
ABSTRACT 

Annual manipulations of temperature and rainfall have been maintained in intact 

calcareous grassland since 1993 at the Buxton Climate Change Impacts Laboratory 

(BCCIL) in northern England (UK). Here I investigated the role of local adaptation as 

mechanism of the apparent resistance of species’ to long-term climate manipulations at 

BCCIL using a common forb, Plantago lanceolata. Plantago lanceolata is a rosette-

forming, perennial herb of wide-ranging distribution, and one of the more common forbs 

in calcareous grasslands, including BCCIL. In the first study I used a common garden 

approach to test for evidence of selection for different suites of functional traits in P. 

lanceolata populations exposed to chronic summer drought at BCCIL. Results suggest 

that avoidance strategies associated with high reproductive allocation were more common 

in populations exposed to long term experimental drought versus populations from 

controls and that soil depth moderated treatment effects. In the second study I revealed 

significant treatment based genetic differentiation in P. lanceolata populations using 

molecular markers (AFLPs: Amplified Fragment Length Polymorphisms) that suggests a 

genetic basis for the functional differentiation evident in the common garden study. 

Finally I expanded environmental monitoring and trait analyses of P. lanceolata to 

calcareous grassland systems in the landscape surrounding BCCIL in an effort to relate 

the extent and spatial structure of nested landscape gradients corresponding to soil water 

supply and demand and the spatial structure of variation in six functional traits that reflect 

the main axes of functional differentiation found in the common garden study. Abiotic 

gradients associated with soil water dynamics had distinct spatial structures which in turn 

promoted the hierarchical partitioning of intraspecific functional diversity in five of the 



six functional traits measured. Taken together my results suggest a genetic basis for local 

intraspecific functional differentiation in P. lanceolata which in turn has allowed this 

species to adapt in situ to experimental climate manipulations. Furthermore, local and 

landscape scale gradients in factors related to climate change (e.g., soil moisture) 

promote functional trait variation at associated scales which may buffer this species from 

future climatic change.  
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Chapter 1 

INTRODUCTION       

Overview 

Global mean temperatures are projected to increase by 1.8-4° C by the end of the 

21st century (IPCC 2007). The magnitude and direction of changes in precipitation are 

much more uncertain and region specific (IPCC 2007), but projections consistently 

predict more extreme intra-annual precipitation regimes with longer periods of 

intermittent drought (Easterling et al. 2000, IPCC 2007). Higher temperatures and altered 

precipitation regimes could potentially expose plants to novel climatic conditions, with 

no modern analog (Williams et al. 2007). Given that warming stimulates 

evapotranspiration and reduces soil water availability (e.g., Harte & Shaw, 1995, Rustad 

et al., 2001; Niu et al., 2008), increased temperatures could exacerbate drought conditions 

and cause large carbon losses (Angert et al., 2005, Breshears et al., 2005, Ciais et al., 

2005)  with feedbacks that could exacerbate the pace of ongoing climatic change 

(Heimann & Reichstein, 2008).  

Evidence that climatic changes are affecting ecosystem processes is accumulating 

rapidly (e.g., Rustad 2008, Wu et al. 2011). Ecosystem process rates such as 

photosynthesis and respiration both generally increase with temperature (Rustad et al., 

2001), and their respective rates dictate the resulting carbon balance. Warming tends to 

increase plant productivity but ecosystems vary in the magnitude of their response 

(Rustad et al., 2001, Lin et al., 2010, Wu et al., 2011). Altered precipitation regimes 

influence community- and ecosystem-level responses to warming (Dukes et al., 2005, Wu 

et al.,2011). In a recent meta-analysis of 85 studies of ecosystem level responses to 
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warming and precipitation manipulations, warmer temperatures generally increased rates 

of carbon cycling and temperature based responses were generally stimulated with 

increased precipitation and reduced under drought conditions (Wu et al. 2011).  

Migration and adaptation 

Climatic conditions have long been known to be a primary determinant of 

species’ geographic ranges (Schimper 1903), due to the demonstrated influence of 

temperature and precipitation on plant survival and reproductive success (Woodward 

1987, Woodward & Williams 1987). Projected climatic changes, including increased 

temperatures and more variable precipitation regimes, are expected to impose strong 

directional selection pressures on plant populations (Davis and Shaw, 2001, Davis et al., 

2005, Jump and Penuelas, 2005, Reusch and Wood 2007, Jump et al. 2009a, Anderson et 

al. 2012). Evidence suggests that significant poleward shifts and upslope migrations have 

already occurred in a wide array of taxa (Parmesan & Yohe 2003, Parmesan 2006, 

Walther 2003, 2010). Although these studies suggest that species have the potential to 

migrate, dispersal limitation (Davis et al. 1986) will likely reduce the ability of species to 

track the climate to which they are adapted (Davis & Shaw 2001).  

While many studies have examined the need and capacity of species to migrate 

poleward as the climate shifts (e.g., Davis and Shaw 2001, McLachlan et al. 2005, 

Neilson et al. 2005, Pearson 2006), the potential for local adaptation remains 

understudied despite the recognized potential for genetic diversity to buffer species from 

climate-induced local extinction (Jump and Peñuelas 2005, Jump et al. 2009a). Selection 

on extant genetic variation is considered to be a primary mechanism by which 

populations could adapt in-situ to rapid environmental changes (Jump and Penuelas 
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2009a, Anderson et al. 2012). It is the ‘option value’ of genetic diversity (sensu, Jump 

and Penuelas 2009a), that makes it such an important component of species potential 

resistance to climate change (Reusch et al. 2005, Jump and Penuelas 2005, Reusch and 

Wood 2007, Gienapp et al. 2008, Hoffmann and Willi 2008, Jump et al. 2009a). 

Spatial and temporal variation in selection pressures alter the relative fitness of 

genotypes through space and over time, and thus can be a mechanism by which genetic 

diversity is maintained in natural populations (Linhart and Grant 1996, Jump et al., 2006, 

Jump et al. 2009a). Spatial and temporal abiotic heterogeneity combined with biotic 

factors including competition (Aarssen and Turkington 1985, Taylor and Aarssen 1990, 

Fridley et al. 2007, Whitlock et al. 2010, 2011), may alternate selection pressures such 

that effective selective neutrality is maintained over longer timescales at the population 

level (Jump et al. 2006, Jump et al. 2009b).  

Climate linked genetic variation can provide a means for populations to respond 

to selection on a timescale relevant to the fast rates of change projected under 

contemporary climate change (IPCC 2007, Bradshaw and Holzapfel 2006, Hoffman and 

Willi 2008). Adaptation was generally considered to have played only a minor role in 

mitigating plant responses to past climate changes (Bradshaw 1991, Huntley 1991). 

However, evidence of both local adaptation and rapid evolution in response to 

contemporary climate change (Reusch et al. 2005, Bradshaw and Holzapfel 2006, Jump 

et al. 2006, Jump et al. 2008, Jump et. 2009), and population differentiation along climate 

gradients (Jump et al. 2006, 2008, 2009b), demonstrate that local climate gradients exert 

strong selection pressure on plant populations (Linhart & Grant 1996) and suggest that 
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the role of genetic variation in species’ response to past climatic changes may well have 

been underestimated (Davis & Shaw 2001).  

Study System 

The Buxton Climate Change Impacts Laboratory (BCCIL) in northern England 

(UK) is an experimental manipulation of climate factors (winter warming, summer 

drought, enhanced summer rainfall, warming/drought and warming/rainfall) in intact 

limestone grassland. Annual manipulations of temperature and rainfall have been 

maintained at BCCIL since 1993 and community composition has remained relatively 

stable in experimental treatments (Grime et al. 2000, 2008, Fridley et al. 2011). Such 

resistance is rare, most studies that manipulate climate on extant terrestrial ecosystems 

report fairly rapid species-level changes, suggesting that local adaptation is not 

significant (e.g., Harte and Shaw 1995, Arft et al. 1999, Grime et al. 2000, Zavaleta et al. 

2003, Evans et al. 2011). Resistance is attributed to the relatively stress tolerant flora 

typical of these infertile calcareous grasslands, which may be more resistant to climatic 

changes than more productive grassland communities of fertile soils (Grime et al. 2000, 

2008, Matesanz et al. 2009). Similar relationships between resistance and fertility have 

been found in serpentine systems (reviewed in Damschen et al. 2012), where resistance is 

also attributed to reduced productivity and selection for stress tolerant functional traits 

(Fernandez-Going 2012).  

Although compositional shifts have been relatively minor at BCCIL overall, there 

were rapid and persistent effects of climate manipulations on species composition which 

are attributed to differences in soil moisture status among experimental treatments 

(Grime et al. 2008). These minor compositional shifts are consistent with known species 
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associations corresponding to topographic orientation and associated soil moisture 

dynamics (Perring 1960, Bennie et al. 2008). Fine-scale migration of individuals along a 

soil depth gradient may also be part of the mechanism maintaining species stability in 

experimental treatments at BCCIL (Fridley et al., 2011). 

Genetic restructuring has been hypothesized as one potential mechanism in the 

apparent resistance of this grassland community to long-term climate manipulations 

(Grime et al. 2008). Compared to migration, the potential for local adaptation is likely to 

be highest under circumstances where: a) there is sufficient local genetic variation that 

underlies quantitative traits relevant to climatic shifts; b) the environmental shift is more 

than can be accommodated by phenotypic plasticity; and c) species-level changes are 

restricted (e.g., from dispersal limitation) or occur more slowly than population-level 

change (Moser et al. 2011). Most species common to this calcareous grassland system are 

obligate outcrossers with high local phenotypic variation that has a genetic basis (Booth 

and Grime 2003, Fridley et al. 2007, 2010, Bilton et al. 2010, Whitlock et al. 2007, 

2010). 

Research overview 

My dissertation focuses on one of the more common forbs at BCCIL, Plantago 

lanceolata P. lanceolata is a rosette-forming, perennial herb with a wide-ranging 

distribution (Sagar and Harper 1964). Plantago lanceolata is self-incompatible and wind 

pollinated but displays substantial local genetic differentiation (Bos et al. 1986) and has 

distinct genetically determined phenotypes both at regional and fine scales (Primack and 

Antonovics 1982, Teramura 1983, van Tienderen 1992, Tonsor and Goodnight 1997, 

Wolf and van Delden 1987, 1989). Recent work documents genetic differentiation in P. 
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lanceolata populations exposed to elevated ozone and suggests high local diversity 

allowed populations to respond to abiotic perturbations by genetic restructuring (Kölliker 

et al. 2008).  

Chapter II: Local adaptation to long-term climate change in a calcareous grassland 

In this chapter I examined whether there was evidence of functional 

differentiation in P. lanceolata populations exposed to nearly two decades of summer 

drought at BCCIL.  Individuals were harvested from drought and control treatments 

across a range of soil depth classes, propagated, and grown in a common greenhouse 

environment. I measured 24 functional traits that reflect primary axes of interspecific 

functional co-variation, corresponding to drought tolerance, drought avoidance, and 

competitive strategies (Grime et al. 1977). Traits consistent with a competitive strategy 

(e.g., high specific leaf area (SLA), high photosynthetic capacity, large vegetative 

allocation, rapid vegetative expansion, more erect growth habit) confer a fast rate of 

growth at the cost of resource retention (high respiration, high leaf turnover) (Grime et al. 

1997, Reich et al. 2003). Tolerance syndromes are characterized by low rates of biomass 

turnover and growth but high water- and resource-use efficiency (e.g, low respiration, 

low SLA, low total biomass, low maximum photosynthetic rate, thicker leaves) (Grime 

1997, Diaz et al. 2004, Wright 2004). A drought avoidance strategy is characterized by 

an earlier growth and flowering phenology, before the onset of drought (Geber and 

Dawson 1990, Heschel and Riginos 2005).  

Increased water stress in drought treatments was expected to favor drought 

avoidance or tolerance strategies. If chronic summer drought creates ephemeral patches 

suitable for colonization and growth, then an avoidance strategy that promotes rapid 
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growth and regeneration before the next drought would be favored. In contrast, selection 

for more competitive strategies was expected in control treatments and in deeper soils. 

The main axis of functional variation reflected a tradeoff between reproductive and 

vegetative allocation, consistent with drought avoidance and competitive strategies, 

respectively. Avoidance strategies were more prominent in drought populations whereas 

competitive strategies were more prominent in populations from control treatments, but 

only in deeper soils. Results suggest that population-level shifts can be a mechanism of 

resistance to local climate-induced extinction and that local edaphic heterogeneity fosters 

high genetic diversity, which provides a range of local phenotypes upon which drought-

based selection may act. Such a result is consistent with adaptation as a mechanism 

contributing to community-level resistance to climate change at BCCIL (Grime et al. 

2008). 

Chapter III: Genetic response to long-term climate manipulations and fine-scale 

abiotic heterogeneity in a common herb 

Evidence of both local adaptation and rapid evolution in response to 

contemporary climate change suggests that local genetic diversity can be an important 

mechanism of species resistance to climate change (Reusch et al. 2005, Bradshaw and 

Holzapfel 2006, Jump et al. 2006, Jump et al. 2008, Jump et. 2009a). In the third chapter 

I used molecular techniques (AFLPs: amplified fragment length polymorphisms) to 

determine whether there is evidence of genetic differentiation among populations in 

different climate treatments. The replicated block design of the experimental treatments 

at BCCIL offered a powerful means to distinguish between population structure 

generated by stochastic processes (e.g., drift and differential gene flow) versus structure 
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generated by selection (Bonin et al. 2007, Nosil et al. 2008). Differentiation associated 

with drift would generate strong but stochastic spatial genetic structure whereas treatment 

based selection would generate parallel divergence patterns among control-treatment 

pairs in separate experimental blocks.  

I detected minor, but significant amount of treatment-based genetic structure, 

which supports the hypothesis that P. lanceolata populations have adapted to long term 

experimental manipulations at BCCIL through local genetic restructuring. Evidence of 

treatment based selection was most pronounced in precipitation manipulation treatments 

(drought and increased rainfall treatments, including factorial combinations with 

heating), which suggests that genetic differentiation in P. lanceolata corresponds to 

gradients in soil water dynamics determined by treatment based differences in soil water 

supply (precipitation manipulations), which in turn can be modulated by increased 

demand in increased temperature manipulations. Taken together this suggests that P. 

lanceolata is particularly sensitive to gradients in water availability. Parallel divergence 

patterns in replicated pairwise control-treatment contrasts strongly suggest local 

adaptation in response to climate treatments and such a pattern would be unlikely to arise 

due to type I error or genetic drift  (Campbell and Bernatchez 2004, Bonin et al. 2006, 

2007,  Nosil et al. 2008). 

Chapter IV:  Intraspecific plant trait variation in a heterogeneous landscape: 

population response to fine-scale soil moisture gradients 

Environmental conditions imposed by experimental treatments and modified by 

fine-scale edaphic heterogeneity (‘microsite’) in the experimental plots at BCCIL are 

representative of gradients in temperature and water availability, known to exert strong 
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selective pressure on plant populations (Delcourt and Delcourt 1988, Dunning et al. 1992, 

Levin 1992). Populations may be able to adapt in-situ to future climatic shifts through 

functional restructuring via selection for gentoypes based on their relative fitness and 

through individual phenotypic plasticity. A better understanding of the spatial structure of 

intraspecific adaptive functional variation could improve our ability to predict species’ 

range changes under climate change that generally assume no variation within species 

(Jump and Peñuelas, 2005). 

In the fourth chapter, I expanded environmental monitoring and trait analyses of 

P. lanceolata to calcareous grassland systems in the landscape surrounding BCCIL. I 

measured six functional traits that reflect major tradeoffs and strategies demonstrated at 

the species level (Grime et al. 1997, Diaz et al. 2004, Wright et al. 2004) which are also 

reflected in the main axes of local intraspecific variation found in P. lanceolata 

populations at BCCIL (Chapter 2). My objectives were to characterize the spatial 

structure of gradients in soil moisture that occur at nested spatial scales in this calcareous 

grassland; 2) determine the extent and spatial structure of functional trait variation in six 

traits that correspond to well-known functional tradeoffs and strategies demonstrated at 

species level; 3) to relate the extent and spatial structure of abiotic gradients and 

functional variation.  

Abiotic gradients associated with soil water dynamics had distinct spatial 

structures which in turn promoted the hierarchical partitioning of intraspecific functional 

diversity in five of the six functional traits measured. Trait-environment relationships 

were particularly pronounced for SLA. Given that landscape scale gradients in soil 

moisture dynamics emulate a range of conditions expected under future climate change, 
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evidence of associated functional structuring suggests that extant populations may be able 

to adjust to climatic shifts through individual plasticity or genetic restructuring. Such a 

result suggests that local and landscape scale intraspecific functional trait variation may 

buffer this species from future climate change.  
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SUMMARY 

1. Populations of the common perennial herb Plantago lanceolata have been exposed to nearly 

two decades of summer drought at the Buxton Climate Change Experiment (BCCIL), a 

controlled manipulation of climate factors in a species-rich limestone grassland in northern 

England.  

2. We used a common garden approach to test for evidence of selection for different suites of 

functional traits in P. lanceolata populations exposed to chronic summer drought and across a 

soil depth gradient.  

3. The main axis of functional variation reflected a tradeoff between reproductive and vegetative 

allocation, consistent with drought avoidance and competitive strategies, respectively. Avoidance 

strategies were more prominent in droughted populations whereas competitive strategies were 

more prominent in populations from control treatments. Treatment differences were more 

pronounced in shallower soils. Deeper soils in both control and drought treatments promoted 

functional differentiation associated with competitive strategies suggesting that selective 

pressures imposed by different climate treatments are modified by fine scale edaphic 

heterogeneity. 

4. Synthesis: Results suggest that population-level shifts can be a mechanism of resistance to 

local climate-induced extinction. Trait differentiation with respect to fine-scale variation in soil-

depth suggests that edaphic heterogeneity fosters high local genetic diversity, which provides a 

range of local phenotypes upon which drought-based selection may act. 

Key-words: Adaptation, climate change, drought, functional traits, grassland, Plantago 

lanceolata 
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INTRODUCTION 

The need and capacity of species to migrate poleward as the climate shifts has been well 

documented (Davis and Shaw 2001, McLachlan et al. 2005, Neilson et al. 2005). The potential 

for local genetic diversity to buffer species from climate-induced extinction, however, remains 

understudied (Jump and Peñuelas 2005). Compared to migration, the potential for an 

evolutionary response to climate change is likely to be highest under circumstances where: a) 

there is sufficient local genetic variation underlying quantitative traits relevant to climatic shifts; 

b) the environmental shift is more than can be accommodated by phenotypic plasticity; and c) 

species-level changes are restricted (e.g., from dispersal limitation; Davis et al. 1986, Davis and 

Shaw 2001) or occur more slowly than population-level change (Moser et al. 2011). Most 

experimental studies of climate change in terrestrial systems have led to fairly rapid species-level 

changes, suggesting that compositional shifts preclude evolutionary responses and thus 

population-level responses are at best a weak component of community climate responses 

(Chapin et al. 1995, Harte and Shaw 1995, Grime et al. 2000, Zavaleta et al. 2003, Klein et al. 

2007, Mikkelson et al. 2008). 

At the Buxton Climate Change Impacts Laboratory (BCCIL) in northern England (UK), 

annual manipulations of temperature and rainfall have been maintained since 1993 and most 

species have not experienced large changes in abundance in response to experimental treatments 

(Grime et al. 2000, 2008, Fridley et al. 2011). Most species common to this calcareous grassland 

system are obligate outcrossers with high local phenotypic variation that has a genetic basis 

(Booth and Grime 2003, Fridley et al. 2007, Bilton et al. 2010, Whitlock et al. 2010). Adaptation 

to experimental treatments has been hypothesized as one potential mechanism of species 

persistence (Grime et al. 2008), but it is unclear whether selection or plasticity underlies species’ 
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stability. In a recent genetic study of one of the most common BCCIL forbs, Plantago lanceolata 

L., Ravenscroft et al. (in prep.) detected significant treatment-based genetic structure (3%) and 

parallel divergence patterns in droughted plots across experimental blocks. This supports the 

hypothesis that extant populations have resisted long term experimental manipulations at BCCIL 

through local genetic restructuring.  However, it remains unclear how populations responding to 

chronic drought have differentiated from control populations, and whether such variation stems 

from natural polymorphisms maintained locally in response to spatial heterogeneity in 

environmental conditions such as water availability (Grime et al. 2008, Fridley et al. 2011).  

Differentiation across gradients of temperature and water availability has been reported 

for several grassland species (Hamrick andAllard 1972, Hamrick and Holden 1979, Owuor et al. 

1997, Li et al. 1999) and local differentiation mirrors patterns found at range-wide scales 

(Hamrick and Allard 1972, Hamrick and Holden 1979). Interannual variation in temperature 

promotes fine-scale genetic differentiation in Betula pendula (European white birch) (Kelly et al. 

2003) and rising temperatures have cause rapid adaptive differentiation in Fagus sylvatica (Jump 

et al. 2006). Moisture stress is considered to be the primary driver of fine-scale adaptive 

differentiation in several conifer species(Jump et al. 2005). Drought has led to the rapid 

evolution of drought avoidance strategy in the annual plant Brassica rapa (Franks et al. 2011). 

Further, significant local (<500 m2) population differentiation has been reported in Fumana 

thymifolia (Jump et al. 2009b), which may have contributed to the ability of this species to 

undergo rapid genetic change following 5 years of experimental drought and temperature 

manipulations (Jump et al. 2008).  

P. lanceolata is a self-incompatible, perennial herb with a wide-ranging distribution 

(Sagar and Harper 1964) and remains present in all experimental treatments at BCCIL at 



 

 

30 

 

moderate to high abundance. The species is wind pollinated but displays substantial local genetic 

differentiation (mean gene transport distance per generation: 0.2-1.4 m; Bos et al. 1986) and has 

distinct genetically determined phenotypes both at regional and fine scales (Primack and 

Antonovics 1982, Teramura 1983, van Tienderen 1992, Tonsor and Goodnight 1997, Wolf and 

van Delden 1987). Annual simulated short turf grazing in all experimental plots at BCCIL has 

increased P. lanceolata abundance since the onset of the experiment, but increases occurred at 

different times in different climate treatments (Fig. 1a). Abundance increased steadily in control 

plots in the first ten years of the experiment, whereas in drought plots abundance was 

consistently low until 2004, suggesting mortality imposed by summer drought and a population 

recovery time of about nine years (Fig. 1a). Abundance was similar in control and drought plots 

in 2008 but differences between treatments were still apparent in deep soil microsites, where 

abundance in drought plots was lower than controls (Fig.1b). Reduced abundance in deep soils is 

surprising given that deeper soils could ameliorate the effects of the drought treatment, and 

suggests population dynamics are also sensitive to biotic processes, including competition, that 

vary locally along a soil depth gradient (Fridley et al. 2011).  

Here we report a common garden experiment to test for functional trait divergence in P. 

lanceolata populations exposed to long-term experimental summer drought and as modified by 

fine-scale edaphic heterogeneity. We grew individuals of control and droughted populations in a 

common greenhouse environment  and measured 24 traits that reflect primary axes of 

interspecific functional variation, corresponding to drought tolerance, drought avoidance, and 

competitive strategies (Grime 1977) (Table 1). Traits consistent with a competitive strategy (e.g., 

high specific leaf area (SLA), high photosynthetic capacity, large vegetative allocation, rapid 

vegetative expansion, more erect growth habit) confer a fast rate of growth at the cost of resource 
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retention (high respiration, high leaf turnover) (Grime 1977, Reich et al. 2003). Tolerance 

syndromes are characterized by low rates of biomass turnover and growth but high water- and 

resource-use efficiency (e.g, low respiration, low SLA, low total biomass, low maximum 

photosynthetic rate, thicker leaves) (Grime 1997, Reich et al. 2003, Diaz et al. 2004).  An 

avoidance strategy associated with high reproductive allocation has been associated with an 

earlier growth and flowering phenology in other drought-avoiding species (Geber and Dawson 

1990, Heschel and Riginos 2005).  

Our objective was to quantify differences in plant attributes that, as expressed in a 

standardized environment, point to divergences in how individuals from control and drought 

populations use resources. We expected increased water stress in drought treatments to favor 

drought avoidance or tolerance strategies that may be mutually exclusive (Geber and Dawson 

1997, McKay et al. 2003, Heschel and Riginos 2005, Franks 2011). Because competitiveness is 

negatively associated with traits that confer resistance to or avoidance of drought stress (Grime 

1977, Reich et al. 2003, Diaz et al. 2004) we expected competitive strategies in populations from 

control treatments and in deeper soils. Functional trait divergence in populations exposed to 

chronic summer drought as expressed in a common environment would be consistent with 

genetic restructuring as a mechanism contributing to the resistance of this species to 

experimental drought at BCCIL (Grime et al. 2008). 

METHODS 

Study site 

The BCCIL study is an experimental manipulation of climate, including winter (Nov-

Apr) warming, summer (Jul-Aug) drought, enhanced summer (Jun-Sep) rainfall, and 

temperature-rainfall interactions, in a species-rich limestone grassland in Harpur Hill, 
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Derbyshire, UK. Temperature and rainfall manipulations reflect early GCM predictions for 

northern England of winter warming of approximately 3° C and decreased summer rainfall. 

Temperature treatments fall within the range of more recent climate projections, which predict an 

increase in global mean temperature of 1.8-4° C by the end of the 21st century (IPCC 2007). The 

magnitude and direction of changes in precipitation are more uncertain and region specific 

(IPCC 2007) but more extreme intra-annual precipitation regimes with longer periods of 

intermittent drought are widely expected (Easterling et al. 2000, IPCC 2007). Intensification of 

the hydrologic cycle due to temperature increases has already caused more extreme precipitation 

events and droughts in temperate regions (Dai et al. 1998).   

Treatments in plots of 3 x 3 m were established in 1993 and include summer drought 

manipulations accomplished via automated rainout shelters. Treatments are fully randomized 

within five replicate blocks.  Each year in October vegetation is cut and removed from plots at a 

height of 50 mm to simulate sheep grazing. Within each plot are eight 10 x 10 cm permanent 

quadrats (‘microsites’), two in each of four soil-depth classes (0-7, 8-12, 13-20, and 21+cm) 

which capture natural fine scale edaphic heterogeneity (<100 cm2), characteristic of the poorly 

developed soils of calcareous grasslands (Balme 1953, Pigott 1962). Local substrate 

heterogeneity mediates species’ response to experimental treatments and thus contributes to 

compositional stability in this grassland community despite long term climate manipulations 

(Fridley et al. 2011). For further details on microsite properties and other aspects of the 

experimental design at BCCIL see Grime et al. (2008) and Fridley et al. (2011).  

Common garden trait measurements  

Mature individuals of P. lanceolata were harvested from drought and control treatments 

at BCCIL in September 2008. A total of 72 genetically distinct individuals were collected from 
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three experimental blocks at BCCIL, including 36 from each experimental treatment and 12 in 

three soil depth classes (0-7cm, 8-12cm, and 13+cm). We sampled mature individuals rather than 

seeds because mature individuals are the product of successful establishment and growth in 

experimental treatments, two important stages of selective filtering that would not be captured by 

collecting seed. Sampling mature individuals also reduced any potential influence of parental 

effects on offspring phenotype, which are generally more prevalent in juvenile life-history stages 

relative to adult life history stages (Roach and Wulff 1987, Weiner et al. 1997). This is consistent 

in studies of P. lanceolata where parental temperature influences germination, growth and 

reproduction of newly germinated seeds but not survival or reproduction of offspring after one 

year (Lacey 1996, Lacey and Herr 2000).To further reduce any potential influence of parental 

environment on offspring phenotype sampled individuals were grown in separate pots in watered 

and fertilized medium in a greenhouse at Syracuse University, New York, USA, for 6 months 

before propagation.  

After this sixth month acclimation period, individuals were propagated vegetatively by 

cutting a standard size off the crown of the main plant. Six clones of each experimental 

individual were propagated and grown in individual pots for one week. The initial survival rate 

averaged over all individuals was 87%. Three clones of each individual were selected at random 

for the common garden experiment, conducted from March-June of 2009. Each clone was 

transferred to a 14 cm2 pot filled with 1:1 mixture of sand and pro-mix compost mixed with 

Osmocote-Plus controlled release fertilizer pellets (Scotts-Sierra Horticultural Products 

Company, N:15%, P: 9%: K: 12% plus 9 micronutrients, 2g/L). Greenhouse conditions reflected 

average summer temperatures at the BCCIL (day temp 18-30° C, night temperature 8.8-11.67 

°C, 16 hr days). All experimental individuals were given an ample supply of water throughout 
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the entire experimental period and nutrient levels were considerably higher than the nutrient 

deficient soils typical in these calcareous grasslands.  

The following traits were recorded prior to harvest (91 days post planting): angle of the 

youngest fully expanded leaf, length of longest flowering stem (scape), and number of rosettes. 

The number of scapes was recorded weekly during the experiment. Leaf emergence rate was 

estimated by marking the newest leaf on each rosette in the third week of the experiment and 

counting the number of new leaves that subsequently emerged over a two week period. 

Chlorophyll content was measured three times (35, 70, 95 days post planting) on the same leaf 

(older leaf one position away from marked leaf) using a handheld chlorophyll meter (Opti-

Sciences CCM-200). Chlorophyll readings were taken at five leaf positions and averaged. 

Photosynthesis was measured on each individual via gas exchange (LI-COR 6400, LI-COR 

Biosciences, Lincoln, NE; 400 µmol CO2 mol-1, 700·µmol·s-1 flow rate, 20 °C, light intensities of 

800, 300, 100, and 50 µmol photon·m-2·s-1 ). Apparent quantum yield (AQY), maximum 

photosynthetic rate (Amax), and dark respiration (Rd) were estimated from each light curve using a 

nonrectangular hyperbolic light curve function as described in Fridley (2012). 

Individuals were harvested after 98 days and this time period was sufficient to capture the 

production of mature seed before significant leaf senescence. Reproductive and vegetative tissue 

were separated at harvest and weighed after drying to constant weight. Five leaves were removed 

from each individual before biomass was harvested. Leaf fresh weight was recorded immediately 

after leaves were removed from intact plants. Leaf area and length were calculated with ImageJ 

software (Abramoff et al. 2004) using scanned images (300 dpi) of individual leaves. Leaves 

were dried until they reached a constant dry weight. Three leaves were ground to a fine powder 
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and analyzed for carbon and nitrogen concentration on a NC 2100 Soil Analyzer (CE 

Instruments, Lakewood, NJ, USA).  

Analysis 

We conducted two multivariate analyses, principal components analysis (PCA) and 

multivariate analysis of variance (MANOVA) on a rank ordered trait matrix (trait values 

converted to non-parametric rank order) that included all 24 traits measured and all experimental 

individuals. Rank order standardization is a common means of transforming attributes to a 

uniform scale (Grime et al. 1997), as PCA and MANOVA are both sensitive to the relative 

scaling of the original variables (Jongman et al. 1987). Missing data (1.2% of overall dataset) 

were assigned the average trait average rank so as not to influence axis loadings (Grime et al. 

1997). 

We used PCA to determine whether the main axes of functional variation in P. lanceolata 

reflect anticipated avoidance, tolerance, and competitive functional strategies. We extracted the 

trait loadings on the first three components (PC1-3), and used ANOVA to test for significant 

differences in individual axis scores with respect to treatment, soil depth, experimental block at 

BCCIL, and greenhouse block. MANOVA was used to test for significant effects of climate 

treatment, soil depth, BCCIL block and greenhouse block on the 24 traits measured. We used 

ANOVA to test for significant differences in individual traits with respect to treatment, soil 

depth, BCCIL block and greenhouse block using unstandardized trait data. In both ANOVA 

analyses P-values were adjusted for multiple comparisons using Hochberg's (1988) test. 

Experimental block (BCCIL and greenhouse) was never significant. All analyses were conducted 

in R (R Development Core Team, 2011).  
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RESULTS 

Main components of trait variation across individuals 

The first three principal components explained 43.5% of the variation among individuals 

(17%, 16.5%, and 10% for components 1-3, respectively). The total variance explained and the 

distribution of variance across axes is consistent with similar analyses of functional 

differentiation among species (Grime et al. 1997, Diaz et al. 2004) and within species (Whitlock 

et al. 2010). The first principal component (PC1) reflected a tradeoff between vegetative and 

reproductive investment (Fig. 2a). Reproductive allocation was associated with longer scapes, 

higher chlorophyll content and later flowering phenology (Fig. 2a, Table 2). Vegetative 

allocation (negative PC1 scores) and associated traits, such as number of rosettes, total biomass, 

vegetative biomass, erect growth habit, and plant diameter, are consistent with a competitive 

strategy (Fig. 2a, Table 2). PC2 represented a tradeoff between traits that minimize resource loss 

(low PC2 scores: CN, LDMC, low SLA) and those associated with high growth rates (high PC2 

scores: SLA, foliar N, Amax, chlorophyll content) (Table 2, Fig.  2b). Traits associated with 

reproductive allocation on PC1 loaded negatively on PC2 (Table 2). Competitive traits (SLA, 

rosette number) loaded negatively on PC3 and traits associated with reproductive allocation 

(chlorophyll content, longer scapes) loaded positively (Table 2). 

 Individuals from experimental drought populations allocated more to reproduction 

(higher PC1 scores) and those from control allocated more to vegetative growth (lower PC1 

scores) (Fig.  2a). However, treatment differences were only significant in shallow and mid soil 

depth classes (P<0.01, Fig. 2a). There were no significant differences in PC2 scores with respect 

to treatment, soil-depth and their interaction (Fig.  2b). PC3 scores were significantly negatively 

correlated with soil depth (P<0.01, Fig. 2c). Plants in shallow microsites had higher PC3 scores 
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in both control and drought treatments, whereas plants in mid and deep soil classes had lower 

PC3 scores in control plots relative to drought (Fig.2c).   

Variation in individual traits  

 Although the 24 traits showed significant differences across soil depth classes 

(MANOVA, P<0.05, F=1.62 on 24, 169 DF), climate treatment and the climate x depth 

interaction term were not significant (P=0.24, F=1.21 on 24, 169 DF and P=0.22, F=1.24 on 24, 

169 DF, respectively) and the overall effects of drought were less apparent when examined on a 

trait-by-trait basis (Table 1). Before post-hoc correction for multiple comparisons, ANOVAs on 

individual traits revealed significant soil depth effects for total biomass, reproductive biomass, 

diameter, LDMC, maximum scape length, and respiration (Table 1). Trait values for these seven 

traits were lower in deeper sites with the exception of respiration, which was highest in deep 

soils. The only significant difference with respect to climate treatment was the number of scapes, 

which was higher in the drought treatment (Table 1). Individuals from the drought treatment also 

had higher reproductive allocation, although the difference was not significant (Table 1). There 

were no significant effects of climate treatment, soil depth, or their interaction when P values 

were adjusted for multiple comparisons when using Hochberg post-hoc test (Hochberg 1988).  

DISCUSSION 

The primary tradeoff in functional strategies for P. lanceolata involved vegetative versus 

reproductive allocation. High vegetative allocation (low PC1 scores) was associated with number 

of rosettes, erect growth habit, and plant size, consistent with a competitive strategy of 

maximizing vertical and lateral spread (Grime 1977). Individuals that allocated more to 

reproduction (high PC1 scores) had less total biomass, higher chlorophyll content, longer scapes 

and a later flowering phenology, consistent with a drought avoidance strategy. Similar to results 
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reported by Lacey et al. (2003) we found differences in flowering phenology associated with 

competitive and avoidance strategies which could increase the potential for within-population 

assortative mating and thus contribute to the maintenance of functional diversity within these 

local populations of P. lanceolata. The second axis of functional variation explained an 

equivalent amount of trait variation in P. lanceolata and reflected leaf-level tradeoffs associated 

with resource acquisition (high SLA, leaf nitrogen, Amax) and resource conservation (LDMC, leaf 

C:N) (Grime 1977, Reich et al. 2003, Diaz et al. 2004). The third axis of functional variation 

reflected tradeoffs associated with competitive functional strategies (high SLA, rosette number) 

and avoidance strategies (e.g., chlorophyll content, scape length), although variation along this 

axis was not associated with biomass allocation.  

Populations from drought treatments allocated significantly more to reproduction relative 

to control populations. Although depth was not associated with allocation per se, treatment-based 

functional differentiation along PC1 was only significant in populations from shallow and 

intermediate soil depth classes. Populations from deeper soils in both treatments had more 

centralized scores on PC1, suggesting intermediate allocation to both growth and reproduction. 

Depth effects were significant with respect to PC3 scores where deeper soils also promoted traits 

associated with competitive functional strategies (high SLA, rosette number), whereas 

populations from shallow soils shared suites of functional traits associated with an avoidance 

strategy (e.g., chlorophyll content, scape length).  

Although results suggest that competitive strategies are favored in both treatments in 

deeper soils, P. lanceolata abundance is much lower in deep soils of drought treatments (Fig. 

1b). Reduced abundance in deep soils is surprising given that deeper soils could ameliorate the 

effects of the drought treatment, and suggests population dynamics are also sensitive to biotic 
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processes, including competition, that vary locally along a soil depth gradient (Fridley et al. 

2011). Increased mortality in the deep sites of droughted plots suggests that species level shifts 

may preclude adaptive responses in more productive microsites, similar to results from 

experimental climate manipulations in more productive communities where species turnover 

occurs rapidly (Chapin et al. 1995, Harte and Shaw 1995, Grime et al. 2000, Zavaleta et al. 2003, 

Klein et al. 2007, Mikkelson et al. 2008).  

Evidence of functional differentiation associated with soil depth suggests that fine-scale 

substrate variation may be important in the maintenance of local functional diversity. Similar 

local population differentiation has been reported in Fumana thymifolia (Jump et al. 2009b), 

which may have contributed to the ability of this species to undergo rapid genetic change 

following 5 years of experimental drought and temperature manipulations (Jump et al. 2008). 

The existence of fine-scale heterogeneity in the BCCIL grassland may ultimate drive community 

stability in the face of climate change in two ways, by 1) allowing species-level shifts along the 

soil depth gradient as edaphic conditions like soil moisture change (Fridley et al. 2011), and 2) 

fostering local genetic diversity in some populations that in turn allows for population 

restructuring in response to new moisture conditions.  

Functional differentiation expressed when individuals from each population were grown 

in the non-stressed conditions of the greenhouse could be due to plasticity, in that differentiation 

expressed in the common greenhouse does not necessarily correspond to phenotypic differences 

among treatments at the BCCIL. If true, we would expect a plastic response would cause all 

individuals to develop more competitive phenotypes.  Instead, drought avoidance strategies were 

maintained in the common garden despite adequate water and nutrient supply. This suggests a 



 

 

40 

 

genetic basis for functional differentiation which is further supported by a related study using 

molecular markers (Ravenscroft et al., in preparation).  

Although not measured in this study, estimates of narrow-sense heritability in P. 

lanceolata for suites of traits measured here suggest low heritability of physiological traits 

(h2<0.03 for photosynthetic capacity, transpiration, and water use efficiency) but high additive 

genetic variability for leaf traits (average h2=0.45 for leaf length, width, area, and specific leaf 

weight; Wolff and Van Delden 1987, Tonsor and Goodnight 1997). Traits associated with plant 

size and resource allocation (diameter, number of rosettes, number of leaves, reproductive 

allocation) also show high heritability (average h2= 0.41; Tonsor and Goodnight 1997, Wolf and 

van Delden 1987). Furthermore, Wolff and Van Delden (1989) demonstrated rapid divergence in 

leaf angle in P. lanceolata following four generations of bidirectional artificial selection and 

found significant genetic correlations between angle and other functional traits including leaf 

morphology and biomass allocation.  

Taken together, our observations of differential population responses to drought 

compared to controls and past studies of heritability in P. lanceolata support the conclusion that 

the phenotypic differences expressed in the present common garden study are due to changes in 

gene frequencies in populations exposed to nearly two decades of chronic summer drought. 

Treatments at the BCCIL were of long duration in the context of the lifespan of P. lanceolata 

(lifespan 2-5 years, Cavers et al. 1980, Antonovics and Primacks 1982, Lacey and Herr 2000, 

Roach 2003), spanning 3- to 8 generations of P. lanceolata. The most parsimonious explanation 

for functional differentiation expressed in this common environment is that avoidance and 

competitive strategies offer different fitness benefits in contrasting climatic conditions as 

integrated over two decades of experimental climate manipulations. For example, 
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competitiveness is negatively associated with traits that confer avoidance of drought stress 

(Grime 1977, Reich et al. 2003, Diaz et al. 2004) and thus more ‘competitive’ individuals should 

have higher fitness in more productive conditions (e.g, control treatments and deeper depths). 

Given that populations expressed functional trait differences consistent with 'competitive' 

and 'drought avoidance' strategies recorded in the literature at the species level, and these 

differences could not be accounted for by plasticity because plants were grown under identical 

conditions, we find this result to be consistent with a mechanism of local adaptation as 

demonstrated in other species in response to temperature and moisture stress (Jump et al. 2006, 

Franks et al. 2011).  Nonetheless, we have no proof that these specific traits convey superior 

fitness under summer drought, nor can we entirely rule out the possibility of maternal effects, 

despite sampling mature individuals in the field and propagating crown tissue for 6 months in the 

greenhouse before re-propagating at the start of our study.  Thus, although we find the process of 

local adaptation to be the most parsimonious explanation for the results reported here, we cannot 

completely falsify alternative hypotheses in our study. A critical nest step in this research would 

be to follow the success of reciprocal transplants of P. lanceolata across climate treatments at the 

BCCIL.  

CONCLUSION  

In one of the first studies to investigate the importance of adaptive responses to climate 

change in a long-term climate manipulation, we show evidence of selection for different 

functional strategies in populations exposed to chronic summer drought expressed when plants of 

each population were grown under the same non-stressed conditions.  Furthermore, we show 

evidence of differentiation with respect to a soil depth gradient which suggests that abiotic 

heterogeneity can promote genetic diversity of functional relevance in the context of future 
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climate change. The trait syndromes represented in this population reflect functional strategies 

demonstrated at the species level (Grime 2002), and thus show similarities between the main 

axes of inter- and intra- specific functional variation. Although results suggest some populations 

may have the capacity to adapt to climate change and thus resist climate-induced local 

extirpation given adequate levels of genetic variation, this does not mean that these systems are 

inherently stable. In particular, barriers to dispersal limit the invasion of southerly species, which 

may over longer time scales cause species-level shifts even if extant populations are able to adapt 

to new environmental regimes (Moser et al. 2011). The likelihood of long-term population 

persistence in the face of new species immigration over the coming decades remains a key 

unresolved area in global change research.  
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Table 1: The 24 traits measured in the experiment with the expectation of their relative values under competitive, drought resistance, 

and drought avoidance plant strategies. Statistics are for each individual trait (mean, maximum, minimum), calculated using all 

experimental individuals. In all cases the adjusted P value (Hochberg post-hoc test) was greater than 0.1. Responses to treatment, soil 

depth, and their interaction on unadjusted values are denoted ** P <0.05,  * P <0.1. Experimental block effects (BCCIL and 

greenhouse) were not significant. Leaf Angle (1: <10°, 2: 10-25°, 3: 25-45°, 4: >45°); AQY: Apparent Quantum Yield; Amax: 

Maximum Photosynthetic capacity 

  Competitive Tolerance Avoidance   Mean Min Max   
Biomass 
Total Biomass (g) High Low Low 13.85 2.74 21.90 depth** 
 
Biomass - veg. (g) High Low Low 6.18 1.52 15.10 treat* 
 
Biomass - rep. (g) Low Low High 7.67 0.14 13.42 depth** 
 
Rep. allocation (rep/tb) Low Low High 0.56 0.01 0.78 treat *, treat x depth * 
 
Veg. allocation (veg/tb) High High Low 0.44 0.22 0.99 treat *, treat x depth * 

Morphological 
 
Diameter (cm) High Low Low 29.80 12.00 41.00 depth ** 
 
Leaf angle  High Low Low 1.52 1.00 4.00 treat * 
 
Leaf emergence  High Low High 0.55 0.00 1.50 
 
Number of Rosettes High Low 2.18 1.00 6.00 treat * 
 
Number of Scapes  Low Low High 34.04 1.00 80.00 treat ** 
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Scape length (cm) Low Low High 29.44 2.50 57.50 depth ** 

Phenology 
 
Week of first flower Late Late Early 1.78 1.00 5.00 

Leaf traits 
 
SLA (cm2/gram) High Low 128.38 74.45 262.53 
 
LDMC (mg/g) Low High Low 162.95 107.26 214.74 depth**  
 
Leaf length (mm) High Low 10.33 7.47 14.43 
Leaf area (cm2) High Low 8.10 3.58 16.21 depth * 
 
Chlorophyll/cm2 High Low High 66.64 17.60 163.37 
 
Chlorophyll/gm High Low High 8459.26 2162.13 20360.50 
 
Carbon:Nitrogen Low High Low 19.25 9.88 29.69 
 
Nitrogen High Low High 2.25 1.39 5.08 treat x depth * 

Photosynthetic  
 
Dark Respiration High Low Medium 3.38 0.29 18.84 depth ** 
 
Amax High Low High 12.06 3.12 22.00 
 
AQY High Low High 0.05 0.01 0.29 
 
Water Use Efficiency Low High Low  2.03 0.52 5.06  
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Table 2: Trait loadings on first three principal components 

  PC1   PC2   PC3 
 
Biomass - vegetative (g) -0.44 Carbon:Nitrogen -0.36 Number of Scapes  -0.22 
 
Vegetative allocation  -0.42 Biomass- reproductive (g) -0.35 SLA (cm2/gram) -0.20 
 
Number of Rosettes -0.34 LDMC (mg/g) -0.30 Number of Rosettes -0.17 
 
angle -0.29 Total Biomass (g) -0.25 angle  -0.07 
 
Total Biomass (g) -0.29 Maximum scape length -0.24 Leaf emergence (# leaves/day) -0.05 
 
Diameter (cm) -0.17 Number of Scapes  -0.19 Dark Respiration -0.03 
 
Leaf length (mm) -0.14 Reproductive allocation (rep/tb) -0.18 Vegetative allocation (veg/tb) -0.01 
 
LDMC (mg/g) -0.14 Week of first flower -0.13 Reproductive allocation (rep/tb) 0.01 
 
Carbon:Nitrogen -0.08 Diameter (cm) -0.09 Carbon:Nitrogen 0.01 
 
SLA (cm2/gram) -0.07 Biomass - vegetative (g) -0.08 N 0.02 
 
Water Use Efficiency -0.07 Number of Rosettes -0.02 Week of first flower 0.04 
 
Leaf area (cm2) -0.07 Leaf area (cm2) 0.02 Apparent Quantum Yield 0.06 
 
Number of Scapes  -0.02 Leaf emergence (# leaves/day) 0.03 LDMC (mg/g) 0.09 
Apparent Quantum Yield 0.01 angle  0.04 Biomass - vegetative (g) 0.10 
 
Dark Respiration 0.02 Dark Respiration 0.04 Biomass- reproductive (g) 0.10 
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Amax 0.04 Leaf length (mm) 0.11 Water Use Efficiency 0.11 
 
N 0.05 Chlorophyll/cm2 0.11 Amax 0.13 
 
Biomass- reproductive (g) 0.06 Water Use Efficiency 0.17 Total Biomass (g) 0.13 
 
Leaf emergence (# leaves/day) 0.07 Vegetative allocation (veg/tb) 0.18 Maximum scape length 0.27 
 
Maximum scape length 0.11 Amax 0.20 Chlorophyll/gm 0.32 
 
Chlorophyll/gm 0.12 Apparent Quantum Yield 0.21 Leaf length (mm) 0.37 
 
Week of first flower 0.13 Chlorophyll/gm 0.24 Leaf area (cm2) 0.38 
 
Chlorophyll/cm2 0.15 SLA (cm2/gram) 0.30 Diameter (cm) 0.40 
 
Reproductive allocation  0.42 N 0.33 Chlorophyll/cm2 0.41 
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FIGURE  LEGENDS 

Fig. 1. Abundance of Plantago lanceolata in drought (black) and control (grey) treatments at 

BCCIL from 1994-2009. A) Point hits of P. lanceolata in 9 m2 plots (five replicate blocks per a 

climate treatment). Dashed lines represent ± standard error. B) P. lanceolata abundance across a 

soil-depth gradient in 2008. Fitted line and standard error from generalized additive model 

(GAM) of P. lanceolata abundance (cover class) with respect to soil depth in control and drought 

treatments.   

Fig 2. Principal component scores (axes 1-3) with respect to the interaction of climate treatments 

and soil depth class. Four traits with the highest loadings (both positive and negative) are listed 

below the associated graph of component scores, with the highest eigenvector score placed 

closest to the axis. Arrows are scaled to the absolute difference between eigenvector scores and 

length reflects the relative weight of each trait loading. Eigenvector scores for all traits are in 

Table 2. Significant differences with respect to climate and soil depth (ANOVA) are listed in the 

title of each panel (** P<0.05, * P<0.1). Experimental block was not significant. Results from 

multiple ANOVA comparisons are summarized by letters on the graph, different letters indicate 

a significant difference (P <0.05). 
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Fig. 2 
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ABSTRACT 

Evidence of both local adaptation and rapid evolution in response to contemporary 

climate change suggests that local genetic diversity can be an important mechanism of species 

resistance to climate change. Here we used amplified fragment length polymorphisms (AFLPs) 

to detect signatures of selection in populations of Plantago lanceolata subjected to long-term 

experimental climate manipulations (warming, summer drought, increased precipitation, and 

factorial combinations of heating with both drought and increased precipitation) in an intact 

calcareous grassland system. Climate treatments were replicated five times in a randomized 

block design. The replicated design offered a powerful means of distinguishing between 

population structure generated by stochastic processes (e.g., drift and differential gene flow), 

versus treatment based selection that would generate parallel divergence patterns in replicate 

control-treatment contrasts. We detected minor, but significant amounts of treatment-based 

genetic structure (3%), supporting the hypothesis that P. lanceolata populations have adapted to 

long term experimental manipulations through local genetic restructuring. Evidence of treatment 

based selection was most pronounced in precipitation manipulation treatments (drought and 

increased rainfall, including factorial combinations with heating), suggesting that genetic 

differentiation in P. lanceolata was associated with treatment based differences in soil water 

supply. Parallel divergence patterns in replicated pairwise control-treatment contrasts strongly 

suggest local adaptation in response to treatment based differences and such a pattern would be 

unlikely to arise due stochastic processes such as genetic drift.   
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INTRODUCTION 

Climate change is expected to impose strong directional selection pressures on plant 

populations (Davis and Shaw, 2001, Davis et al., 2005, Jump and Penuelas, 2005, Bradshaw and 

Holzapfel 2006, Reusch and Wood 2007, Anderson et al. 2012). Evidence of fine-scale adaptive 

differentiation despite high levels of gene flow has been reported for many plant species (e.g., 

Owuor et al. 1997, Li et al. 1999, Skøt et al. 2002, Jump and Peñuelas 2005, Kölliker et al. 2008, 

Jump et al. 2009b, Manel et al. 2010, Parisod and Christin 2008, Vega-Vela 2012). Selection on 

extant genetic variation is considered to be a primary mechanism by which populations adapt in-

situ to rapid environmental changes (Hoffman and Willi 2008, Jump and Penuelas 2009a). It is 

the ‘option value’ of genetic diversity (Jump and Penuelas 2009b) that makes it such an 

important component of species potential resistance to climate change (Reusch et al. 2005, 

Jump and Penuelas 2005, Reusch and Wood 2007, Gienapp et al. 2008, Hoffmann and Willi 

2008, Jump et al. 2009b).  

Gradients in variables known to be selective agents for plant species, such as temperature 

and water availability, occur at nested spatial and temporal scales (Delcourt and Delcourt 1988) 

and thus could promote hierarchical partitioning of genetic diversity. Differentiation across 

gradients of temperature and water availability over landscape scales (<10 m - 1 km) have been 

reported for several species of grasses (Hamrick & Allard 1972, Hamrick & Holden 1979, 

Owuor et al. 1997, Li et al. 1999) and local differentiation mirrors patterns found at range wide 

scales (Hamrick & Allard 1972, Hamrick & Holden 1979). Local genetic diversity can be 

promoted and maintained by strong selection pressures that occur over very fine spatial scales 

(Linhart and Grant, 1996). Interannual variation in temperature promotes microgeographical 

genetic differentiation in Betula pendula (European white birch) (Kelly et al. 2003) and rising 
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temperatures have cause rapid adaptive differentiation in Fagus sylvatica (Jump et al. 2006). 

Moisture stress is considered to be the primary driver promoting microgeographical adaptive 

differentiation in several conifer species with local patterns repeated at range wide scales 

(reviewed in Jump et al. 2005). Drought has led to the rapid evolution of drought avoidance 

strategy in the annual plant Brassica rapa (Franks et al. 2011). Recent evidence suggests 

significant local (<500 m2) population differentiation in Fumana thymifolia (Jump et al. 2009b). 

Such fine scale genetic structure may have contributed to the ability of this species to undergo 

rapid genetic change following 5 years of experimental drought and temperature manipulations 

(Jump et al. 2008).  

The Buxton Climate Change Impacts (BCCIL) study is an experimental manipulation of 

temperature and precipitation (Figure 1) in an intact limestone grassland community in northern 

England. Established in 1992, it is among the longest running experimental climate 

manipulations in the world. Community composition has remained relatively stable in all 

experimental treatments (Grime et al. 2000, 2008). Such stability is rare; the majority of 

experimental climate manipulations studies report rapid community and ecosystem responses 

(e.g., Harte and Shaw 1995, Grime et al. 2000, Zavaleta et al. 2003, Evans et al. 2011). Genetic 

restructuring has been hypothesized as one potential mechanism in the apparent resistance of this 

grassland community to long-term climate manipulations (Grime et al. 2008).  

The potential for local adaptation to buffer species from climate change is likely to be 

highest under circumstances where there is high local genetic diversity and species-level changes 

are restricted due to dispersal limitation (Davis et al. 1986). The invasion of southerly species, 

considered to be “pre-adapted” to warmer and drier conditions in experimental treatments at 

BCCIL, is limited by barriers to dispersal (Moser et al. 2011). Furthermore, high  local (<10m) 
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phenotypic variation with a genetic basis has been documented in several species common in this 

system (Booth and Grime 2003, Fridley et al. 2007,  Whitlock et al. 2007, Bilton et al. 2010, 

Whitlock et al. 2010).  A recent common garden study on one of the most common herbaceous 

species at BCCIL, Plantago lanceolata, suggests a genetic basis for functional differentiation in 

experimental drought treatments (Ravenscroft et al. 2013) and differentiation with respect to 

fine-scale variation in the edaphic environment 

In this study we used amplified fragment length polymorphisms (AFLPs) to test for 

genetic differentiation in populations of P. lanceolata exposed to over 15 years of experimental 

climate manipulations (warming, summer drought, increased precipitation and factorial 

combinations of heating with both drought and increased precipitation) at BCCIL (Figure 1). 

AFLPs are a PCR-based technique for detecting polymorphisms in DNA that offer several 

advantages over other molecular techniques, including their relatively low cost and ability to 

analyze many loci scattered throughout the genome (Vos et al. 1995, Meudt and Clarke 2007). 

AFLPs are particularly useful for non-model species because the method does not require prior 

knowledge of a species’ genome. Therefore, AFLPs are commonly utilized in investigations of 

the genotypic structure in plant populations (e.g. Escaravage et al.1998, Suyama et al. 2000, 

Douhovnikoff et al. 2004,  Jump et al. 2006, 2008, 2009b, Dlugosh et al. 2007, Avolio et al. 

2011, 2012).  

Population genetic structure is shaped simultaneously by gene flow, drift, and selection 

(Lenormand, 2002, Latta, 2003). The replicated block design of the experimental treatments at 

BCCIL (Figure 1) offers a powerful means of analyzing the relative contribution of stochastic 

processes (e.g., drift and differential gene flow) versus treatment based selection on population 

genetic structure (Nosil et al. 2008). We used multivariate methods to test for evidence of 
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parallel divergence in treatment-control contrasts across the five experimental blocks at BCCIL 

(Figure 1). Differentiation associated with stochastic processes such as drift should generate 

strong but stochastic spatial structure among experimental blocks. Parallel divergence across 

multiple treatment pairs that are separated spatially would suggest selection imposed by climate 

treatment and such a pattern is unlikely to arise due to type I error or genetic drift (Bonin et al. 

2007, Nosil et al. 2008). 

Focal species 

Plantago lanceolata is a rosette-forming, perennial herb of wide-ranging distribution, and 

one of the more common forbs at BCCIL. P. lanceolata is self-incompatible and wind pollinated, 

displays substantial local genetic differentiation (Bos et al. 1986), and has distinct genetically 

determined phenotypes both at regional and fine scales (Primack and Antonovics 1982, 

Teramura 1983, van Tienderen 1992, Tonsor and Goodnight 1997, Wolf and van Delden 1987, 

1989). Recent work documents genetic differentiation in P. lanceolata populations exposed to 

elevated ozone and suggests high local diversity allowed populations to respond to abiotic 

perturbations by genetic restructuring (Kölliker et al. 2008). 

Annual simulated short turf grazing in all plots at BCCIL has increased P. lanceolata 

abundance in all experimental treatments (Figure 2a). P. lanceolata abundance decreased below 

controls in all treatments following the onset of the experiment and abundance in drought and 

watered plots was consistently lower than controls from 1998-2003, suggesting a selection event 

imposed by changes in precipitation regimes and a population recovery time of about 11-13 

years (Fig. 2a). Treatment differences are more pronounced at deeper soil depths (Figure 2b). P. 

lanceolata has generally responded favorably to warming treatments (Figure 2a), and its 

abundance is positively correlated with soil depth, except in both water addition treatments 
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where there is a negative relationship between abundance and soil depth (Fridley et al. 2011), 

which is driven mainly by the decrease in P. lanceolata abundance in deeper soils in these two 

treatments (Figure 2b).  

METHODS 

The Buxton Climate Change Impacts (BCCIL) study is composed of six treatments: 1) 

Winter warming where soil surface is maintained at 3° C above ambient annually from 

November-April; 2) drought treatments where rainfall in July and August is intercepted by 

automated rainout shelters; 3) water addition where water is added to experimental plots from 

June-September at a rate of 20% above the long-term average; 4) warming and drought 

(heated/drought); 5) warming and increased precipitation (heated/watered); 6) Control. 

Experimental plots (3 x 3 m) are replicated five times in a randomized block design (Figure 1). 

For more details on the experimental design at BCCIL see Grime et al. 2000, 2008. 

Tissue samples of P. lanceolata were collected in 30 experimental plots in the six climate 

treatments (Control, Drought, Heated, Watered, Heated x Watered, Heated x Drought) at BCCIL 

in June of 2009.  In each plot sampling was stratified to include three individuals from four soil-

depth classes, (0-3 cm, 6-12 cm, 13-20 cm, >21 cm), hereafter called ‘microsites’. A total of 12 

samples per plot, 60 samples per climate treatment and 15 samples per microsite treatment 

combination were collected. For each individual a leaf tissue sample was stored in silica gel for 

genetic analysis. Replicate samples were collected from 40 randomly selected individuals for 

estimates of genotyping error (see below).   

Lab protocols for DNA extraction from leaf tissue samples and subsequent AFLP 

analysis followed that of Whitlock et al. (2008a) with the following modifications. We used a 

plate centrifuge for DNA elution steps 1-4 described in Whitlock et al. (2008a). Pre-selective 
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PCR amplification products were diluted to a factor of 1:12 and 1 µL of this diluted product was 

used as a template for selective amplification. No formamide was added to the selective 

amplification mixture and selective amplification products were diluted by a factor of 1:25. 

Fragment analysis was run on 1 µL of diluted PCR product and 9 µL of size standard mix which 

contained 5 µL ROX size standard (Applied Biosystems), 2 µL of ABI ROX 585 size standard 

(to increase read length) (Applied Biosystems), 1 ml ABI HiDi formamide (Applied Biosystems) 

using an ABI 3730 Genetic Analyzer. These modifications produced the most consistent and 

clear AFLP profiles based on test runs using 48 individuals. Eight primer combinations were 

selected from a test panel of 32 based on clarity of the AFLP profiles and evidence of 

polymorphic loci using this same random subset of 48 samples, with a target of 200-300 total 

polymorphic loci (Table 1). Sample positions were randomized across four 96-well plates, and 

each plate included two positive (leaf material from the same individual) and two negative (blank 

sample with no leaf material added). Replicate tissue samples (40) were run on a separate plate.  

AFLP chromatograms were analyzed using the software GENEMAPPER version 3.0 

(Applied Biosystems). Sizing quality was checked manually for each fingerprint and samples 

with size standards of insufficient quality were rejected from the analysis. Bins were created 

automatically in GENEMAPPER. Bin positions were checked manually to ensure positions had 

been assigned correctly. Bins that were off center were manually adjusted to center on peaks. 

Bins that included large discontinuous fragments and bins that included fragments that were 

continuous with other bins were rejected from the analysis because of potential size homoplasy. 

Weak fingerprints with low peak height or short read length were rejected. Fingerprints that 

contributed many unique peaks were rejected from the analysis as this could be a result of 

contamination. Peak height data for each individual were exported from GENEMAPPER and 
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genotypes were scored using a semi-automated method of genotyping AFLPs that excludes loci 

that contribute to high rates of error (AFLP-Score, Whitlock et al. 2008b). Of the 406 original 

loci identified, 270 polymorphic loci (ranging from 50-585 bp in length) were retained. The error 

rate over all retained loci was 4.6%, well within the range of errors reported in other studies that 

used automatic scoring methods (Meudt and Clarke 2007). One primer combination (TGA-CCC) 

had an unusually high error rate (30%) and was excluded from analyses. Peak height data for the 

270 polymorphic AFLP loci were scored to create a presence-absence matrix for all sampled 

individuals. 

Analysis 

Subsequent analyses were conducted on 249 loci that met a maximum allowable allele 

frequency threshold of 95% across all experimental individuals (21 loci removed). Allele 

frequencies were calculated in GenAlEx 6.4 (Peakall and Smouse 2012). We used three 

complementary multivariate approaches to test for significant evidence of selection in P. 

lancoleata populations exposed to experimental treatments. Multivariate statistical techniques 

have been widely applied in studies of local adaptation in natural environments (Storfer et al. 

2010) and are particularly well suited for studies of population genetic structure because these 

techniques do not require any assumptions of genetic models (e.g., Hardy-Weinberg equilibrium) 

(Meudt and Clarke 2007, Parisod and Christin 2008).  

Multivariate analyses were conducted on a genetic distance matrix using allele presence 

absence data for the 249 loci that met the maximum allele frequency threshold of 95%. We 

conducted multivariate analyses using jaccard and euclidean distance metrics (R packages: vegan 

1.17-4, labdsv 2.13.2). Euclidean distance places more weight on shared presences than shared 

absences and the jaccard distance metric puts more weight on shared absences (Legendre and 
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Legendre, 1998), which are common in dominant markers such as AFLPs. Results were 

consistent using alternative distance measures so we present results using euclidean distance.  

We used analysis of molecular variance (AMOVA) (Excoffier, Smouse, and Quattro, 

1992) to partition total molecular variance (including all experimental individuals) among 

experimental blocks, among treatments, among soil depth classes, and within treatments using 

the program GenAlEx (Peakall and Smouse 2012). We tested for significant effects of 

experimental treatments using a permutational analysis of variance (Legendre and Anderson 

1999), implemented in the R vegan library using the function ‘adonis’(R package vegan 1.17-4). 

Permutational analysis of variance is analogous to redundancy analysis (Legendre and Anderson 

1999) and an extension of the AMOVA which permits analysis of nested factors by restricting 

permutational randomizations of individuals to different ‘strata’ (experimental blocks). We ran 

individual permutational AMOVAs for each pairwise control-treatment contrast. Finally, to 

visualize genetic relationships among individuals we used PCoA (Principal Coordinates 

Analysis), which identifies axes of variation that explain the most genetic dissimilarity among 

individuals. We extracted individual scores on the first two PCoA axes and used Analysis of 

Variance (ANOVA) to test for significant effects of block, treatment and their interaction. For 

each block we calculated mean scores on PCoA axis 1 and 2 for each treatment x block 

combination (i.e., 5 per treatment). We used these means to determine if there was evidence of 

consistent directional change in treatments relative to controls. 

  

RESULTS 

Results from the AMOVA including all experimental treatments indicate minor but 

significant genetic differentiation among climate treatments (3%) and among experimental 
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blocks (5%) (Table 2). The majority of genetic variance was within individual plots (90%) and 

thus unstructured with respect to experimental treatments and experimental block (Table 2). A 

large amount of unstructured variance was expected given that loci in fingerprinting techniques 

such as AFLPs largely represent neutral regions of the genome (Bonin et al. 2007). Soil depth 

was not a significant predictor of genetic distance when all treatments were included in the 

analysis (Table 2). Individual pairwise treatment-control comparisons (stratified by experimental 

block, with 5 replicate comparisons per a treatment-control contrast) revealed significant genetic 

differentiation in drought, watered, heated/drought and heated/watered treatments relative to 

controls and no evidence of significant differentiation in heated-control contrasts (Table 3). We 

found evidence of genetic differentiation with respect to soil depth class only in heated/watered-

control treatment comparisons (Table 3).  

PCoA axis one (PC1) and PCoA axis two (PC2) scores explained 22% and 19% of the 

total genetic variation, respectively. We found significant differences in PC1 and PC2 scores 

with respect to treatment, block and their interaction when all experimental treatments were 

included in the analysis (Table 4). ANOVA results from pairwise treatment-control contrasts 

revealed significant differentiation between watered, heated/drought and heated/watered 

treatments relative to controls, although genetic differentiation between heated/watered and 

control treatments was marginally insignificant when p-values were corrected for multiple 

comparisons (Table 4). PC2 scores were significantly different in drought-control and 

heated/water-control comparisons, although adjusted p-values were marginally insignificant in 

drought-control contrasts (Table 4). The first major axis of genetic differentiation separated 

watered, heated/drought and heated treatments from experimental controls (Figure 3). Stochastic 

processes were primarily responsible for variation in on the first PCoA axis, where drift or 
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recruitment in experimental C block caused genetic differentiation in heated, watered and 

heated/drought experimental treatments (Figure 3). Drought, control and heated/watered 

treatments show relatively minor variation along the first PCoA axis and are almost entirely 

differentiated on the second PCoA axis.  

 

DISCUSSION 

Our results indicate a small but significant amount of treatment-based genetic structure 

which supports the hypothesis that P. lanceolata populations have adapted to long term 

experimental manipulations at BCCIL through local genetic restructuring. Evidence of treatment 

based selection was most pronounced in precipitation manipulation treatments (drought and 

increased rainfall treatments, including factorial combinations of both with heating). Such a 

result suggests that P. lanceolata is particularly sensitive to gradients in soil water supply 

imposed by drought and increased precipitation manipulations, which in turn can be modulated 

by increased demand in temperature manipulations. Similar levels of treatment based local 

genetic structure have been reported in P. lanceolata populations exposed to experimental 

manipulations of elevated ozone (Kölliker et al. 2008), in populations of Andropogon gerardii 

exposed to variable precipitation regimes (Avolio et al. 2012) and in Fumana thymifolia 

populations exposed to six years of experimental drought and warming treatments (Jump et al. 

2008). Our results show a genetic signature of reduced survival and recruitment in deeper soils in 

the heated/watered treatments (Fridley et al. 2011) (Figure 2b, Table 3).   

To our knowledge this is the first study that investigates local genetic differentiation 

using replicated pairwise treatment contrasts. The block design offers a powerful means of 

distinguishing between population structure generated by stochastic processes (e.g., drift and 
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differential gene flow) versus structure generated by selection (Bonin et al. 2007, Gienapp et al. 

2008, Nosil et al. 2008). Differentiation in stochastic processes such a drift and gene flow 

generated strong but stochastic spatial genetic structure whereas treatment based selection 

generated parallel divergence patterns in replicate control-treatment pairwise contrasts (5 

replicates). Although associations between genetic and environmental heterogeneity do not 

necessarily imply causality, parallel divergence patterns in replicated pairwise control-treatment 

contrasts strongly suggest local adaptation in response to treatment based differences in soil 

water supply and demand; such a pattern would be unlikely to arise due to type I error or genetic 

drift (Bonin et al. 2007, Nosil et al. 2008).  

Results from the permutational analysis of variance suggest parallel divergence patterns 

in all experimental treatments except heating. However, inspection of the distribution of 

experimental block along the first two PCoA axes indicated large divergence in watered, 

heated/drought and heated plots relative to controls. These three experimental treatments occupy 

the largest amount of space on the first two PCoA axes, perhaps indicating higher genetic 

diversity in these treatments relative to control, drought and heated/watered.  Treatment 

differences were also evident along the second PCoA axis, where heated/watered, control and 

drought treatments showed the most differentiation. Both experimental treatments (drought, 

heated/watered) occupy a relatively restricted amount of space, perhaps indicating reduced 

genetic diversity in these experimental treatments. In general, the primary axis of variation as 

detected by the PCoA seems to reflect stochastic processes such as random recruitment or drift 

that have caused differentiation in block C. Discrepancies between the PCoA results and those of 

the permutational analysis of variance are likely due to the fact that the first two PCoA axes 

explained only 41% of genetic variation. Therefore, it is possible that treatment based 
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directionality is obscured by differentiation associated with stochastic processes such as gene 

flow and drift.  

Population genetic structure is shaped simultaneously by gene flow, drift, and selection 

(Lenormand, 2002, Latta, 2003). Evidence of treatment based genetic structure was surprising 

given that individuals were sampled from a continuous population over very small extent (30 9 

m2 plots, or a total of 270 m2) and gene flow was expected to homogenize the distribution of 

genetic variation, especially in a wind dispersed obligate outcrosser such as P. lanceolata. 

Divergent selection can drive the simultaneous evolution of reproductive isolation (Muller 1942, 

Mayr 1947, Schluter and Nagel 1995, Schluter 2000), which would reduce gene flow between 

populations from contrasting habitat types (Nosil et al. 2005). Divergent selection would be 

favored particularly in cases where regeneration success is lower in non-native environments 

(Nosil et al., 2005).  Phenological divergence is considered to be the most straightforward 

mechanism by which local divergence can be maintained in continuous plant populations (Fox, 

2003, Hendry & Day, 2005). Asynchronous flowering could restrict gene flow between 

individuals growing in contrasting climate conditions and thus may have contributed to the 

maintenance of local genetic structure in populations of P. lanceolata (Fox 2003, Hendry & Day, 

2005). Flowering time divergence is important to the maintenance of locally adapted 

subpopulations in continuous population of B. laevigata (Parisod et al. 2008). Recent work 

suggests high local variance in regenerative traits in populations of P. lanceolata (Ravenscroft 

and Fridley 2013) which could be associated with different establishment strategies which are 

maintained by differences in flowering phenology in this species (Lacey et al.2003).  

 

 



 

70 

 

REFERENCES 

Anderson, JT, Panetta AM, Mitchell-Olds T (2012) Evolutionary and ecological responses to 

anthropogenic climate change. Plant Physiology, 160, 1728-1740.  

Avolio ML, Beaulieu JM, Smith MD (2012) Genetic diversity of a dominant C(4) grass is altered 

with increased precipitation variability. Oecologia, 171, 571–581. 

Avolio ML, Chang CC, Smith MD (2011) Assessing fine-scale genotypic structure of a 

dominant species in native grasslands. The American Midland Naturalist, 165, 1-8. 

Bilton MC, Whitlock R, Grime JP, Marion G, Pakeman RJ (2010) Intraspecific trait variation in 

grassland plant species reveals fine-scale strategy trade-offs and size differentiation that 

underpins performance in ecological communities. Botany, 88, 939–952. 

Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length 

polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular 

Ecology, 16, 3737–3758. 

Booth RE, Grime JP (2003) Effects of genetic impoverishment on plant community diversity. 

Journal of Ecology, 91, 721–730. 

Bos M, Harmens H (1986) Gene flow in Plantago I. Gene flow and neighbourhood size in P. 

lanceolata. Heredity, 56, 43-54.  

Bradshaw W, Holzapfel C (2006) Evolutionary response to rapid climate change. Science, 312, 

1477–1478. 

Davis MB, Woods KD, Webb SL, Futyma RP (1986) Dispersal versus climate: expansion of 

Fagus and Tsuga into the Upper Great Lakes Region. Vegetatio, 67, 93–103. 

Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. 

Science, 292, 673–679. 



 

71 

 

Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climates. Ecology, 

86, 1704–1714. 

Delcourt HR, Delcourt PA (1988) Quaternary landscape ecology: Relevant scales in space and 

time. Landscape Ecology, 2, 23–44. 

Dlugosch KM, Parker IM (2007) Molecular and quantitative trait variation across the native 

range of the invasive species Hypericum canariense: evidence for ancient patterns of 

colonization via pre-adaptation? Molecular Ecology, 16, 4269–83. 

Douhovnikoff V, Cheng AM, Dodd RS (2004) Incidence, size and spatial structure of clones in 

second-growth stands of coast redwood, Sequoia sempervirens. American Journal of 

Botany, 91, 1140–1146. 

Escaravage N, Questiau S, Pornon A, Doche B, Taberlet P (1998) Clonal diversity in a 

Rhododendron ferrugineum L. (Ericaceae) population inferred from AFLP markers. 

Molecular Ecology, 7, 975-982. 

Evans SE, Byrne KM, Lauenroth WK, Burke IC (2011) Defining the limit to resistance in a 

drought-tolerant grassland: long-term severe drought significantly reduces the dominant 

species and increases ruderals. Journal of Ecology, 99, 1500–1507. 

Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric 

distances among DNA haplotypes: application to human mitochondrial DNA restriction 

data. Genetics, 131, 479-491. 

Fox GA (2003) Assortative mating and plant phenology: evolutionary and practical 

consequences. Evolutionary Ecology Research, 5,1-18. 

Franks, SJ (2011) Plasticity and evolution in drought avoidance and escape in the annual plant 

Brassica rapa. The New Phytologist, 190, 249-257.  



 

72 

 

Fridley JD, Grime JP, Askew AP, Moser B, Stevens CJ (2011) Soil heterogeneity buffers 

community response to climate change in species-rich grassland. Global Change Biology, 

17, 2002–2011. 

Fridley JD, Grime JP, Bilton M (2007) Genetic identity of interspecific neighbours mediates 

plant responses to competition and environmental variation in a species-rich grassland. 

Journal of Ecology, 98, 908–915. 

Gienapp P, Teplitsky C, Alho JS, Mills J a, Merilä J (2008) Climate change and evolution: 

disentangling environmental and genetic responses. Molecular ecology, 17, 167–78. 

Grime JP, Brown VK, Thompson K et al. (2000) The response of two contrasting limestone 

grasslands to simulated climate change. Science, 289, 762–765. 

Grime JP, Fridley JD, Askew AP et al. (2008) Long-term resistance to simulated climate change 

in an infertile grassland. Proceedings of the National Academy of Sciences of the United 

States of America, 105, 10028–10032. 

Hamrick JL, Allard RW (1972) Microgeographical Variation in Allozyme Frequencies in Avena 

barbata. Proceedings of the National Academy of Sciences of the United States of America, 

69, 2100–2104. 

Hamrick JL, Holder LR (1979) Influence of Microhabitat Heterogeneity on Gene Frequency 

Distribution and Gametic Phase Disequilibrium in Avena barbata. Evolution, 33, 521–533. 

Harte J, Shaw R (1995) Experiment shifting dominance within a montane vegetation 

community : results of a climate-warming experiment. Science, 267, 876–880. 

Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by 

time and adaptation by time. Molecular Ecology, 14, 901-916. 



 

73 

 

Hoffmann A, Willi Y (2008) Detecting genetic responses to environmental change. Nature 

reviews. Genetics, 9, 421-432. 

Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid 

climate change. Ecology Letters, 8, 1010–1020. 

Jump AS, Hunt JM, Martínez-Izquierdo J, Peñuelas J (2006) Natural selection and climate 

change: temperature-linked spatial and temporal trends in gene frequency in Fagus 

sylvatica. Molecular Ecology, 15, 3469–80. 

Jump AS, Peñuelas J, Rico L et al. (2008) Simulated climate change provokes rapid genetic 

change in the Mediterranean shrub Fumana thymifolia. Global Change Biology, 14, 637–

643. 

Jump AS, Marchant R, Peñuelas J (2009a) Environmental change and the option value of genetic 

diversity. Trends in Plant Science, 14, 51–8. 

Jump AS, Rico L, Lloret F, Peñuelas J (2009) Microspatial population genetic structure of the 

Mediterranean shrub Fumana thymifolia. Plant Biology, 11, 152–60. 

Kelly CK, W CM, Fay MF, Ian WF (2003) Temperature-based population segregation in birch. 

Ecology Letters, 6, 87–89. 

Kölliker R, Bassin S, Schneider D, Widmer F, Fuhrer J (2008) Elevated ozone affects the genetic 

composition of Plantago lanceolata L. populations. Environmental pollution, 152, 380–6. 

Lacey EP, Roach DA, Herr D, Kincaid S, Perrott R (2003) Multigenerational effects of flowering 

and fruiting phenology in Plantago lanceolata. Ecology, 84, 2462-2475. 

Latta RG (2003) Gene flow, adaptive population divergence and comparative population 

structure across loci. New Phytologist, 161, 51-58. 



 

74 

 

Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multi-species 

responses in multifactorial ecological experiments. Ecological Monographs, 69, 1-24. 

Legendre P, Legendre L (1998) Numerical Ecology. Developments in Environmental Modeling. 

Elsevier, Amsterdam.  

Lenormand T (2002) Gene flow and the limits to natural selection. Trends in Ecology & 

Evolution, 17, 183-189. 

Li YC, Fahima T, Beiles A, Korol AB, Nevo E (1999) Microclimatic stress and adaptive DNA 

differentiation in wild emmer wheat, Triticum dicoccoides. Theoretical and Applied 

Genetics, 98, 873-883. 

Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. 

Annual Review of Ecology and Systematics, 27, 237–277. 

Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive 

adaptive genetic variation at different spatial scales in Arabis alpina. Molecular Ecology, 

19, 3824–35. 

Mayr E (1947) Ecological factors in speciation. Evolution,1, 263-288. 

Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses 

and advances. Trends in plant science, 12, 106–17. 

Moser B, Fridley JD, Askew AP, Grime JP (2011) Simulated migration in a long-term climate 

change experiment: invasions impeded by dispersal limitation, not biotic resistance. Journal 

of Ecology, 99, 1229–1236. 

Muller HJ (1942) Isolating mechanisms, evolution and temperature. Biological Symposia, 6, 71-

125. 



 

75 

 

Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural 

selection against immigrants from divergent habitats. Evolution 59, 705-719. 

Nosil P, Egan SP, Funk DJ (2008) Heterogeneous genomic differentiation between walking-stick 

ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution, 62, 

316–36. 

Owuor ED, Fahima T, Beiles A, Korol A (1997) Population genetic response to microsite 

ecological stress in wild barley, Hordeum spontaneum. Molecular Ecology, 6, 1177–1187. 

Parisod C, Christin PA (2008) Genome-wide association to fine-scale ecological heterogeneity 

within a continuous population of Biscutella laevigata (Brassicaceae). The New phytologist, 

178, 436–47. 

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic 

software for teaching and research-an update. Bioinformatics, 28, 2537-2539. 

Primack RB, Antonovics J (1982) Experimental ecological genetics in Plantago. VII. 

reproductive effort in populations of P. lanceolata L. Evolution, 36, 742-752. 

Ravenscroft CH, Fridley JD (2013). Intraspecific plant trait variation in a heterogeneous 

landscape: population response to fine-scale soil moisture gradients. In preparation. 

Ravenscroft CH, Fridley JD, Grime JP (2013) Local adaptation to long-term climate change in a 

calcareous grassland. In preparation. 

Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic 

extremes enhanced by genotypic diversity. Proceedings of the National Academy of 

Sciences of the United States of America, 102, 2826–31. 

Reusch TBH, Wood TE (2007) Molecular ecology of global change. Molecular Ecology, 16, 

3973–92. 



 

76 

 

Schluter D (2000) The Ecology of Adaptive Radiation. Oxford University Press, Oxford, UK.  

Schluter D, Nagel LM (1995) Parallel speciation by natural selection. American Naturalist, 146, 

292-301. 

Skøt L, Sackville Hamilton NR, Mizen S, Chorlton KH, Thomas ID (2002) Molecular 

genecology of temperature response in Lolium perenne: 2. association of AFLP markers 

with ecogeography. Molecular Ecology, 11, 1865–76. 

Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where 

are we now? Molecular Ecology, 19, 3496–514. 

Suyama Y, Obayashi K, Hayashi I (2000) Clonal structure in a dwarf bamboo (Sasa senanensis) 

population inferred from amplified fragment length polymorphism (AFLP) fingerprints. 

Molecular Ecology, 9, 901–6. 

Teramura AH (1983) Experimental ecological genetics in Plantago. IX. Differences in growth 

and vegetative reproduction in Plantago lanceolata L. (Plantaginaceae). American Journal 

of Botany, 70, 53-58. 

Tonsor SJ, Goodnight CJ (1997) Evolutionary predictability in natural populations : Do mating 

system and nonadditive genetic variance interact to affect heritabilities in Plantago 

lanceolata? Evolution, 51, 1773-1784. 

van Tienderen PH (1992) Variation in a population of Plantago lanceolata along a topographical 

gradient. Oikos, 64, 560-572. 

Vega-Vela NE, Sánchez MIC (2012) Genetic structure along an altitudinal gradient in Lippia 

origanoides, a promising aromatic plant species restricted to semiarid areas in northern 

South America. Ecology and Evolution, 2, 2669–81. 



 

77 

 

Vos P, Hogers R, Bleeker M et al. (1995) AFLP: a new technique for DNA fingerprinting. 

Nucleic Acids Research, 23, 4407–14. 

Whitlock R, Grime JP, Burke T (2010) Genetic variation in plant morphology contributes to the 

species-level structure of grassland communities. Ecology, 91, 1344–54. 

Whitlock R, Hipperson H, Mannarelli M, Burke T (2008a) A high-throughput protocol for 

extracting high-purity genomic DNA from plants and animals. Molecular Ecology 

Resources, 8, 736–41. 

Whitlock RH, Hipperson H, Mannarelli M, Butlin R., Burke T (2008b) An objective, rapid and 

reproducible method for scoring AFLP peak-height data that minimizes genotyping error. 

Molecular Ecology Resources, 8, 725–35. 

Wolff K, Van Delden W (1987) Genetic analysis of ecological relevant morphological variability 

in Plantago lanceolata L. I Population characteristics*. Heredity, 58, 183-192. 

Wolff K, Van Delden W (1989) Genetic analysis of ecological relevant morphological variability 

in Plantago lanceolata L. IV Response and correlated response to bidirectional selection for 

leaf angle*. Heredity, 62, 153-160. 

Zavaleta ES, Shaw MR, Chiariello NR, Mooney H a, Field CB (2003) Additive effects of 

simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. 

Proceedings of the National Academy of Sciences of the United States of America, 100, 

7650–4. 

 

 

 

 



 

78 

 

Table 1: Selective primer combinations used in the AFLP analysis. The initial number of 

candidate loci output by Genemapper is given, followed by the median and mean fingerprint 

intensity for each primer combination. The number of retained loci per primer combination is 

listed, these loci were selected based on an error rate analysis in AFLP-SURV (Whitlock et al. 

2008a). Note one primer combination TGA-CCC had a high error rate so this primer 

combination was excluded from further analyses. The error rate is shown for retained loci and 

was calculated on 40 replicate samples. 

Primer 
Combination 

Initial 
Number 
of loci 

Median 
fingerprint 
intensity 

(rfu) 

Mean 
fingerprint 

intensity (rfu) 
Retained 

loci Error % 

TCC-CAA 57 34818 866 44 2.5 

TCC-CAT 62 33076 949 47 3 

TCC-CAG 42 19041 929 35 5 

TCC-CCT 40 29313 1233 28 6 

TGA-CGA 51 35406 1131 41 7 

TGA-CGT 46 23727 965 39 2.5 

TGA-CCA 51 49078 1410 36 7.5 

TGA-CCC 57 49078 1410 0   (30)* 

        Total  270 

        Error: 4.6% * 

* Error rate average excluding the last primer combination (TGA-CCC) as it 
was not included in further analyses because it had an error rate of 30%.  
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Table 2. Permutational Analysis of Molecular Variance (AMOVA) results including all 

experimental treatments (stratified by block).  

          All Treatments   

      
% of total 

variance    

  

Df SS F R2   Pr (> F)   

Block 

 

4 0.64 2.60 0.05 5 

 

<1.E-4 *** 

Treatment 

 

5 0.47 1.56 0.04 4 

 

<1.E-4 *** 

Depth 

 

1 0.06 0.98 0.00 0 

 

0.48 

 Treat. x Depth 5 0.31 1.02 0.02 2 

 

0.40 

 Residuals 

 

206 12.62 

 

0.89 89 

   Total 

 

221 14.09 

 

1 100 
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Table 3. Results from permutational AMOVA using individual pairwise treatment contrasts (5 

replicates: control versus treatment indicated). Original and adjusted p-values (bonferonni 

correction) are listed for each contrast. 

  Df SS F R2 Pr (> F) P (adj.) 

DROUGHT             

 

Treatment 1 0.09 1.60 0.02 <0.01** (.03 *) 

 

Depth 1 0.07 1.19 0.02 0.20 
 

 

Treatment x Depth 1 0.04 0.77 0.01 0.85 
 

 

Residuals 64 3.66 

 

0.95 

 
 

  Total  67 3.86   1     

HEATED 

     
 

 

Treatment 1 0.08 1.21 0.02 0.13 
 

 

Depth 1 0.06 0.97 0.01 0.47 
 

 

Treatment x Depth 1 0.07 1.11 0.02 0.30 
 

 

Residuals 68 4.24 

 

0.95 

 
 

  Total  71 4.44   1     

WATERED             

 

Treatment 1 0.11 1.67 0.02 <0.01**  (.02 *) 

 

Depth 1 0.08 1.20 0.02 0.14 
 

 

Treatment x Depth 1 0.05 0.79 0.01 0.74 
 

 

Residuals 75 4.83 

 

0.95 

 
 

  Total  78 5.07   1     

HEATED/DROUGHT             

 

Treatment 1 0.11 1.74 0.02 <0.01**  (.02 *) 

 

Depth 1 0.05 0.87 0.01 0.66 
 

 

Treatment x Depth 1 0.08 1.24 0.02 0.10 
 

 

Residuals 68 4.21 6 0.95 

 
 

 

Total  71 4.45 

 

1 

 
 

HEATED/WATERED             

 

Treatment 1 0.10 1.67 0.02 <0.01**  (.02 *) 

 

Depth 1 0.08 1.42 0.02 0.04 (0.17) 

 

Treatment x Depth 1 0.05 0.92 0.01 0.57 
 

 

Residuals 71 4.21 4 0.95 

 
 

 

Total  74 4.45 

 

1 
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Table 4: ANOVA using individual scores on PCO axes 1 and 2 for pairwise treatment comparisons between control and treatment indicated. 

Original and adjusted p-values (bonferonni correction) are listed for each contrast. 

          PCoA Axis 1 (22%)   PCoA Axis 2 (19%) 

   

Df 

 

SS F Pr(>F)   P.adj SS 
 F Pr(>F)   P(adj)   

A. DROUGHT 

 

  

 

            

 
           

 

Treatment 

 

1 

 

0.75 2.77 0.10 

 

0.51 

  

3.60 6.22 0.02 ** 0.08 . 

 

Block 

 

4 

 

1.80 1.66 0.17 

 

0.86 

  

4.58 1.98 0.11 

 

0.55 

 

 

Treat x Block 

 

4 

 

2.57 2.36 0.06 . 0.32 

  

11.20 4.84 0.00 ** 0.01 ** 

 

Residuals 

 

58 

 

15.78           

 

33.55           

B. WATERED 

 

  

        
 

     

 

Treatment 

 

1 

 

16.97 83.58 2.E-13 *** 8.E-13 *** 

 

0.00 0.01 0.94 

 

4.71 

 

 

Block 

 

4 

 

39.13 48.17 <2E -16 *** 1.E-15 *** 

 

9.84 3.87 0.01 ** 0.03 ** 

 

Treat x Block 

 

4 

 

39.19 48.24 <2E -16 *** 1.E-15 *** 

 

12.43 4.88 0.00 ** 0.01 ** 

 

Residuals 

 

69   14.01           

 

43.91           

C. HEATED 

          
 

     

 

Treatment 

 

1 

 

0.35 0.60 0.44 

 

2.21 

  

0.32 0.52 0.47 

 

2.36 

 

 

Block 

 

4 

 

9.68 4.16 5.E-03 *** 0.02 * 

 

14.92 6.11 0.00 *** 0.00 *** 

 

Treat x Block 

 

4 

 

15.61 6.71 1.E-04 *** 7.E-04 *** 

 

8.11 3.32 0.02 * 0.08 * 

 

Residuals 

 

62 

 

36.03 

      

37.87 

     
D. HEAT/DROUGHT                 

 
           

 

Treatment 

 

1 

 

6.94 8.20 0.01 * 0.03 * 

 

0.10 0.11 0.74 

 

3.68 

 

 

Block 

 

4 

 

22.67 6.70 2.E-04 *** 8.E-04 *** 

 

7.45 2.06 0.01 * 0.05 . 

 

Treat x Block 

 

4 

 

22.78 6.73 1.E-04 *** 7.E-04 *** 

 

9.74 2.70 0.04 * 0.20 * 

 

Residuals 

 

62 

 

52.44 

      

55.94 

     
E. HEAT/WATERED                 

 
           

 

Treatment 

 

1 

 

2.68 6.50 0.01 * 0.07 . 

 

5.05 7.76 0.01 * 0.03 ** 

 

Block 

 

4 

 

1.19 0.72 0.58 

 

2.91 

  

1.69 0.65 0.63 

 

3.15 

 

 

Treat x Block 

 

4 

 

1.72 1.04 0.39 

 

1.96 

  

19.43 7.47 5.E-05 *** 0.00 *** 

 

Residuals 

 

65 

 

26.80 

     
 

42.28 
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Figure 1: Layout of experimental plots at BCCIL. Each climate treatment is replicated five times 

in a randomized block design. C: Control, D: Drought, H: Heating, W: Watered, HD: Heating 

with Drought, HW: Heating with water.  

Figure 2: A) Abundance of P. lanceolata in all experimental treatments at BCCIL over time. 

Dashed lines represent 95% ± standard error. B) P. lanceolata abundance across a soil-depth 

gradient. Fitted line and standard error from generalized additive model (GAM) of P. lanceolata 

abundance (cover class) with respect to soil depth in experimental treatments (see Fridley et al. 

2011 for analytical details).  

Figure 3: Average scores by treatment and block on PCoA axes 1 and 2 for all experimental 

treatments. Letters a-e indicate average for each experimental block.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

83 

 

Figure 1 

 

 



 

84 

 

 

Figure 2 

 

 

 

 



 

85 

 

Figure 3 

 

  

 

 

 

 

Control 
Drought 

 

 Heated 
Watered  

 Heated/Drought 
Heated/Watered 



86 

Chapter 4 

Intraspecific plant trait variation in a heterogeneous landscape: population 

response to fine-scale soil moisture gradients 

Authors: Catherine Ravenscroft and Jason Fridley 

Department of Biology, Syracuse University  

Corresponding author: Catherine Ravenscroft, phone: 315-443-8682, fax: 315-443-2012 , email: 

chravens@syr.edu 

Keywords: Climate change, soil moisture, functional traits, spatial structure, abiotic gradient, 

adaptation, mixed-effect models, Plantago lanceolata 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

ABSTRACT 

Understanding the processes that determine the spatial distribution of intraspecific trait 

variation, and whether such variation is adaptive, would substantially improve predictions of 

vegetation response to environmental change. Landscape gradients of factors such as soil water 

availability vary at nested spatial scales and are thought to exert strong selection on plant trait 

variation. Here we measured functional trait variation in the common grassland forb Plantago 

lanceolata L. across nested abiotic gradients associated with soil moisture dynamics. Our 

objectives were to: 1) characterize the spatial structure of gradients in soil moisture from local 

(<10 m2) to landscape (>10 km2) scales; 2) determine the extent and spatial structure of variation 

in reproductive and vegetative traits that correspond to well-known plant functional tradeoffs 

demonstrated at species level; and 3) relate the extent and spatial structure of abiotic gradients to 

plant functional variation. Abiotic gradients associated with soil water dynamics had a distinct 

spatial structure that in turn promoted hierarchical partitioning of intraspecific functional 

variation in SLA, leaf length, number of rosettes, and number of scapes. Trait-environment 

relationships were particularly pronounced for specific leaf area (SLA) in association with soil 

water availability. Given that landscape-scale soil moisture dynamics reflect a range of 

conditions expected under future climate change, evidence of associated trait shifts in P. 

lanceolata suggests that extant populations may be able to adjust to climatic shifts in situ. 
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INTRODUCTION 

Intraspecific functional variation is increasingly recognized as an important component of 

total community functional diversity (Cianciaruso et al. 2009, Albert et al. 2010a, Hulshof and 

Swenson 2010, Messier et al. 2010, Albert et al. 2012). Understanding the processes that 

determine the spatial distribution of intraspecific trait variation, and whether such variation is 

adaptive, could substantially improve predictions of species’ response to climatic change. Recent 

evidence suggests that functional tradeoffs that define major axes of species level functional 

variation (e.g., resource use strategies, Grime et al. 1997, Diaz et al 2004, Wright et al 2004) are 

also evident within species, which suggests that intra- and inter- specific functional variation are 

driven by similar processes (Albert 2010b, Jung et al. 2010, Messier et al. 2010, Bolnick et al. 

2011, Paine et al. 2011, but see Wright et al. 2012). Leaf level traits (e.g., SLA, nitrogen 

concentration (N)) associated with resource use strategies (Grime et al. 1997, Diaz et al. 2004, 

Wright et al. 2004) are favored in different climatic conditions (Wright et al. 2001, Wright et al. 

2005). Furthermore, there is often strong correspondence between intra- and interspecific 

functional variation across climatic gradients associated with water availability and temperature 

(Sandquist and Ehleringer 1997, Boege and Dirzo 2010, Jung et al. 2010, Long et al. 2011, 

Moreira et al. 2012).  

Gradients in temperature and water availability occur at nested spatial and temporal 

scales (Delcourt and Delcourt 1988, Dunning et al. 1992, Levin 1992) and thus could promote 

hierarchical partitioning of intraspecific functional trait variation. Temperature and water 

availability are modified at landscape scales due to differences in irradiance and moisture stress 

associated with topographic orientation (Perring 1960, Rorison et al. 1986, Bennie et al. 2008). 

At even finer scales, micro-topographic gradients can affect the moisture flow and redistribution 
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following precipitation and thus alter soil water dynamics (Grime and Curtis 1976, Fridley et al. 

2011). Genetic differentiation across gradients of temperature and water availability over 

landscape scales   (<10 m - 1 km) have been reported for several species of grasses (Hamrick & 

Allard 1972, Hamrick & Holden 1979, Owuor et al. 1997, Li et al. 1999) and local 

differentiation mirrors patterns found at range wide scales (Hamrick & Allard 1972, Hamrick & 

Holden 1979). Moisture stress is considered to be the primary driver promoting fine scale genetic 

differentiation in several conifer species with local patterns repeated at range wide scales 

(reviewed in Jump et al. 2005). Rising temperatures have caused rapid adaptive differentiation in 

Fagus sylvatica (Jump et al. 2006) and drought has led to the rapid evolution of a drought 

avoidance strategy in the annual plant Brassica rapa (Franks et al. 2011). Recent evidence 

suggests significant local (<500 m2) population differentiation in the Mediterranean shrub 

Fumana thymifolia (Jump et al. 2009a). Such fine scale genetic structure may have contributed to 

the ability of this species to undergo rapid genetic change following 5 years of experimental 

drought and temperature manipulations (Jump et al. 2008). 

A recent study suggests a genetic basis for functional differentiation among P. lanceolata 

populations exposed to nearly two decades of ongoing experimental drought treatments in intact 

calcareous grassland at the Buxton Climate Change Experiment (BCCIL), Derbyshire, UK 

(Ravenscroft et al., 2013). Here we combine environmental monitoring and functional trait 

measurements in P. lanceolata in the landscape surrounding BCCIL, in order to: 1) characterize 

the spatial structure of abiotic gradients associated with soil moisture dynamics; 2) determine the 

extent and spatial structure of variation in vegetative and reproductive traits that correspond to 

well-known functional tradeoffs demonstrated at the species level; and 3) relate the extent and 

spatial structure of moisture gradients and functional variation to determine if nested abiotic 
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gradients promote hierarchical partitioning of intraspecific functional diversity in P. lanceolata. 

We expected that functional traits would differ with respect to their predominant scales of 

variance and the ability of abiotic filters to filter different functional traits would depend on the 

trait and abiotic filter considered. Given that trait-based selection can only act at the scales where 

functional variance occurs, a traits’ spatial structure will determine the extent to which 

populations can accommodate shifts in climate through functional restructuring of genotypes 

based on their relative fitness and through individual phenotypic plasticity. 

METHODS 

Study area 

The study was conducted in summer 2010 on opposing slope facets at three locations 

within Peak District National Park in northern England (Derbyshire, UK).  Sites were within 9 

km of each other and 13 km from the experimental populations at BCCIL. Each site is 

topographically complex with steep valleys (limestone dales) formed by the erosion of fissures in 

carboniferous limestone bedrock (Pigott 1962). South slope facets intercept more solar radiation 

and tend to be both drier and warmer than north facets (Rorison et al. 1986, Bennie et al. 2006). 

Steeper slopes, more common towards the top of slope facets, often have a thinner mineral soil 

layer and more outcrops of exposed limestone. At even finer scales (<3 m2), extreme variation in 

soil depth (>40 cm) can buffer temporal fluctuations in soil water availability in this system 

(Grime and Curtis 1976, Fridley et al. 2011). The dales are therefore an ideal study system for 

examining the landscape spatial structure of environmental conditions relating to gradients in soil 

water supply and demand (Balme 1953, Pigott 1962, Perring 1960, Rorison et al. 1986, Bennie 

2006).  
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Focal species and selected traits 

Plantago lanceolata L. is a self-incompatible, perennial herb of wide-ranging distribution 

and is an abundant forb species across the limestone grasslands of northern England, including 

BCCIL (Sagar and Harper 1964). The species is wind pollinated but displays substantial local 

genetic differentiation (Bos et al. 1986, Ravenscroft et al. 2013b) and exhibits distinct genetically 

determined phenotypes both at regional and fine scales (Primack and Antonovics 1982, 

Teramura 1983, van Tienderen 1992, Tonsor and Goodnight 1997, Wolf and van Delden 1987, 

1989).  

For individuals of P. lanceolata across three sites, we measured four vegetative traits, 

including SLA, leaf length, number of rosettes, and leaf angle, and two reproductive traits 

including number of flowering stems (scapes) and scape length. These traits are associated with 

individual fitness (Violle et al. 2007) and collectively reflect the main axes of functional 

differentiation found locally among P. lanceolata populations exposed to long term experimental 

drought at BCCIL (Ravenscroft et al., in prep.). Leaf length is strongly correlated with leaf dry 

matter content (LDMC) in P. lanceolata (Ravenscroft, unpublished data). LDMC reflects the 

average density of leaf tissue, tends to scale inversely with SLA (Cornelissen et al. 2003), and 

has been shown to be negatively correlated to relative growth rate (Weiher et al. 1999). Leaf-

level traits such as SLA and LDMC are related to rates of resource acquisition and retention, a 

major axis of functional differentiation demonstrated among species (e.g., Grime et al. 1997, 

Diaz et al. 2004, Wright et al. 2004). Scape number and scape length relate to different 

regeneration strategies in P. lanceolata (Lacey and Herr 2000, Lacey et al. 2003) and these traits 

represent two distinct axes of functional variation found locally among P. lanceolata populations 

exposed to long term experimental drought at BCCIL (Ravenscroft et al. in prep.).  
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Sampling design 

Plants were sampled over a five week period beginning June 8. Plots were established on 

opposing slope facets in Lathkill Dale, Cressbrookdale, and Millers Dale (Table 1). Three 10 m2 

(2 x 5 m) plots were established in up to three different slope positions (top, mid, bottom) for a 

maximum of nine plots per slope facet. The minimum distance between different slope positions 

was 50 m. Plots were established in two slope positions in the Cressbrookdale southeast facet 

and in one position in the Lathkill Dale northeast, Millers Dale southeast, and Millers Dale 

northwest facets (Table 1). The Lathkill Dale northeast facet was large enough to accommodate 

plots at two slope positions, but P. lanceolata was only found at mid-slope positions and so plots 

were only established there (Table 1). 

Plots were positioned randomly at each slope position. For each plot we recorded its 

geocoordinates, the slope angle at five positions, and facet orientation (aspect). Aspect was 

transformed into a linear variable ranging from 0 (southwest) to 2 (northeast) using the Beers 

transformation (Beers et al. 1996). Each 2 x 5 m plot was divided into 40 0.5-m2 quadrats. Soil 

depth measurements were taken at quadrat corners (55 measurements per plot). From the soil 

depth survey we randomly selected four shallow (soil depth: < 8cm), medium (soil depth: 8-14 

cm), and deep (soil depth: >14 cm) quadrats for more extensive survey efforts (depth thresholds 

based on the analysis of Fridley et al. 2011). Within quadrats the presence of P. lanceolata was 

recorded in each of 100 10-cm2 microsites and one occupied microsite was arbitrarily selected 

for trait measurements, stratified with respect to soil depth (4 individuals/depth class).  

Number of rosettes, orientation angle of youngest most fully expanded leaf (degrees from 

horizontal), maximum scape length (cm), and number of scapes were measured in the field. We 

sampled two fully expanded leaves from each individual for measurement of SLA, leaf length, 
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and leaf area. Leaves were laid flat, wrapped in moistened newspaper and stored in small cooler. 

Leaves were scanned the evening following sampling and stored at room temperature to a 

constant dry weight.  

Environmental data 

We monitored water potential (Decagon MPS-1 dialectric; Decagon Devices, Pullman, 

WA, USA) and volumetric water content (Decagon EC5) in shallow (top 7 cm) and deep 

microsites (15-20 cm) at half-hour intervals during the summer growing season (June 6 – August 

29). Two sensors of each type were deployed in mid-slope positions on the south facets of 

Cressbrookdale and Lathkill Dale and on the southwest facet of Millers Dale. We used an 

additional Decagon EC5 sensor to measure soil water content in each plot up to two days before 

vegetation was sampled. Rainfall was measured at Cressbrookdale and Lathkill Dale using a 

HOBO tipping bucket rain gauge (Onset Computer Corporation, Bourne, MA, USA). 

Precipitation data from Cressbrookdale was used for Millers Dale as these two dales are less than 

2 km apart. 

Analysis 

We fit water retention curves (Appendix 1) to translate measures of volumetric water 

content (collected in individual plots) into water potential for each dale. We also extracted dale-

scale minimum water potential and volumetric water content to include as fixed effects in the 

modeling approach that follows.  

We used mixed effects models (‘lme4’ library in R version 2.13.0; Bates et al. 2011) to 

partition trait variance across the five scales represented in the experimental design: dale (site), 

slope facet, slope position, between 10 m2 plots of the same slope position ('between plot'), and 

within 10 m2 plots ('within plot'). For each trait we constructed a null model of random effects 
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reflecting the hierarchical (nested) structure of the sampling design, allowing us to partition trait 

variance among spatial extents.  SLA, leaf length, scape length and leaf angle were modeled with 

Gaussian error. Scape and rosette number were modeled using Poisson-distributed error more 

appropriate for count data. We estimated the index of dispersion for models with Poisson-

distributed error by calculating the sum of squared Pearson residuals and comparing it to the 

residual degrees of freedom (Venables and Ripley 2002). The index of dispersion was in both 

cases close to one. 

After specifying nested random effects, we added fixed effects of soil moisture content, 

water potential, soil depth, slope angle, and precipitation (Table 2). We included both water 

content and water potential because these factors are non-linearly related (Appendix 1) and 

reflect different aspects of soil water dynamics in the rooting zone. For example, water potential 

varies more in dry conditions (Appendix 1) and thus is a better indicator of drought stress than 

volumetric content, whereas volumetric content is a better indicator of oxidative stress. Fixed 

effects for soil moisture for each plot were based on instantaneous volumetric water content 

taken in each plot. Plot level water potential was estimated by converting measures of water 

content to water potential using the water retention curves constructed for each dale (Appendix 

1). To capture differences in minimum water potential and volumetric content over the course of 

the entire study period, we extracted minimum water potential and water content from 

continuous monitoring data collected in each dale. We included two measures of soil depth as 

fixed effects: soil depth of each sampled individual and mean plot soil depth. We felt two 

measures were appropriate as soil moisture might differ for individuals occupying a shallow soil 

depth class in an otherwise deep plot, compared to occupying a shallow depth class in an 

otherwise shallow plot.  
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Coefficients for fixed effects were fit by maximum likelihood and the significance of 

each fixed effect was assessed with log-likelihood tests based on the Akaike Information 

Criterion (AIC). We compared variance components from models with and without each fixed 

effect to determine the contribution of each predictor variable to trait variance at each spatial 

scale. We constructed a full model including all fixed effects for each individual trait. Following 

Bolker (2009), we started with a full (maximal) model which included all fixed effects and 

performed a backwards selection procedure with likelihood ratio tests. We used the same method 

to test whether random (spatial) effects were necessary in the final model. Finally, we calculated 

the total amount of functional variance explained by the full model.  

We used mixed effects models to test for significant differences in leaf traits (SLA, leaf 

length, and area) among opposing slope facets and among sampling periods for each individual 

dale. Significant temporal variation would indicate plasticity, such that individual populations 

were able to adjust trait values in response to reduced water availability later in the summer.  

RESULTS 

Spatial distribution of abiotic factors 

Mean plot depth, volumetric water content, and soil water potential showed considerable 

variance between plots within the same slope position (Fig. 1).  Mean plot depth exhibited the 

most spatial structure, with variance partitioned across all spatial scales considered except among 

different slope positions (Fig. 1). Variance in mean plot depth between slope facets (35%) and 

between plots of the same slope position (34%) were both higher than the combined variance 

associated with slope position (17%) and dale (13%) (Fig. 1). All variance in plot level water 

potential was between plots within the same slope position. Plot level volumetric content also 

showed substantial variance between plots of the same slope position (83%) with the remaining 
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variance associated with differences among slope facets (17%). Variance in slope angle was 

almost entirely associated with differences between slope positions (Fig. 1).  

Spatial distribution of trait variation 

The six traits measured had distinct spatial structures (Fig. 2). The majority of variance in 

leaf angle, scape length, and scape number was found within 10 m2 plots (85%, 90% and 75%, 

respectively). The remaining variance in scape number was attributed to differences among slope 

facets (21%) and slope position (4%), whereas variance among slope positions and plots 

accounted for the remaining variance in scape length (3% and 7%, respectively, Fig. 2). Within 

plot variance in leaf length (60%) was over three times the variance found at any other scale and 

the remaining variance was attributed to differences among plots, slope position, and facets 

(18%, 14%, and 8%, respectively, Fig. 2). Almost all of the variance in number of rosettes was 

associated with differences between slope positions (79%), with the remaining 21% attributed to 

variance below the plot level. SLA exhibited the most spatial structure and was the only trait that 

showed significant variance at the largest spatial scale, between dales (11%).Variance in SLA 

was highest within plots (38%), among slope facets (29%), and between plots at the same slope 

position (21%) (Fig. 2).  

Trait variation in response to environmental factors 

Scape number was negatively correlated with slope angle and plot depth and including 

these factors as fixed effects in a mixed effect model reduced overall trait variation by 22% (Fig. 

2). Including soil depth reduced the variance associated among facets whereas slope angle 

reduced variance associated with slope position (Appendix 2). We did not find any significant 

correlations between abiotic factors and scape length. Leaf angle was negatively correlated with 

aspect and slope angle and positively correlated with individual depth, but moisture and 
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landscape factors explained only 6% of intraspecific variation in this trait due to substantial 

within-plot variance (Fig. 2). Slope angle was the only significant predictor of rosette number, 

explaining 19% of trait variation as individuals on steep slopes had fewer rosettes (Fig. 2). Leaf 

length was positively correlated with soil depth and negatively correlated with slope angle. Plot 

level volumetric content, plot depth and minimum seasonal water potential were significant 

predictors of SLA, and collectively explained 31% of the total variance in this trait (Fig. 2). 

Including seasonal WP reduced variation in SLA between dales, VC reduced variation in SLA 

among opposing slope facets, and soil depth reduced variation among plots in the same slope 

position (Fig. 2, Appendix 2).  

Trait variation in individual dales 

 SLA was the only trait that had variation at the largest scale considered, among dales 

(Figure 2). SLA was significantly higher in Cressbrookdale than in Lathkill Dale or Millers Dale 

(Figure 3). SLA was highest in Cressbrookdale north facet and higher values in this particular 

slope facet contribute to the observed dale scale variation in SLA. SLA was significantly lower 

in south facets relative to north facets in Cressbrookdale and Lathkill dale (Figure 3). In Lathkill 

dale and Cressbrookedale there was also significant variation associated with sampling period, 

where SLA was generally higher in June relative to July in all slope facets except the second 

southwest facet of Lathkill Dale (Figure 3). We found no evidence of spatial or temporal 

variation in SLA in Millers Dale (Figure 3). Leaf area and length were higher in south facets 

relative to north facets in Cressbrookedale and Lathkill Dale (Figure 3). In Millers Dale, 

differences among opposing slope facets were less pronounced, but leaf length and area were 

higher in north versus south facets. Leaf length and area did not vary significantly with respect to 

sampling periods in any dale.  
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DISCUSSION 

The spatial structure of a critical plant resource, soil moisture, is determined by abiotic 

factors controlling water supply (slope position), storage (soil depth), and evaporative demand 

(slope angle and orientation). Some, but not all, traits of a dominant forb express coordinated 

variation with soil moisture or other correlated environmental drivers (e.g., soil nitrogen 

availability). To our knowledge, this is the first study that explicitly connects the spatial structure 

of intraspecific functional variation to the spatial structure of nested abiotic gradients. For our 

focal species, Plantago lanceolata, the expression of functional traits such as SLA in part match 

environmental gradients consistent with similar studies in other systems (Albert 2010b, Jung et 

al. 2010, Messier 2010, Long et al. 2011, Paine et al. 2011). Other traits, and particularly 

reproductive traits, appear to exhibit greater fine-scale variation that are weakly if at all 

associated with gradients of water stress. 

We found high local (within 10 m2 plot) variance in reproductive traits (scape length and 

number per individual), whereas traits associated with vegetative growth (SLA, number of 

rosettes, leaf length) generally had more variance partitioned at larger spatial scales. High local 

variance in regenerative traits could be associated with different establishment strategies that are 

maintained by differences in flowering phenology in P. lanceolata (Lacey et al. 2003). Similar 

patterns are found in fire prone ecosystems, where the frequency, intensity, and extent of fires 

promotes local intraspecific functional differentiation in reproductive traits (Moreira et al. 2012), 

whereas traits related to vegetative growth are differentiated at broader spatial scales associated 

with regional climatic gradients (Farley and McNeilly 2000). These findings are also consistent 

with species-level predictions, where traits associated with vegetative growth are expected to be 
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subject to stronger abiotic filtering, and thus local trait convergence is expected in vegetative 

traits and local trait divergence is expected in traits relevant to reproductive output (Grime 2006).   

Leaf-level traits such as SLA and LDMC are related to rates of resource acquisition and 

retention, a major axis of functional differentiation demonstrated among species (e.g., Grime et 

al. 1997, Diaz et al. 2004, Wright et al. 2004). SLA in particular has been linked to moisture 

availability in several other studies of various spatial extent and taxonomic resolution (Jung et al. 

2010, Long et al. 2010, Messier et al. 2010). Of the traits measured, SLA exhibited the most 

complex spatial structure, with variance distributed at all spatial scales except between slope 

positions. SLA also was the only trait that exhibited significant temporal variation. Individuals in 

northerly facets tended to have high SLA earlier in the summer, when conditions were cooler and 

wetter. Later in the summer variance in SLA associated with slope position was less evident due 

to a reduction in SLA in populations in northerly aspect.  This suggests that individuals are able 

to adjust SLA seasonally in response to climatic conditions, in this case reducing SLA in 

response to drier conditions later in the summer. Since we found no associated temporal 

plasticity in leaf length or area, reductions in SLA are likely due to increased investment per unit 

area in later summer leaves. Leaf length and area also varied significantly among opposing slope 

facets and trait values in both cases were relatively fixed through time. Given that leaf length is 

strongly and positively correlated with LDMC in P. lanceolata (Ravenscroft, unpublished data), 

our finding suggests a drought resistance strategy (low SLA, high LDMC) may be more 

prominent in drier south facets.  

Landscape scale gradients in soil moisture dynamics emulate a range of conditions 

expected under future climate change, evidence of associated functional structuring suggests that 

extant populations may be able to adjust to climatic shifts through individual plasticity and 
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genetic restructuring. The relevance and importance of associated hierarchical spatial 

partitioning of plant trait variation depends on the extent to which such variation is the result of 

relatively fine-scale genetic differentiation (Linhart and Grant 1996). Recent work suggests a 

genetic basis for fine-scale functional differentiation among P. lanceolata populations exposed to 

long term climate manipulations at BCCIL (Ravenscroft et al. 2013a, 2013b).  A strong genetic 

component to trait variation suggests populations of P. lanceolata harbor sufficient variation in 

functional traits within landscapes to be able to adapt to future drier climates in situ. The 

presence of extreme soil moisture gradients within the relatively small spatial extent of one dale 

may be the reason that P. lanceolata has been able to tolerate experimentally induced extreme 

summer drought in this grassland (Grime et al. 2000, Fridley et al. 2011).  More generally, local 

and landscape scale climatic heterogeneity is considered to promote local diversity and thus may 

provide a buffering capacity of populations in the face of climatic shifts (Jump et al. 2005, Jump 

et al. 2009a, Jump et al. 2009b, Ashcroft et al. 2010).   
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Table 1: Precipitation, soil volumetric content and water potential at each site. Slope orientation and the number of plots per slope position 

are listed for each site. 

Number of 10 

m2 plots 

Precipitation 

 (mm) 

Volumetric content 

(m3/m3) 

Water potential            

(kPa) 

Slope 

Orientation Top Mid Low June July Aug. mean min max mean min max 

Cressbrookdale 
SE (140°) 3   3 

237 320 224  0.12 0.01 0.30 
  

 -132 -503 -16 
  

NW (330°) 3 3 3 
 

  
  

Millers Dale 
SW  (205°) 

  

3 
237* 320* 224*  0.15 0.01 0.33 

  
 -107 -585 -10 

  

NE (26°) 3   
 

  
 

  

Lathkill Dale 

SW (230°) 3 3 3 

151 262 231 
 

0.13 0.01 0.40 

  
 

-200 -621 -12 

  

NE (35°) 3 
   

SW (195°) 3 3 3   
 

  

* Data are from Cressbrookdale which is located < 2 km away.  
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Table 2: Traits measured. 

min max mean sd 

SLA (cm2/g) 18.6 272.6 94.0 37.3 

Leaf length (cm) 2.6 31.7 13.2 5.8 

Number of Rosettes 1 23 1.8 2.0 

Angle*  1 4 3.0  0.8 

Number of Scapes 0 12 1.0 1.5 

Scape Length (cm) 0 55 12.4 14.8 

* Categorical: 1: <10°, 2: 10-25°, 3: 25-45°, 4: >45° 
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Table 3: Predictor variables used in mixed-effect models.  

Within Plot Units Source/Description 

Individual depth  cm Depth for each sample individual 

 

Plot Level Units Source/Description 

Mean plot depth  cm 55 depths per plot 

Volumetric water content (mean) m³/m³  6 per plot 

Water Potential (mean) kPa Estimated from VC using retention curve 

Slope Angle ◦ Plot inclination 

Aspect NA Beers (1966) linear transformation of aspect 

Dale Scale Units Source/Description 

Volumetric content (mean/min/max/var) m³/m³  

Recorded at half-hour intervals from June 6- August 

29 

Water Potential (mean/min/max/var) kPa 

Recorded at half-hour intervals from June 6- August 

29 

Precipitation cm Total June precipitation  



115 

Figure Legends 

Figure 1. The distribution of variance at nested spatial scales for five abiotic factors. Individual depth, 

seasonal minimum water content and volumetric content are not included because variance partitioning 

was associated with experimental design. Seasonal minimum volumetric content and seasonal minimum 

water potential were measured at the site scale, with all variance expressed between dales.  Similarly, 

since sampling was purposely stratified across soil-depth class, individual depth variance was limited to 

within plot variation only.  

 

Figure 2. The distribution of trait variation across the nested spatial scales represented in the sampling 

design. Grey bars indicate the percentage of functional variance at each spatial scale under a null spatial 

model of random effects. Dashed black lines indicate the distribution of trait variation under the full 

model constructed via a backwards selection procedure with likelihood ratio tests, following the 

procedure set on in Bolker (2009). Percentage of the total variance explained by abiotic factors under the 

final model (total variance of the fixed effect model/total variance in the random model) is listed under 

each trait, followed by the full model with estimated values for each predictor in parentheses after each 

term. *** P < .0001, ** P <0.01, * P <0.05 

 

Figure 3. Variation in leaf level traits across opposing slope facets and through time for the three dales 

considered. For each slope facet trait values for the first sampling period (June) are in black and for the 

second sampling period (July) values are in grey. Dales are separated by vertical grey lines. 

Cressbrookedale (NW, SW) on the left, Lathkill dale (NE, SW1, SW2) in the middle, and Millers Dale 

(NE, SW) on the right. 
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Figure 1  
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Figure 2
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Figure 3 
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Appendix 1: Water retention curves relating volumetric content (%) to water potential for each dale. The 

relationship between Volumetric Content and water potential was estimated using a 3-parameter 

asymptotic exponential modeled with a least-squares model in R (Bolker, 2009) using WP and VC daily 

averages collected in each dale. Final models: 1)  Cressbrookdale: -30 – 1563e-29 * VC ;  2) Millers Dale: -

23 - 644e-28 * VC;  3) Lathkill Dale: -9 - 781e-18 * VC  
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Appendix 2: Variance components for the six functional traits measured including the total variance and the percentage of this variance found 

at each spatial scale. % Random is the total variance of the fixed effect model divided by the total variance in the random model and thus 

represents the variance explained when individual predictors are included. P-values for individual terms reflect likelihood ratio tests using AIC 

values of the fixed effect and random model. Full models are listed after tables of individual fixed effects, and estimated values are in 

parentheses after each term.  *** P < .0001, ** P <0.01, * P <0.05 

A. SLA                                   

  
  

Model   

Fixed 
effect 
Value   

Total 
Variance   

% 
Random    Dale Aspect Position Plot 

Within 
Plot   

P. Random 
vs. Fixed 

    Random        0.12       11 29 0 21 38   

    Ind. depth   -4E-04   0.12   100     11 29 0 21 38 0.80 

    Plot depth   0.03   0.11   91     5 36 3 15 42 1E-3 ** 

    Aspect (beers)   0.14   0.11   91     7 27 0 24 42 >.05 * 

    Slope angle   -0.01   0.11   95     13 24 0 23 40 0.08 . 

    VC plot   1.17   0.10   84     16 20 0 19 46 2E-4 *** 

    WP plot   6E-04   0.11   94     18 20 0 21 41 0.01 * 

    WP Dale   2E-03   0.10   87     0 31 0 25 44 0.03* 

    VC Dale   -0.39   0.13   113     21 26 0 19 34 1.00 

    Precipitation Dale 2E-03   0.12   102     12 29 0 21 38   0.44 

  
Full Model:              VC plot (.95) + Plot depth (.02) + WP Dale (.01)  ***          69% 
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B. Leaf Length 

  

  
Model   

Fixed 
effect 
Value   

Total 
Variance   

% 
Random    Dale Aspect Position Plot 

Within 
Plot   

P. Random 
vs. Fixed 

    Random        34.82       0 8 14 18 60   

    Ind. depth   0.14   34.46   99   0 6 16 19 59 7E-06 *** 

    Plot depth -0.01   35.21   101   0 8 14 19 59 1.00 

    Aspect (beers)   -0.96   35.27   101   1 8 14 18 59 0.50 

    Slope angle   -0.22   34.36   99   0 22 0 16 61 0.02 * 

    VC plot   -2.34   34.82   100   0 5 16 20 60 0.68 

    WP plot   5 E-05   35.11   101   0 8 13 19 60 1.00 

    WP Dale   0.01   35.69   103   1 9 13 18 59 1.00 

    VC Dale   -15.09   34.50   99   0 7 14 18 61 0.20 

    Precipitation Dale 0.03   34.82   100   0 8 14 18 60 0.28 

  

Full Model:           Angle (-.22) + Ind. Depth (.14) ***                                           98% 

 

C. Leaf Angle                                   

  

  
Model   

Fixed 
effect 
Value   

Total 
Variance   

% 
Random    Dale Aspect Position Plot 

Within 
Plot   

P. Random 
vs. Fixed 

    RANDOM       0.65       0 14 0 1 85   

    Ind. depth   0.01   0.65   100   0 14 0 1 85 0.09 . 

    Plot depth 2E-03   0.66   100   0 14 0 1 85 1.00 
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    Aspect (beers)   -0.20   0.64   98   0 12 0 1 87 0.08 . 

    Slope angle   -0.01   0.65   99   0 13 0 1 86 0.09 . 

    VC plot   -0.63   0.64   98   0 11 0 2 87 0.21 

    WP plot   -1E-05   0.65   100   0 13 0 1 85 1.00 

    WP Dale   -6E-04   0.67   103   3 13 0 1 83 1.00 

    VC Dale   -1.29   0.65   100   0 14 0 1 85 0.38 

    Precipitation Dale 0.00   0.68   104   3 13 0 1 82 1.00 

  

Full Model:         Aspect (-.23) + Slope angle (-.01) + Ind. Depth (.01)  ***         94% 

 

D. Rosette                                   

  

  
Model   

Fixed 
effect 
Value   

Total 
Variance   

% 
Random    Dale Aspect Position Plot 

Within 
Plot   

P. Random 
vs. Fixed 

    RANDOM       0.18       0 0 79 0 21   

    Ind. depth   0.01   0.18   99   0 0 80 0 20 0.51 

    Plot depth 0.00   0.18   100   0 0 79 0 21 0.94 

    Aspect (beers)   -0.14   0.18   99   0 0 79 0 21 0.77 

    Slope angle   -0.03   0.14   81   0 0 74 0 26 0.02 * 

    VC plot   -0.05   0.18   100   0 0 79 0 21 0.93 

    WP plot   0.00   0.18   100   0 0 79 0 21 0.93 

    WP Dale   -4.4E-04   0.18   100   0 0 79 0 21 0.79 

    VC Dale   -0.47   0.18   99   0 0 79 0 21 0.75 
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    Precipitation Dale 0.00   0.18   100   0 0 79 0 21 0.95 

  

Full Model:  Slope angle (-.03) ***                                                                           81% 

 

E. Scape 

Number                                   

  

  
Model   

Fixed 
effect 
Value   

Total 
Variance   

% 
Random    Dale Aspect Position Plot 

Within 
Plot   

P. Random 
vs. Fixed 

    RANDOM       0.34       0 21 4 0 75   

    Ind. depth   0.01   0.34   100   0 21 4 0 74 0.36 

    Plot depth   -0.07   0.30   90   0 8 16 0 76 0.01 * 

    Aspect (beers)   -0.14   0.33   97   0 17 7 0 76 0.36 

    Slope angle   -0.02  0.31  92   0 24 0 0 76  0.08 . 

    VC plot   0.42   0.34   100   0 21 3 1 75 0.62 

    WP plot   2.1E-04   0.34   100   0 22 1 3 75 0.74 

    WP Dale   -1.9E-03   0.32   95   0 14 8 0 77 0.32 

    VC Dale   2.06   0.32   95   0 12 8 0 79 0.20 

    Precipitation Dale 0.00   0.31   94   0 11 10 0 80 0.20 

  

Full Model:      Slope angle (-.03) + Plot depth (-.08)   **                                     78%                                        
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F. Scape 

Length 

  

  
Model   

Fixed 
effect 
Value   

Total 
Variance   

% 
Random    Dale Aspect Position Plot 

Within 
Plot   

P. Random 
vs. Fixed 

    RANDOM       2.02       0 10 0 21 69   

    Ind. depth   -0.01   2.02   100   0 10 0 21 69 0.36 

    Plot depth -0.05   2.00   99   0 11 0 20 69 0.33 

    Aspect (beers)   0.01   2.02   100   0 10 0 21 69 0.97 

    Slope angle   -0.02   2.02   100   0 12 0 19 69 0.58 

    VC plot   1.50   1.99   98   0 8 0 22 70 0.38 

    WP plot   0.00   2.02   100   0 10 0 21 69 0.89 

    WP Dale   0.00   1.98   98   0 6 0 23 71 0.45 

    VC Dale   0.56   2.02   100   0 10 0 21 69 0.45 

    Precipitation Dale 0.00   2.02   100   0 9 0 21 69 0.83 

  Full model: NS  
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Chapter 5 

SYNTHESIS 

Many studies have examined the need and capacity of species to migrate poleward as the 

climate shifts (Davis and Shaw 2001, Neilson et al. 2005). The potential for local adaptation, 

however, remains understudied despite the recognized potential for genetic diversity to buffer 

species from climate-induced local extinction (Jump and Peñuelas 2005). Compared to 

migration, the potential for local adaptation is likely to be highest under circumstances where: a) 

there is sufficient local genetic variation that underlies quantitative traits relevant to climatic 

shifts; b) the environmental shift is more than can be accommodated by phenotypic plasticity; 

and c) species-level changes are restricted (e.g., from dispersal limitation) (Davis et al. 1986, 

Davis & Shaw 2001) or occur more slowly than population-level change (Moser et al. 2011).  

Most experimental climate manipulations have led to fairly rapid species-level changes, 

suggesting that local adaptation is not significant (Chapin et al. 1995, Harte and Shaw 1995, 

Grime et al. 2000, Zavaleta et al. 2003, Klein et al. 2007, Mikkelson et al. 2008). At the Buxton 

Climate Change Impacts Laboratory (BCCIL) in northern England (UK), annual manipulations 

of temperature and rainfall have been maintained since 1993 and most species have not 

experienced large changes in abundance in response to experimental treatments (Grime et al. 

2000, 2008, Fridley et al. 2011). Adaptation to experimental treatments has been hypothesized as 

one potential mechanism of species persistence (Grime et al. 2008), but it is unclear whether 

selection or plasticity underlies species’ stability.  

Most species common to this calcareous grassland system are obligate outcrossers with 

high local phenotypic variation that has a genetic basis (Booth and Grime 2003, Fridley et al. 

2007, Bilton et al. 2010, Whitlock et al. 2010).  Here I investigated the role of local adaptation as 
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mechanism of the apparent resistance of species’ to long-term climate manipulations at BCCIL 

using one of the more common forbs in these calcareous grasslands, Plantago lanceolata. I used 

a common garden approach to test for evidence of selection for different suites of functional 

traits in P. lanceolata populations exposed to over two decades of summer drought at BCCIL. 

The main axis of functional variation reflected a tradeoff between reproductive and vegetative 

allocation, consistent with drought avoidance and competitive strategies, respectively. Avoidance 

strategies were more prominent in droughted populations whereas competitive strategies were 

more prominent in populations from control treatments. Treatment differences were more 

moderated by soil depth which suggests that selective pressures imposed by different climate 

treatments are modified by fine scale edaphic heterogeneity. Furthermore, I detected parallel 

divergence patterns in replicate pairwise control-drought treatment comparisons (5 replicate 

experimental blocks) which suggests a genetic basis for the functional differentiation 

demonstrated in the common garden experiment.. 

Parallel divergence patterns in replicated pairwise control-treatment comparisons were 

significant for all control-treatment contrasts that included precipitation manipulations (drought 

and increased precipitation, including both factorial combinations with heating). Evidence of 

significant treatment-based genetic structure suggests that extant populations have adapted to 

long term experimental manipulations at BCCIL through local genetic restructuring associated 

with treatment based differences in soil water supply (drought, increased precipitation) and 

demand (factorial with heating). Evidence of significant genetic and functional structuring in 

relation to gradients in soil water availability suggests that local environmental heterogeneity 

may buffer this species from climatic change because it promotes diversity upon which climate-

based selection may act.  
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Different soil water dynamics associated with experimental treatment and as modified by 

local edaphic heterogeneity reflect moisture gradients that occur at nested spatial scales in this 

topographically complex calcareous grassland. I expanded environmental monitoring and trait 

analyses of P. lanceolata to calcareous grassland systems in the landscape surrounding BCCIL in 

an effort to relate the extent and spatial structure of nested soil moisture gradients to that of 

functional variation in six traits that collectively reflect the main axes of functional 

differentiation found in the common garden study. I measured intraspecific variation in four 

vegetative and two reproductive traits in P. lanceolata populations in a series of nested plots in 

the landscape surrounding BCCIL.  Abiotic gradients associated with soil water dynamics had a 

distinct spatial structure that in turn promoted hierarchical partitioning of intraspecific functional 

variation in five of the six traits measured. Trait-environment relationships were particularly 

pronounced for specific leaf area (SLA) in association with soil water availability.  

Conclusion 

Here I reveal significant treatment based genetic differentiation in P. lanceolata 

populations which suggests a genetic basis for the functional differentiation evident in the 

common garden study. Evidence of treatment based genetic differentiation was most pronounced 

in precipitation manipulation treatments, suggesting genetically based functional differentiation 

in P. lanceolata is associated with treatment based differences in soil water supply and demand.  

Taken together my results suggest a genetic basis for local intraspecific functional differentiation 

in P. lanceolata which in turn has allowed this species to adapt in situ to experimental climate 

manipulations. Furthermore, local and landscape scale gradients in factors related to climate 

change (e.g., soil moisture) promote functional trait variation at associated scales which may 

buffer this species from future climatic change.  
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Although results suggest some populations may have the capacity to adapt to climate 

change and thus resist climate-induced local extirpation given adequate levels of genetic 

variation, this does not mean that these systems are inherently stable. In particular, barriers to 

dispersal limit the invasion of southerly species, which may over longer time scales cause 

species-level shifts even if extant populations are able to adapt to new environmental regimes 

(Moser et al. 2011). The likelihood of long-term population persistence in the face of new 

species immigration over the coming decades remains a key unresolved area in global change 

research.  
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