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Nematic and Polar order in Active Filament Solutions

A. Ahmadi1, T. B. Liverpool2, and M. C. Marchetti1
1Physics Department, Syracuse University, Syracuse, NY 13244, USA and

2Department of Applied Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

(Dated: February 2, 2008)

Using a microscopic model of interacting polar biofilaments and motor proteins, we characterize
the phase diagram of both homogeneous and inhomogeneous states in terms of experimental pa-
rameters. The polarity of motor clusters is key in determining the organization of the filaments in
homogeneous isotropic, polarized and nematic states, while motor-induced bundling yields spatially
inhomogeneous structures.

Soft active systems are exciting examples of a new
type of condensed matter where stored energy is contin-
uously transformed into mechanical work at microscopic
length scales. A realization of this are polar filaments
interacting with associated molecular motors in the cell
cytoskeleton1,2. These systems are characterized by a
variety of dynamic and stationary states which the cell
accesses as part of its cycle3,4,5.

There have been a number of recent theoretical stud-
ies of the collective dynamics of isotropic and polar-
ized solutions of active filaments. These include numer-
ical simulations4,5, mesoscopic mean-field kinetic equa-
tions7,9,10,11, and hydrodynamic equations where the sys-
tem is described in terms of a few coarse-grained fields
whose dynamics is inferred from symmetry considera-
tions12,13,14,15. Previous work has focused on how mo-
tor activity renders homogeneous states unstable to the
formation of spatial structures, such as bundles, vortices
or asters. In this article we study the profound effect of
motor activity on the possible homogeneous states of the
system16. We also find important differences in the na-
ture of the instabilities from these homogeneous phases.
Starting from a microscopic model of interacting rigid fil-
aments, we characterize a phase diagram of homogeneous
and inhomogeneous states of active filaments in terms of
experimentally variable parameters. We find in partic-
ular that the formation of a non-equilibrium polarized
phase at low densities can be driven by motor polarity

without the need for filament polymerization12,15.

We describe the system by a concentration of polar
filaments f(r, n̂, t) in two dimensions (d = 2), modeled
as hard rods of fixed length ℓ and diameter b (ℓ >> b)
at position r with filament polarity characterized by a
unit vector n̂, and a density of motor clusters m(r, t) at
position r. The filament and motor concentrations satisfy
the equations

∂tf = −∇ · Jf − R · J , (1)

∂tm = −∇ · Jm (2)

where R = n̂ × ∂n̂ and the translational (Jf ,Jm) and
rotational (J ) currents have diffusive, excluded volume
and active contributions. The rotational current is J =
J

D + J
X + J

A, with a diffusive current J
D(r, n̂, t) =

−DrRf(r, n̂, t) and a contribution from excluded vol-

ume, J
X(r, n̂, t) = − Dr

kBT f(r, n̂, t)RVX(r, n̂, t) , with

VX(r, n̂1, t) = kBT

∫

s1

∫

s2

∫

n̂2

|n̂1 × n̂2|f(r + ξ, n̂2, t) ,

(3)
where ξ = n̂1s1 − n̂2s2 is the separation of the centers

of mass of the two filaments and
∫

s
... =

∫ +ℓ/2

−ℓ/2
ds... de-

notes an integration along the length of the filament,
parametrized by s. The active contribution to the ro-
tational current (low density approximation) is

J
A(r, n̂1, t) = b2

∫

s1

∫

s2

∫

n̂2

ωA(n̂1, n̂2) m(r + s1n̂1, t)

×f(r, n̂1, t)f(r + ξ, n̂2, t) , (4)

where the motor induced angular velocity is written as

ωA = 2
(

γ0 + γ1n̂1 · n̂2

)

(n̂1 × n̂2) . (5)

It consists of two parts, corresponding to two classes of
motor clusters (see Fig. 1): polar clusters which tend to
bind to filaments with similar polarity ( γ0/γ1 ≫ 1)4,5,
and non-polar clusters which bind to filament pairs of
any orientation ( γ0/γ1 ≪ 1)6. Earlier work by two of
us11 considered only non-polar clusters (γ0 = 0)17. Both
γ0 and γ1 will increase with increasing binding rate of the
clusters to the filament. A passive polar crosslink (e.g.
α-actinin on F-actin) will also have this effect8. Since
the binding rate can have different dependence on ATP-
consumption than the motor stepping speed, we expect
a different dependence on ATP hydrolysis rate than the
active contributions to the translational currents.

The translational currents are Jf = JD +JX +JA and

Jm = −Dm∇m + χ

∫

s

∫

n̂

n̂f(r, n̂, t)m(r + n̂s, t) , (6)

where χ depends on the speed and processivity of the
motors. The filament diffusive current, JD

i = −Dij∂j f ,
is expressed in terms of a diffusion tensor Dij = (D‖ +

D⊥)δij/2+(D‖−D⊥)Q̂ij with Q̂ij = n̂in̂j−
1
2δij . The ex-

cluded volume contribution is JX
i = −

Dij

kBT f∂jVX . The
active contribution to the translational current is

JA
i (r, n̂1, t) = b2

∫

s1

∫

s2

∫

n̂2

vA
i (n̂1, n̂2, ξ)m(r + n̂1s1, t)

×f(r, n̂1, t)f(r + ξ, n̂2, t) , (7)
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(a) (b)

FIG. 1: Polar and nonpolar clusters interacting with polar
filaments. Assuming that clusters always bind to the smallest
angle, polar clusters (g → ∞) bind only to filaments in con-
figuration (a) while non-polar clusters (g = 0) bind to both
configurations equally.

with vA the motor-induced velocity, taken of the form

vA =
β

2
(n̂2 − n̂1) +

α

2

ξ

2ℓ
− λ(n̂1 + n̂2) . (8)

The parameters α, β and λ have dimensions of veloc-
ity and depend on the angle between the filaments. The
term proportional to β drives the separation of filaments
of opposite polarity, while the λ contribution arises from
the net velocity of the filament pair18. The negative sign
reflects the fact that filament mean motion due to motor
activity is opposite to their polarity. The contribution
proportional to α arises from spatial variations in motor
activity along the filament, such as motors stalling before
detaching at the polar end. It drives bundling of fila-
ments of the same polarity. These parameters where esti-
mated in Ref.19 via a microscopic model of motor-induced
filament dynamics as β ∼ λ ∼ u0, α ∼ u0(lm/l) << u0,
with u0 the mean motor stepping rate and lm the length
scale (of order of the motor cluster size) for spatial varia-
tions in motor activity. As seen below, this term is crucial
for developing inhomogeneities and pattern formation.

To study the macroscopic properties of the solution,
we truncate the exact moment expansion of f(r, n̂, t) as

f(r, n̂, t) =
ρ(r, t)

2π

{

1+2p(r, t) · n̂+4Sij(r, t)Q̂ij

}

, (9)

keeping only the first three moments,
∫

dn̂ f(r, n̂, t) = ρ(r, t) (density),

∫

dn̂ n̂ f(r, n̂, t) = ρ(r, t)p(r, t) (polarization), (10)

∫

dn̂ Q̂ij f(r, n̂, t) = ρ(r, t)Sij(r, t) (nematic order) .

a. Homogeneous Bulk Steady States. We first con-
sider the dynamical equations for a spatially homoge-
neous solution. In this case the only contributions to
the equation of motion of the filament density come from
rotational currents. The motor density has a constant

mean value (we let m0 = mb2) and the filament den-
sity, f(r, n̂, t), and its moments can be expressed in
terms of their spatial averages, i.e. 1

A

∫

drSij(r, t) =

Sij(t),
1
A

∫

drp(r, t) = p(t), with A the area of the sys-
tem. In the following all lengths are measured in units
of the filament length, ℓ. Averaging over the orientation
n̂ using Eq. (9) , we find that in a homogeneous system
ρ = ρ0 = constant and

∂tpi = −
(

Dr − m0ρ0γ0

)

pi

+
[8Dr

3π
− m0

(

2γ0 − γ1

)

]

ρ0Sijpj , (11)

∂tSij = −
[

4Dr −
8Drρ0

3π
− m0ρ0γ1

]

Sij

+2m0ρ0γ0

(

pipj −
1

2
δijp

2
)

. (12)

In a passive system (γ0 = γ1 = 0) there is a transition
from an isotropic state to a nematic state. A mean-field
description of such a transition, which is continuous in
2d (but first order in 3d), requires that one incorporate
cubic terms in the nematic order parameter in the equa-
tion of motion. The transition here is identified with the
change in sign of the decay rate of Sij , which signals
an instability of the isotropic homogeneous state. This
occurs when excluded volume effects dominate at a den-
sity ρN = 3π/2. The homogeneous state is isotropic for
ρ0 < ρN and nematic for ρ0 > ρN . No homogeneous po-
larized state with a nonzero mean value of p is obtained
in a passive solution.

We now turn to an active system. We introduce a di-
mensionless filament density, ρ̃ = ρ0/ρN , a dimensionless
motor cluster activity, µ = ρNm0γ1/Dr, and a parame-
ter measuring the polarity of motor clusters, g = γ0/γ1

with g = 0 corresponding to non-polar clusters. Time is
measured in units of D−1

r . The steady states of Eqs. (11)
and (12) are the stable solutions of

0 = −a1pi + b1ρ̃Sijpj , (13)

0 = −a2Sij + b2ρ̃
(

pipj −
1

2
δijp

2
)

, (14)

where

a1 = 1 − ρ̃gµ , (15)

a2 = 4 [1 − ρ̃ (1 + µ/4)] , (16)

and b1 = 4+µ (1 − 2g), b2 = 2gµ. At low density the only
solution is pi = 0 and Sij = 0 and the system is isotropic
(I). The homogeneous isotropic state can become unsta-
ble in two ways. As in the passive case, a change in
sign of the coefficient a2 signals the transition to a ne-
matic (N) state. Motor activity lowers the density for
the I-N transition which occurs at ρIN (µ) = 1/(1+µ/4).
At ρ̃ > ρIN (µ) the solution acquires nematic order,
with S0

ij = S0(ninj − δij/2), where the unit vector n

denotes the direction of broken symmetry. We obtain
an expression for the amount of nematic order (S0) by
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adding a cubic term −c2ρ̃
2SklSklSij to Eq. (14) giving

S0 = 1
ρ̃

√

−2a2/c2. The isotropic state can also become

linearly unstable via the growth of polarization fluctua-
tions in any arbitrary direction. This occurs above a sec-
ond critical filament density, ρIP (µ) = 1/(gµ), defined
by the change in sign of the coefficient a1 controlling the
decay of polarization fluctuations. For ρ̃ > ρIP (µ) the
homogeneous state is polarized (P), with pi 6= 0. The
alignment tensor also have a nonzero mean value in the
polarized state as it is slaved to the polarization. One
can identify two scenarios depending on the value of g.

I) For g < 1/4, the density ρIP is always larger than
ρIN and a region of nematic phase exists for all values
of µ. At sufficiently high filament and motor densities,
the nematic state also becomes unstable. Fluctuations in
the alignment tensor are uniformly stable for a2 < 0, but
polarization fluctuations along the direction of broken
symmetry become unstable for a1 ≤ ρ̃b1S0/2, i.e., above
a critical density

ρNP =
1

gµ

[

1 +
b2
1

c2R

(

1 −

√

1 +
2c2R(1 − R)

b2
1

)]

(17)

where R = ρIN/ρIP . The polarized state at ρ̃ > ρNP

has p0
i = p0ni and S0

ij = SP (ninj − δij/2), where

p2
0 = 2a1a2

ρ̃2b1b2

[

1 −
(

2a1

b1S0

)2]
and SP = S0

√

1 − ρ̃2b1b2
2a1a2

p2
0 =

2|a1/b1|. The ”phase diagram” is shown in Fig. 2.
II) When g > 1/4, the boundaries for the I-N and

the N-P transitions cross at µx = 1/(g − 1/4) where
ρIN = ρIP = ρNP and the phase diagram has the topol-
ogy shown in Fig. 3. For µ > µx the system goes di-
rectly from the I to the P state at ρIP , without an in-
tervening N state. At the onset of the polarized state
the alignment tensor is again slaved to the polarization
field, ρ0Sij = b2

a2

(pipj −
1
2δijp

2) , and pi = p0ni and p0

is determined by cubic terms in Eq. 11.
If γ1 = 0, with γ0 6= 0, the I-N transition is indepen-

dent of motor density and always occurs at ρ0 = ρN .
b. Spatially inhomogeneous states. Spatial inhomo-

geneities of course affect the stability of the homogeneous
states described above. As shown by several authors,
the rate of motor-induced filament bundling can exceed
that of filament diffusion yielding the unstable growth
of density inhomogeneities7,9,10,11. States with spatially
varying orientational order, where the filaments sponta-
neously arrange in vortex and aster structures, are also
possible12,15,16. To examine the role of spatial inhomo-
geneities, we have obtained coupled equations for the first
three moments of the filament concentration defined in
Eq. (9) by an expansion in spatial gradients described
elsewhere11,19. These equations can then be used to
study the linear stability of each of the homogeneous
states against the growth of spatially-varying fluctuations
in the hydrodynamic fields. These are the fields whose
characteristic decay time are much longer than any mi-
croscopic relaxation time and become infinitely long lived
at long wavelengths. We find that the low frequency hy-
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FIG. 2: The homogeneous phase diagram for g < 1/4 (the
figure is for g = 1/10 and c2 = 50). The vertical axis is ρ0/ρN ,
the horizontal axis is µ.
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FIG. 3: The phase diagram for g > 1/4. For µ > µx, where
ρIN and ρIP intersect, no N state exists and the system goes
directly from the I to the P state. Inhomogeneous states form
for ρ0 > ρB. The ρB line may lie above the ρNP − ρIP line,
as shown in the main figure (g = 1, γ1/α = 2.3), or cross
through the N and I states, as shown in the inset (g = 1,
γ1/α = 0.6), depending on the value of γ1/α. (with c2 = 50).

drodynamic modes of this active system are determined
by fluctuations in the conserved densities and in variables
associated with broken symmetries. A change in sign in
the decay rate of these modes signals an instability of
the macroscopic state of interest. For simplicity we only
discuss here the case of constant motor density.

Isotropic state. This has been studied in Ref11. The
only hydrodynamic variable is the filament density, ρ.
The decay rate of Fourier components of δρ = ρ − ρ0

at wavevector k is controlled by the interplay of diffu-



4

sion and motor-induced filament bundling described by
α. The homogeneous I state is unstable at large length
scales for ρ0 > ρB, with ρB ∼ D‖/(m0α) ∼ γ1/(αµ).
The homogeneous state is stabilized at short scales by
excluded volume corrections and higher order terms in
the density gradients. The density instability is driven
entirely by the bundling rate α, while β plays no role.

Polarized state. The hydrodynamic modes in the P
state are those associated with fluctuations in the fila-
ment density and in the director field, n(r, t), defined by
p(r, t) = p(r, t)n(r, t), with |n| = 1. The coupled hy-
drodynamic modes describing the decay of Fourier com-
ponents of density, δρ and director fluctuations, δn =
n − ŷ = x̂δnx of wavevector k are always propagating,
with velocity whose magnitude and direction are con-
trolled by both the activity parameters β and λ. For k

along the broken symmetry direction, the modes decou-
ple (i.e., δρ ∼ ezρ(k)t, δnx ∼ ezn(k)t) and are given by

zρ = ikc1ρ̃µβ̃ −
k2

8

[

1 −
gµ

6
− 20ρ̃µα̃

]

, (18)

zn = −ikc2ρ̃µβ̃ −
5k2

48

[

1 +
2

5
ρ̃µ(g − 6α̃)

]

, (19)

where β̃ = β/γ1, α̃ = α/γ1, and c1 and c2 are numbers of
order one. We have used D‖ = ℓ2Dr/6 and λ ∼ β. Like
the I state, the homogeneous P state is linearly unsta-
ble for ρ0 > ρB. The nature of the instability changes,
however, from diffusive in the I state to oscillatory in
the P state, suggesting that spatially inhomogeneous os-
cillatory structures, such as vortices, may be stable at
high filament or motor densities. The rotational effects
described by µ ∼ γ1 stabilize director fluctuations, but
destabilize the density.

Nematic state. The hydrodynamic variables in the
N state are again the filament density and a director
field n(r, t), defined in terms of the alignment tensor as
Sij = S0(ninj −

1
2δij). The decay of density and direc-

tor fluctuations is controlled by coupled hydrodynamic

modes which are always diffusive. The modes decouple
for k along the broken symmetry direction, with

zρ = −k2
[1

6
− 2ρ̃µα̃

]

, (20)

zn = −
k2

8

[

1 +
19

36
ρ̃µ
]

. (21)

Once again, the homogeneous N state is destabilized by
the growth of density fluctuations for ρ0 > ρB, while long
wavelength director fluctuations remain stable. For ar-
bitrary direction of k relative to the direction of broken
symmetry director fluctuations also become unstable at
high density, but the fastest growing mode is always as-
sociated with the build-up of density inhomogeneities. In
contrast to the P state, the instability is always diffusive.

To summarize, we have studied the phase behavior
of polar filaments interacting with polar clusters. We
have shown that in addition to the homogeneous isotropic

phase, both homogeneous polarized and nematic states
can be obtained as a function of filament density and mo-
tor activity and polarity. The instabilities of the homo-
geneous states are controlled by the bundling rate α and
occur for ρ0 > ρB ∼ γ1/(αµ). The location of this line
in the phase diagram depends crucially on the parameter
γ1/α. If γ1/α > 1/g = γ1/γ0, then ρB > ρP as shown in
Fig. 3, and the homogeneous nematic state is always sta-
ble, when it exists. If γ1/α < 1/g = γ1/γ0, then ρB < ρP

as shown in the inset of Fig. 3, and all homogeneous states
can be destabilized by filament bundling, albeit through
different (diffusive versus oscillatory) mechanisms.
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4 F. J. Nédélec et al, Nature 389, 305 (1997).
5 T. Surrey et al, Science 292, 1167 (2001).
6 D. Humphrey et al, Nature (London) 416, 412 (2002).
7 H. Nakazawa and K. Sekimoto, J. Phys. Soc. Jpn. 65, 2404

(1996).
8 M. Tempel, G. Isenberg and E.Sackmann, Phys. Rev. E.

54, 1802-1810 (1996).
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