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General Correction for Electrode Sphericity in Voltammetry of 
Nernstian Systems 

 
Jerry Goodisman, Syracuse University 

 
Abstract 

The current is considered at a stationary reversible spherical electrode whose potential E(t) as a function of time is 
given, such that E(t) determines the ratio of oxidized to reduced species at the electrode surface. Writing the current 
as that for planar geometry, I0, plus corrections for sphericity, we derive formulae for the corrections. The first two 
are expressed as integrals over I0, with no explicit dependence on the potential, for any form of E(t), and whether the 
reduced species diffuses into the electrode or into the solution. If the ratio of diffusion constants for oxidized and 
reduced species is taken as unity, and if oxidized and reduced species are both in the solution, the corrections 
become extremely simple (no integrations or differentiations), regardless of the form of E(t). The first correction is 
evaluated in several cases where this does not obtain. 
 

Introduction 
To compute the current at a reversible stationary spherical microelectrode with changing potential E(t), one must 
solve the diffusion equation for oxidized and reduced species in the solution, coupled by the Nernst equilibrium 
conditions on the concentrations at the electrode surface. The equations for linear diffusion (planar symmetry), being 
simpler than those for other geometries, an often used strategy [1-5] is to solve the linear diffusion problem and then 
generate corrections to the current for deviations of the electrode from planarity. However, some authors [2,6] have 
solved the problem for spherical diffusion directly in certain cases, and the diffusion problems themselves have been 
studied in detail [4,7,8]. 
 We present here a general procedure for obtaining the leading corrections to the planar result for any 
variation of electrode potential E with time, for any ratio of diffusion coefficients of oxidized and reduced species, 
and for diffusion of reduced species into the electrode or into the solution. In all cases, the corrections are expressed 
as integrals over the current corresponding to planar symmetry (eqns. 24 and 29). If oxidized and reduced species 
have equal diffusion coefficients, the integrals can be evaluated explicitly (eqn. 30). A numerical evaluation is 
necessary otherwise, and this is done for one case, to check results of other authors.  
 The basic idea is a perturbative approach with the perturbation parameter being [End of page 33] 1/r0, 
where r0 is the radius of the spherical microelectrode. The planar electrode corresponds to infinitely large r0. After 
reviewing the background and the equation to be solved in section (I), we introduce the perturbation procedure in 
section (II). Several special cases and illustrative applications are discussed in section (Ill). 
 

(I) Theory 
We consider first a reduction of species O to species R, both present in solution. (Amalgam formation, with R 
diffusing into the electrode, is considered later.) The diffusion equation [1,7,8] for the oxidized species is 

 
where co = co(r , t) is the concentration of this species and DO its diffusion coefficient. The boundary conditions are 



 
where c*

O is the bulk concentration. The manipulations which follow, through eqn. (14), are fairly standard. The 
corresponding treatment for the amalgamation case, eqns. (15)-(19), occupies the remainder of this Section, the new 
work beginning in section (II). 
  Equation (1) may be subjected to Laplace transformation in time and the resulting equation solved to give 

 
where  is the transform of c o and a is a constant. In order to introduce the current, which is [9] 

 
where F is the Faraday constant and A the electrode area, we differentiate eqn. (4) to obtain 

 
and then invert the Laplace transform. Using the inversion formula 

 
we find [End of 34]  

 
Similarly, 

 
for the reduced species. 
 The Nernst condition relates the concentrations of oxidized and reduced species 
on the electrode surface at each instant of time, if the system is reversible: 

 
where E0 is the formal potential and E(t) the electrode potential at any time. On substituting cO(r0, t) and CR(r0, t) 
from eqns. (7) and (8), and the gradients of these quantities in terms of the current from eqn. (5), we obtain 

 
For r0 infinite, terms in erfc disappear and eqn. (10) becomes the planar diffusion 
equation which may be written [10] in the Abel form 

 
with  



 
where γ2 = DO/DR. Here, the subscript on I0 identifies it as the current for planar diffusion (1/r0 → 0). The general 
solution [11] to eqn. (11) is[End of page 35]  

 
For instance, the current for the linear sweep potential E = Ei - υt is 

 
where In B = nF(Ei – E0)/RT , as shown by other authors [1,9].  
 We now consider the case of diffusion of the reduced species into the electrode. 
The condition on cR(∞, t), analogous to eqn. (3), is no longer relevant, and is replaced by a condition at the origin 

 
The Laplace transformation of the equations and boundary conditions proceeds as before. The difference is that a 
solution such as eqn. (4) is not acceptable for , the Laplace transform in time of cR. The proper solution, satisfying 
eqn. (15), is 

 
where αR is a constant.  
 We differentiate as previously to introduce the current, now equal to 
nFADR(∂cR/∂r)r=ro. Replacing eqn. (8) we find 

 
where L(r, t) is the inverse Laplace transform of 

 
The expansion on the right, although it may be obtained by successive differentiation of the function on the left with 
respect to x = r-1s-1/2DR

1/2 and evaluation of derivatives at x = 0, is not a true power series expansion. In fact, it 
corresponds to replacing the hyperbolic cotangent by unity, which is valid for a large argument. It has been noted 
previously [12] that there are two kinds of spherical corrections in the case of diffusion into the electrode: the 
correction for the shape of the electrode and the correction for its finite size. For most applications [12,13], the latter 
us much less important. The replacement of the cotangent by unity corresponds to neglecting this correction.  
 The inverse Laplace transform of the series is readily performed and leads to [End of page 36]  

 
A similar equation for the oxidized species would be obtained if the power series for [1 + r(s/DO)l/2]-1 (see eqn. 6) 
were introduced before inverting the Laplace transformation, or if the series for ex2 erfc(x) (see below) were inserted 
into eqn. (7). It differs from eqn. (18) in the sign of DR/r0 and other odd-power terms. The Nernst condition (eqn. 9) 
may now be used to combine the equations for oxidized and reduced species.  



 The resulting equation is 

 
This becomes the equation for planar diffusion if r0 → ∞. The corresponding equation when diffusion of reduced 
species is into the solution may be obtained from eqn. (10) by the use of the series 

 
We now turn to the calculation of corrections to the planar current (for infinite r0). Calculation of the planar current 
is supposed to have been accomplished according to eqn. (13). 
 

(II) The Perturbation Expansion 
In seeking a solution for non-infinite values of ro, we note that the reciprocal of ro is a natural parameter for a 
perturbation expansion of the current. We write 

 
and substitute into eqns. (10) or (19). The results, on grouping together terms in each 
power of 1/ro, is 

 
[End of page 37]  
and terms in l/r0

2 and higher powers. The positive sign results from eqn. (10) (diffusion into the solution) and the 
negative sign from eqn. (19) (diffusion into the electrode). For the expansion (eqn. 20) to hold for all ro, terms in 
each power of 1/ro in eqn. (21) must vanish separately. The zeroth power terms vanish, since Io is supposed to solve 
the planar diffusion problem, eqns. (11) and (12).  
 We now turn to the terms in 1/ro, which give the first spherical correction I1. Setting the coefficient of 1/ro 
in eqn. (21) equal to zero, we have 

 
Since I0(s) is known, this may be rearranged into an equation of the Abel form, like eqn. (11), except that the 
unknown function is I1(t) and Q is replaced by 

 
Note that P(0) = 0; thus the solution according to the formula (13) is 

 
where I0 is given by eqn. (13) and 

 
The first correction for sphericity is thus calculable, regardless of the form of E(t), in terms of the current for a 
planar electrode I0. If I0 is known either analytically or numerically for the problem of interest, I1 and hence the 
current corrected for the sphericity of the electrode may be obtained by a single integration.  
 Some simplification is possible; after introduction of eqn. (13), the integration over s may be performed, 
giving 



 
where the upper sign is for diffusion of the reduced species into the solution and the lower sign for diffusion into the 
electrode (amalgamation).  
 For example, consider a voltage pulse: E = E1 for t < to and E = E1 + ΔE for t > t0. This has been treated by 
Birke [5]. First we assume equilibrium at t = 0, so that 

 
and abbreviate exp[nF(ΔE)/RT] by d1. The first spherical correction would be 

 
[End of page 38]  
where S(χ) = 0 for χ < 0 and 1 for χ >0. This simplifies to 

 
Without assuming equilibrium at t = 0, we may consider the current for cR

* = 0. The current I0 is easily found from 
eqn. (13), and then the first equality of eqn. (25) gives 

 
where f = c1 for t < t0 and f= c1d1 for t > t0. (Of course, C*

0/C*
R is no longer equal to c1.) Straightforward 

manipulations then lead to the result 

 
where K2 = (t – t0)/t0. This becomes identical to the previous result, which assumes C*

O/C*
R = c1, when one allows 

c1, but not c1d1, to become infinitely large.  
 The second-order correction is obtained by setting terms in 1/r0

2 in eqn. (10) equal to zero. The equation 
determining I2 is 

 
Inserting eqn. (24) for I1, into the first term on the right-hand side of eqn. (28) and interchanging the order of 
integrations, we have 



 
after an integration by parts. The right-hand side of eqn. (28) may then be written as an integral over I0, i.e.[End of 
page 39] 

 
Equation (28) then becomes an Abel-type integral equation [11] for the second-order correction I2(t). It may be 
treated as we did the equation for the first-order correction I1(t), by comparing with eqns. (11) and (13). Then I2 may 
be calculated, if the sizes of I0 and I1 indicate it is warranted, as an integral over the zero-order (planar symmetry) 
current I0. 
 

(III) Applications  
The general problem of calculating spherical corrections to the current for a planar electrode has now been solved. 
For any particular application, one would have to evaluate an integral, according to eqn. (25), as we illustrate below. 
There is also one situation for which an extreme simplification occurs.  
 If we assume with Reinmuth and others [1,6,14] that γ, may be taken as unity for the calculation of the 
correction when diffusion is into the solution, so F(t)= 1, the corrections take on an exceedingly simple form. 
Inserting I0 from eqn. (13) into eqn. (24), 

 
All the integrals have thus been performed, and the correction for sphericity in this case is, on inserting Q according 
to eqn. (12), 

 
This is an explicit expression for the correction to the time-dependent current, valid regardless of the dependence of 
E on t.  
 The second-order correction simplifies even more drastically. Using eqn. (29) for the right-hand member of 
eqn. (28), one has 

 
[End of page 40] 
The second correction I2/r0 vanishes identically, regardless of f(t). Reinmuth [1] has in fact shown that, in this case, 
the current is exactly equal to I0 + I1/r0, where I1 is given by eqn. (23). Obviously, γ = 1 leads to no simplification in 
the amalgamation case, since it does not make F equal to unity.  
 For a voltage pulse, considered by Birke [5], suppose E is equal to E1 for t < T and equal to E1 + ΔE for t > 
T. With the previously introduced abbreviations, the spherical correction according to eqn. (30) would be 



 
This checks the general result of eqn. (27) when γ is taken equal to 1, with the upper sign. If the equilibrium 
condition (26) does not hold, but c*

R = 0, eqn. (30) makes I1 equal to nFAD0c*
0(1 + c1) for t < t0 and nFAD0c*

0(1 + 
c1d1) for t > t0. The same results follow from eqn. (27a) on inserting γ = 1 and choosing the upper sign.  
 It is possible to calculate exactly the second-order spherical correction in this case, according to eqns. (28) 
and (29). After some algebra and integration we find 

 
where  

 
Then 

 
and all the integrations may be carried out in closed form to yield, for t > t0, 

 
Of course, only the first term remains for f1 = f0, and the entire correction vanishes [End of page 41] for γ = 1 with 
the upper sign (outward diffusion).  
 The spherical corrections for a potential scan or ramp, E = E1 -- υt, and for a triangular wave, have been 
given in a semi-empirical form by Beyerlein and Nicholson [13] for the case of amalgamation. For the potential 
scan, 

 
where In Θ = nF(Ei – E0)/RT and a = nFυ/RT. Then eqn. (25) is (with no initial concentration of R) 

 
where S = at. For comparison with the results of ref. 13, we put γ = 1 and assume the first correction suffices (ϕ < 1 
in the notation of ref. 13). Then ß, tabulated in ref. 13, should be given by 

 
For large S, the terms Θ e-T and Θ e-U may be dropped (because the factor (S -- T)-1/2 weights values of S near T 
heavily), and ß may be directly evaluated to give unity. Otherwise, the singular factor (T-- U)-1/2 may be dealt with 
by the substitution U = T sin2 ϕ so that 



 
[End of page 42] 

 
and ß evaluated by numerical quadratures. Table 1 shows that the results are quite close to those of Beyerlein and 
Nicholson [12]. Here, ΔE = E -- E0 and nF/RT= 38.92 V-1. The results are independent of Θ for sufficiently large Θ, 
as should be the case. 
 

Conclusions 
The most important results of the present article are given by eqns. (20) and (25) and in the prescription for 
obtaining the second-order correction I2. Equation (25) gives a general expression for the first-order correction I1 for 
any variation of the potential (see eqn. 9). It is valid whether the reduced species diffuses into the solution or the 
amalgam, and for all values of the ratio D0/DR. In any particular case, specific approximations may be warranted to 
simplify eqn. (25). 
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