the subdifferential of a convex functiomt = is defined as

ow(z) ={u:ueR (y—z,u) +w) <w(y), y € R,

The subdifferential is a nonempty compact and convex setteMer, ifw is differentiable at
then its subdifferential at consists only of the gradient afatx. The next proposition establishes
a relationship between the proximity operator and the sterdntial ofw — see, for example, [21,
Prop. 2.6] for a proof.

Proposition 2.1. If w is a convex function oR¢ andy € R? then

x € ow(y) ifandonlyif y=prox, (z+vy).



We proceed to discuss some examples of functioasd the corresponding proximity opera-
tors.
If w(z) = Az

P, where\ is a positive parameter, we have that
prox,, () = h™'(|z|)sign(z) (2.2)

where the functior : [0, c0) — [0, o) is defined, for every > 0, ash(t) = AptP~' +t. This fact
follows immediately from the optimality condition of the tipization problem[(2.]1). Using the
above equation, we may also compute the proximity map of aipheibf the/,, norm, namely the
case that) = v| - ||,, wherey > 0. Indeed, for every: € R?, there exists a value of, depending
only onvy andz, such that the optimization problein (R.1) for= ~|| - ||, equals to the solution of
the same problem fav = A|| - [[5. Hence the proximity map of th¢ norm can be computed by
(2.2) together with a simple line search. The casesphat{1,2} are simpler, see e.g.![7]. For
p = 1 we obtain the well-known soft-thresholding operator, ngme

proxy ., = (2] — A)sign(z), (2.3)
where, for every € R, we defing(t), = tif t > 0 and zero otherwise; when= 2 we have that

Tllo — z f s
proxy., () = { é“ I )\)+|Ix|\z :f . i 8 (2.4)

In our last example, we consider tiig norm, which is defined, for every € R? as ||z =
max{|z;| : i € Ng}. We have that

: 1 :
proxy .. (z) = min q |z}, T Z |z;| — A p sign(x)

‘Z’i‘>8k

wheres;, is thek-th largest value of the components of the veg¢tdrandk is the largest integer
suchthad ., (|z[; — sk) < A. For a proof of the above formula, see, for example [9, Sed. 5.

Finally, we recall some basic facts about fixed point theanjclv are useful for our study. For
more information on the material presented here, we reteraader to [37].

A mappingy : R — R? is called strictly non-expansive (or contractive) if thesdstsj <
[0, 1) such that, for every, y € R?, ||¢(x) —o(y)|l2 < Bz —y]|2- If the above inequality holds for
g =1, the mapping is called nonexpansive. As notedin [7, Lemmg Bothprox , and/ — prox,,
are nonexpansive.

We say thatr is afixed pointof a mappingy if © = ¢(x). The Picard iterates”, n € N,
starting atr, € R? are defined by the recursive equatioh= ¢(z"!). It is a well-known fact
that, if p is strictly nonexpansive thep has a unique fixed pointandlim,,_, ., ™ = x. However,
this result fails ify is nonexpansive. We end this section by stating the maintbaih we use to
find a fixed point of a nonexpansive mapping

Theorem 2.1. (Opial x-average theoremi [30]) Lep : R — R be a nonexpansive mapping,
which has at least one fixed point and {et := I + (1 — k)p. Then, for every: € (0,1), the
Picard iterates ofp,, converge to a fixed point of.



3 Examples of Composite Functions

In this section, we show that several examples of penaltgtions which have appeared in the
literature fall within the class of linear composite furets [1.2).

We define for everyl € N, x € R? andJ C N, the restriction of the vectar to the index set
Jasx); = (z; : i € J). Our first example considers the Group Lasso penalty fungtidich is
defined as

wen(r) = > a2 (3.1)

0eN,

where J, are prescribed subsets Bf; (also called the “groups”) such that_,.J, = N,. The
standard Group Lasso penalty (see €.g! [36]) corresporttie twase that the collection of groups
{J, : £ € Ny} forms a partition of the index sét,, that is, the groups do not overlap. In this case,
the optimization problen_(2.1) far = wq;, decomposes as the sum of separate problems and the
proximity operator is readily obtained by applying the falm(2.4) to each group separately. In
many cases of interest, however, the groups overlap andrtixénpty operator cannot be easily
computed.

Note that the functiori(3]1) is of the form (1.2). We dgt= |J,|, m = >_, ., d. and define,
for everyz € R™, w(z) = >y, ll2ell2, where, for every € Ny we letz, = (z; 0 Dy, dj <
i <) jen, 4;). Moreover, we choos8 = [By, ..., B;|", whereB, is ad, x d matrix defined as

_J 1 it =]
(Be)i; = { 0 otherwise

where for every/ C N, andi € N, we denote by/[i| thei-th largest integer ity

The second example concerns the Fused Lasso [32], whichdeosighe penalty function
x> g(x) = Doy, , 1T — x| Itimmediately follows that this function falls into theads
(1.2) if we choosev to be the/; norm andB the first order divided difference matrix

1 -1 0 ... ...
B=|0 1 -1 0 ...]|. (3.2)

The intuition behind the Fused Lasso is that it favors vectehich do not vary much across
contiguous components. Further extensions of this casebmaptained by choosing to be the
incidence matrix of a graph, a setting which is relevant f@meple in online learning over graphs
[11]. Other related examples include the anisotropic tedaltion, see for example, [21].

The next example considers composition with orthogonalhaiiant (Ol) norms. Specifically,
we choose a symmetric gauge functignthat is, a normh, which is bothabsoluteandinvariant
under permutationf35] and define the functiom : R — [0, o), at X by the formula

w(X) = h(o(X))

whereos(X) € [0,00)", r = min(d, n) is the vector formed by the singular values of matkix
in non-increasing order. An example of Ol-norm are Schattenrms, which correspond to the
case thatv is the/,-norm. The next proposition provides a formula for the pnoity operator
of an Ol-norm. The proof is based on an inequality by von Neum{&5], sometimes called von
Neumann'’s trace theorem or Ky Fan’s inequality.

5



Proposition 3.1. With the above notation, it holds that
ProXy,e, (X) = Udiag (prox,(o(X))) V'

whereX = Udiag(c(X))V" andU andV are the matrices formed by the left and right singular
vectors ofX, respectively.

Proof. The proof is based on an inequality by von Neumann [35], sionsst called von Neu-
mann’s trace theorem or Ky Fan’s inequality. It states thatY") < (o(X), o(Y)), with equality
if and only if X andY share the same ordered system of singular vectors. Note that

IX=YI5 = XI5+ Y] —2(X,Y)
> [o(X)l3 + le(V)I3 = 2(e(X), a(Y))

= [o(X) —a(¥)I3

and the equality holds if and only ¥ = Udiag(o(Y"))V ". Consequently, we have that

%HX _ YH% +w(Y) > %HU(X) — proxh(U(X))”g
+h(prox,(c(X))).

To conclude the proof we need to show that= prox, (o(X)) has the same ordering of that is,
~ is non-increasing. Suppose on the contrary that theresexist Ny, i < j, such thaty, < ;.
Let 4 be the vector obtained by flipping thi¢h andj-th components of.. A direct computation
gives

1 1 . N
Flle =z +h() = 5llo =3l = h(%) = (01 = 5) (3 = 75)-
Since the left hand side of the above equation is positive)é¢lads to a contradiction. [ |

We can compose an Ol-norm with a linear transformatiyrihis time between two spaces
of matrices, obtaining yet another subclass of penaltytfans of the form [(1.2). This setting
is relevant in the context of multi-task learning. For exd#ndQ] chooses: to be thetrace or
nuclearnorm and considers a specific linear transformation whictehtask relatedness, namely,
thatg(X) = ||o (X (I — Lee™))||,, wheree € R” is the vector all of whose components are equal
to one.

it

4 Fixed Point Algorithms Based on Proximity Operators

We now propose optimization approaches which use fixed @dgorithms for nonsmooth prob-
lems. We shall focus on problein (IL.1) under the assumpti@). (Ve assume thgtis astrongly
smoothconvex function, that isV f is Lipschitz continuous with constat, andw is anondif-
ferentiableconvex function. A typical class of such problems occursegutarization methods
where f corresponds to a data error term with, say, the square lagsagproach builds on proxi-
mal methods and uses fixed point (also known as Picard)igesator numerically computing the
proximity operator.



4.1 Computation of a Generalized Proximity Operator with a Fixed Point
Method

As the basic building block of our methods, we consider thénupation problem[(1/1) in the
special case whefiis a quadratic function, that is,

1
min {inQy —z'y+w(By):y € Rd} . 4.1)

wherez is a given vector ilR? and( a positive definitel x d matrix.

Recall theproximity operatoiin Definition[2.1. Under the assumption that we can expli@tl
in a finite number of steps compute the proximity operatey,aur aim is to develop an algorithm
for evaluating a minimizer of problerh (4.1). We describe algorithm for a generic Hessian,
as it can be applied in various contexts. For example, itcctadd to a second-order method for
solving (1.1), which will be the topic of future work. In thggper, we will apply the technique to
the task of evaluatingrox ;.

First, we observe that the minimizer 6f (4.1) exists andngue Let us call this minimizey.
Similar to Proposition 211, we have the following propaswiti

Proposition 4.1. If w is a convex function oR™,  a d x d positive definite matrix and € R?
theny is the solution of probler@.1) if and only if

Qy € x— 0(wo B)(9). (4.2)
The subdifferentiab(w o B) appearing in the inclusiof (4.2) can be expressed with taech
rule (see, e.gl[6]), which gives the formula
d(woB)=DB"o(0w)oB. 4.3)
Combining equations$ (4.2) and (4.3) yields the fact that
Qy € x — B"0w(BY) . (4.4)

This inclusion along with Propositidn 2.1 allows us to exgsein terms of the proximity operator
of w. To formulate our observation we introduce the affine tramshtionA : R™ — R™ defined,
for fixedz € R4, \ > 0, atz € R™ by

Az = (I —ABQ 'B")z+ BQ 'z
and the operato : R™ — R™
H = <I . prox§> oA (4.5)
Theorem 4.1.If w is a convex function oR™, B € R™*?, x € R?, ) is a positive number angl
is the minimizer o{4.1)then

§=Q 'z —ABY)

if and only ifv € R™ is a fixed point of{.



Proof. From [4.4) we conclude thgtis characterized by the fact that= Q~!(z — AB"v), where
v is a vector in the seb (£) (By). Thus it follows thatv € 0 (%) (BQ™'(z — AB"v)). Using
Propositior 2.1 we conclude that

BQ '(x — ABTv) = proxw (Av). (4.6)

Adding and subtracting on the left hand side and rearranging the terms we see tisa fixed
point of H.

Conversely, ifv is a fixed point ofH, then equationi (416) holds. Using again Propositioh 2.1
and the chain rulé (4.3), we conclude that

AB™v € 0(wo B)(Q ' (x — AB™v))

Propositio 4.11 together with the above inclusion now iepthat) ! (x— B v) is the minimizer

of (4.1). [ ]

Since the operatdil — prox§) is nonexpansive [7, Lemma 2.1], then

[1H (v) = H(w)]l2 [Av = Awl[,

<
< I =ABQT'B| |lv—wl>.

We conclude that the mappirg is nonexpansive if the spectral norm of the mafrix \BQ ' B™

is not greater than one. Let us denotedy; € N,,, the eigenvalues of matri8Q~'B. We see
that H is nonexpansive provided thdt— A)\;| < 1, thatis if0 < A < 2/\,ax, Where,,., is the
spectral norm o3Q ! BT. In this case we can appeal to Opial’'s Theofem 2.1 to find a fixdak

of H.

Note that if, for every; € N,,, A\, > 0, that is, the matrixBQ~'B" is invertible, then the
mappingH is strictly nonexpansive wheh < A < 2/\,... In this case, the Picard iterates iéf
converge to the unique fixed point &f, without the need to use Opial’s Theorem.

We end this section by noting that, whén= I, the above theorem provides an algorithm for
computing the proximity operator af o B.

Corollary 4.1. Letw be a convex function oR™, B € R™*¢, x ¢ R?, \ a positive number and
define the mapping — (I — prox« )((/ — ABBT)v + Bx). Then

prox,.g(r) =z — AB"v

if and only if v is a fixed point of.

Thus, a fixed point iterative scheme like the above one cansbd as part of any proximal
method when the regularizer has the fokrml(1.2).

4.2 Accelerated First-Order Methods

Corollary[4.1 motivates a general proximal numerical apphoto solving probleni (1.1) (Algo-
rithm[D). Recall that. is the Lipschitz constant &¥ f. The idea behind proximal methods — see
[7,14,128] 33| 34] and references therein — is to update thewruestimate of the solutior) using
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Algorithm 1 Proximal & fixed point algorithm.
X1, 001 < 0
for t=1,2,...do
Computer; ; « ProXs . (v — TV f(aw))
by the Picard-Opial process
Updatea,; as a function of; 1, xy, . ..
end for

the proximity operator. This is equivalent to replacifigvith its linear approximation around a
point o, specific to iteratiort. The pointa; may depend on the current and previous estimates of
the solutionz;, x;_1, . . ., the simplest and most common update rule being x;.

In particular, in this paper we focus on combining Picardsitens withaccelerated first-order
methodgroposed by Nesterov [27,28]. These methods use @pdate of a specific type, which
requires two levels of memory of. Such a scheme has the property of a quadratic decay in
terms of the iteration count, that is, the distance of thectbje from the minimal value i® (%)
afterT iterations. This rate of convergence is optimal for a firstesrmethod in the sense of the
algorithmic model of([25].

It is important to note that other methods may achieve fastes, at least under certain con-
ditions. For exampleinterior point method$29] or iterated reweighted least squarf& [31,[1]
have been applied successfully to nonsmooth convex prablétawever, the former require the
Hessian and typically have high cost per iteration. Thefatquire solving linear systems at each
iteration. Accelerated methods, on the other hand, hawserlcost per iteration and scale to larger
problem sizes. Moreover, in applications where some typaresholding operator is involved —
for example, the Lassb (2.3) — the zeros in the solution aaetewhich may be desirable.

Since their introduction, accelerated methods have guilogtome popular in various areas of
applications, including machine learning, see, for exam@4, 15, 17, 13] and references therein.
However, their applicability has been restricted by thd that they requireexactcomputation
of the proximity operator. Only then is the quadratic cogesrce rate known to hold, and thus
methods using numerical computation of the proximity ofmerare not guaranteed to exhibit this
rate. What we show here, is how to further extend the scopeadlerated methods and that,
empirically at least, these new methods outperform cur@aﬁ%) methods while matching the
performance of optimal (=) methods.

In Algorithm[2 we describe a version of accelerated methiofiisenced by[33, 34]. Nesterov’'s
insight was that an appropriate updatexpfvhich uses two levels of memory achieves th¢ )

rate. Specifically, the optimal update dg,; <+ ;11 + 0441 (9% — 1) (r441 — x;) Where the
sequencd, is defined by); = 1 and the recursive equation

1—61 1

2, 0
We have adapted [33, Algorithm 2] (equivalent to FISTA [4})domputing the proximity operator
of £ o B using the Picard-Opial process described in Settidn 4. reerased the algorithm using

the sequencg, :=1—60,+v1 -0, =1—6,+ ijl for numerical stability. At each iteration, the




map A; is defined by

A 1
Az = <I - ZBBT) z— ZB(Vf(ozt) — Loy)
and H; as in [4.5). By Theorem 4.1, the fixed point process combinid the » update are
equivalent tar,, ; < PIOXs g (v — 1V f(aw)).

Algorithm 2 Accelerated & fixed point algorithm.
X1, 001 < 0
for t=1,2,...do
Compute a fixed point of H; by Picard-Opial
Tipq < Qg — %Vf(ozt) - %BT’U
Q1 ¢ Pre1Zip1 — (pp1 — Dy
end for

5 Numerical Simulations

We have evaluated the efficiency of our method with simutetion different nonsmooth learning
problems. One important aim of the experiments is to dematesimprovement over a state
of the art suite of methods (SLER) [16] in the cases when tbgimity operator is not exactly
computable.

An example of such cases which we considered in SeCtidn StkiSroup Lasso witlover-
lapping groups An algorithm for computation of the proximity operator irfinite number of
steps is known only in the special case of hierarchy-indugedips [13]. In other cases such
as groups induced by directed acyclic graphs [38] or morepticated sets of groups, the best
known theoretical rate for a first-order methodji%). We demonstrate that such a method can
be improved.

Moreover, in Sectioh 512 we report efficient convergencé@dase of a composite penalty
used for graph prediction [11]. In this case, mathxs the incidence matrix of a graph and the
penalty is > ||; — x;]j1, whereE is the set of edges. Most work we are aware of for the

i,j)€EE
composite(fl ;oenalty applies to the special cases of total variation [Fused lassa [19], in which
B has a simple structure. A recent method for the general &js&hich builds on Nesterov’s
O (7) smoothing techniqué [27] does not have publicly availabfersre yet.

Another advantage of Algorithin 2 which we highlight is thgthiefficiency of Picard itera-
tions for computing different proximity operators. Thigjugres only a small number of iterations
regardless of the size of the problem. We also report a rguifidar scalability with respect to the
dimensionality of the problem, which shows that our methogp can be applied to large scale
problems.

In the following simulations, we have chosen the parameten Opial’s theoremx = 0.2. The
parameten was set equal t% where\,,..x and\;, are the largest and smallest eigenval-
ues, respectively, ofBBT. We have focused exclusively on the case of the square lass/an
have computed. using singular value decomposition (if this were not pdssid Frobenius esti-
mate could be used). Finally, the implementation ran on aBL&@mory dual core Intel machine.
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Figure 1. Objective function vs. iteration for the overlagpgroups datad = 3500). Note that
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Figure 2:/, difference of successive Picard iterates vs. Picard itarébr the overlapping groups
data ¢ = 3500).

The Matlab code is available http://ttic.uchicago.edu/ ~argyriou/code/
index.html

5.1 Overlapping Groups

In the first simulation we considered a synthetic data setiMmvolves a fairly simple group topol-
ogy which, however, cannot be embedded as a hierarchy. Weaged datal € R**¢, with s =
[0.7d] from a uniform distribution and normalized the matrix. Theget vector:* was also gen-
erated randomly so that on®i of its components are nonzero. The groups used in the réggdar
wgr —seeeql(3l1)—ardl, ..., 5}, {5,...,9} {9, ..., 13}, {13, .., 17}, {17, ..., 21}, {4, 22, ..., 30},
{8,31,...,40}, {12,41, ..., 50}, {16, 51, ..., 60}, {20,61, ..., 70}, {71, ...,80},..., {d — 9, ..., d}.
That is, the firstc groups form a chain, the nextgroups have a common element with one
of the first groups and the rest have no overlaps. An issueavignlapping group norms is the
coefficients assigned to each group (see [12] for a discujssWe chose to use a coefficient of
for every group and compensate by normalizing each compaieri according to the number
of groups in which it appears (this of course can only be dona synthetic setting like this).
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Figure 3. Average measures vs. dimensionality for the apgihg groups data. Top: number
of iterations. Bottom: CPU time. Note that this time can bduaed to a fraction with a C

implementation.

0.5

0.45

0.4

0.35

. .03

objective

0.25

0.2

0.15

-

0.1

- - - Picard - Nesterov
——SLEP

0.05 0

0
iteration count

100 150

Figure 4: Objective function vs. iteration for the hieraoe overlapping groups.

The outputs were then generatedjas Az* + noise with zero mean Gaussian noise of standard

deviation0.001.

We used a regularization parameter equabto’. We ran the algorithm faf = 1000, 1100, . . .,
4000, with 10 random data sets for each valuedpfand compared its efficiency with SLEP. The
solutions found recover the correct pattern without exaobg due to the regularization. Figlie 1
shows the number of iteratiofisin Algorithm[2 needed for convergence in objective valueninit
e = 1078, SLEP was run until the same objective value was reached. ovelude that we out-
perform SLEP’SD () method. Figur€]2 demonstrates the efficiency of the innempeation of
the proximity map at one iteratianof the algorithm. Just a few Picard iterations are requicgd f
convergence. The plots for differenare indistinguishable.

Similar conclusions can be drawn from the plots in Figure 3¢k average counts of iterations
and CPU time are shown for each valuelofVe see that the number of iterations depends almost
linearly on dimensionality and that SLEP requires an ordenagnitude more iterations — which
grow at a higher rate. Note also that the cost per iteraticomsparable between the two methods.
We also observed that computation of the proximity map isnsgive to the size of the problem
(it only requires7 — 8 iterations for alld). Finally, we report that CPU time grows linearly with
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dimensionality. To remove various overheads this estimai® obtained from Matlab’s profiling
statistics for the low-level functions called. A comparnseith SLEP is meaningless since the
latter is a C implementation.

Besides outperforming th@ (%) method, we also show that the Picard-Nesterov approach
matches SLEP’@(%) method for the tree structured Group Lassd [18]. To this evelhave
imitated an experiment from [13, Sec. 4.1] using the Berkslegmentation data Hetwe have
extracted a random dictionary @1 16 x 16 patches from these images, which we have placed
on a balanced tree with branching factafs 2, 2 (top to bottom). Here the groups correspond
to all subtrees of this tree. We have then learned the decsitigpoof new test patches in the
dictionary basis by Group Lasso regularizatiobn(3.1). Aguké[4 shows, our method and SLEP

are practically indistinguishable.

5.2 Graph Prediction

The second simulation is on the graph prediction of [11] mltimit of p = 1 (compositel;). We
constructed a synthetic graphéfertices,d = 100, 120, . . ., 360 with two clusters of equal size.
The edges in each cluster were selected from a uniform drawpmbability% and we explicitly
connectedl/25 pairs of vertices between the clusters. The labeledglatare the cluster labels of
s = 10 randomly drawn vertices. Note that the effective dimensiioyof this problem isO(d?).
At the time of the paper’s writing there is not an acceleraiedhod with software available online
which handles a generic graph.

First, we observed that the solution found recovered p#yfdte clustering. Next, we studied
the decay of the objective function for different problemes (Figuré 5). We noted a striking
difference from the case of overlapping groups in that cogesce now is not monotdf@he na-
ture of decay also differs from graph to graph, with some £asaking fast progress very close
to the optimal value but long before eventual convergenbés dbservation suggests future mod-
ifications of the algorithm which can accelerate convergdmg a factor. As an indication, the
distance from the optimum was jua® - 107%,5.4 - 107°,1.5 - 10~° at iteration611, 821, 418 for
d = 100, 120, 140, respectively. We verified in this data as well, that Picaedations converge
very fast (Figuré 6). Finally in Table 5.2 we report averageation numbers and running times.
These prove the feasibility of solving problems with largatrntesB even using a “quick and
dirty” Matlab implementation.

In addition to a random incidence matrix, one may considestecial case dfused Lassor
Total Variationin which B has the simple forni(3.2). It has been shown how to achieveqtimal
O (%) rate for this problem in [3]. We applied Fused Lasso (withoagso regularization) to the
same clustering data as before and compared SLEP with taedRiesterov approach. As Figure
[7 shows, the two trajectories are identical. This providesenore evidence in favor of optimality
of our method.

Ihttp://www.eecs.berkeley.edu/Research/Projectsi€isn/bsds/
2 There is no monotonicity guarantee for Nesterov's acctadranethod.
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6 Conclusion

We presented an efficient first order method for solving asctdsionsmooth optimization prob-
lems, whose objective function is given by the sum of a smteth and a nonsmooth term, which
is obtained by linear function composition. The prototgbiexample covered by this setting in a
linear regression regularization method, in which the siméerm is an error term and the nons-
mooth term is a regularizer which favors certain desiredpater vectors. An important feature
of our approach is that it can deal with richer classes oflee@ers than current approaches and at
the same time is at least as computationally efficient asfspegisting approaches for structured
sparsity. In particular our numerical simulations demmatstthat the proposed method matches
optimaIO(%) methods on specific problems (Fused Lasso and tree strd¢duoeip Lasso) while
improving over availabl@(%) methods for the overlapping Group Lasso. In addition, itlcan-
dle generic linear composite regularization problemsnfi@any of which accelerated methods do
not yet exist. In the future, we wish to study theoreticalligather the rate of convergence is
O (7%), as suggested by our numerical simulations. There is alshmuom for further accelera-
tion of the method in the more challenging cases by usingipeddeuristics. At the same time, it
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d | no. iterations| CPU time (secs.
100 2599.6 21.461
120 3680.0 54.745
140 4351.8 118.61
160 3124.8 164.21
180 2845.8 241.69
200 3476.2 359.75
220 4490.0 911.67
240 4490.0 911.67
260 3639.2 930.8

Table 1: Graph data. Note that the effectivis O(d?). CPU time can be reduced to a fraction with
a C implementation.

— SLEP
Picard - Nesterov|

objective

0 1000 2000 3000 4000 5000
iteration count

Figure 7: Objective function vs. iteration for the Fuseddagl = 100). The two trajectories are
identical.

will be valuable to study further applications of our meth@tlese could include machine learning
problems ranging from multi-task learning, to multiple tkeklearning and to dictionary learning,
all of which can be formulated as linearly composite regaédion problems.
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7 Appendix

In this appendix, we collect some basic facts about fixedtpbieory which are useful for our
study. For more information on the material presented hveeaefer the reader to [37].

Let X be a closed subset &?. A mappingy : X — X is called strictly non-expansive (or
contractive) if there exists € [0, 1) such that, for every, y € X,

le(z) = el < Allz —yl-

If the above inequality holds fok = 1, the mapping is called nonexpansive. We say thet a
fixed pointof ¢ if z = p(z). The Picard iterates”, n € N starting atr, € X are defined by the
recursive equation™ = p(z"1).

It is a well-knwon fact that, ifp is strictly nonexpansive thep has a unique fixed point and
lim,_,, ™ = x. However, this result fails ip is nonexpansive. For example, the map) = +1
does not have a fixed point. On the other hand, the identitymagpnfinitely many fixed points.

Definition 7.1. Let X be a closed subset Bf!. A mapy : X — X is called asymptotically regular
provided thaflim,, ., ||z"*! — 2"|| = 0.

Proposition 7.1. Let X be a closed subset &' andy : X — X such that

1. ¢ IS nonexpansive;
2. ¢ has at least one fixed point;

3. ¢ is asymptotically regular.
Then the sequende™ : n € N} converges to a fixed point gf

Proof. We divide the proof in three steps.
Step 1:The Picard iterates are bounded. Indeedy leé a fixed point ofp. We have that

27 — 2]l = lp(@") - ()] < " 2l < -+ < 2 — 3]

Step 2:Let {z"* : k € N} be a convergent subsequence, whose limit we denote e will
show thaty is a fixed point ofp. Sincey is continuous, we have théin .. (z™ — p(z")) =
y — p(y), and sincep is asymptotically regulay — ¢ (y) = 0.

Step 3: The whole sequence converges. Indeed, following the saasoméng in the proof
of Step 1, we conclude that the sequedde” — y|| : n € N} is non-increasing. Letr =
lim, o ||2" — l|. Sincelimy_, o ||2™ — y|| = 0, we conclude that = 0 and, soJim,, ., 2" =
Y. |
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We note that in general, without the asymptotically regtyaassumption, the Picard iterates
do not converge. For example, consigér) = —z. Its only fixed pointisc = 0; if we start from
2¥ # 0 the Picard iterates will oscillate. Moreoverifz) = = + 1, which is nonexpansive, the
Picard iterates diverge.

We now discuss the main tool which we use to find a fixed pointradreexpansive mapping

Theorem 7.1.(Opial x-average theoreni[30]) LeX be a closed convex subsefftsf, o : X — X
a nonexpansive mapping, which has at least one fixed pointedind := <7 + (1 — x)p. Then,
for everyx € (0, 1), the Picard iterates op,, converge to a fixed point af.

We prepare for the proof with two useful lemmas.
Lemma 7.1.1f k € (0,1), u,w € RY, ||ul| < ||w||, then

Rl = g)llw —ul* < fJwl]* = [[sw + (1 = K)ul”

Proof. The assertion follows from, strong convexity,
w1 = ) Jw = al® + w4 (1= R)u?
= kllw|]* + (1 = &) [[u]]* < [lw]]*.
[ |

Lemma 7.2.If {u" : n € N} and{w" : n € N} are sequences iR? such thafim,, ., [|w"|| = 1,
|lu™]] < [|w™|| andlimy, o ||[cw™ + (1 — &)u™|| = 1, thenlim,,,  w™ — u™ = 0.

Proof. Apply Lemmd&7Z.1 to note that
KL= g)|w" —u"|* < [l ||* = [Jsw” + (1 — r)u"||*.
By hypothesis the right hand side tends to zera éends to infinity and the result follows. m

Proof of Theorem[7.1. Let {z" : n € N} be the iterates op,.. We will show thatp, is asymp-
totically regular. The result will then follow by Propositi(7.1 and the fact that, andy have the
same set of fixed points.

Letz"™ = k2™ + (1 — k)p(2™). Note that, ifu is fixed point ofy,, then

Iz =] < 2" —ul| < - <2 =l

Let d := lim, . ||2" — u|. If d = 0 the result is proved. We will show that if > 0 we
contradict the hypotheses of the theorem. For every N, we definew” = E_l(x” —u) and
Ut = E_l(ap(x") — u). Note that the sequencds™ : n € N} and{u" : n € N} satisfy
the hypotheses of Lemnia ¥V.2. Thus, we have tha} .. (2" — ¢(z")) = 0. Consequently
" — 2" = (1 — k) (p(2™) — 2™) — 0, showing thaf =" : n € N} is asymptotically regular. m
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