
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

2003

Building Problem Solving Environments with Application Web Building Problem Solving Environments with Application Web

Service Toolkits Service Toolkits

Choonhan Youn
Syracuse University

Marlon Pierce
Indiana University

Geoffrey C. Fox
Indiana University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Youn, Choonhan; Pierce, Marlon; and Fox, Geoffrey C., "Building Problem Solving Environments with
Application Web Service Toolkits" (2003). Electrical Engineering and Computer Science. 90.
https://surface.syr.edu/eecs/90

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/90?utm_source=surface.syr.edu%2Feecs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Building Problem Solving Environments with
Application Web Service Toolkits

Choonhan Youn1,2, Marlon Pierce2, and Geoffrey Fox2

1 Department of Electrical Engineering and Computer Science, Syracuse University
cyoun@ecs.syr.edu

2Community Grid Labs, Indiana University

501 N. Morton Street, Suite 224
Bloomington, IN 47404-3730
{marpierc,gcf}@indiana.edu

Abstract. Application portals, or Problem Solving Environments (PSEs),
provide user environments that simplify access and integrate various distributed
computational services for scientists working on particular classes of problems.
Specific application portals are typically built on common sets of core services,
so reusability of these services is a key problem in PSE development. In this
paper we address the reusability problem by presenting a set of core services
built using the Web services model and application metadata services that can
be used to build science application front ends out of these core services.

Introduction

Web browser-based scientific portals provide the user-centric view of
computational grids [1]. Building on a foundation of core services such as job
submission, file management, and session management, we can build sophisticated,
domain-specific Problem Solving Environments (PSEs). Numerous such
portals/PSEs have been developed, with varying degrees of specialization to
applications. Some examples include NASA’s Information Power Grid, San Diego
Supercomputing Center’s Hotpage and its application-specific spin-offs, Pacific
Northwest National Laboratory’s Ecce system, UNICORE, and our own Gateway
project. References for these and other projects may be found in [2] and [3].

An important problem that must be addressed by PSE developers is the reusability
and interoperability of their constituent core service components. Obviously, PSE
developers want to reuse their own core service implementations to build new portals.
We may go a step further and recognize the need for sharing reusable services
between PSE development groups. Our experience has also shown that many of the
basic services (such as batch script generation for queuing systems) are reinvented by
many different groups [4]. A much improved process would be to build all portal
services with well-defined interfaces and remote method invocation through a
commonly accepted messaging system. Although consensus about common accepted
definitions for interfaces, not to mention runtime interoperability, is hard to achieve

mailto:cyoun@ecs.syr.edu

2 Choonhan Youn1,2, Marlon Pierce2, and Geoffrey Fox2

between multiple groups, identification and reuse of another group’s particular service
tool from a common repository is a realistic goal, provided that agreement may be
reached on how to plug these services into one’s PSE. One powerful approach is to
use XML for interface definitions and messaging to facilitate implementation
independence. Web services [5] and the Open Grid Service Architecture [6] provide
the specific XML languages for these mechanisms.

In this paper we describe some specific core applications built in the Web service
framework that can be used to build Problem Solving Environments out of reusable
parts. We then address very important information requirements of these services:
application metadata. Application metadata forms the basis for Application Web
Service toolkits, which allow new scientific applications to be built out of core
services.

Web Service-Based Computing Portal Architecture

Most computing portals are based on a three-tired architecture and thus have a
classic stove-pipe problem in aspects of services. In order to integrate distributed
services, the computing services should be designed for the interoperability and
reusability. For addressing these challenges, we present a Web service based
computing portal architecture around Web services model which have emerged as a
popular standards-based, and service-oriented framework for accessing network-
enabled applications. Web services have an XML-based, distributed computing
paradigm to address the heterogeneous distributed computing services. It defines a
technique for describing a service component, accessing a service, and discovering a
service.

For reference we provide the following brief summary of the major constituents of
Web service systems. More extensive descriptions can be found in Ref. [5]. Service
description is provided by the Web Services Description Language (WSDL) [7].
Message invocation may use (at least in part) the Simple Object Access Protocol
(SOAP) [8] for remote procedure calls. Information services and registries may use
the WS-Inspection Language (WSIL) [9] and/or the Universal Description, Discovery
and Integration (UDDI) [10] service. Web services are loosely organized, and we do
not imply that the exclusive use of all these languages or services defines Web
services.

Figure 1 illustrates the architecture for this kind of Web services system from the
point of view of a portal. The basic point is that common interfaces can be used to
link different multi-tiered components together. In the figure we have two distinct
backend hosts, a high performance computing host and a database host, perhaps
implemented by different groups. These hosts run various services that interact with
the host to execute operating system command, etc. Information about these services
is maintained by one or more information services. The user interacts with the service
hosts and information servers indirectly, through client proxies maintained by the
User Interface Server (UIS). The UIS is responsible for aggregating the various core
services into application-specific PSEs. The various component interfaces may be
collected as portlets, as described in [4], which define how user interface components

Building Problem Solving Environments with Application Web Service Toolkits 3

can be plugged in and managed by portal administrators and users. Jetspeed [11], for
example, is an open source portlet container system. Client stubs can bind and access
these services with the protocol and mechanism prescribed in the service description
by first contacting the service repository, UDDI that maintains links to the Web
service Providers’ WSDL files and server URLs and finding a service to use. In this
architecture, the control layer between the server that manages the user interface and
the server that manages a particular service becomes decoupled. This separation
makes it possible to provide the interoperable (or at least pluggable) services.

Fig. 1. Architecture of Web service-based computing portals.

Core Web services for Computing Portals

We now consider several core services that must be implemented.

4 Choonhan Youn1,2, Marlon Pierce2, and Geoffrey Fox2

Job submission

Computational portals must obviously allow users to execute scientific
applications. We have defined a WSDL interface for executing commands on
specific hosts systems (see Appendix, item 1). This service is remotely accessed
through SOAP messages over HTTP. The service may execute operating system calls
directly or may interact with Grid services through client APIs. We implement this
service in Java and typically but typically use it to run external (non-Java) commands.
We usually couple this service with the batch script service described below.

File Manipulation

Portal users must be able to move files between their desktops and various backend
destinations, as illustrated in Figure 1. They must also be able to manipulate remote
files transparently. We have defined Web services for such file management,
allowing users to transparently move, rename, and copy files on remote back-ends.
Files may also be transferred between desktop and backend, and cross-loaded
between different backend sites. The full service interface may be obtained from the
URL in the Appendix (item 2).

File uploading and downloading services illustrate the use of SOAP messages with
attachments [12] in the RPC messaging style. SOAP attachments are non-XML files
that are appended to the SOAP message and are useful for sending binary data and
files with known MIME formats. For example, the file uploading service sends SOAP
messages with attachments encapsulated in a MIME multipart format from the
desktop to the SOAP server. We implemented file uploading and downloading service
using the DataHandler class from the JavaBeans Activation Framework [13]. This
class is used to represent arbitrary binary data (which could include text files, binary
documents, and program data files). This provides a consistent interface to data
available in many different sources and formats. Apache Axis [14] provides the
serializer and deserializer for the DataHandler class so that a SOAP client (in Figure
1) may send SOAP messages with attachments to a remote SOAP server that is
running the file management Web service. This service must still implement the file
management details described in the WSDL interface for the received file.

We further allow the SOAP client to instruct one service to move a file to another
service directly. We refer to this as cross-loading. For example, in Figure 1, a user
may request that a file be transferred from the data storage component to the
simulation component. The file management service implementation has the
capability of also acting as a SOAP client to another service. Here the data
component service receives a cross-load message from the SOAP client and uses this
to construct a new SOAP upload request to the simulation component.

 Context Management

The Context Management service archives interactions with the computational
portal. Each user is assigned a unique set of context data, which is used to store all

Building Problem Solving Environments with Application Web Service Toolkits 5

information from the user session. The default context data contains “Date”,
“LastTime”, “Descriptor”, “Directory”, and “CurrentChild”. In general, context data
can be used to store any useful metadata. For example, we define user session data
using application instance metadata (described below), but context data can be used to
store the location of this XML file. Context data can later be recovered and edited by
users to, for example, modify old sessions in order to resubmit jobs.

In our terminology, a context is a container that can hold an arbitrary number of
string name-value pairs, as well as other contexts. These contexts are defined as a
recursive XML schema (see example at URL given in item 3 of Appendix), so the
schema supports an arbitrarily deep and complex tree-shaped data structure. In
practice, a user’s context data consists of a root context, with child contexts for
particular problem groups for that user and grandchild contexts for particular problem
sessions.

The context data service is built over the data model described above. We refer to
the actual service interface for manipulating the context data as the Context Manager.
This is defined in WSDL and exposes the following methods for manipulating context
data:
1. A user can add one or more contexts according to the problem domain and sessions

and so on. The context path should follow UNIX path. For example, the current
path for a user context is empty character (“”). So, if a user has “test” context for
the problem domain and want to add new context, “session” under that context, the
context path should be used “test/session”. Using the JXPath [15] which
implements XPath, the context path is checked whether or not the context is
available.

2. A user can search the context data which is stored in a user context during the
portal interaction using XPath queries and store the context data which is the input
from the portal interaction for editing and managing in a specified context using
the context path.

3. A user can remove the specified context including all of contexts and the context
data in a user context using the context path.

4. A user can get the list of “children” list of that context for reviewing the context
data, using the context path.
The WSDL for the entire interface may be obtained from the URL given in the

Appendix (item 4). The above method calls are used for internally manipulating the
context data. Internally, the context data instance is represented as a set of data
classes created with Castor [16]. We store these schema instances persistently either
on the file system (mapping context data nodes to directories) or in an XML-native
database such as Xindice [17].

Context Management services may be used to store and retrieve arbitrary pieces of
information. In practice, we use this service to manage instances of the application
metadata created by the Application Web Services, described below.

Script Generation

We have developed a Batch Script Generation (BSG) Web services for users who
are unfamiliar with high performance computing systems and queue schedulers. The

6 Choonhan Youn1,2, Marlon Pierce2, and Geoffrey Fox2

WSDL interface may be obtained from the URL given in the Appendix (item 5). This
service assists users in creating job scripts to work with a particular queuing system
such as the Portable Batch System (PBS). From our experience, most queuing
systems were quite similar and could be broken down into two parts, a queuing
system-specific set of header lines, followed by a block of script instructions that
were queue independent. Queue scripts are actually generated on the server, based on
user’s choice of machine, application code, memory requirement, input/output file
name and parameter, etc. This information is stored as an XML document, the
Application Instance Descriptor. The BSG service accepts this XML document as an
argument and generates the queue script of the requested type. The structure of the
BSG service implementation allows it to extensibly support different queuing
systems.

A previous version of this service has been described in Ref [18]. We have
extended this service to integrate it with the Application Instance schema described
below. The latest version returns both the generated batch queuing script and the
shell script needed to submit the queue script to the queue of a specified host. All
information needed to generate these scripts is obtained from the Application Instance
data. Actual submission uses the Job Submission service described above. Scripts
may be moved to the appropriate host using the File Management service.

Job Monitoring

Job monitoring services may be built in one of two ways: periodic client polling
and server event notifications. We currently use the polling method, which we prefer
for reliability, but have built event-style prototypes based on email notifications.

The polling service makes one method available for use by clients through a SOAP
RPC for monitoring the execution of a job running in a queuing system. The WSDL
interface may be obtained from the URL given in the Appendix (item 6). The input to
this method is the user account name and the scheduler type, such as “PBS”. The
service implementation is designed as a factory so that support for particular
schedulers can be added in a well defined way. If the scheduler type is not supported
by the Web service, then a message to the effect is returned to the client. If the
scheduler is supported, then the user name is passed to a handler created for that
specific scheduler. The scheduler handlers are custom-written methods that generate a
WSDL complex type, effectively an XML data object given the user name and return
the array of the generated a WSDL complex type that contains the job status of the
scheduler.

Application Web Services and Toolkits

The core services described above are intended to serve general purposes. These
must be organized in a more meaningful fashion for use in PSEs. In particular, we
have developed a set of XML schemas for describing scientific application metadata.
Here “application” means specifically some science code on the computational grid.

Building Problem Solving Environments with Application Web Service Toolkits 7

Given that the application has been installed on some hosts, we want to describe how
this application may be added to a PSE.

We want to specifically enable two different classes of PSE users: application
managers and application users. Application managers are responsible for adding and
managing the user interfaces for applications, while application users are scientists or
engineers who wish to use the application. Given these two classes of users,
application metadata descriptor data models come in two sets: abstract application
descriptors for managers and application instance descriptors for end users. The
descriptor components and rationale behind their structure is described in [4]. The
URLs for these schemas are given in the Appendix (item 7).

For internal reference we review the schema structure briefly. Abstract application
descriptors consist of one or more applications (schema complex types), which are
described by various fields such as application name and version, application flags
and flag formats. We also include elements that describe the Web service bindings
for the applications input, output, and error. A particular application is also described
by the Web services needed to run the application on a particular host. The service
bindings are in turn bound to service hosts. Supplemental host information (such as
host name and IP address, queuing system, standard working directories, and so on)
are described is complementary schemas. We have attempted to design these
schemas to be modular, so that third party host and queue/scheduler schemas may be
plugged into the system.

The application metadata must now be turned into a useful service. The schemas
themselves can be mapped to Java language bindings automatically using tools such
as Castor [16]. The schemas are too complicated, however, to be used to define a
useful WSDL interface, so we instead implement “Façade” wrapper classes that
simplify access to the schemas, at the loss of some functionality. The wrapper
interfaces are still quite large, and the URL for the wrapper interface definition is in
given in the Appendix (item 8).

Web-based user interfaces may be built out of these interfaces. Application
managers may provide various pieces of information needed to create instances of
Abstract Application Descriptors. The illustrated form indicates the simple case of
adding an application with one input and one output field, no command line flags, etc.
The application can then be bound to a set of services on various hosts for submission
and file transfer. The form elements are mapped to client stubs, which in turn (via
SOAP) can be used to view and modify remote AWS schema instances.

Information provided by the application manager (which services may be used for
file input and output, which may be used for application execution and so on) is used
to generate user interfaces for application users. Web forms may be generated for the
user for submitting a particular application (a finite element code, in this case) to the
indicated queuing system, based on an Application Descriptor instance.

Application metadata is intended to serve as a supplemental, specialized data
model that is more appropriate for Application Portals than WSIL or UDDI. We
believe this has an important role in computational services. The OGSA specification
provides an important mechanism for describing particular service metadata. On top
of this we need service classification systems, which organize WSDL definitions in
meaningful ways. Such classification schemes are subjective and not likely to be

8 Choonhan Youn1,2, Marlon Pierce2, and Geoffrey Fox2

fully standardized, so we anticipate a future interesting problem of managing many
different application metadata ontologies.

In addition to the application schema, we define the host and queue binding
description schema which is modular container as our design mechanism. The host
binding schema contains three elements about resources: First, the host information
element such as DNS name and IP address; Second, the application information
element need to invoke the actual application code running on that host such as
location of the executable code, location of the workspace or scratch directory; Third,
queue information element such as the location of the executable queue command
running on that host and the queue type which the host supports. Like the application
schema, for maximizing the flexibility, we also provide a general purpose
“parameter” element that allows for arbitrary name-value pairs to be included. This
can be used for example to specify environment variable settings needed on a
particular host by a particular application. This schema also has a queue binding that
contains information needed to perform queue submissions. The queue binding
schema contains the queue script information (the job name, user account name,
memory size, the number of CPUs, the wall time, the email options and the general
purpose parameter for the queue) based on the queuing system, such as PBS. These
schemas are designed to be plugged into the application descriptor schemas, and may
be replaced by other schema definitions.

Summary and Future Directions

In this paper, we have presented the design and implementation of several core
portal services and Application Web Services. These form the basis of PSEs, and our
emphasis has been on the development of reusable services that can form the basis for
multiple PSEs. We have identified and classified the kinds of services depending on
the service deployment. Based on this classification, the portal developer can
construct specific implementations and composites of primitive service components
and can also provide services that may be shared among different portals. We have
demonstrated application-specific services and data models that can be used to
encapsulate entire applications independently of the portal implementation. As we
discuss elsewhere [4], the current infrastructure provides the service interoperability
and reusability.

Next, we will consider some specific extensions (security, negotiation, job
composition) to the architecture of a Web service based computing portal. First,
Secure Web services will be considered that we need secure SOAP messages between
user interface server and the repository and the service provider for the user
authentication, based on the message-level security architecture. SOAP security
should be provided through standard interfaces to independently specific mechanisms
such as Kerberos [19], PKI [20]. The general approach is to use the assertion based
security such as SAML [21], WS-Security [22] into SOAP messages. An assertion,
for example, SAML, WS-Security, is an XML document describing the information
about authentication acts performed by subjects, attributes of subjects and
authorization decisions, created with a specific mechanism.

Building Problem Solving Environments with Application Web Service Toolkits 9

References

1. Foster, I., Kesselman, C. (ed.): The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kauffmann, 1999

2. Fox, G., A. Hey (eds): Concurrency and Computation: Practice and Experience. Special issue
on Grid Computing Environments. Vol. 14, No. 13-14 (2002). Abstracts and links to
accepted papers available from http://aspen.ucs.indiana.edu/gce/gce2001index.html

3. Berman, F., Fox, G., Hey, T. (ed.): Grid Computing: Making the Global Infrastructure a
Reality. To be published by Wiley, London 2003. Book chapters are available from
http://www.grid2002.org/

4. Pierce, M. et al.: Interoperable Web Services for Computational Portals. Proceedings of
Supercomputing 2002. Available from http://sc-2002.org/paperpdfs/pap.pap284.pdf (2002)

5. Graham, S. et al.: Building Web Services with Java. SAMS, Indianapolis, 2002
6. Foster, I. et al.: The Physiology of the Grid: an Open Grid Services Architecture for

Distributed Systems Integration. Accessed from
http://www.globus.org/rearch/papers/ogsa.pdf

7. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Service Description
Language (WSDL) version 1.1. W3C Note 15 March 2001. Available from
http://www.w3c.org/TR/wsdl

8. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte,
S., Winer, D.: Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000.
Available from http://www.w3.org/TR/SOAP/

9. Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W. A., Pharies, S.: Web Service
Inspection Language (WS-Inspection) 1.0. IBM and Microsoft November 2001. Available
from http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

10. Bellwood, T., Clemont, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y. L.,
Januszewski, K., Lee, S., McKee, B., Munter, J., von Riegen, C.: UDDI Version 3.0
Published Specification. 19 July 2002. Available from http://uddi.org/pubs/uddi-v3.00-
published-20020719.pdf

11. Jetspeed Overview. Available from http://jakarta.apache.org/jetspeed/site/index.html
12. Barton, J. J., Thatte, S., Nielsen, H. F.: SOAP Messages with Attachments. W3C Note 11

December 2000. Available from http://www.w3.org/TR/SOAP-attachments
13. JavaBeans Activation Framework. Available from

http://java.sun.com/products/javabeans/glasgow/jaf.html
14. Apache Axis. Available from http://xml.apache.org/axis/
15. JXPath. Available from http://jakarta.apache.org/commons/jxpath/
16. The Castor Project. Available from http://castor.exolab.org/
17. XML database, Xindice. Available from http://xml.apache.org/xindice/
18. Mock, S. et al.: A Batch Script Generator Web Service for Computational Portals.

Proceedings of Communications in Computation. International Multiconference on
Computer Science, 2002

19. Kerberos: The Network Authentication Protocol. Available from
http://web.mit.edu/kerberos/www/

20. Understanding PKI. Available from
http://verisign.netscape.com/security/pki/understanding.html

21. Blakley, B., Cantor, S., Erdos, M. et al: Bindings and Profiles for the OASIS Security
Assertion Markup Language (SAML). OASIS 10 January 2002. Available from
http://www.oasis-open.org/committees/security/docs/draft-sstc-bindings-model-09.pdf

22. Atkinson, B., Della-Libera, G., Hada, S., Hondo, M., Hallam-Baker, P. et al: Web Services
Security (WS-Security) Version 1.0. IBM 05 April 2002. Available from http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/

http://aspen.ucs.indiana.edu/gce/gce2001index.html
http://www.grid2002.org/
http://sc-2002.org/paperpdfs/pap.pap284.pdf
http://www.globus.org/rearch/papers/ogsa.pdf
http://www.w3c.org/TR/wsdl
http://www.w3.org/TR/SOAP/
http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html
http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf
http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf
http://jakarta.apache.org/jetspeed/site/index.html
http://www.w3.org/TR/SOAP-attachments
http://java.sun.com/products/javabeans/glasgow/jaf.html
http://xml.apache.org/axis/
http://jakarta.apache.org/commons/jxpath/
http://castor.exolab.org/
http://xml.apache.org/xindice/
http://web.mit.edu/kerberos/www/
http://verisign.netscape.com/security/pki/understanding.html
http://www.oasis-open.org/committees/security/docs/draft-sstc-bindings-model-09.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

10 Choonhan Youn1,2, Marlon Pierce2, and Geoffrey Fox2

Appendix: URLs for Schema Definitions and WSDL Interfaces

The schema definitions and interface definitions for the services described in this
paper are available from the following URLs:
1. Submitjob WSDL interface. Available from

http://www.servogrid.org/GCWS/services/Submitjob?wsdl
2. File Transfer WSDL interface. Available from

http://www.servogrid.org/GCWS/services/FileService?wsdl
3. Context Manager Schema. Available from

http://www.servogrid.org/GCWS/Schema/Cmhtml/cm.html
4. Context Manager WSDL interface. Available from

http://www.servogrid.org/GCWS/services/ContextManager?wsdl
5. Script Generation WSDL interface. Available from

http://grids.ucs.indiana.edu:8045/GCWS/services/ScriptGenerator?wsdl
6. Job Monitor WSDL interface. Available from

http://grids.ucs.indiana.edu:8045/GCWS/services/Jobmonitor?wsdl
7. Application Web Service Schemas are available from

http://www.servogrid.org/GCWS/Schema/index.html. These are also described in the
following internal report: Pierce, M., Youn, C., and Fox, G.: Application Web Services.
Available from http://www.servogrid.org/slide/GEM/Interop/AWS.doc and
http://www.servogrid.org/slide/GEM/Interop/AWS2.doc

8. Application Descriptor WSDL Interfaces. Available from
http://www.servogrid.org/GCWS/services/ApplicationDescriptor2?WSDL and
http://www.servogrid.org/GCWS/services/ApplicationDescriptor3?WSDL

http://www.servogrid.org/GCWS/services/Submitjob?wsdl
http://www.servogrid.org/GCWS/services/FileService?wsdl
http://www.servogrid.org/GCWS/Schema/Cmhtml/cm.html
http://www.servogrid.org/GCWS/services/ContextManager?wsdl
http://grids.ucs.indiana.edu:8045/GCWS/services/ScriptGenerator?wsdl
http://grids.ucs.indiana.edu:8045/GCWS/services/Jobmonitor?wsdl
http://www.servogrid.org/GCWS/Schema/index.html
http://www.servogrid.org/slide/GEM/Interop/AWS.doc
http://www.servogrid.org/slide/GEM/Interop/AWS2.doc
http://www.servogrid.org/GCWS/services/ApplicationDescriptor2?WSDL
http://www.servogrid.org/GCWS/services/ApplicationDescriptor3?WSDL

	Building Problem Solving Environments with Application Web Service Toolkits
	Recommended Citation

	sv-lncs

