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Abstract

A wide class of regularization problems in machine learningand statistics employ a reg-
ularization term which is obtained by composing a simple convex functionω with a linear
transformation. This setting includes Group Lasso methods, the Fused Lasso and other total
variation methods, multi-task learning methods and many more. In this paper, we present a
general approach for computing the proximity operator of this class of regularizers, under the
assumption that the proximity operator of the functionω is known in advance. Our approach
builds on a recent line of research on optimal first order optimization methods and uses fixed
point iterations for numerically computing the proximity operator. It is more general than cur-
rent approaches and, as we show with numerical simulations,computationally more efficient
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than available first order methods which do not achieve the optimal rate. In particular, our
method outperforms state of the artO( 1

T
) methods for overlapping Group Lasso and matches

optimalO( 1
T 2 ) methods for the Fused Lasso and tree structured Group Lasso.

1 Introduction

In this paper, we study supervised learning methods which are based on the optimization problem

min
x∈Rd

f(x) + g(x) (1.1)

where the functionf measures the fit of a vectorx to available training data andg is a penalty
term or regularizer which encourages certain types of solutions. More precisely we letf(x) =
E(y, Ax), whereE : Rs × R

s → [0,∞) is an error function,y ∈ R
s is vector of measurements

andA ∈ R
s×d a matrix, whose rows are the input vectors. This class of regularization methods

arise in machine learning, signal processing and statistics and have a wide range of applications.
Different choices of the error function and the penalty function correspond to specific meth-

ods. In this paper, we are interested in solving problem (1.1) whenf is astrongly smooth convex
function (such as the square errorE(y, Ax) = ‖y − Ax‖22) and the penalty functiong is obtained
as the composition of a “simple” function with a linear transformationB, that is,

g(x) = ω(Bx) (1.2)

whereB is a prescribedm × d matrix andω is a nondifferentiable convexfunction onRd. The
class of regularizers (1.2) includes a plethora of methods,depending on the choice of the function
ω and of matrixB. Our motivation for studying this class of penalty functions arises from sparsity-
inducing regularization methods which considerω to be either theℓ1 norm or a mixedℓ1-ℓp norm.
WhenB is the identity matrix andp = 2, the latter case corresponds to the well-known Group
Lasso method [36], for which well studied optimization techniques are available. Other choices
of the matrixB give rise to different kinds of Group Lasso with overlappinggroups [12, 38],
which have proved to be effective in modeling structured sparse regression problems. Further
examples can be obtained considering composition with theℓ1 norm (e.g. this includes the Fused
Lasso penalty function [32] and other total variation methods [21]) as well as composition with
orthogonally invariant norms, which are relevant, for example, in the context of multi-task learning
[2].

A common approach to solve many optimization problems of thegeneral form (1.1) is via
proximal methods. These are first-order iterative methods,whose computational cost per iteration
is comparable to gradient descent. In some problems in whichg has a simple enough form, they
can be combined with acceleration techniques [3, 26, 28, 33,34], to yield significant gains in
the number of iterations required to reach a certain approximation accuracy of the minimal value.
The essential step of proximal methods requires the computation of the proximity operator of
functiong (see Definition 2.1 below). In certain cases of practical importance, this operator admits
a closed form, which makes proximal methods appealing to use. However, in the general case
(1.2) the proximity operator may not be easily computable. We are aware of techniques to compute
this operator for only some specific choices of the functionω and the matrixB. Most related to
our work are recent papers for Group Lasso with overlap [17] and Fused Lasso [19]. See also
[1, 3, 14, 20, 24] for other optimization methods for structured sparsity.
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The main contribution of this paper is a general technique tocompute the proximity operator of
the composite regularizer (1.2) from the solution of a certain fixed point problem, which depends
on the proximity operator of the functionω and the matrixB. This fixed point problem can be
solved by a simple and efficient iterative scheme when the proximity operator ofω has a closed
form or can be computed in a finite number of steps. Whenf is a strongly smooth function,
the above result can be used together with Nesterov’s accelerated method [26, 28] to provide an
efficient first-order method for solving the optimization problem (1.1). Thus, our technique allows
for the application of proximal methods on a much wider classof optimization problems than is
currently possible. Our technique is both more general thancurrent approaches and also, as we
argue with numerical simulations, computationally efficient. In particular, we will demonstrate that
our method outperforms state of the artO( 1

T
) methods for overlapping Group Lasso and matches

optimalO( 1
T 2 ) methods for the Fused Lasso and tree structured Group Lasso.

The paper is organized as follows. In Section 2, we review thenotion of proximity operator
and useful facts from fixed point theory. In Section 3, we discuss some examples of composite
functions of the form (1.2) which are valuable in applications. In Section 4, we present our tech-
nique to compute the proximity operator for a composite regularizer of the form (1.2) and then an
algorithm to solve the associated optimization problem (1.1). In Section 5, we report our numerical
experience with this method.

2 Background

We denote by〈·, ·〉 the Euclidean inner product onRd and let‖ · ‖2 be the induced norm. If
v : R → R, for everyx ∈ R

d we denote byv(x) the vector(v(xi) : i ∈ Nd), where, for every
integerd, we useNd as a shorthand for the set{1, . . . , d}. For everyp ≥ 1, we define theℓp norm

of x as‖x‖p = (
∑

i∈Nd
|xi|p)

1

p .
The proximity operator on a Hilbert space was introduced by Moreau in [22, 23].

Definition 2.1. Let ω be a real valued convex function onRd. The proximity operator ofω is
defined, for everyx ∈ R

d by

proxω(x) := argminy∈Rd

{

1

2
‖y − x‖22 + ω(y)

}

. (2.1)

The proximity operator is well defined, because the above minimum exists and is unique.
Recall that the subdifferential of a convex functionω atx is defined as

∂ω(x) = {u : u ∈ R
d, 〈y − x, u〉+ ω(x) ≤ ω(y), y ∈ R

d}.

The subdifferential is a nonempty compact and convex set. Moreover, ifω is differentiable atx
then its subdifferential atx consists only of the gradient ofω atx. The next proposition establishes
a relationship between the proximity operator and the subdifferential ofω – see, for example, [21,
Prop. 2.6] for a proof.

Proposition 2.1. If ω is a convex function onRd andy ∈ R
d then

x ∈ ∂ω(y) if and only if y = proxω(x+ y) .
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We proceed to discuss some examples of functionsω and the corresponding proximity opera-
tors.

If ω(x) = λ‖x‖pp, whereλ is a positive parameter, we have that

proxω(x) = h−1(|x|)sign(x) (2.2)

where the functionh : [0,∞)→ [0,∞) is defined, for everyt ≥ 0, ash(t) = λ p tp−1+t. This fact
follows immediately from the optimality condition of the optimization problem (2.1). Using the
above equation, we may also compute the proximity map of a multiple of theℓp norm, namely the
case thatω = γ‖ · ‖p, whereγ > 0. Indeed, for everyx ∈ R

d, there exists a value ofλ, depending
only onγ andx, such that the optimization problem (2.1) forω = γ‖ · ‖p equals to the solution of
the same problem forω = λ‖ · ‖pp. Hence the proximity map of theℓp norm can be computed by
(2.2) together with a simple line search. The cases thatp ∈ {1, 2} are simpler, see e.g. [7]. For
p = 1 we obtain the well-known soft-thresholding operator, namely

proxλ‖·‖1 = (|x| − λ)+sign(x), (2.3)

where, for everyt ∈ R, we define(t)+ = t if t ≥ 0 and zero otherwise; whenp = 2 we have that

proxλ‖·‖2(x) =

{

(‖x‖2 − λ)+
x

‖x‖2
if x 6= 0

0 if x = 0.
(2.4)

In our last example, we consider theℓ∞ norm, which is defined, for everyx ∈ R
d as‖x‖∞ =

max{|xi| : i ∈ Nd}. We have that

proxλ‖·‖∞(x) = min







|x|, 1
k

∑

|xi|>sk

|xi| − λ







sign(x)

wheresk is thek-th largest value of the components of the vector|x| andk is the largest integer
such that

∑

|xi|>sk
(|x|i− sk) < λ. For a proof of the above formula, see, for example [9, Sec. 5.4].

Finally, we recall some basic facts about fixed point theory which are useful for our study. For
more information on the material presented here, we refer the reader to [37].

A mappingϕ : Rd → R
d is called strictly non-expansive (or contractive) if thereexistsβ ∈

[0, 1) such that, for everyx, y ∈ R
d, ‖ϕ(x)−ϕ(y)‖2 ≤ β‖x−y‖2. If the above inequality holds for

β = 1, the mapping is called nonexpansive. As noted in [7, Lemma 2.4], bothproxω andI−proxω
are nonexpansive.

We say thatx is a fixed pointof a mappingϕ if x = ϕ(x). The Picard iteratesxn, n ∈ N,
starting atx0 ∈ R

d are defined by the recursive equationxn = ϕ(xn−1). It is a well-known fact
that, ifϕ is strictly nonexpansive thenϕ has a unique fixed pointx andlimn→∞ xn = x. However,
this result fails ifϕ is nonexpansive. We end this section by stating the main toolwhich we use to
find a fixed point of a nonexpansive mappingϕ.

Theorem 2.1. (Opial κ-average theorem [30]) Letϕ : Rd → R
d be a nonexpansive mapping,

which has at least one fixed point and letϕκ := κI + (1 − κ)ϕ. Then, for everyκ ∈ (0, 1), the
Picard iterates ofϕκ converge to a fixed point ofϕ.
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3 Examples of Composite Functions

In this section, we show that several examples of penalty functions which have appeared in the
literature fall within the class of linear composite functions (1.2).

We define for everyd ∈ N, x ∈ R
d andJ ⊆ Nd, the restriction of the vectorx to the index set

J asx|J = (xi : i ∈ J). Our first example considers the Group Lasso penalty function, which is
defined as

ωGL(x) =
∑

ℓ∈Nk

‖x|Jℓ‖2 (3.1)

whereJℓ are prescribed subsets ofNd (also called the “groups”) such that∪kℓ=1Jℓ = Nd. The
standard Group Lasso penalty (see e.g. [36]) corresponds tothe case that the collection of groups
{Jℓ : ℓ ∈ Nk} forms a partition of the index setNd, that is, the groups do not overlap. In this case,
the optimization problem (2.1) forω = ωGL decomposes as the sum of separate problems and the
proximity operator is readily obtained by applying the formula (2.4) to each group separately. In
many cases of interest, however, the groups overlap and the proximity operator cannot be easily
computed.

Note that the function (3.1) is of the form (1.2). We letdℓ = |Jℓ|, m =
∑

ℓ∈Nk
dℓ and define,

for everyz ∈ R
m, ω(z) =

∑

ℓ∈Nk
‖zℓ‖2, where, for everyℓ ∈ Nk we letzℓ = (zi :

∑

j∈Nℓ−1
dj <

i ≤∑

j∈Nℓ
dj). Moreover, we chooseB = [B⊤

1 , . . . , B
⊤

k ]
⊤, whereBℓ is adℓ × d matrix defined as

(Bℓ)ij =

{

1 if j = Jℓ[i]
0 otherwise

where for everyJ ⊆ Nd andi ∈ N|J |, we denote byJ [i] thei-th largest integer inJ .
The second example concerns the Fused Lasso [32], which considers the penalty function

x 7→ g(x) =
∑

i∈Nd−1
|xi − xi+1|. It immediately follows that this function falls into the class

(1.2) if we chooseω to be theℓ1 norm andB the first order divided difference matrix

B =







1 −1 0 . . . . . .
0 1 −1 0 . . .
...

. . . . . . . . . . . .






. (3.2)

The intuition behind the Fused Lasso is that it favors vectors which do not vary much across
contiguous components. Further extensions of this case maybe obtained by choosingB to be the
incidence matrix of a graph, a setting which is relevant for example in online learning over graphs
[11]. Other related examples include the anisotropic totalvariation, see for example, [21].

The next example considers composition with orthogonally invariant (OI) norms. Specifically,
we choose a symmetric gauge functionh, that is, a normh, which is bothabsoluteandinvariant
under permutations[35] and define the functionω : Rd×n → [0,∞), atX by the formula

ω(X) = h(σ(X))

whereσ(X) ∈ [0,∞)r, r = min(d, n) is the vector formed by the singular values of matrixX,
in non-increasing order. An example of OI-norm are Schattenp-norms, which correspond to the
case thatω is theℓp-norm. The next proposition provides a formula for the proximity operator
of an OI-norm. The proof is based on an inequality by von Neumann [35], sometimes called von
Neumann’s trace theorem or Ky Fan’s inequality.
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Proposition 3.1. With the above notation, it holds that

proxh◦σ(X) = Udiag (proxh(σ(X)))V ⊤

whereX = Udiag(σ(X))V ⊤ andU andV are the matrices formed by the left and right singular
vectors ofX, respectively.

Proof. The proof is based on an inequality by von Neumann [35], sometimes called von Neu-
mann’s trace theorem or Ky Fan’s inequality. It states that〈X, Y 〉 ≤ 〈σ(X), σ(Y )〉, with equality
if and only ifX andY share the same ordered system of singular vectors. Note that

‖X − Y ‖22 = ‖X‖22 + ‖Y ‖22 − 2〈X, Y 〉
≥ ‖σ(X)‖22 + ‖σ(Y )‖22 − 2〈σ(X), σ(Y )〉
= ‖σ(X)− σ(Y )‖22

and the equality holds if and only ifY = Udiag(σ(Y ))V ⊤. Consequently, we have that

1

2
‖X − Y ‖22 + ω(Y ) ≥ 1

2
‖σ(X)− proxh(σ(X))‖22

+h(proxh(σ(X))) .

To conclude the proof we need to show thatγ := proxh(σ(X)) has the same ordering ofσ, that is,
γ is non-increasing. Suppose on the contrary that there exists i, j ∈ Nd, i < j, such thatγi < γj.
Let γ̃ be the vector obtained by flipping thei-th andj-th components ofγ. A direct computation
gives

1

2
‖σ − γ‖22 + h(γ)− 1

2
‖σ − γ̃‖22 − h(γ̃) = (σi − σj)(γi − γj).

Since the left hand side of the above equation is positive, this leads to a contradiction.

We can compose an OI-norm with a linear transformationB, this time between two spaces
of matrices, obtaining yet another subclass of penalty functions of the form (1.2). This setting
is relevant in the context of multi-task learning. For example [10] choosesh to be thetrace or
nuclearnorm and considers a specific linear transformation which model task relatedness, namely,
thatg(X) =

∥

∥σ
(

X(I − 1
n
ee⊤)

)
∥

∥

1
, wheree ∈ R

d is the vector all of whose components are equal
to one.

4 Fixed Point Algorithms Based on Proximity Operators

We now propose optimization approaches which use fixed pointalgorithms for nonsmooth prob-
lems. We shall focus on problem (1.1) under the assumption (1.2). We assume thatf is astrongly
smoothconvex function, that is,∇f is Lipschitz continuous with constantL, andω is a nondif-
ferentiableconvex function. A typical class of such problems occurs in regularization methods
wheref corresponds to a data error term with, say, the square loss. Our approach builds on proxi-
mal methods and uses fixed point (also known as Picard) iterations for numerically computing the
proximity operator.
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4.1 Computation of a Generalized Proximity Operator with a Fixed Point
Method

As the basic building block of our methods, we consider the optimization problem (1.1) in the
special case whenf is a quadratic function, that is,

min

{

1

2
y⊤Qy − x⊤y + ω(By) : y ∈ R

d

}

. (4.1)

wherex is a given vector inRd andQ a positive definited× d matrix.
Recall theproximity operatorin Definition 2.1. Under the assumption that we can explicitly or

in a finite number of steps compute the proximity operator ofω, our aim is to develop an algorithm
for evaluating a minimizer of problem (4.1). We describe thealgorithm for a generic HessianQ,
as it can be applied in various contexts. For example, it could lead to a second-order method for
solving (1.1), which will be the topic of future work. In thispaper, we will apply the technique to
the task of evaluatingproxω◦B.

First, we observe that the minimizer of (4.1) exists and isunique. Let us call this minimizer̂y.
Similar to Proposition 2.1, we have the following proposition.

Proposition 4.1. If ω is a convex function onRm, Q a d × d positive definite matrix andx ∈ R
d

thenŷ is the solution of problem(4.1) if and only if

Qŷ ∈ x− ∂(ω ◦B)(ŷ). (4.2)

The subdifferential∂(ω ◦ B) appearing in the inclusion (4.2) can be expressed with the chain
rule (see, e.g. [6]), which gives the formula

∂(ω ◦B) = B⊤ ◦ (∂ω) ◦B . (4.3)

Combining equations (4.2) and (4.3) yields the fact that

Qŷ ∈ x− B⊤∂ω(Bŷ) . (4.4)

This inclusion along with Proposition 2.1 allows us to expressŷ in terms of the proximity operator
of ω. To formulate our observation we introduce the affine transformationA : Rm → R

m defined,
for fixedx ∈ R

d, λ > 0, atz ∈ R
m by

Az := (I − λBQ−1B⊤)z +BQ−1x

and the operatorH : Rm → R
m

H :=
(

I − proxω
λ

)

◦ A . (4.5)

Theorem 4.1. If ω is a convex function onRm, B ∈ R
m×d, x ∈ R

d, λ is a positive number and̂y
is the minimizer of(4.1) then

ŷ = Q−1(x− λB⊤v)

if and only ifv ∈ R
m is a fixed point ofH.
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Proof. From (4.4) we conclude that̂y is characterized by the fact thatŷ = Q−1(x−λB⊤v), where
v is a vector in the set∂

(

ω
λ

)

(Bŷ). Thus it follows thatv ∈ ∂
(

ω
λ

)

(BQ−1(x− λB⊤v)). Using
Proposition 2.1 we conclude that

BQ−1(x− λB⊤v) = proxω
λ
(Av). (4.6)

Adding and subtractingv on the left hand side and rearranging the terms we see thatv is a fixed
point ofH.

Conversely, ifv is a fixed point ofH, then equation (4.6) holds. Using again Proposition 2.1
and the chain rule (4.3), we conclude that

λB⊤v ∈ ∂ (ω ◦B) (Q−1(x− λB⊤v))

Proposition 4.1 together with the above inclusion now implies thatQ−1(x−λB⊤v) is the minimizer
of (4.1).

Since the operator(I − proxω
λ
) is nonexpansive [7, Lemma 2.1], then

‖H(v)−H(w)‖2 ≤ ‖Av −Aw‖2
≤ ‖I − λBQ−1B⊤‖ ‖v − w‖2.

We conclude that the mappingH is nonexpansive if the spectral norm of the matrixI−λBQ−1B⊤

is not greater than one. Let us denote byλj, j ∈ Nm, the eigenvalues of matrixBQ−1B⊤. We see
thatH is nonexpansive provided that|1− λλj| ≤ 1, that is if0 ≤ λ ≤ 2/λmax, whereλmax is the
spectral norm ofBQ−1B⊤. In this case we can appeal to Opial’s Theorem 2.1 to find a fixedpoint
of H.

Note that if, for everyj ∈ Nm, λj > 0, that is, the matrixBQ−1B⊤ is invertible, then the
mappingH is strictly nonexpansive when0 < λ < 2/λmax. In this case, the Picard iterates ofH
converge to the unique fixed point ofH, without the need to use Opial’s Theorem.

We end this section by noting that, whenQ = I, the above theorem provides an algorithm for
computing the proximity operator ofω ◦B.

Corollary 4.1. Letω be a convex function onRm, B ∈ R
m×d, x ∈ R

d, λ a positive number and
define the mappingv 7→ (I − proxω

λ
)((I − λBB⊤)v + Bx). Then

proxω◦B(x) = x− λB⊤v

if and only if v is a fixed point ofH.

Thus, a fixed point iterative scheme like the above one can be used as part of any proximal
method when the regularizer has the form (1.2).

4.2 Accelerated First-Order Methods

Corollary 4.1 motivates a general proximal numerical approach to solving problem (1.1) (Algo-
rithm 1). Recall thatL is the Lipschitz constant of∇f . The idea behind proximal methods – see
[7, 4, 28, 33, 34] and references therein – is to update the current estimate of the solutionxt using

8



Algorithm 1 Proximal & fixed point algorithm.
x1, α1 ← 0
for t=1,2,. . .do

Computext+1 ← proxω
L
◦B

(

αt − 1
L
∇f(αt)

)

by the Picard-Opial process
Updateαt+1 as a function ofxt+1, xt, . . .

end for

the proximity operator. This is equivalent to replacingf with its linear approximation around a
pointαt specific to iterationt. The pointαt may depend on the current and previous estimates of
the solutionxt, xt−1, . . . , the simplest and most common update rule beingαt = xt.

In particular, in this paper we focus on combining Picard iterations withaccelerated first-order
methodsproposed by Nesterov [27, 28]. These methods use anα update of a specific type, which
requires two levels of memory ofx. Such a scheme has the property of a quadratic decay in
terms of the iteration count, that is, the distance of the objective from the minimal value isO

(

1
T 2

)

afterT iterations. This rate of convergence is optimal for a first order method in the sense of the
algorithmic model of [25].

It is important to note that other methods may achieve fasterrates, at least under certain con-
ditions. For example,interior point methods[29] or iterated reweighted least squares[8, 31, 1]
have been applied successfully to nonsmooth convex problems. However, the former require the
Hessian and typically have high cost per iteration. The latter require solving linear systems at each
iteration. Accelerated methods, on the other hand, have a lower cost per iteration and scale to larger
problem sizes. Moreover, in applications where some type ofthresholding operator is involved –
for example, the Lasso (2.3) – the zeros in the solution are exact, which may be desirable.

Since their introduction, accelerated methods have quickly become popular in various areas of
applications, including machine learning, see, for example, [24, 15, 17, 13] and references therein.
However, their applicability has been restricted by the fact that they requireexactcomputation
of the proximity operator. Only then is the quadratic convergence rate known to hold, and thus
methods using numerical computation of the proximity operator are not guaranteed to exhibit this
rate. What we show here, is how to further extend the scope of accelerated methods and that,
empirically at least, these new methods outperform currentO

(

1
T

)

methods while matching the
performance of optimalO( 1

T 2 ) methods.
In Algorithm 2 we describe a version of accelerated methods influenced by [33, 34]. Nesterov’s

insight was that an appropriate update ofαt which uses two levels of memory achieves theO
(

1
T 2

)

rate. Specifically, the optimal update isαt+1 ← xt+1 + θt+1

(

1
θt
− 1

)

(xt+1 − xt) where the

sequenceθt is defined byθ1 = 1 and the recursive equation

1− θt+1

θ2t+1

=
1

θ2t
.

We have adapted [33, Algorithm 2] (equivalent to FISTA [4]) by computing the proximity operator
of ω

L
◦B using the Picard-Opial process described in Section 4.1. Werephrased the algorithm using

the sequenceρt := 1− θt +
√
1− θt = 1− θt +

θt
θt−1

for numerical stability. At each iteration, the

9



mapAt is defined by

Atz :=

(

I − λ

L
BB⊤

)

z − 1

L
B(∇f(αt)− Lαt)

andHt as in (4.5). By Theorem 4.1, the fixed point process combined with the x update are
equivalent toxt+1 ← proxω

L
◦B

(

αt − 1
L
∇f(αt)

)

.

Algorithm 2 Accelerated & fixed point algorithm.
x1, α1 ← 0
for t=1,2,. . .do

Compute a fixed pointv of Ht by Picard-Opial
xt+1 ← αt − 1

L
∇f(αt)− λ

L
B⊤v

αt+1 ← ρt+1xt+1 − (ρt+1 − 1)xt

end for

5 Numerical Simulations

We have evaluated the efficiency of our method with simulations on different nonsmooth learning
problems. One important aim of the experiments is to demonstrate improvement over a state
of the art suite of methods (SLEP) [16] in the cases when the proximity operator is not exactly
computable.

An example of such cases which we considered in Section 5.1 isthe Group Lasso withover-
lapping groups. An algorithm for computation of the proximity operator in afinite number of
steps is known only in the special case of hierarchy-inducedgroups [13]. In other cases such
as groups induced by directed acyclic graphs [38] or more complicated sets of groups, the best
known theoretical rate for a first-order method isO

(

1
T

)

. We demonstrate that such a method can
be improved.

Moreover, in Section 5.2 we report efficient convergence in the case of a compositeℓ1 penalty
used for graph prediction [11]. In this case, matrixB is the incidence matrix of a graph and the
penalty is

∑

(i,j)∈E

‖xi − xj‖1, whereE is the set of edges. Most work we are aware of for the

compositeℓ1 penalty applies to the special cases of total variation [3] or Fused lasso [19], in which
B has a simple structure. A recent method for the general case [5] which builds on Nesterov’s
O
(

1
T

)

smoothing technique [27] does not have publicly available software yet.
Another advantage of Algorithm 2 which we highlight is the high efficiency of Picard itera-

tions for computing different proximity operators. This requires only a small number of iterations
regardless of the size of the problem. We also report a roughly linear scalability with respect to the
dimensionality of the problem, which shows that our methodology can be applied to large scale
problems.

In the following simulations, we have chosen the parameter from Opial’s theoremκ = 0.2. The
parameterλ was set equal to 2L

λmax+λmin

, whereλmax andλmin are the largest and smallest eigenval-
ues, respectively, of1

L
BB⊤. We have focused exclusively on the case of the square loss and we

have computedL using singular value decomposition (if this were not possible, a Frobenius esti-
mate could be used). Finally, the implementation ran on a 16GB memory dual core Intel machine.
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Figure 1: Objective function vs. iteration for the overlapping groups data (d = 3500). Note that
Picard-Nesterov terminates earlier withinε.
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Figure 2:ℓ2 difference of successive Picard iterates vs. Picard iteration for the overlapping groups
data (d = 3500).

The Matlab code is available athttp://ttic.uchicago.edu/ ∼argyriou/code/
index.html .

5.1 Overlapping Groups

In the first simulation we considered a synthetic data set which involves a fairly simple group topol-
ogy which, however, cannot be embedded as a hierarchy. We generated dataA ∈ R

s×d, with s =
[0.7d] from a uniform distribution and normalized the matrix. The target vectorx∗ was also gen-
erated randomly so that only21 of its components are nonzero. The groups used in the regularizer
ωGL – see eq. (3.1) – are:{1, ..., 5}, {5, ..., 9}, {9, ..., 13}, {13, ..., 17}, {17, ..., 21}, {4, 22, ..., 30},
{8, 31, ..., 40}, {12, 41, ..., 50}, {16, 51, ..., 60}, {20, 61, ..., 70}, {71, ..., 80}, . . . , {d− 9, ..., d}.

That is, the first5 groups form a chain, the next5 groups have a common element with one
of the first groups and the rest have no overlaps. An issue withoverlapping group norms is the
coefficients assigned to each group (see [12] for a discussion). We chose to use a coefficient of1
for every group and compensate by normalizing each component of x∗ according to the number
of groups in which it appears (this of course can only be done in a synthetic setting like this).
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Figure 3: Average measures vs. dimensionality for the overlapping groups data. Top: number
of iterations. Bottom: CPU time. Note that this time can be reduced to a fraction with a C
implementation.
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Figure 4: Objective function vs. iteration for the hierarchical overlapping groups.

The outputs were then generated asy = Ax∗ + noise with zero mean Gaussian noise of standard
deviation0.001.

We used a regularization parameter equal to10−5. We ran the algorithm ford = 1000, 1100, . . . ,
4000, with 10 random data sets for each value ofd, and compared its efficiency with SLEP. The
solutions found recover the correct pattern without exact zeros due to the regularization. Figure 1
shows the number of iterationsT in Algorithm 2 needed for convergence in objective value within
ε = 10−8. SLEP was run until the same objective value was reached. We conclude that we out-
perform SLEP’sO

(

1
T

)

method. Figure 2 demonstrates the efficiency of the inner computation of
the proximity map at one iterationt of the algorithm. Just a few Picard iterations are required for
convergence. The plots for differentt are indistinguishable.

Similar conclusions can be drawn from the plots in Figure 3, where average counts of iterations
and CPU time are shown for each value ofd. We see that the number of iterations depends almost
linearly on dimensionality and that SLEP requires an order of magnitude more iterations – which
grow at a higher rate. Note also that the cost per iteration iscomparable between the two methods.
We also observed that computation of the proximity map is insensitive to the size of the problem
(it only requires7 − 8 iterations for alld). Finally, we report that CPU time grows linearly with
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dimensionality. To remove various overheads this estimatewas obtained from Matlab’s profiling
statistics for the low-level functions called. A comparison with SLEP is meaningless since the
latter is a C implementation.

Besides outperforming theO( 1
T
) method, we also show that the Picard-Nesterov approach

matches SLEP’sO( 1
T 2 ) method for the tree structured Group Lasso [18]. To this end,we have

imitated an experiment from [13, Sec. 4.1] using the Berkeley segmentation data set1. We have
extracted a random dictionary of71 16 × 16 patches from these images, which we have placed
on a balanced tree with branching factors10, 2, 2 (top to bottom). Here the groups correspond
to all subtrees of this tree. We have then learned the decomposition of new test patches in the
dictionary basis by Group Lasso regularization (3.1). As Figure 4 shows, our method and SLEP
are practically indistinguishable.

5.2 Graph Prediction

The second simulation is on the graph prediction of [11] in the limit of p = 1 (compositeℓ1). We
constructed a synthetic graph ofd vertices,d = 100, 120, . . . , 360 with two clusters of equal size.
The edges in each cluster were selected from a uniform draw with probability 1

2
and we explicitly

connectedd/25 pairs of vertices between the clusters. The labeled datay were the cluster labels of
s = 10 randomly drawn vertices. Note that the effective dimensionality of this problem isO(d2).
At the time of the paper’s writing there is not an acceleratedmethod with software available online
which handles a generic graph.

First, we observed that the solution found recovered perfectly the clustering. Next, we studied
the decay of the objective function for different problem sizes (Figure 5). We noted a striking
difference from the case of overlapping groups in that convergence now is not monotone2 The na-
ture of decay also differs from graph to graph, with some cases making fast progress very close
to the optimal value but long before eventual convergence. This observation suggests future mod-
ifications of the algorithm which can accelerate convergence by a factor. As an indication, the
distance from the optimum was just2.2 · 10−6, 5.4 · 10−5, 1.5 · 10−5 at iteration611, 821, 418 for
d = 100, 120, 140, respectively. We verified in this data as well, that Picard iterations converge
very fast (Figure 6). Finally in Table 5.2 we report average iteration numbers and running times.
These prove the feasibility of solving problems with large matricesB even using a “quick and
dirty” Matlab implementation.

In addition to a random incidence matrix, one may consider the special case ofFused Lassoor
Total Variationin whichB has the simple form (3.2). It has been shown how to achieve theoptimal
O
(

1
T 2

)

rate for this problem in [3]. We applied Fused Lasso (withoutLasso regularization) to the
same clustering data as before and compared SLEP with the Picard-Nesterov approach. As Figure
7 shows, the two trajectories are identical. This provides even more evidence in favor of optimality
of our method.

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2 There is no monotonicity guarantee for Nesterov’s accelerated method.
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Figure 6: ℓ2 difference of successive Picard iterates vs. Picard iteration for the graph data (d =
100).

6 Conclusion

We presented an efficient first order method for solving a class of nonsmooth optimization prob-
lems, whose objective function is given by the sum of a smoothterm and a nonsmooth term, which
is obtained by linear function composition. The prototypical example covered by this setting in a
linear regression regularization method, in which the smooth term is an error term and the nons-
mooth term is a regularizer which favors certain desired parameter vectors. An important feature
of our approach is that it can deal with richer classes of regularizers than current approaches and at
the same time is at least as computationally efficient as specific existing approaches for structured
sparsity. In particular our numerical simulations demonstrate that the proposed method matches
optimalO( 1

T 2 ) methods on specific problems (Fused Lasso and tree structured Group Lasso) while
improving over availableO( 1

T
) methods for the overlapping Group Lasso. In addition, it canhan-

dle generic linear composite regularization problems, formany of which accelerated methods do
not yet exist. In the future, we wish to study theoretically whether the rate of convergence is
O
(

1
T 2

)

, as suggested by our numerical simulations. There is also much room for further accelera-
tion of the method in the more challenging cases by using practical heuristics. At the same time, it
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d no. iterations CPU time (secs.)
100 2599.6 21.461
120 3680.0 54.745
140 4351.8 118.61
160 3124.8 164.21
180 2845.8 241.69
200 3476.2 359.75
220 4490.0 911.67
240 4490.0 911.67
260 3639.2 930.8

Table 1: Graph data. Note that the effectived isO(d2). CPU time can be reduced to a fraction with
a C implementation.
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Figure 7: Objective function vs. iteration for the Fused Lasso (d = 100). The two trajectories are
identical.

will be valuable to study further applications of our method. These could include machine learning
problems ranging from multi-task learning, to multiple kernel learning and to dictionary learning,
all of which can be formulated as linearly composite regularization problems.
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7 Appendix

In this appendix, we collect some basic facts about fixed point theory which are useful for our
study. For more information on the material presented here,we refer the reader to [37].

Let X be a closed subset ofRd. A mappingϕ : X → X is called strictly non-expansive (or
contractive) if there existsλ ∈ [0, 1) such that, for everyx, y ∈ X,

‖ϕ(x)− ϕ(y)‖ ≤ λ‖x− y‖.
If the above inequality holds forλ = 1, the mapping is called nonexpansive. We say thatx is a
fixed pointof ϕ if x = ϕ(x). The Picard iteratesxn, n ∈ N starting atx0 ∈ X are defined by the
recursive equationxn = ϕ(xn−1).

It is a well-knwon fact that, ifϕ is strictly nonexpansive thenϕ has a unique fixed pointx and
limn→∞ xn = x. However, this result fails ifϕ is nonexpansive. For example, the mapϕ(x) = x+1
does not have a fixed point. On the other hand, the identity maphas infinitely many fixed points.

Definition 7.1. LetX be a closed subset ofRd. A mapϕ : X → X is called asymptotically regular
provided thatlimn→∞ ‖xn+1 − xn‖ = 0.

Proposition 7.1. LetX be a closed subset ofRd andϕ : X → X such that

1. ϕ is nonexpansive;

2. ϕ has at least one fixed point;

3. ϕ is asymptotically regular.

Then the sequence{xn : n ∈ N} converges to a fixed point ofϕ.

Proof. We divide the proof in three steps.
Step 1:The Picard iterates are bounded. Indeed, letx be a fixed point ofϕ. We have that

‖xn+1 − x‖ = ‖ϕ(xn)− ϕ(x)‖ ≤ ‖xn − x‖ ≤ · · · ≤ ‖x0 − x‖.
Step 2:Let {xnk : k ∈ N} be a convergent subsequence, whose limit we denote byy. We will

show thaty is a fixed point ofϕ. Sinceϕ is continuous, we have thatlimk→∞(xnk − ϕ(xnk)) =
y − ϕ(y), and sinceϕ is asymptotically regulary − ϕ(y) = 0.

Step 3: The whole sequence converges. Indeed, following the same reasoning in the proof
of Step 1, we conclude that the sequence{‖xn − y‖ : n ∈ N} is non-increasing. Letα =
limn→∞ ‖xn − y‖. Sincelimk→∞ ‖xnk − y‖ = 0, we conclude thatα = 0 and, so,limn→∞ xn =
y.
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We note that in general, without the asymptotically regularity assumption, the Picard iterates
do not converge. For example, considerϕ(x) = −x. Its only fixed point isx = 0; if we start from
x0 6= 0 the Picard iterates will oscillate. Moreover, ifϕ(x) = x + 1, which is nonexpansive, the
Picard iterates diverge.

We now discuss the main tool which we use to find a fixed point of anonexpansive mappingϕ.

Theorem 7.1.(Opialκ-average theorem [30]) LetX be a closed convex subset ofR
d, ϕ : X → X

a nonexpansive mapping, which has at least one fixed point andlet ϕκ := κI + (1 − κ)ϕ. Then,
for everyκ ∈ (0, 1), the Picard iterates ofϕκ converge to a fixed point ofϕ.

We prepare for the proof with two useful lemmas.

Lemma 7.1. If κ ∈ (0, 1), u, w ∈ R
d, ‖u‖ ≤ ‖w‖, then

κ(1− κ)‖w − u‖2 ≤ ‖w‖2 − ‖κw + (1− κ)u‖2

Proof. The assertion follows fromℓ2 strong convexity,

κ(1− κ)‖w − u‖2 + ‖κw + (1− κ)u‖2
= κ‖w‖2 + (1− κ)‖u‖2 ≤ ‖w‖2 .

Lemma 7.2. If {un : n ∈ N} and{wn : n ∈ N} are sequences inRd such thatlimn→∞ ‖wn‖ = 1,
‖un‖ ≤ ‖wn‖ andlimn→∞ ‖κwn + (1− κ)un‖ = 1, thenlimn→∞wn − un = 0.

Proof. Apply Lemma 7.1 to note that

κ(1− κ)‖wn − un‖2 ≤ ‖wn‖2 − ‖κwn + (1− κ)un‖2.

By hypothesis the right hand side tends to zero asn tends to infinity and the result follows.

Proof of Theorem 7.1. Let {xn : n ∈ N} be the iterates ofϕκ. We will show thatϕκ is asymp-
totically regular. The result will then follow by Proposition 7.1 and the fact thatϕκ andϕ have the
same set of fixed points.

Let xn+1 = κxn + (1− κ)ϕ(xn). Note that, ifu is fixed point ofϕκ, then

‖xn+1 − u‖ ≤ ‖xn − u‖ ≤ · · · ≤ ‖x0 − u‖ .

Let d := limn→∞ ‖xn − u‖. If d = 0 the result is proved. We will show that ifd > 0 we
contradict the hypotheses of the theorem. For everyn ∈ N, we definewn = d

−1
(xn − u) and

un = d
−1
(ϕ(xn) − u). Note that the sequences{wn : n ∈ N} and {un : n ∈ N} satisfy

the hypotheses of Lemma 7.2. Thus, we have thatlimn→∞(xn − ϕ(xn)) = 0. Consequently
xn+1 − xn = (1− κ)(ϕ(xn)− xn)→ 0, showing that{xn : n ∈ N} is asymptotically regular.
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