








For the denominator,

1 n T
Lyya,

1=1 t=2

= % Z Z [(Vit—l —7) - (BOLS — B)(@it-1 — T)

=1 t=2

n T
= % Z Z(Vitfl - 5)2

i=1 t=2

+ <\/E(BOLS - 5))2 n2T2 £ ZT:(xitl —1)°

2

=2
) 2 L& _ _
- (\/E(BOLS - 5)) 322 Z Z(Vit—l — U)(@it—1 — T)
= I+ I11+111.

Consider 17 first. With the joint limit, one can see that

(VitBoss = ) =3 D2 D (was — 7P

= (Vilows - 9) L3 (7))

as (n,T") — oo using the fact that if (n,7) — oo and % — 0, then

2
207

vn <BOLS - ﬁ) SN (0> 302) =0, (1)

by Lemma 2.(4).
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Next 1T = O,(+) because

n T
. 1 _
\/E(ﬁOLS 3/2 2 Vzt 1 V xzt—l - I‘)
=1 t=
2 1 < v —1/ 9: —7z.1
_ \/E(BOLS “ ZZ it—1 it—1 )_
TL 7’L =1 t= \/_ \/T T
1
= Op(ﬁ)
using
1 n

T
Zan Vﬂ?ztl $)1
=1 t=2 \/_ \/T T

v
where v;; and z;; are not correlated.

Accordingly, we conclude that

nT2ZZuzt 1 = %ZZ(Vﬁ—l_iy‘l‘O

=1 t=2 =1 t=2

by equation (C.3) in Kao (1999).
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For the numerator, u; — Uj—1 = € — (BOLS — B)eit + 0,(1). Hence

A NS e G e (Vi1 = 7)
HTZE[ (Bows — Bz (Fors ) e

n T

= niT Z Z (V'itfl - 5) €it

i=1 t=2

_\/E(BOLS 3/2 Z Zgzt Vit—1 — V

—/n (BOLS ) 372 Z i (i1 — Z) i
-1 7 =2

+ <\/ﬁ (BOLS - 5>>2 % Z % Z it (Tir—1 = 7)
=1 " t=2

= I+I1T+1IT+1V.

Consider /. One can verify that

using ﬁZLl S, Vit = Op(1) and 237 ST €T = O,(1) as
(n,T) — o0

85



Consider I1.

as (n,T) —

Consider /1] and I'V. In a similar vein as /1, it is easy to see that

T
Il =—\/n (BOLS ) 3/22 Z (i1 = 7)€ = Op (%>

Therefore,

_|_

% (%) w0 (i) <0 (i37)

Summarizing, we have

T({G—1)= 0T Qi1 Qe Aligllip— A 0

2
nT2Zzlzt2 it—1 %

86



Next we show &~ is a consistent estimator. It is clear that I — o2 as

(n,T) — oo as shown already.

Consider II. In a similar process as above, one can show that

T 2ot Sy (@i — Prie—1)? — {nT S (e — ﬁxitl)}Q
AT A (- 7) - pw_l_m)}
= 2y Llr i zt+{T( b Zt y7% oy = EE S e
- [% D i1 {T Zt:l Eit — - }]2
D i1 [% Ethl it — T(p s Et 1 Lit—1 }}2

as (n,T) — oo. Hence we have

I~ (\/ﬁ (3025‘5» [nLTX Eyr (1, C'C) nTx} - op(%) =0, (1)

since if (n,7T) — oo and % — 0, then

\/E(BOLS_ﬂ) —>N< ;ZZ)

£

Also because 11 = 0,(1) by the Cauchy-Schwarz inequality, we get
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F Proof of Theorem 3

Preparation: Note that from equation (9), we have
Y =Ynr +XB+u=7tyr + X0+ Zyp +v

where y is nT' x 1, x is a vector of x;; of dimension nT x 1, ¢,,7 is a vector of ones of
dimension nT', wis nT" x 1, p is a vector of p;, v is a vector of v;; and Z, = I,, ® ¢r.

Also recall from equation (13) that

2
Pl =1, [i (Al - LAleL'TAl)} )

2 2 2
o2 o2+ 0o

Here we define z = [¢,,7, x|, then

Yers 1 -1 _
~ = (z’q) 1z) (z’q) 1y)
Bars
-1
/ /
Lyr Lot
- -1
= P |:LnT X:| o y
x’ x/
- _71 -
-1 -1 ~1
I R A e S L Py
xXo 1y, xX®1x x' o ly

Fii Fig L'anrly

Fy Fy x' ¢y

FHL;’T(Dily + Flgx'(I)*ly

F21L;1Tq3_1y + FQQX/(I)_ly
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where

-1
Fll = [L%Tq)_lbnT — L;T@_lx (X,q)_l)()il X/@_lbnT] )
-1
Fia = ) [ X (0 ) 0]
F21 = — [X @ X —X @ LT ( (I) 1LnT)71 L;LT®_1X:| X @ LnT ( @ 1I/nT)71 )
and

-1
F22 = |:X,q)_1X X @ L,T ( nT(I)_anT)_l L;LTQ_IX]

Hence, we have
Bars = FZIL;T@_ly + FppX' @7y

-1
= [x"lflx x'® e,r (o an)*anT)fl L'TLT<I>*1X}

X [x’@’ly X0 M,y (o ;LT@’lbnT)_l L;Tq)’ly]

and
Bars — B = G1'Ge
where
G =X 'x—x'® 1,1 (¢ ;thb_anT)fl GRS
and
Gy =X 'u—x® e,y (1 an)_anT)_l PR
respectively.

Proof. Following Baltagi et al. (2008), we first define matrices A and C which

replace p in the matrix A and C in equation (12) and (14) with p given by,

522?1232@@% 1
Zz 1Zt 2 7,t 1

89



where U;; denotes the it-th OLS residual. Using the definition of &' in equation (13)

and &7 given by,
2 1
° n(T-1)

A A%

where G* = (I, ® C)u and 1 denotes the nT" x 1 vector of the OLS residuals, one

obtains:
n
/ci)—l _ 1 /A 1
X X = p) X, X; ),
e =1
n
Pt = Al
X LnT ;) X, Lt |,
e j=1
n
/ qA)—l 1 / A—l
Ly by = =5 Lr tr |,
e i=1
n
/(i)—l _ 1 /A—l
X vV = ps) X, v;),
e =1
and
n
/ ci)*l _ i / A—l
Lor 174 ;) Lr V;
e
where
T
rA—1 ala —~ E : ~ 2
XiA X; = Xic CX,L' ~ (.CCit — pl’itfl) y
t=1
T
rA—1 1 Y ~ ~ ~
XiA v, =x,CCr; = E (xit - Pilfitd) (Vz't - PVz't—l) )
t=1
T
’A—1 IV ~ ~ ~
XiA L = XiC CLT ~ (1 — p) E (xit — pxit71> y
t=1
T
r A -1 AT -T ~ ~
tp A7 v, = u,C'Cr; = (1 —p) E (Vie — pVis—1) ,
t=1
and

T
0=tpA iy =1 CCur = (1-7)+(T-1)(1-7p)P~ > (1-7)=T01-p.

t=1
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In this section, we assume that (n,7") — oo and 7 — 0 unless otherwise specified.
L. |p| <1, |A| <1 case

(a) Define

First we consider

| -

x' & 1x

- 1 IA—1
g —x; AT x;.
il

S|— 3
mw|’_‘ %

o
Expanding this equation, we will show that

R o
ﬁ Z T Z (int - Pﬂfit—l)
i=1 t=1

n T

1 1 ~
S ISP
=1 t=1

( ~
:lr ZtTZQ 5?1& + (p — /))2 % Zle xz?t—l
+(A — P)Q% Zthl xzzt—l
_ 1 3 _ 5 T
T on : - (/) - /)) T thl EitTit—1
+(A = p)Z X e
~ T
. (p—p)(A— P)% > e T3 )
n T n T
1 s, (A= /))2 2
= n—TZfoit * n—TZint—l

i=1 t=1 i=1 t=1
AL+ I+ +1V
(1-2pA+p) ,

- (1- )\2) o, +0p (1)

Q

-1 ,»
= —x'A"x;
n;TXZ X

\

as (n,T) — oo.
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Consider I.

using

Consider I1.

Il = -2 (\/ﬁ(ﬁ p ) LT\/—_ zn:i:gitxit—l = Op(—

using
and

Consider I11.
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Hence, we have

1N 1 & N )
E T Z (sz‘t - pxit—l)
i=1 = t=1
n T n T
1 (A—=p)
= T Zszzt+ nT zzt—l
i=1 t=1 i=1 t=1
FOy(—=) 4 Ol =) + Oy —=) + Oyl —=)
PAnT PinT P/nT /T
n T n T
1 o (A—p)? 2 1
= T Z zt_l— Z$zt 1+Op(—
nT i=1 =1 T i=1 t=1 nT’
Because
n T
1
EONIEEY
i=1 t=1
and

Next consider

1 -, 11 1 ,~
ﬁx(b Ly = _N_QZ(TXZA L

Q
—
|
)
—

Y
o
+
—
>
|
2

&3
T
—

|
—
ASh

|
2
&3
T
=

as (n,T) — oo.
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Also note

1, =, 11 -1 2 (1=p)°
n—TL;.LTq) LnT%ﬁ?Z—T(l—p) —)—e:Op(l)

Hence,

as (n,T) — oo.

(b) Now we investigate Gs.

~ ~ -1 ~
1 & 1 = X (P ey U d
VT ° T nT

Consider first
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3

T
Z (%‘t - 75%5—1) (Vit - ﬁ%t—l)

t=1

Q

-
5

<-
5=

3

[eit + (A= p)Tie1 — (p — p)Tir—1]

Sl-
3~
e

=1 t

1 e — (p — p)vie—1]

[

Z git + (A — p)xit—1] it

i=1 t=1
\/nT
ZZ 51t+ )\ P%t 1]Vzt1
i=1 t=1

ﬁ\H
=

vnT (
—#szn 16t
i=1 t=1
Y~ T
+( T (p— ) Tit_1V
n3/2T3/2 — wt—1Yat—1

- \/n_TZZ 5“"*‘ )‘ p)xzt 1]6zt+l+]_[—|—]_[]

=1 t=1

Consider I. Note that we have

VT (5—p) 1 "ieu
\/ﬁ ﬁzl itV it—1

t=1

VT (5—p) 1 v

—(A\— Ti_1V;
( P) \/n_T \/ﬁ@1t2t1t1

- o) -0 5k) ()

using \/%7 Dict ZtT:1 gitit-1 = Op(1) and \/%7 i 23:1 Tit—1Vit-1 =
Oy (1)-

By a similar process, it can be shown that

VT (p—p)

H==—"U7 \/_ZZ O(ﬁ)
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and

TGP LSS =0, ().

i=1 t=1

II] =

n T

" XAy, 1
‘ - Z Z [eit + (N — p)xir—1] €
i=1 VT vl = 5

() o () +or ()

1 N giw + (A — p)ei_a

= = €it

VT IS | M = pleso + -+

()

Q

Because
1 n T
e Z Z [82‘,5 + ()\ — ,O)Eit_1 + )\()\ — p)git_Q -+ .- ] €t
nl ==
1—2pA o202
a PJ(O,( q_ +;g )0605),
we get

1 - 1 1 XAy, 1 — 2o\ + p?)o?
XI(I)ill/ = — Z X; v; i) N(O, ( P + 1Y )05)
vnT o, Vn p— VT

Next consider
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Q

n T
1
= (1=-p)——=>_> (e —(p—p)vi—)
nT = =
1 n T
= (1-p) — €
( p) T Z t

and

Accordingly, we have

1 ;o F-1., d 1
—t, P v — (1 —-p) N, —).
\/n_T nT ( P) ( O_g)

Also recall that niTx’ Do, = Oy 1

e

above.

Hence, we have

~ ~ 1 -
1 & - 1 By X e, (VP e,y UrP v
T ° vnT nT nT vnT
d (1=2pA + p*)o?
N, E

as (n,T) — oo.
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1 ). 1 -1 P (1-p)*
7)s artbnr® tar — S5 as shown



(c) We conclude that

—1/2
(1—2pA+ pz)ﬂ?] / (0 (1 —2p\ + p*)o?

(1— %) o2 (1 —\)o2 ) = NO 1.

trars = [

2. p=1,|A <1 case

(a) Let
~ ~ —1 ~
1 ~ 1~ xX'® e, [P, Vo dx
_G - /@71 - T 1_~ n~ nT j nT — .
nl T ¥ (1=7) nT (1—7p) < n(l—7p) nT (1—7p)

Using a similar argument as above, we first consider
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Expanding this equation, we get

1N 1 1 N1 &
I A —1 ~ 2
ﬁ TXiA X; E Z T ; (iﬂz‘t - P$it—1)

i=1

Q

n T

1 ~
= n_T Z Z (€z‘t + A1 — pl‘it—l)Q
i=1 t=1
1 n T 1 1 n
_ 2 ~ 2
= n—TZZQHFﬁ{T(P— DY 5
i=1 t=1 i=
1 n T
2 2
A—1) ﬁzzxipl
=1 t=1
2 1 n T
_TT (P - 1) ﬁ Z Z Eilit—1

=1 t=1

it—1

I\Mﬂ
]
<o

[y
—_

t

n T

- 1)% Z Z CitTit—1

i=1 t=1

2 1 S,
—TT(P—l)(A—l)n_TZZ%:—l

i=1 t=1

n T n T
= D) I R ERE S ) e
i=1 t=1 i=1 t=1

+I+ 1T+ 11T+ 1V.

Consider I. With the joint limit, we have
& 1
=G Y = (5
=1 t=1

using

E: ‘rztl

zltl

G-v=0(7).

and
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using

and
n T T
1 1 1
_ R €; —_— Vit— :O 1
Alsonotethatg—z:%{?ilasTﬁoo.

Consider 1. It can be also shown that

- 2
Bors—B)" <n T p—p)® T A—p)? T
I = % Zi:l[% D1 Ent @ Tp) Doy Ty ( Tp) 21 T

2(p—p) T 2(A=p) T 20—-p)A=p) -T2
==Y L CaTi1 + TS Y G — R Y ]
2

T ~ T
. (BOLSA_ﬂ)ZT Zn % thl Eit — (p - p) % Zt:l Tit—1

nd? =1
+()‘ - P)% Zthl Tit—1

This follows because if (n,T) — oo and % — 0, then

. d o (14 pA)(1 = N\?)o?
VAT (fous = 8) = N (O’a_z+ T —p2>oz>

using a similar argument as in Phillips and Moon (1999) and Baltagi et al.
(2008).

Consider I11. From Lemma 1 (B), we know that

I <VIxII2o.
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Hence,

~2 P2
o, — 0,.

(b) Next, we show that c“ri is a consistent estimator of ¢%. From Lemma 2 (B),

one can see that

n

% 2
5 d? 1<
R A PR 5 o R EX T
; =1

Consider I next. It can be shown that

I~/T\ |1 1

n Z (72) T Z (vie = prie—1) | = Op(?)
=1 d t=1

For the second term
n T 2
(1—p)3*d* | 1
nT T nT;;Z;”t
e n T 2
(1-pPd®| 1 1
I N 7o - i O -

n3/273/2 T \/ﬁ ; tz; Vit p(n3/2T3/2)

using
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Let us look at the last term. We have

@ _ZZ Vzt PVzt 1

i=1 t=1

2(1— . 1
= % n—Tzzeit_(p_p)n_Tzzyit—l

i=1 t=1 i=1 t=1

=1 t=

1 n T
72;4

1 n T
n_T Z Vit]
i=1 t=1

2(1-p)
= nsz ZZ% <WZZV”>

'thl i=1 t=1
Vi

2(1—p) 1 &
n5/2T372\/_T<p ) <\/_Zt1 tl) <\/n_TZ1t1Vn>

= Op(

1
1 1 1
W) + Op(n5/2T3/2) = Op(ﬁ)

Accordingly, we have

IV <VIxII5o.

Finally, consider I71.

fe — 2 n T 2
11l — M (T) %Z (it — pTir— 1)]
1

n = d2 t=1
(5 —6)2(1—@232 LR &
OLS
e —7224
=1 t=1
- 1 AN )| | L
i=1 t=1 i=1 t=1

It can be easily shown that I1] = 0,(1) as (n,T) — oo in a similar way as

above. This follows because if (n,7) — oo and % — 0, then

2 2
~ d g 1 —+ )\ 1-— )\ g
VnT(BOLS_5>—>N<070—;+( pAL )
Hence, by the fact that V < /T x 111 2 0 and VI < /II x 111 2 0, we
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get

nT nT XT n

from Lemma 3 (B). As shown in Theorem 3.1.(a), one can see that

_ 2\ 2
— —x;A_lxi & (1 210)‘ ;_ P )Us
né T (1—A?%) o2
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Next, it can be shown that

11 zn: XAy o A1k,
ng? T T

e i=1

A~ n T Y T 2
N A—QEZ _Z ”+ ; Ztl_T;l’itl
- S
T (A—p) T
(% > i 5it> + (Tp Dot xitq)
. T 2
e + ((pr) ST xit,1>
1 T A— T
E Z +2 (% PO 5it> (( Tp) Yoo 13z‘t—1>
=1
T p— T
—2 (% D 5it) ((pr) Y i1 xit—l)

i -9 ((A;p) Z;—;l xit—l) ((ﬁ;ﬂ) Zle xit—l)
= I+ I1I+I1IT+1IV+V+VI.

Counsider I and 7. One can see that

HMS
\;/
I
Q
S
7~ N\
N =
N—

i
T Z(W

and
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using

Ien( 1 « CEORS _
(g (F ) oo

=1

Lastly, consider V' and VI. It can be shown that

2(1-p)° VnT(p—p S 1 «
Vo= - ~2 NGIEE 52(72 )(ﬁtzﬂﬂztl)

1
- o (arem)
and
21 =22 VTG —p) 1 <= [ () — p) & d
Vi = — <8zp) \/%é.ig/zp)ﬁlz;<( ﬁp);l‘it 1) (T; Tit— 1)
1
o ()

Therefore, we conclude that

11 i X;Aile L%Ailxi
n02 — T T

TIORIORAES

r(5) 0 (s + o ()

Then we have
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and

1, . 0/T 1—p)? 1
—lyr 1LnT=A/Tﬁ> ( p2) s~ 2
n O-a/ (1 _p) Ou Ol

Finally, we get
_ 2\ 2
La o (1 2pA;rp Jo:
nT (1-X°)o?

as (n,T) —

Now we turn to 62. Note that

~ ~ —1 ~
1 @ . 1 XI$_1 1 X,(I)_ILHT LlnT@_lbnT L;T(I)_lu
9 = — .
vnT vnT VT n

Consider first

For the first term, one can show that

= -2 <631/T

T\/n_TZZ”Z Tit — PTit—1]

=1 t=1

7 vt | VT (- p)
1 1 1 1
= or(z) vorlz) v () =)
using
1 n T
T 2 gui&t =0, (1)



and

\/% Z D mwis =0, (1).

=1 t=1

Also recall from Theorem 3.1.(b) that

1 XAy 4 (1= 2p\ + p?)o2o?
= Z - N<0a 2 )
vn<= T 1—)\

as (n,T) — oo.

For the last term, it can be shown that

in a similar way as above.

Therefore, we conclude that

23

—2p\ + pQ)UE)
(1-X)o2 ~

- p - P
Next, recall that +x'®~'e,p — 0 and ¢/, 91,7 — = from above.
n

Finally, it can be shown that
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Consider I.

using % — (1=p)? and 6%/T — (1 - p)° o

Consider I1.

1 1< (1-7) 1 a
o § : A T S o E
II - Ai/i \/HTZ LTA VZ Ai/j—" \/ﬁT i (th pth 1)

(1-% 1 1
= €it — V;
&2 )T \/T\/nT;Z : OZ/T \/_ =l

1=




2. When p=1, |\ <1,if T(p—1) L &

(a) First, let us show that 672 is a consistent estimator of 2.

From Lemma 1 (B), it can be shown, in a similar way as 1.(a) that

n T 2T (-1 T
_ 1 Z %Zt:l 61215 ~ 2 (; J (% thl eitVit—l)
n

+w %2 Z:{:l V%t—l)
n T T 2
1 1 1 - 1
FEIIES SUEERCITEREN (ER oot |
( >nz 1 T ﬁ T/ t=1
— 0

t=1
e

as (n,T) — oo using %Z?ﬂ Zthl e = o2, ﬁZ?:l ZtT:I CitVit—1 =

O, (1), n_jl"’Z Z?:l Zthl szt—l =0, (1), and W Z?:l Zthl vii-1 = Op (1).
Also note that T (p — 1) & k and

— = — = — — — .
2 FZ+T-1 p+T(0A-p) 2-x

T T TA-p) s -k

Consider /1. From Lemma 1 (B), we have

%Z [Ztl

1 CitTi—1 T

A 1 Zt 1 2t 1

( 3 Zt—l Citlit—1 — Mzze L T3]
- LY %z;ileit—( DAY rat A= DESE ws|

= 202/ (14 )\) +0,(1)

it

as (n,T) — oo. Thisis because D i Et L €% = o2, \/ﬁ > i Zt 1 CitTit—1 =
n T

Op(1): 5 Xiza Yotz i 5 o/ (1-27), ﬁZizl Zt:l g = Op(1),

and \/%7 > i Zthl zit—1 = Op(1).
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Hence,

[\/ﬁ (BOLS - 6>]2Lx/

n n

Il =~

(In ® OE%C) x = 0,(=) = 0,(1)
using the fact that if (n,7) — oo and 7 — 0, then
- 1—M\)?02
Vi (Bows — 8) 5 N (o, Q) |

This follows from a similar argument as in Phillips and Moon (1999) and

Baltagi et al. (2008).

Since I11 < /T x IT % 0, we conclude that

2

2
e e’

~2 P
o, — 0

(b) Let us show that 62 is not a consistent estimator of o2.

Using Lemma 2 (B), we have

Tk
- =y (e
- 4 ;? - W E,p
—l—mul (Lir — Jur) (In ® C"T]’ié) (Lnp — Jur) v
1 . z - A _
e (Bows = 8) X (Lur = Jur) (1 @ C'T2C) (L = Jur) x
b2l (B0 3C) (fr — Jur) v
2 (Bows — B) i (Bu@C) (L — Jur) x
bty (Foss = 8) ¥ (e~ ) (1@ CT36) (1 — ) »

= I+ 1T+ 1IT+1IV+V 4+ VI
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Consider [. It is easy to see that
(1-p)d® |1 — 1<\
- p 2 p
[=—F""— |- — | - < 0
2 - (23] |

using (1 —p)d> =2p+T(1-7) 22— k.

Consider 1.

II = 33 aom [\/% ST e+ [T (1= p)] <T3+ ST ,/ZH)] 2
T A ED IS I
_%T_ﬁ) [% Z?:l <% Zthl eir + 1 (1 —p) # Zle Vit—l)]
) [% > it # Zthl Vit] .

Let us look at the first term. It can be shown that

1 1] 1 T T ’
N eir + [T O =7 Vit—1
2
T
(\/_rletzleit>
AN12 1 T 2
(71 =) (e XL v
2T (1= ) (& Sl en) (e Sl v
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since

and
n

1 1 & 1 « » 02
HZ _Tzeit mzlm—l —>7
i=1 t=1 t=1

Also note that the second and third terms of I are o, (1) as (n,7") — oo.

Therefore,
K2 —3k+3 ,

mL T -
- 3(2—k) Te

and from Lemma 2 (B),
IV < VI xII50.

Consider 11 next.

1 T T(p—1) T
T Zt:l €it — —Tar2 Zt:l Lit—1

(A1) T
+ Z —1 Lit—1
VT Zat=1
- 2 a
Bors—8) (1-p)d? n 2
+( OLS n:/)ﬂ( p) |:% Zizl % ZZ;I SL‘Z’t:|

~ 2
2(Bors—B T A T
oo ) [ 5 ST (e~ i) [ Sy T ]

n

Hh = MZL(@—E)J‘A‘)

In a similar process as in I7, one can verify that 11T = O,(+) as (n,T) —

oo using the fact that if (n,7) — oo and 7 — 0, then

. _)\)242
ﬁ(ﬂow‘ﬁ) SN (07 %)

and accordingly that V < /T x I11 2 0, VI < /IT x 111 % 0, respec-
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tively.

Summarizing, we have

52 p K2—3k+3 ,
ag._.
3(2—k) °

= % (62 — 62) and 0 = (1 — p)* d?, we have

(1-0)5 (60— 067)
(172)42 (60— o)
T o &2
2 (T(I*i))> T (—p)d?
() (5a500?) - (507) = eto?

From Lemma 3 (B), we have

Z (nglxi T -7 o8 x{A ey L/TA1XZ'>
—_—— J— p .

T 2TA-pT(1-7)
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Note also that

A2
o, XA Lop o) A-1x; 1
T1-p)" =t = 0y )
— Ly )
e T(l_p)T(l_p) T
using
X;Aile 70( 1 )
Ti-7 VT
as shown in 1.(c) and
“ ~ 2 —r343K%2—6 2
T(1— ) Ui: (1—0)03 », 32— Te —k3+3k*> -6
62 2T (1-7) ﬁg(—gjgg T2k (k2 —3k+3)
Hence,
L a1 2072
— X' £
R GNP Y >
as (n,T) —

Next, one can shown in a similar way that

1. 1« 1 'A!
_X,(I)_anT = — ( ~ ) ;z Lt
1

Also
Tooe, 0/(1—7) » 2k 1 3(2—k)?
n T TG T (1-p) B2 o2k~ 3+ 3
Therefore,
1 jonnd P 20'2
nT ' (1+ \)o?
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Now we turn to @2.

1 = 1 ~ x'® e, (T -t VT | ~
Gy = x'¢ty - — <—L’ b1y, ) 4 d u
vnT °  naT n n " g N
We have
1, 1 1 1 62 XAy
—x®P u = 2 = ~9 ~ A~ 1
VnT Oe nlzl VT Ua/T<1_p) T(l_p)
N 1 1 x Ay,
oevne= T
001 1 N XAy A,
—T(1-p) 55—~ = —
040 nzzl T<1_p) \/T(l—p)
= I+II+1I1I.

For I, with the joint CLT we have

; 11 z": 1 ( 62 ) /A1y
= o= - = = | Hi
V= VT \6o/T(1-7p)) \T(1-7)

n T
1 1
T = Z Z i [Tie — pie—1]
)) TvnT i=1 t=1

n T

S 5 S| PRTER R
- afz)+o(5)+o(7m) - (1)

For I1, recall from Theorem 3 that

I
/N /N <
%
~
~
[S—
|
)

n

11 XA v, 4 202
- it T N0 — e ).
0—2\/52 JT <’(1+A)ag)
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For 111, it is easy to see I1] = O, (\/LT) using

2
Also, as shown already, T' (1 — p)* % 5 (2__:)3(;—35;;% and 6% /T (1 —p) &

K2=3k+3 2
3(2—k) Oe-

Finally, we conclude that

as (n,T) — oo

Next it can be shown that

1) _0/a-p)
<\F) &2 T (1—p) M

JT
\/_”TCIDHZTZ + 1 (LA >

62/T(1—p) \VT(1-p)
= 0p(1)
using
VAT 1/Z
Vi Z\/_ T(1-p
n T T
1 1 T(1-7p)
= Z _Zeit Zyzt 1
N =10Cr= A
= OP(1>
and




respectively.

Therefore,
1 ~ 4 202
G N, —
VT ° - M (1—1—)\)05)

: = P
as (n,T) — oo using %X’@ tyr 2 0 and Lot p® ey =

above.

We conclude that

1 3(2—k)?

02 k2—3Kk+3 from

tras = [ —0C o L&) 4 v
FGLS — nTl \/ﬁ2 9 .

3. When |p| <1, A\=1,if p 5 p

(a) First, let us show that 62 is a consistent estimator of o2,

(B), we have

T

T

1 . 1

?5 e?t—2(p—p)TE eavi-1+ (p— p)
t=1

t=1

as shown in 1.(a).
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Consider II. It can be shown similarly that

T
112 Zt 1522t
nT
+(v (h— p)

) nT3 Zt 1 zt 1
(m (BOLS_B>> - - P) Zt 1 ’Lt 1

2
n - 2\/nT p p)
fT5/2 E :t 1 EitLit—1

2(1 p
+ Zt lgztxzt 1

__ 2vnT(p—p)(1—p) Z
/nT5/2 t=1 zt 1

1T
(\/n_T <BOLS - ﬁ>>2 T & T Lo
) % o | VAT G- ) i s

+(1 - P)# ZtT:l Tit—1

This follows because, if (n,T) — oo and % — 0, we get

302

£

VnT <BOLS - 5) 4N (0, 40i)

using a similar argument as in Phillips and Moon (1999) and Baltagi et al.

(2008). Also note that
VT (5—p) 5 N (0,1—p?)

from Lemma 1. This is because —5 > | ST ek =0,(1), 2D Sk =
n T
Op(1), ﬁ D i1 21 Ettit—1 = Op(1), and T3/2 > it Zt L Tiem1 = Op(1).

Also note that from Lemma 1 (B),

III<VIxIIZo.
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We conclude that

2 2
e

~2 P
o, — 0,.

(b) Next, let us show that &2

L is a consistent estimator of ai. From Lemma

2 (B), we know that I % (1—p)° o2, IT % 0, and accordingly IV <
VI XTI 2 0 as shown 1.(b).

Let us look at I71.

n2

o (\/ﬁ@om—ﬁ)y n (T)

VAT (Bous=8)) -0 [ 1 & T’
(v (OLsn2 ) a-p oL Zx]
N _ 2 . n
_2 (v nT’ (BOLiQ 6)) <1 p) n;3/2 2 g(%t - ﬁwitl)]

1 n T

=1 t=1

With a similar process to 2.(b), it can be shown that 1] = 0,(1) because

if (n,T) — oo and % — 0, then

2

VAT (ous ~ 8) N (0.52%).

£

Hence, with V < /I X III % 0 and VI < VII x I11 5 0, we finally

have

and accordingly
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(c) Let us start from the term G, in equation (14). Recall

— G = ——xX0x — —

~ ~ 1~
1 -~ 1 -~ 1X® ey (P ey P 1x
nT? nT? T nJT '

From Lemma 3 (B), we have

1 b1y — 1 - (XA 1k o0 XAl ATy
nTQX X = A2Z T2 _6Z/T T3/2 T3/2

€ =1

From Theorem 3.3.(a), we have

Next, it can be shown that

1 & 62 x Al Ay,
A2ZA2# Z32TT32 i(l_p)zaa
nes “—~ 62 /T T3/ 13/

€ =1

using the fact that

no A A

1 XA ep AT

n T3/2 T3/2
=1

1=

= li— = ixt P$t1
n,:1 2 — 7 7
T

2

t=1

- %z:: 122 J:zt 1+52t)

t=1

n ~\4 1 T 2 ~\2 1 1 T 2
1 (1-") <W Zt:1 xitfl) +(1 -7 T2 (\/_T Zt:l 5it>
N4 (1 - /0)3 . (T3/2 Zt 1 Lit— 1) <\/LT Zf:l 6“)

S () o ()0 )
- p>412<T3/22% 1>2+0 (1)&0—/))4%3

=1
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~2
and &;’ij N a L - Hence,
Loty = LS (LR - On XA gAY
nT? no. = \T*" Yol )T T2 TR
2 2 2 2
P 2 0¢ 2 0¢ (1 B p) O
1—p)—= —(1-— =
= (=95 : (1=0p) 307 607

as (n,T) — oo.

Next, one can verify that

1~ 1 1 & (XA 1y
— x'® 1 " - ___ - E O
n\/TX ot no./T ( T3

=1

as shown in 1.(c).

Hence, we have

—G
nT2 ' T 6o
as (n,T) — oo.
Now we investigate ég. Let
1 ~ 1~ 1 X0 e, (1, = ! roE-1
=—x — — n —t, P
T P Tt YT UT ayT \aT M) et
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Consider that

Firstly, in a similar vein as 1.

1 52 x;K_ILT
VT \a2/T 1857 ) Hi
T, x;;&_ILT L’TK’lui>

+ xzﬁ_luz_ 02
T §2/T T3/2 VT

(c) it can be shown that

~2 /Af]_
o, XA up

AQ\Fi\F<

using

c _o (L
o2 T2 | T\ T

~2 >
o XA Ny

1 n

Next, recall from Theorem 3.

5

Lastly, we consider

1 1 &xAly,
1 Z%ima(—-

3.(b) that

XA ur Ay,
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T
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t=1
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t=1
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i=1 - Zt:l (1

= I+1T+1IT+1V.
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- 23:1 (75 - P) Eit ZtT:l Vit—1

146

] [(1 —7) Z(Vz't - ﬁVit—l)]
[Z (et — (0 — p) Vit-1)

|



Consider 11 first.

0L ) (N,

3

using \/Lﬁ o (\/LT ST 87;15) <\/LT ST eit) = O, (1) where ¢;; and e;; are

not correlated.

Consider 111 and IV. It is easy to see that

s 1 VT (- 1 < 1 <«
111 = —(1-p) N \ﬁpﬁ ) <T3/2;xitl> <ﬁ;V'ztl>

using
VT (p—p) [ 1 ix 1 LZT% 1
v T8 = Ti=
and

v = —(1-p) \/5;3/2 ‘/ﬁ\%—p)‘ (%Z%) (%Zum)

- (i)

Lastly, consider I. it can be shown that
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Therefore,

2

n IA -1 I A -1 2
0y XA urupAT i a0 o
52 \/_ Z 2/T T3/2 JT — (1= p) N (0, 303)

and accordingly it can be shown that

by using a similar process as in Phillips and Moon (1999).

Next consider

Consider I. Recall from 1.(c) that

1 2 2
IZ%( )\/_2:#Z p) UZ(I—p)N(O,J#).

Consider I1.

O, (1). We conclude that

g
=
o
3
L]
—
/N
-
s
S
N—
I

1, ~y 4 1
%L;.LTCI) u— N (0, O'_i) .

p =_ p
Because we also know that \F x'® 1,7 = 0 and %L;LT@ Yooy —

x:qwl =
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which are proved above, we have

1 ~ 4 (1—p)°o?
Gy SN0 ~—E—=|.
VT 2 (7 602

Finally,

4. When p=1,A=1ifT(p-1) B«

(a) First, let us show that 62 is a consistent estimator of ¢2. From Lemma 1

(B), we have

n T 2[T(p—1 T
_ 1 Z %Ztﬂ e — A=l (5 . (l D i1 €z'tUit—1)
T(p—1)]

= +[ e (T2 Zt 1 zt 1)

as (n,T) — oo, as shown already in 2.(a).

Consider I1. Using a similar argument, one can easily show that

. 1T (T(p-1)* 1 T
(va(Bors—))’ s D e ED PR

=1
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n _2G-1) 1

D DA
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o) (1) s [ ST e, - TE ST

= 0p(1)

because if (n,7") — oo and % — 0, then

ﬁ(@om‘ﬁ) SN <0 ZQSZ;)
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Consider I71. From Lemma 1 (B), we know
T <VIxII50.

We conclude that

A2 P2
Je

— 0.

(b) Next, we investigate 65. From Lemma 2 (B), we have

o
- e (e
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+
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N 2
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=1

as (n,T) — oo with (1 = p)d2 =2p+T (1 —p) > 2 — k.
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Consider I1. As shown in 2.(b), we have

k2 —3k+3 ,

e
T 32-n)

and accordingly

IV <VIxII%o.

Counsider 111 next.

Vi(Bors—8))" < ’

r = (el v () [ S = B
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_ (I(BZzLS Y [n e (f Y it = Tp3'/21) X it 1)]
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One can show that I/] = o0,(1) as (n,7") — oo using the fact that if

(n,T) — oo and % — 0, then

vn (BOLS - 5) — N <0 §22>

€

and that V < T x 111 20, VI < /IT x 111 % 0, respectively.

Summarizing, we have the same result as 2.(b),

62 p K2—3k+3 ,
— o
T((1-Dp) 3(2—k) ¢

and
K2+ 3Kk%—6
1-p)é2 5 2
( p) 1" 3(2_}{‘:)2 e
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16
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(c) Let us first look at G4 in equation (14). Define

1 -, 1 < [ x'A-lx, 9 e )
— X0 x = : L —T(1 A i T
n n(ﬁ;( T (1=7) AT1-p)T(

Note that

as shown in Theorem 3.4.(a).

Next, one can easily see that

1 o 02 xX{ A lup A X, 1
T(1-7p) 4= 4 =0
LIPS T a5 O

using
x' A ey 1 1 <&
:  ~ (-Tit - fmit—l)
T(1-p) VT VT ;
T T

6'2
and T (1-7)* % & (2__16%—3&;_% as shown already.

Hence, we have
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Note also that

1., 1 1 1 <[ XAy
n x/nTUi/T(l—p)\/ﬁZ (\/T(l—p)

i=1

Lastly, recall that

T, . _0/a-p) » 2-k 1 32—k’
n

— - — [ S a—
/T (1 —Dp) %JZ 02k?—3Kk+3

Therefore, we conclude that

Now we turn to 62. Let
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and recall from Theorem 3.4.(b) that

111 w00 [ XAy ATy b
AUV PG (ﬁ(l—ﬁ)) (ﬁ(l—ﬁ)> -0.(37)

. 1 n XA, AT\ ~\2 P _k*43k2-6
using —= Doy (ﬁu—ﬁT)) (\/TTU—ﬁ)) =0,(1)and T (1 —p) = m

Therefore,
o2

1 -
—x'd a3 N(O, —).

vnT o;

Also, using the results above, 1x’ O e, = O, —

1 3(2-k)®
02 k2—3k+3"

Summarizing, we have

and accordingly,

154



Essay II: Testing Cross-sectional Dependence Using
Bootstrap F-tests

155



1 Introduction

Cross-sectional dependence caused by common shocks can seriously impact inference
as well as estimation. Andrews (2005) demonstrates that common shocks can result
in inconsistent estimates in cross-sectional regressions and accordingly serious con-
sequences for statistical inference.! To deal with the problems of common shocks,
Bai (2003, 2004) considers the common factor model, and proposes principal compo-
nent analysis (PCA) to consistently estimate the factors and factor loadings under
stationarity, e.g., Bai (2003), and non-stationarity of the factors, e.g., Bai (2004).
In addition, Bai (2009) and Bai, Kao and Ng (2009) extend this analysis to a panel
data model that includes regressors as well as factors. Bai (2009) assumes stationary
regressors and factors while Bai, et al. (2009) allow for non-stationary regressors
and factors (i.e., panel cointegration case?). This paper considers the problem of
testing cross-sectional independence in a panel data model using the factor structure
proposed by Bai (2003, 2004, 2009) and Bai, et al. (2009).

Given this setting, it is natural to consider the simple F-statistic to test the null
hypothesis that all the factor loadings are zero (i.e., cross-sectional independence). It
is well known that the limiting distribution of the F-statistic can be approximated by
a chi-squared distribution, when n is fixed and T is large. From the results of Boos
and Brownie (1995) and Akritas and Arnold (2000) one can infer that the asymptotic
distribution of an appropriately normalized F-statistic for the case of large n and fixed
T, is also normal. However, we could not find any result regarding the asymptotic
distribution of this F-statistic when both n and T are large. This paper suggests the
use of the bootstrap F-test, proposed by Mammen (1993b), for testing cross-sectional

independence. For this purpose, we adopt the wild bootstrap method which is well

!These common shocks could be macroeconomic, political, environmental, health, and/or socio-
logical shocks in nature to mention a few, see Andrews (2005).

2Note that a large literature on panel cointegration exists with an assumption of cross-section
independence (See, e.g., Baltagi and Kao (2000) for a survey, and Baltagi (2008) for a textbook
treatment).
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developed in the statistical literature. Section 2 introduces the factor model. Section
3 discusses the proposed wild bootstrap F-test. Section 4 presents the Monte Carlo
results, while Section 5 concludes. All the proofs are relegated to the appendizx.

For the asymptotic results in this paper, we use both the sequential limit (n — oo
following 7' — oo, i.e., (n,T) = 0o) and the joint limit (n and T going to infinity
simultaneously, i.e., (n,7) — oo) depending on the case considered. For details of
these methods, see Phillips and Moon (1999). We use %> and <, to denote convergence
in probability and in distribution, respectively. Unless indicated explicitly, we will
refer to F; as the factor (or the global stochastic trend) while F) as the F-statistic
to avoid any confusion. The bootstrap sample or the bootstrap test statistic will
be denoted with superscript star. For example, FY and P* indicate the bootstrap
F-statistic and the bootstrap probability measure. We also define the matrix that
projects onto the orthogonal space of z as M, = Iy — z (z/z)fl 2. Lastly, K (-, )
denotes the Kolmogorov metric, i.e., K (P,Q) = sup, |P (z) — Q (z)| for marginal

distributions P and Q.

2 The Model

Consider the panel data factor model
Y = B+ NF+uy fori=1,... nandt=1,...,T (1)

where y;; is a scalar, x;; is a set of k regressors, 3 is a k x 1 vector of the common
slope parameters, \; is an r x 1 factor loadings, F} is an r x 1 vector of latent common
factors, and u; is the error. The error terms are assumed to be uncorrelated across

cross-section and over time series components. To test the null hypothesis of cross-
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sectional independence, we set the null
Hy: X\ =0 forall¢ (2)
against the alternative that
H,: )\ #0 for some i.

To construct the F-statistic, define RRSS = .7, 71 @2 as the sum of squared

residuals from the restricted model:
Yit = x;ﬁ + Wy (3)

where f3 is the least squares estimator of 8. Also let URSS = S S W2 be the

sum of squared residuals from the unrestricted model when F} is not observed:
Yit = a:;,ﬁ + Xlﬁt + /U\/it (4)

where /B, /)\\Z-, and F} can be obtained from, e.g., Bai (2009) or Bai, et al. (2009). Then,

the standard F'-statistic is defined as

_nT—k—m’RRSS—URSS (5)
N nr URSS ’

Fy

Given this basic setting, the following sections briefly introduce the estimation pro-
cedures suggested in the literature under various scenarios depending on whether

regressors are included and whether x;; and F; are stationary.
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2.1 Case 1: Without regressors
2.1.1 Stationary factors

Let us start from our benchmark case by dropping the regressors in equation (1).
That is,

Yit = )\;E + Ut (6)

which is the common factor model. Rewriting equation (6) in matrix notation, we
have

y=FA +u (7)

where y is a T' X n matrix of observed data and u is a T' X n matrix of idiosyncratic
errors. The matrices A (n x r) and F' (T x r) are unknown. In fact, Bai (2003)
studies the Fy, = I(0) case, while Bai (2004) investigates the F;, = I(1) case.® The
number of factors, r, is assumed to be known. If this is not the case, note that r can
be consistently estimated as in Bai and Ng (2002).

First, we consider the F; = I(0) case. It is important to note that F, (¢ =
1,2,...,T) may or may not be observable. If the factors are observable, \; can be

estimated using least squares. That is,

o 2
and accordingly we have RRSS = 327 77 42 and URSS = Y7 S0, (yit — )\Z-Ft> )

Then, the F-statistic is constructed as follows:

(nT —n) RRSS —URSS
n URSS

Fy =

On the other hand, if F} is not observable, one can estimate F; using the method

3Note that when Fy = I(1), testing Hy : A\; = 0 for all 4 is not only testing for cross section
indepenence, but it is also testing if y;; follows an I(0) process.
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~

of PCA subject to the constraint F'F/T = I,. As illustrated in Bai (2003), F,
the vector of estimated factors, is v/T' times the eigenvectors corresponding to the r
largest eigenvalues of yy . Given F ) N=F "y/T can be obtained as well. Therefore,
in this case we have RRSS = Y7, 327 42 and URSS =31 ST, (yit — X;ﬁt)z

2.1.2 Non-stationary factors

Now let us assume that F; are non-stationary:
F,=F,_1+n fort=12,....T (8)

where 7, is the idiosyncratic error. If the factors are observable, then we can estimate
A; using least squares as in the F; = I(0) case. However, if the factors are unknown,
one estimates the factors subject to the constraint F' F/T? = I,. As a matter of fact,
Fis T times the eigenvectors corresponding to the r largest eigenvalues of yy in this
setting. A’ can be also computed by F "y/T?, which is the corresponding matrix of
the estimated factor loadings. It is straightforward to construct the F'-statistic with

estimates of the factors and factor loadings.

2.2 Case 2: With regressors
2.2.1 Stationary regressors and factors

Next we consider the panel data model with interactive fized effects, see Bai (2009),

by adding regressors as well as common factors. In matrix notation, we have
y=XB+FA +u.

Note that the regressors as well as the interactive fixed effects are assumed to be

stationary. When F; are known, the estimate of [ is easily obtained using least
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squares as follows:
n n

G- (Z x;Mm> B (Z x;MFyi>

i=1 i=1
where xXr; = (.Tﬂ,l’l'g, ce ,JZ‘,L'T)’, Yi = (yil;yz?a Ce 7yiT)’7 and MF = [T — F (F,F)il F,.
Given é, one can compute A= (F 'F )_1 F <y - X B) If F} are not observed, one

has the following set of nonlinear equations for estimation subject to the constraint

F'F/T =1,.
n -1 n
5 (z M> (z x;Mﬁyi) o)
=1 =1
and

F=FVyp (10)

= =, _1 =
where Mz = I — F (F F ) F' and V,r is a diagonal matrix consisting of the r

largest eigenvalues of the matrix in brackets in equation (10). The solution (B, F >
for (9) and (10) can be obtained using iteration. From these results, one can compute
A=F (y - X B) /T. For details of this estimation procedure, see Bai (2009). Using

these results, one can easily construct the corresponding F-statistic.

2.2.2 Non-stationary regressors and factors

This is the case of panel cointegration with global stochastic trend under which both
regressors and factors (or global stochastic trends) are assumed to be non-stationary.
This case is investigated in Bai, et al. (2009).* More specifically, we have the following

equations:

Yit = l’;tﬁ + )\;Ft + U,

Tig = -1+ Ei,

1For simplicity, the mixed I(0)/I(1) case among x;; and F; will not be considered in this paper
although this extension is possible. For details, see Bai, et al. (2009).
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and

F,=F_+n,

where x;, F;, and u; are potentially correlated. The framework here is the panel
cointegration model so that uy = yy — 2,3 — )\;Ft is jointly stationary. Note that
a fully-modified (FM) estimator is constructed along the line of Phillips and Hansen
(1990) because of possible correlation among x;;, Fy, and u;. Let us assume first that

F; are observed. Then, E Lsrym can be estimated as follows:
n -1 n
Brsrm = (Z x;Msz> (Z I;]WF?A/?r -T <A:—u1 - 5;A7—;_u>>
i=1 i=1

where 7+ and A+ are consistent estimates of y* and A+ with

Amit 1 Axit
and uj;, = wy — QupilYy;
AF; AF;

v —1
Yir = Yit — Quwilly;
!

Note that €2; is the long-run covariance matrix of w; = (uit, S;t, 77;1;) which is given

by,

Qui Qusi Quni

2= E <wi0w;j> = | Qeui

Qnui Qr]si Qr]

[©)

=3 Qam'

and A, is the one-sided covariance defined as follows:

Aui Auai Auni
A= Z E (wiow;j) - Aeui Asi Asni

J=0
Anui Ansi n
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We also define

Qsi Qe 7
Qs = !
Qnsi Qn

corresponding to €; and 7, for convenience. We need to estimate the nuisance para-

meter by using a kernel estimator. Let

and

<
Il
)

where T; (j) = %ZtT:_f Wity Wy, and Wy = (U, Ay, AF,) with the kernel function
w () and the bandwidth parameter K.
When F; is not observed, however, one needs to estimate the set of two nonlinear

equations:
n -1 n
5 (z M> (z x;Mﬁyi)
i=1 i=1

and
n

# Z (y’L - il?zB) <yi - sz>,

=1

F=FV,

by iteratively solving for B and I subject to the constraint F'F /T? = I,. Compared
to the known F} case, estimation of the stochastic trends affects the limiting behavior
of the estimator, so bias correction becomes essential for estimation. In fact, Bai,
et al. (2009) propose two FM estimators, i.e., the bias-corrected Cup (continuously
updated) estimator, BCW e, and the FM Cup estimator, BCup - The details of the
estimation procedure can be found in Bai, et al. (2009). However, it is worthwhile

emphasizing the basic difference between these two estimators. CupBC corrects the

5BLSF u can be alternatively written as the bias-corrected estimator, 5 spc- For details, see
Bai, et al. (2009).
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bias only in the final stage of iterations while CupFM modifies the data to remove
serial correlation and endogeneity in each iteration. CupBC and CupFM have the

same asymptotic distribution although constructed in different ways.

3 [F-test with Bootstrapped Samples

We discuss the asymptotic behavior of the F-statistic for three cases: (i) fixed n /
large T, (ii) large n / fixed T, and (iii) large n / large T. Based on the results, we
argue that the F' distribution may not be always appropriate to use but the bootstrap

F-test can be a good alternative.

3.1 The asymptotics of the F'-statistic

To simplify the arguments, we assume that the factors are known and stationary.
Also, the number of factors is assumed to be one (r = 1) unless indicated otherwise.
In order to construct the F' statistic to test the null Hy : \; = 0 for all 7, we compute

< N\2
RRSS =" ST w2 and URSS =7 1, <yit - >\¢Ft> . Then, we have

B nl —n RRSS — URSS

F
A n URSS

For the case of fixed n / large T, one can rewrite the above formula as follows:

Fy =

Q'|g<m|g |g<to

where a = n and b = nT — n. Accordingly, the approximation by a chi-squared
distribution is given by,

d
aFy = X2

because a is fixed and b — oo.
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We next turn to the case of large n / fixed T'. In the statistics literature, Boos and
Brownie (1995) and Akritas and Arnold (2000) consider the asymptotic distribution of
the ANOVA F-statistic for this case where n and T" denote the number of treatments
and replications per treatment, respectively. Under their settings, it is shown that

\/E(F—1)i>N(0,T2—_T1>

as n — oo with fixed 7. That is, the F statistic is asymptotically normal with
expected value 1. They also show that the asymptotics above hold in a two-way
fixed effects model as well. Extending these results to the interaction effects model,
Bathke (2004) shows that the limiting normal distribution can be still achievable with
the F-statistic centered at 1. Interestingly, in the econometrics literature, Orme and
Yamagata (2006) consider a panel data model with one-way fixed effects and derive
the same limiting distribution as that of Boos and Brownie (1995) and Akritas and

Arnold (2000).

3.1.1 The asymptotics of the F-statistic in a high-dimensional framework

As mentioned earlier, the F-statistic with large n and T have not been explored in
the literature. In this section, we sketch the asymptotic properties of the F-statistic
under this setting.

Consider the common factor model:
Vit = NiFy +uyg fori=1,...,nandt=1,...,T

where \; and F; are scalars. Our analysis is based on the following assumptions:

Assumption 1 u; i (0,0%) for all i and t with finite fourth order cumulants.
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Assumption 2 The factor and factor loadings are assumed to be independent of

with E(uy | Fy) = E(uy | \;) = 0 such that:
10 <limy oo =30, F? = ¢ < 0.
2. 0 < lim, oo 1377 | A7 = ¢, < 00.

These assumptions are similar to those in Bai (2003).% In what follows, we dis-
tinguish between cases where the factor F; is observable or not. If F} is observable,
then one can easily obtain Xl using least squares. If F} is not known, one relies on
the method of PCA to compute /):Zﬁ’t In the lemma below, we consider the limiting

distribution of Xl or ;\\zﬁt Note that the result for /)\\Zﬁt is taken from Bai (2003).

Lemma 1 1. If F} is observable, then for each i as T — oo

VT (% = )

d
N < N(0,1).

2. If F is unobservable, then as (n,T) — oo

bur (MiFi = i)

< N(0,1)

n

52T 52T 1/2
(L it T %M/zt)

2 2
where 0,7 = min {\/ﬁ, ﬁ}, Vi, = ;—102, and Wy, = 5—202.

Lemma 1 shows that we can asymptotically achieve the standard normal distribu-
tion whether or not F} is observable. Note that: (i) We have the limiting distribution
of X, with known F;. On the other hand, the limiting distribution of /):,ﬁt is derived for
an unknown Fy. (ii) The convergence rate when Fj is unobservable is min {\/ﬁ, VT }

with no restriction on the relationship between n and T, see Bai (2003). Given the

SFor simplicity, we assume the i.i.d. error terms, while Bai (2003) allows for time series and
cross-section dependence in the error terms.
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above results, we derive the asymptotic normality of the F-statistic when the factor

is known and unknown, respectively.

Theorem 1 Assume (n,T) = 0o and F, is observable. Then

v (Fy—1) % N(0,2).

seq

Theorem 1 shows that the asymptotic distribution of the F-statistic with (n,T") —
oo will converge to the normal distribution if F; is known. Note that this result is
quite similar to the one reported in previous studies, e.g., the ANOVA literature and
Orme and Yamagata (2006) which do not assume the high-dimensional framework,
in the sense that the F-statistic gets centered at 1 with the asymptotic normality.

If F} is not observable, however, one needs to estimate common components \; F}
using the method of PCA. Next we investigate the limiting distributions of the F-

statistic under two specific cases, i.e., % — 0 and % — 0, following Bai (2003).
Theorem 2 Assume (n,T) — oo and F; is not observable.

1. If% — 0, then

VnT (Fy —1) % N(—(Ft2 _ ¢F>, i)

Op ot

-1
where ¢ = Var (a3, — u2,) < 0o and a; = F, (% ST FE) ix ST Fage.
2. If 2 — 0, then the asymptotic distribution of F is not feasible.

From Theorem 2, one finds that there will be a shift term in the limiting distribu-
tion of the F-statistic. The F-statistic will not be asymptotically centered around 1

any more. Instead, the F'-statistic will converge to the sequence, 1+ Iri_—fl” if % — 0.

n

For the other case, i.e., 7 — 0, we cannot obtain the asymptotic properties because

our current assumption, ¢, > 0, is violated under the null Hy : \; = 0 for all 4.7

"Note that the asymptotic normality with d§,,7 = min {\/ﬁ, \/T} is also not feasible, under the
null, because ¢, cannot be defined.
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To conclude this section, we find that using the asymptotic F' distribution in a
high-dimensional framework may fail especially when the factors are unknown. In the
following sections, we discuss the bootstrap procedure as an alternative that avoids

all these complexities.

3.2 Bootstrap data generating process

Before we go into the validity of bootstrap F-tests, we briefly discuss a bootstrap
data generating process (DGP). Resampling in a regression can be implemented in
various ways. One can consider first the pairs bootstrap, one of the most general and
widely used bootstrap DGP, which is proposed in Freedman (1981). The idea of
this method is simply resampling the dependent and independent variables in pairs.
However, this method does not condition on the independent variable, X, in a DGP
(Instead, each bootstrap sample has a different X*). As a result, this DGP can be
misleading in inference when test statistics depend on X according to MacKinnon
(2007). Therefore one may conclude that the pairs bootstrap is not satisfactory for
bootstrap inference.

Secondly, the residual bootstrap can be considered. Let
yo = w3 +u,  u~ I1D(0,07),

The first step of the residual bootstrap is estimating B and the residuals u; under the

null. After rescaling the residuals, the residual bootstrap DGP can be written as
Y, =1+

where u; is obtained from the empirical distribution of rescaled u;. Note that the
validity of this method depends crucially on the assumption u; ~ ITD(0,0?), i.e.,

independent and identically distributed error term. Hence, under heteroskedasticity
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this bootstrap DGP is not recommended.

Finally, with independent but possibly heteroskedastic errors, one can rely on
the wild bootstrap. First of all, this method is quite simple to implement from its
construction. In addition to this, as shown in simulations of Davidson and Flachaire
(2008), wild bootstrap tests perform well in practice under heteroskedasticity. In fact,
a specific version (using Rademacher distribution) of the wild bootstrap is shown to
outperform another version of the wild bootstrap as well as the pairs bootstraps even
when the disturbances are homoskedastic.

We adopt the wild bootstrap using Rademacher distribution in our simulations

because it is robust to heteroskedasticity. Let
Yit = T4 + uy where uy ~ II1D(0,0°),
then the corresponding bootstrap DGP is constructed as follows:
iy = Tl + ey (11)

where 7}, is newly generated data, u; is the restricted residual, and B is an estimate

under the null.® &%, follows the Rademacher distribution:

1 with probability 0.5
€ = (12)
—1 with probability 0.5

which is introduced by Liu (1988) and developed by Davidson and Flachaire (2008).°

8Note that the model is estimated under the null to obtain restricted estimates B MacKinnon
(2006) points out that using the unrestricted residuals is not appropriate because otherwise the
bootstrap DGP will not satisfy the null hypothesis.

9 Alternatively, one may want to use the following bootstrap DGP suggested by Mammen (1993b)
especially when the distribution of the error terms is sufficiently asymmetric.

(V5+1)
25

* —
Eit =

{ @ with probability p =

@ with probability 1 — p
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Note that one has E (¢,) = 0 and E (¢}?) = 1 with this setting.'”

Next we describe in some details how to implement the wild bootstrap test for
the common factor model.

Step 1: One estimates the common factor model. If F; are known, we simply
obtain the OLS residuals. If F; are not observed, we use the method of PCA. Note
that the unrestricted residuals as well as the restricted residuals should be computed
in order to calculate the F-statistic. Let this empirical statistic be F).

Step 2: After we obtain the residuals from step 1, we re-generate the data using
the restricted residuals and an external random variable €};. For example, one can

generate artificial data for the common factor model by,

* *
Yir = Wity

where ¢+ = 1,...,n; t = 1,...,T. Note that we simply use u; as the restricted
residuals which are the same as y;; under the null Hy : \; = 0 for all i.!* Now
one can compute the bootstrap counterpart of our test statistic, i.e., the bootstrap F
statistic. Let us denote this statistic as F}.

Step 3: One repeats Step 2, say B times. Then we obtain the distribution of F%
and calculate the percentile of FY which are greater than or equal to F). Finally
setting this proportion at a*, one can test the null by rejecting o* < «, at the 5%

significance level.

However, in their simulations Davidson and Flachaire (2008) show that the version we adopt here
performs at least as good as this version even when the disturbances are asymmetric.

19The further condition E (e}}) =1 is often added for the bootstrap error in the literature.

HTf we have regressors as well as factors in our equation, then y}, = x;tg + Wiel, where Wy =
Yit — Ji;tg are the restricted residuals under the null Hy : \; = 0 for all i.
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3.3 The validity of the bootstrap F'-test

Mammen (1993b) seems to be the first to show that under some regularity condi-
tions the asymptotic distribution of the F statistic is equivalent to that of the wild
bootstrap counterpart in a high-dimensional framework. Using simulation results,
Flachaire (2005) shows that the wild bootstrap F-test performs well compared to
other bootstrap methods such as the pairs bootstrap. We sketch the validity of the
bootstrap F-test for cross-sectional dependence relying on the results of Mammen
(1993b).

Consider first a simple regression model
yt:x;ﬁjtet fort=1,...,n

where 3 is a k-dimensional parameter and ¢, is the error. Mammen (1993b) studies
the case in which k£ may also increase as n increases. For the testing problem § € Hy

versus 3 € Hy, the F-statistic can be constructed by,

S (- anB) = S (- ane) | - )

F= N2
Si (=2 B) /(0 —k)

(13)

where each squared sum indicates the square of the projection of y onto Hy and H;.
Under the hypothesis H;, Bz is the least squares estimator, k; is the dimension of the
parameters, and z;, is a set of k; regressors. It is important to note that the degrees
of freedom of both the numerator and denominator cannot be assumed to be fixed
and that simply applying the F' distribution in testing may fail. Mammen (1993b)
shows that the asymptotic distribution of the bootstrap F-statistic is consistent for

that of the F-statistic.'?

(i (=21, B0) - (v —0,85) ] a ko)

7 5%\ 2 Where
Z?:l(y:*xl,tﬁl) /(n—k1)

12To compute the bootstrap F statistic, F* =

171



One may observe that Mammen’s results can be readily extended to our case if
the factors are observable. For the common factor model with a single factor,'® the

F-statistic is defined as:

{271 Zthl Y — D i 23:1 <yit — Xth> 2} /n
= — 5 (14)
Z?:l 23:1 <yit - AiFt) / (nT —n)

where the F; is known. The bootstrap F-statistic can be constructed by,

[21;1 ZtT=1 il — > Zthl (?/z*t - Xth>2] /n
> i Zthl <yz*t - X:Ft>2 / (nT" —n)

Fy =

where X: denotes the bootstrap estimate which is the least squares estimator for XZ
from y}, = \F, + ugel. In fact, equation (14) is a set up similar to (13): (i) Degrees
of freedom of both the numerator and denominator are not bounded. For example,
n, the number of factor loadings, corresponds to k; in equation (13) with ky = 0.
Also nT, the number of total observations, is the counterpart of n in equation (13)
as well. (ii) Both (13) and (14) are obtained from least squares estimation. (iii) Note
that one of the key conditions in Mammen (1993b) to identify the parameters under
a high-dimensional framework, i.e., %1 — 0, is automatically satisfied in our panel

data model, because 2 = L — 0.1
’ W T

Proposition 3 Assume (n,T) = 0o. If Assumptions 1-2 hold and F, is observable,

BI and 3; denote the least squares estimators from newly generated bootstrap data under the null
and alternative, respectively.

I3The dimension k of /3 is not a concern in this paper and is assumed to be fixed. Therefore, we
only consider the common factor model dropping the regressors without loss of generality.

4 Our model is similar to that of Mammen in that we have an infinite number of parameters
to estimate as the sample size tends to infinity. However, our model is also different from that of
Mammen, because the number of F} is assumed to be fixed. Hence, A; for all i can be estimated

with large 7. Therefore, we do not need the corresponding condition (£ — 0) in Mammen (1993b).
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then

K (L(Fy), L*(F)) =0
where L (Fy) = P (y/n(F\x—1) <z) and L* (F}) = P*(y/n(Fy — 1) < z).

Proposition 3 provides the consistency of the bootstrap distribution of the F-
statistic. Hence, one can infer that the bootstrap method can be justified in testing
cross-sectional dependence when the factors are known. We also notice that one does
not necessarily have to theoretically derive the limiting distribution of the F-statistic
now that the distribution of the bootstrap statistic can mimic it asymptotically. In
fact, the asymptotic distribution of the F-statistic can remain unknown, while one

can still properly test the null using the bootstrap F-statistic.

3.3.1 Bootstrapping PCA

When the factors are not observed, another important issue needs to be taken into con-
sideration. With unknown factors one computes URSS = ) ! , Zle (yz't — Xzﬁt>2
by the method of PCA instead of using least squares. Namely, we need to bootstrap
the PCA estimators. Diaconis and Efron (1983) introduce an application of bootstrap
to principal component analysis and illustrate how to bootstrap the eigenvalue and
eigenvector components. However, this is done without theoretical justification.
Recently, Gongalves and Perron (2010) establish the asymptotic validity of the
bootstrap for factor-augmented regressions under a high-dimensional framework. They
provide an appropriate set of assumptions under which the wild bootstrap procedure
can be used to estimate the bootstrap factors by principal components.'> Note also
that Mammen (1993a) shows that the wild bootstrap in a high-dimensional model is

valid as long as the asymptotic normality holds. To carry this point, we recall that the

'5Note that Gongalves and Perron (2010) focus on the factors which cannot be identified separately
with the factor loadings. However, identification problem is not the concern of this paper. In fact,
in order to construct the F-statistic, we only need to estimate the common components (\;F;, not
F}) which are identifiable.
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asymptotic normality of the estimated common components for \;F; as (n,T) — oo

can be achieved, as shown in Lemma 1.

Proposition 4 Assume (n,T) — oo and L — 0. If Assumptions 1-2 hold and F; is
unobservable, then

K (HnTa HBoot) A 0

where Hy,p = P (1 < z) is the c.d.f. with a functional T = /T (Xzﬁt — /\iFt> , Hpoot =
P* (1% < x) is the empirical c.d.f. with 7 = /T (X:ﬁt* - XJ%)

Proposition 4 indicates the consistency of bootstrapping PCA. Hence, this implies
that the bootstrap F-statistic can be used for the unobservable F; case. Note that
the condition % — 0 is required to achieve the asymptotic normality of the estimated
common components under a high-dimensional framework. Based on this, we also

check the consistency of the distribution of the bootstrap F-test using PCA.

Proposition 5 Under the assumptions of Proposition 4,
K (L(Fy), £ (F5) 20

where L (Fy) = P (y/n(F\—1) <z) and L* (F}) = P*(y/n(F5 — 1) < z).

According to Proposition 5, the distribution of the bootstrap F-statistic will uni-
formly converge to the distribution of the empirical F-statistic. Hence, combining
this result with that of Proposition 3, one can conclude that the bootstrap F-statistic
can be used in testing cross-sectional dependence whether the factors are known or
not. The following section presents the various simulation results in support of this

conclusion.
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4 Monte Carlo Results

4.1 Experiment design

We consider the following equation:

Vit = TS+ NiFy +uy fori=1,... . nandt=1,...,T

where =2 and \; = 0 for all i. z;; and F} follow either 7(0) or I(1) processes. For
simplicity, we assume that both \; and [ are scalars. wu; is generated by IIDN(0,1)
for our benchmark case. In the common factor model, the regressor, x;, is simply
dropped. We study the finite sample properties of the F-statistic for Hy : A\; = 0 for
all 7; based on various estimators discussed in Section 2. We denote the empirical F'
statistic and the bootstrap F' statistic as EF and BF, respectively. The sample sizes
n and T are varied over the range {10,50, 100} for the model without the regressor,
and {10,20,50} for the model with the regressor.

For each experiment, we perform 1,000 replications and 200 bootstrap iterations.
GAUSS 7.0.6 is used to perform the simulations. Random numbers for u;, F;, and x;
are generated by the GAUSS procedure RNDNS. We generate n(7 + 1000) random
numbers and then split them into n series so that each series has the same mean and

variance. The first 1,000 observations are discarded for each series.

4.2 Case 1: Without the regressor

This section runs Monte Carlo experiments for the common factor model:

Vit = NiFy+uy fori=1,..., nandt=1,...,T.

Note that in this case we generate the bootstrap data from y}, = wu;el, where uy

is simply y;; itself (or w;) under the null. We discuss the case of stationary and
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non-stationary factors subsequently.

4.2.1 Stationary factors

Let us first consider the benchmark case under which both F; and wu; are generated
from ITDN(0,1).'® Table 1 shows the empirical size of EF and BF when F; = I(0)
with true size 5%. Given this setting, we find the following: (i) If F; is known, both
EF and BF are quite close to their true size. (ii) In contrast, when F} is unknown, EF
gets extremely shifted to the right so that its size becomes almost 100%, which implies
rejection for almost all cases. BF, however, mimics the empirical F' distribution quite
well so that its size stays very close to 5%. For example, with (n,7") = (50, 100) the
size of EF is 99.9% while that of BF is 4.9% when the factors are not observed.

Next, in order to examine the power of the F'-test under some alternative hypothe-
ses, we divide our cases into strong and weak cross section dependence. Weak depen-
dence is set at A\; ~ I17DU (0.01,0.2) while strong dependence at A\; ~ [1DU (0.2,0.5).
All the results are reported in Table 2. Overall, the power of the F' test seems sat-
isfactory: (i) The power increases as J\; increases as expected. (ii) Also, the power
increases as n or T increases. (ili) With weak dependence, both EF and BF have
no power or very low power if any, when F; is unknown. In fact, even in the largest
sample size of our experiments, (n,7") = (100, 100), the power of EF and BF is no
more than 46%.

We also check robustness of our benchmark results to heteroskedasticity and serial
correlation in the error terms. We first introduce heteroskedasticity into the error as
follows:

Ui = OVjt

where v;; is generated from N(0,1) and o; is set as either standard normal or simply

16We also run experiments with AR(1) factors and linear trended factors. All the results are
similar to those when the factors follow IIDN(0,1).
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10. That is,

~N(0,1) fori=1,..., %
o; .

=10fori=L+1,...,n

Notice that we do not correct for heteroskedasticity to compute the residuals.!” All
the results are reported in Table 3. We find that BF stays robust despite huge
heteroskedasticity. More specifically, the following can be observed: (i) With het-
eroskedasticity, EF gets over-sized although F; is known. In fact, the empirical size
of EF varies from 13 to 20%. This is different from our benchmark case where the
size of EF stays close to 5% when F; is known. (ii) When F; is unknown, as ex-
pected, EF shows extreme over-rejection like in the benchmark case. However, BF
behaves well whether or not the factors are observable. In fact, the empirical size
of BF consistently stays robust varying from 4-6% for all experiments. Therefore,
we conclude that bootstrap F-test in the common factor model can be used under
heteroskedasticity.

For serial correlation, the error terms are set as follows:
Uit = PUjt—1 + Vit

where p = 0.4 and v;; ~ N(0,1). Again we do not correct for serial correlation. In
Table 4, one can observe that: (i) Overall, it appears that both EF and BF are not
appropriate to use because of considerable over-rejections. In fact, they get more
over-sized as n increases.'® (ii) More specifically, we have the empirical size of EF
and BF varying between 5 to 16% even when the factors are known. (iii) This is an

expected result in the sense that the wild bootstrap method used in this paper is not

17Since our concern in this paper is consistency, we do not go into details into the efficiency
problem. Note that Choi (2008) proposes efficient estimation of factor models (when the factors
are unknown), the so-called generalized principal component estimators (GPCEs). In fact, he uses
maximum likelihood estimation of the factors and factor loadings under the assumption of normal
error terms.

18We run also p = {0.2,0.8,0.99} and find that EF and BF get more over-sized as p increases.
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designed for the serially correlated case. Note that Gongalves and Perron (2010) also
obtain some noticeable size distortions for the serially correlated error terms. Hence,
one needs to explore alternative bootstrap methods (such as the block bootstrap)

rather than the wild bootstrap for this case.

4.2.2 Non-stationary factors

This section considers non-stationary factors, i.e., £y = F;_;+mn, where 7, is generated
by IIDN(0,1). From Table 5, one can observe the following: (i) Basically, the results
are similar to the case of stationary factors. With observable F; both EF and BF
are quite close to their true size. However, with unobservable F;, EF gets extremely
over-sized while the size of BF stays close to 5% varying from 4 to 6%. (ii) In addition
to this, note that one obtains exactly the same size of EF and BF whether F; = 1(0)
or Fy = I(1) if F; is unknown. This is because the restricted bootstrap residuals are
used to compute the F-statistic. That is, estimates of the factor and factor loadings
are calculated based on y; which is the same under the null whether F; is I(0) or
I(1).

To compute the size-adjusted power, we again divide our cases into strong and
weak cross section dependence as in the previous section. All the results are reported
in Table 6 and we find the following: (i) The power increases as ); increases, as in
the F; = I(0) case. (ii) The overall power is higher with the non-stationary factors as
compared with the stationary factors for each sample size. This may be due to the
fact that the explanatory power of the estimated model increases because the signal
with an (1) process is stronger than the one with an I(0) process.'

We also check robustness to heteroskedasticity and serial correlation. Table 7
reports the results for heteroskedasticity. We again find that BF stays robust despite

huge heteroskedasticity, while EF shows over-sized results even when the factors are

9Note that with the non-stationary regressor it is easier to identify coefficient estimates because
of the stronger signal.
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observable. In fact, the size of BF varies from 4 to 6% while that of EF from 14
to 21%. Combining this with Table 3, one concludes that BF in the common factor
model can be used with heteroskedasticity regardless of whether or not the factors
are stationary and whether or not the factors are known.

Table 8 re-confirms that some alternative bootstrap methods should be inves-
tigated for the serially correlated case. Figures 1 to 6 overlap the F' distribution
(Theoretical F'), the empirical F' distribution, and the bootstrap F' distribution for
the benchmark case depending on observability and stationarity of F;. From the
graphical illustrations, it can be seen that we have the consistent results with the
previous literature, e.g., ANOVA literature and Orme and Yamagata (2006). In fact,
when we vary n from 5 to 100, the distribution of EF converges to the normal shaped

curve centered at 1 if F; is known.

4.3 Case 2: With the regressor
4.3.1 Stationary regressor and factors

In this case, we add the regressor, x;;, as well as F}:

yz’t:l’itﬁ—i—)\iﬂ—i—uit forizl,...,nandtzl,...,T

where § =2 and \; = 0 for all i. Both x;; and F; follow I(0) processes and are gen-
erated from N(0,1). For the benchmark case, we first generate u; from IIDN(0,1).
The maximum number of iterations (when F} is unobserved, for the interactive fixed
effects estimator for [3) is set at 5. Table 9 reports the empirical size of EF and
BF. We basically observe similar results as in Case 1: (i) If F}; is known, the size
of EF and BF are quite close to the true size (5%). (ii) If F}; is unknown, EF gets
extremely over-sized while BF mimics the distribution of EF pretty well with huge

improvements in size. Again, Figures 7 to 10 overlap the F' distribution, EF, and BF
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for varying n = {5,50} and T' = {10,20,40,50}. One can easily check that we have
a similar pattern with that in Section 4.2.1.

Table 10 indicates the size-adjusted power under strong and weak dependence.
Again, the power seems good under strong dependence especially when F; is known.
Under weak dependence, however, both EF and BF have much less power. In fact,
if F; is unobserved, then the size-adjusted power of EF and BF ranges between 4
and 9%. Also note that the power increases as \; or the sample size increases. Het-
eroskedasticity and serial correlation are again introduced into the error terms (Table

11 and 12) and we have the similar findings as in Case 1.

4.3.2 Non-stationary regressor and factors

In this section, x;; and F; are assumed to be non-stationary. The data are generated

as follows: Fori=1,... ,nandt=1,...,T,

Yir = 2T+ NFy 4 g,

Tip = Tip—1 1 Ei,
and
F,=F_1+n
Ut 0 1 o1 o3
iid
where Eit ~ N 0 y 0921 1 0923
un 0 o031 O3 1

We follow most of the settings in Bai, et al. (2009) for the simulation. In par-
ticular, we set 032 at 0.4 while varying o9 and o3; over {0,0.2,0.8}. The long-run
covariance matrix is estimated using the KERNEL procedure in COINT 2.0. We
use the Bartlett window with the truncation set at 5. The maximum number of it-

erations to estimate  (when F; is unknown) is also set at 5. The empirical size for

180



each case is reported Tables 13 to 15 depending on the combination of o9; and o3;.
We find the following: (i) Suppose first that F; is observable. In this case, if o9; is
low (091 = 0 or 091 = 0.2), each of EF and BF shows the correct size (Table 13 and
14). However, for 051 = 0.8, both EF and BF get over-sized in relatively small sample
sizes although this distortion seems to quickly get better as T increases (Table 15).
In fact, for (n,T") = (50,50) the size of EF and BF varies between 8 and 9%. This
can be explained by the fact that one needs to have enough samples to estimate the
long-run covariance matrix. One can also observe that oy, rather than o3, affects the
performance of EF and BF. This phenomenon stems from the fact that o3; does not
matter much under the null. (ii) If F} is unobserved, EF almost always rejects the
null like in the previous cases. BF shows the correct size for 091 = 0 or g9; = 0.2.
Interestingly, if 057 = 0.8, the performance of BF using CupFM is quite different from
that using CupBC although the size of both improves as T increases. In fact, CupFM
leads to the reasonable size varying between 3-8% while CupBC causes considerable
over-sizing.?’ Note that the distortion using CupBC gets worse with larger n and
smaller T'. This implies that correcting for endogeneity and serial correlation at every
iteration (CupFM), not only at the final stage (CupBC), is helpful in improving the
goodness of the long-run covariance matrix estimation. (iii) Overall, with low o9y,
similar conclusions with the previous sections continue to hold. Both EF and BF
(with LSFM) can be used if the factors are known, while only BF should be used if
the factors are unknown. However, with high o9, using CupFM instead of CupBC
seems to be more appropriate. (iv) Lastly, note that the results when o9 = 0 and
031 = 0 are graphically displayed in Figures 11 to 16.

Tables 16 to 24 present the size-adjusted power for each case. The results seem

20We compute the signal-to-noise ratio = ?)iii;’;‘: and observe that we have the lower signal-

to-noise ratio as og; increases (so more size distortion is expected). In fact, we vary oa; over
{0,0.2,0.4,0.6,0.8} although not reported here. The size of CupBC clearly gets worse as 091 increases
but seems to be relatively robust until oo; = 0.4. In contrast, increasing o3 (the stronger signal)
leads to slight improvement in size.
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satisfactory and one can basically draw the same conclusion as in the previous sec-
tions. We also check robustness to heteroskedasticity and serial correlation. The
empirical size under heteroskedasticity is reported in Tables 25 to 27. One observes
the following: (i) When F; is observed, EF becomes over-sized and this gets worse
with higher o9;. However, even with high 05, BF is much less over-sized than EF. In
fact, with o9; = 0.8 the size of BF gets quickly closer to true size 5% as T increases
(Table 27). (ii) When F; is not observed, EF gets extremely over-sized again. The
size of BF using CupFM, however, stays relatively robust varying from 3 to 9% and
clearly improves as the sample size increases. Hence, the size of BF using CupFM
under heteroskedasticity seems to perform well whether the regressor is included or
not and whether x;; and F; follow I(0) or I(1). In contrast, BF is consistently over-
sized for all the experiments and gets worse as the sample size increases when serial

correlation is present, see Tables 28 to 30.

5 Conclusion

High-dimensional data analysis for large n / large T' has become an integral part of
the macro panel data literature. This paper suggests using the bootstrap F-test to
test for cross-sectional independence. This circumvents the difficulty of deriving the
asymptotic distribution of this statistic with large n / large T'. The simulation results
show that the bootstrap F-test performs well in testing cross-sectional independence
and is recommended in practice. This F-test has the added advantage of being feasible
even when we do not observe the factors. Extensive simulations show that the wild

bootstrap F-test is robust to heteroskedasticity but sensitive to serial correlation.
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Figure 1: Case 1, The Histogram of Bootstrap F When F; Is 1(0) and Known (n = 5)
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Figure 2: Case 1, The Histogram of Bootstrap F When F; Is I1(0) and Known (n =

100)
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Figure 3: Case 1, The Histogram of Bootstrap F When F; Is (1) and Known (n = 5)
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Figure 4: Case 1, The Histogram of Bootstrap F When F; Is I(1) and Known (n =

100)
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Figure 5: Case 1, The Histogram of Bootstrap F When F; Is Unknown (n = 5)
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Figure 6: Case 1, The Histogram of Bootstrap F When F; Is Unknown (n = 100)

=100, =10

0 05 1 15 2 25
Histogram of Bootstrap F

n=100, T=50

3 35

187

08

o7 !
06 H
05
04
03!
02

01y

08

o7 ff
06
05 H
04 £y
03 Li
02 }!

0.1"|

45

=100, =20

0 05

15 2
n=100, T=100
2 3




Figure 7: Case 2, The Histogram of Bootstrap F When F} Is I (0) and Known (n = 5)
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Figure 8: Case 2, The Histogram of Bootstrap F When F; Is I (0) and Known (n = 50)

=5, T=10

2 3 4
Histogramof Bootstrap F

15, T=40

=50, T=10

15

n=50, T=40

188

15

25

=5, T=20

1e50, T=20




Figure 9: Case 2, The Histogram of Bootstrap F When F; Is I (0) and Unknown

(n=9)

Figure 10: Case 2, The Histogram of Bootstrap F When F; Is I (0) and Unknown

(n = 50)
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Figure 11: Case 2, The Histogram of Bootstrap F When F} Is I (1) and Known (n = 5)
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Figure 13: Case 2, The Histogram of Bootstrap F When F; Is I (1) and Unknown

(CupBC, n = 5)

08

07

06

05

Density

03

02

01

08

07

06

05

04

03

02

01

Figure 14: Case 2, The Histogram of Bootstrap F When F; Is I (1) and Unknown
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Figure 15: Case 2, The Histogram of Bootstrap F When F}; Is I (1) and Unknown

(CupFM,

n="5)
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Figure 16: Case 2, The Histogram of Bootstrap F When F; Is I (1) and Unknown

(CupFM,

n = 50)

N80, T=10
3 T
Enpirical F
25 [ IBootstapF
----- Theoretical F
0 05 1 15 2 25 3 35 4
Histogramof Bootstrap F
=50, T=40
25 T
2r -
(A
il
15 F
i
] \
i i\
] \
05 - ! !
1 i \
] \
] \
o z ——
0 1 2

192

35

=50, =20

251

15

05 -

25

05 -




Table 1: Case 1, The Size (%) of F-test When F; Is 1(0) (Ho: A\; =0 for all i)

D.F.(num, den) 10,90 10,490 10,990 50,450 50,2450 50,4950 100,900 100,4900 100,9900

(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)
Known F; EF 4.1 47 5.3 6.3 5.1 43 3.6 5.0 5.6
BF 5.1 5.8 5.2 6.2 5.6 46 5.1 5.3 5.6
Unknown F, EF 999  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
BF 45 48 45 6.2 5.8 4.9 5.4 5.9 5.6

Note: True size is 5%

Table 2: Case 1, The Size-adjusted Power (%) of F-test When Fy Is I (0) (H,: \; # 0 for all i)

Strong dependence: \; ~ [1DU (0.2,0.5)
(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)
Known F} EF 595 99.8 100.0 92.6 100.0 100.0 98.6 100.00 100.00
BEF  64.1 99.9 100.0 95.6 100.0 100.0 98.6 100.00 100.00
Unknown F; EF 155 73.8 95.8 62.7 100.0 100.0 86.4 100.00 100.00

BF 20.4 73.8 95.7 66.9 100.0 100.0 86.1 100.00 100.00
Weak dependence: \; ~ IIDU (0.01,0.2)
Known F} EF 8.7 39.4 72.3 14.4 85.4 99.4 28.2 97.7 100.0
BF 10.1 40.9 72.5 20.9 86.8 99.3 274 98.3 100.0
Unknown F; EF 5.1 6.0 6.7 6.0 9.0 17.0 6.7 16.7 45.3
BF 5.4 3.5 6.2 6.7 9.6 17.2 7.3 19.1 46.1
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Table 3: Case 1, The Size (%) of F-test under Heteroskedasticity When Fy Is 1(0) (Hqy: X\; =0 for all 1)

D.F.(num, den) 10,90 10,490 10,990 50,450 50,2450 50,4950 100,900 100,4900 100,9900

(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)
Known F; EF 158  16.8 13.9 19.7 19.6 19.6 19.0 18.1 20.9
BF 45 6.2 5.7 48 43 5.3 47 4.8 5.0
Unknown F, EF 999  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
BF 5.2 5.2 4.3 5.8 5.9 5.0 5.6 5.0 5.1

Table 4: Case 1, The Size (%) of F-test under Serial Correlation When F; Is I (0) (Hy: A\; =0 for all i)

D.F.(num, den) 10,90 10,490 10,990 50,450 50,2450 50,4950 100,900 100,4900 100,9900

(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)
Known F, EF 6.1 5.8 6.3 14.1 9.0 6.8 16.3 10.5 8.2
BF 74 5.7 6.5 15.1 9.4 7.2 16.7 10.4 8.8
Unknown 7, EF  99.9  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
BF 314 296 28.7 99.4 98.3 98.6 100.0 100.0 100.0
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Table 5: Case 1, The Size (%) of F-test When Fy Is I (1) (Hy: A\; =0 for all i)

D.F.(num,den) 10,90
(n,T) (10, 10)
Known F; EF 4.5
BF 6.3
Unknown F; EF 99.9
BF 4.5

10, 490
(10, 50)
43
5.7
99.9
48

10, 990
(10, 100)
5.3
5.9
99.9
45

50,450 50,2450 50,4950

(50, 10)
6.5
6.0
99.9
6.2

(50, 50)
5.1
5.4
99.9
5.8

(50, 100)
47
5.6
99.9
4.9

100, 900
(100, 10)
4.0
45
99.9
5.4

100, 4900
(100, 50)
4.8
5.2
99.9
5.9

100, 9900
(100, 100)
4.9
5.3
99.9
5.6

Note: True size is 5%

Table 6: Case 1, The Size-adjusted Power (%) of F-test When Fy Is I (1) (Hy: X\; # 0 for all i)

Strong dependence: \; ~ [IDU (0.2,0.5)

(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)

Known F} EF  88.6 100.0 100.0 97.5 100.0 100.0 99.0 100.0 100.0
BEF  89.3 100.0 100.0 98.6 100.0 100.0 99.1 100.0 100.0

Unknown F; EF  64.0 100.0 100.0 89.1 100.0 100.0 96.1 100.0 100.0
BF  66.0 100.0 100.0 90.5 100.0 100.0 95.9 100.0 100.0

Weak dependence: \; ~ IIDU (0.01,0.2)

Known F} EF 339 97.9 100.0 95.7 100.0 100.0 69.0 100.0 100.0
BEF 352 97.7 100.0 60.6 100.0 100.0 70.4 100.0 100.0

Unknown F; EF 12.8 75.8 94.9 29.0 96.5 100.0 42.2 98.9 100.0
BF  15.0 75.0 95.1 33.1 96.5 100.0 43.8 99.1 100.0
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Table 7: Case 1, The Size (%) of F-test under Heteroskedasticity When Fy Is 1 (1) (Hqy: X\ =0 for all 1)

D.F.(num, den) 10,90 10,490 10,990 50,450 50,2450 50,4950 100,900 100,4900 100,9900

(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)
Known F; EF 169  16.7 14.9 17.6 17.4 18.8 20.2 21.2 20.0
BF 53 5.6 5.5 4.0 46 5.6 5.4 5.3 6.1
Unknown F, EF 999  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
BF 5.2 5.2 4.3 5.8 5.9 5.0 5.6 5.0 5.1

Table 8: Case 1, The Size (%) of F-test under Serial Correlation When F; Is I (1) (Hy: A; =0 for all i)

D.F.(num, den) 10,90 10,490 10,990 50,450 50,2450 50,4950 100,900 100,4900 100,9900

(n,T) (10,10) (10,50) (10,100) (50,10) (50,50) (50,100) (100,10) (100,50) (100,100)
Known F, EF 482  59.1 63.1 84.8 98.9 98.8 91.6 99.9 99.9
BF 496  60.5 64.4 87.8 98.9 98.8 92.6 99.9 100.0

Unknown 7, EF  99.9  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
BF 314 296 28.7 97.4 98.3 98.6 100.0 100.0 100.0
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Table 9: Case 2, The Size (%) of F-test When F, Is 1(0) (Ho: A\; =0 for all 7)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
Known F, EF 4.2 5.8 4.4 4.2 6.2 5.6 6.4 5.5 5.4
BF 38 6.0 5.8 5.6 6.5 5.8 6.0 5.8 5.4

Unknown F; EF  99.9 999 999 999 999 999 999 999 99.9
BF 5.1 5.4 48 5.1 5.5 4.1 5.9 5.3 5.6

Note: True size is 5%

Table 10: Case 2, The Size-adjusted Power (%) of F-test When Fy Is 1 (0) (Hy : A\; # 0 for all i)

Strong dependence: A\, ~ I1DU (0.2,0.5)
(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
Known F} EF 594 88.9 99.9 77.6 97.4 100.0 92.0 100.0 100.0
BF 634 90.3 99.9 81.7 98.0 100.0 95.7 100.0 100.0
Unknown F; EF 15.8 29.1 73.2 31.0 60.0 97.1 62.5 93.3 100.0
BF 204 34.1 73.8 33.6 63.5 97.0 67.1 93.8 100.0

Weak dependence: \; ~ [IDU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
Known F;, EF 8.2 159 394 126 207 543 144 336  85.1
BF 95 166 402 154 246 590 211 399  86.9

Unknown F, EF 4.9 5.1 6.2 5.3 5.5 6.9 6.1 6.0 9.1
BF 54 5.5 5.7 5.5 6.0 6.0 6.7 6.2 9.7
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Table 11: Case 2, The Size (%) of F-test under Heteroskedasticity When F; Is I (0) (Hp: A\; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
Known , EF 156 171 167 174 177 189 197  18.3 19.7
BF 4.6 5.6 6.2 4.9 5.5 6.5 4.7 5.6 45

Unknown F; EF  99.9 999 999 999 999 999 999 999 99.9
BF 6.2 6.8 5.8 5.1 6.7 5.9 6.0 48 5.9

Table 12: Case 2, The Size (%) of F-test under Serial Correlation When F; Is I (0) (Hy: X\; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
Known F, EF 6.2 6.7 5.7 10.2 7.9 5.4 14.1 10.5 9.0
BF 7.1 6.5 6.1 11.4 8.6 5.2 15.1 11.5 9.4
Unknown F, EF 999 999 999 999 999 999 999  99.9 99.9
BF 311 298 297 579  6L1 618 972  98.1 98.3
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Table 13: Case 2, The Size (%) of F-test When F; Is I (1) Where o1 =0 (Hy: \; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449
(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)

031 =0

Known F; EF 4.7 5.6 5.2 4.6 4.5 6.7 5.7 5.7 5.0
(LSFM) BF 6.2 6.1 4.3 4.5 5.2 6.8 5.6 5.9 5.4
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 4.6 5.3 4.8 5.3 5.5 4.3 6.0 5.5 5.7
Unknown F; EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 4.6 5.3 4.9 5.2 5.5 4.3 6.1 5.5 5.7
031 = 0.2

Known F} EF 5.0 5.5 5.0 4.0 4.5 6.7 5.9 6.2 4.9
(LSFM) BF 5.2 6.6 4.8 4.7 5.7 6.9 5.8 6.9 5.0
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 4.6 5.3 4.8 5.3 5.5 4.3 6.0 5.5 5.7
Unknown F; EF  99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 4.6 5.3 4.9 5.2 5.5 4.3 6.1 5.5 5.7
031 = 0.8

Known Fj EF 5.6 4.3 5.5 4.5 5.6 5.3 4.8 5.2 4.0
(LSFM) BF 6.3 5.7 6.5 4.9 6.0 5.5 5.0 6.4 4.9
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 4.6 5.3 4.7 5.3 5.5 4.3 6.0 5.5 5.7
Unknown F; EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 4.5 5.3 4.9 5.2 5.6 4.3 6.0 5.5 5.7

Note: True size is 5%
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Table 14: Case 2, The Size (%) of F-test When F; Is I (1) Where 91 = 0.2 (Hy: \; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449
(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)

031 =0

Known F; EF 5.4 6.2 5.4 5.0 4.0 6.1 5.7 6.1 5.4
(LSFM) BF 6.1 6.5 5.5 5.4 4.9 6.4 6.1 6.2 6.0
Unknown F;, EF  99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 4.6 5.2 5.1 6.5 6.3 5.0 6.5 5.3 6.4
Unknown F; EF 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 4.6 5.1 5.1 6.0 5.9 4.6 5.5 4.8 5.7
031 = 0.2

Known F} EF 5.8 6.3 5.0 4.4 4.0 6.2 5.4 6.3 5.2
(LSFM) BF 6.3 7.2 5.3 5.0 5.2 6.6 6.1 6.4 5.4
Unknown F; EF  99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 4.6 5.2 5.2 6.5 6.3 5.0 6.5 5.3 6.4
Unknown F;, EF  99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 4.6 5.1 5.0 6.1 5.9 4.6 5.4 4.8 5.7
031 = 0.8

Known Fj EF 5.1 4.4 5.6 4.5 5.7 4.8 4.5 5.1 4.6
(LSFM) BF 6.5 5.2 6.0 5.3 5.4 5.7 4.7 5.9 5.1
Unknown F; EF  99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 4.6 5.1 5.2 6.6 6.3 5.0 6.5 5.3 6.4
Unknown F; EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 4.6 5.1 5.0 6.2 5.9 4.6 5.4 4.8 5.7

Note: True size is 5%
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Table 15: Case 2, The Size (%) of F-test When F; Is I (1) Where 91 = 0.8 (Hy: \; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449
(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)

031 =0

Known F; EF 227 20.6 11.7 19.8 15.1 10.3 22.6 18.4 8.4
(LSFM) BF 11.3 11.2 7.3 12.0 11.5 8.7 19.0 16.0 8.8
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9
(CupBCQ) BF 304 22.9 14.5 57.0 49.8 22.6 85.8 82.9 47.7
Unknown F; EF 98.5 99.9 99.9 96.4 99.9 99.9 89.2 99.9 99.9
(CupFM) BF 8.4 5.7 5.1 5.9 5.4 4.5 4.9 3.5 5.3
031 = 0.2

Known F} EF 21.9 19.7 12.5 20.9 15.9 9.2 22.8 19.6 8.7
(LSFM) BF 11.3 11.0 6.9 13.3 9.9 9.2 19.6 15.8 9.8
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9
(CupBCQ) BF 304 23.0 14.5 57.0 49.8 22.6 85.9 82.9 47.7
Unknown F; EF  98.5 99.9 99.9 96.4 99.9 99.9 89.2 99.9 99.5
(CupFM) BF 8.4 5.9 5.1 5.9 5.4 4.5 4.9 3.5 5.2
031 = 0.8

Known Fj EF 232 18.7 11.9 21.6 16.3 9.1 23.8 19.0 9.4
(LSFM) BF 13.2 9.7 7.5 14.2 10.8 8.0 20.1 14.7 9.8
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9
(CupBC) BF  31.0 23.3 14.6 56.9 49.6 23.0 85.8 82.9 47.6
Unknown F; EF 98.4 99.9 99.9 96.4 99.9 99.9 89.3 99.9 99.9
(CupFM) BF 8.3 5.9 5.1 6.0 5.5 4.4 4.9 3.5 5.2

Note: True size is 5%
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Table 16: Case 2, The Size-adjusted Power (%) of F-test Where 091 =0 and o33 =0 (H, : \; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  86.9 99.6 100.0 94.3 99.8 100.0 97.6 100.0 100.0
(LSFM) BEF  89.0 99.6 100.0 94.4 99.8 100.0 98.6 100.0 100.0
Unknown F; EF  64.0 92.0 100.0 77.1 97.0 100.0 89.1 99.4 100.0
(CupBCQ) BEF 659 92.9 100.0 79.6 96.8 100.0 90.1 99.4 100.0
Unknown F; EF  64.0 91.9 100.0 77.2 97.0 100.0 88.8 99.4 100.0
(CupFM) BF  65.3 92.9 100.0 79.7 96.8 100.0 90.2 99.4 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  33.0 66.7 98.1 43.4 81.2 99.3 56.6 89.3 100.0
(LSFM) BEF  35.0 69.9 97.8 45.2 81.8 99.3 60.7 89.0 100.0
Unknown F; EF 13.1 31.0 75.1 15.9 46.4 84.9 29.3 62.4 96.4
(CupBCQ) BF 13.3 34.6 75.5 18.6 49.4 85.6 33.6 62.6 96.3
Unknown F; EF 13.9 30.9 75.2 15.9 46.3 84.9 29.4 62.3 96.4
(CupFM) BF 13.8 33.9 75.5 18.6 49.2 85.5 33.3 62.5 96.3

Note: F; follows an I (1) process hereafter
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Table 17: Case 2, The Size-adjusted Power (%) of F-test Where 091 =0 and o33 = 0.2 (H, : A\; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  86.1 99.3 100.0 95.0 99.8 100.0 97.2 100.0 100.0
(LSFM) BEF  88.6 99.6 100.0 95.2 99.8 100.0 98.8 100.0 100.0
Unknown F; EF  64.3 91.3 100.0 78.0 96.4 100.0 89.2 99.4 100.0
(CupBCQ) BEF  65.6 92.7 100.0 79.8 96.6 100.0 90.7 99.5 100.0
Unknown F; EF  63.8 91.4 100.0 78.0 96.4 100.0 89.2 99.4 100.0
(CupFM) BF  65.3 92.5 100.0 79.7 96.6 100.0 90.8 99.5 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 328 67.6 98.0 43.3 80.8 99.3 55.8 90.3 100.0
(LSFM) BEF 356 70.4 98.0 45.0 82.4 99.4 61.5 90.9 100.0
Unknown F; EF 134 30.6 75.7 15.5 45.9 85.6 32.0 63.6 96.3
(CupBCQ) BF 14.3 33.1 75.6 19.0 48.5 85.6 34.3 64.1 96.2
Unknown F; EF 14.0 30.4 75.7 15.3 45.2 85.5 31.7 63.8 96.3
(CupFM) BF 14.7 32.5 75.6 18.7 48.6 85.5 34.2 63.7 96.3
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Table 18: Case 2, The Size-adjusted Power (%) of F-test Where 091 =0 and o33 = 0.8 (H, : A\; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 854 99.3 100.0 92.9 99.9 100.0 97.9 100.0 100.0
(LSFM) BF 883 99.4 100.0 93.5 100.0 100.0 98.9 100.0 100.0
Unknown F; EF  63.9 92.7 100.0 77.2 96.6 100.0 89.7 99.5 100.0
(CupBCQ) BEF  65.0 93.4 100.0 78.9 96.7 100.0 90.8 99.6 100.0
Unknown F; EF  63.9 92.7 100.0 77.3 96.5 100.0 89.6 99.5 100.0
(CupFM) BF 645 93.4 100.0 78.8 96.7 100.0 90.7 99.6 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  30.1 71.1 97.3 43.8 77.6 99.2 59.8 914 99.9
(LSFM) BEF 344 71.5 97.6 44.5 80.2 99.2 63.8 91.4 99.9
Unknown F; EF 13.2 29.6 75.9 15.0 46.2 87.8 32.7 65.3 95.8
(CupBCQ) BF 13.7 33.4 75.8 17.7 46.2 88.1 35.0 65.5 96.0
Unknown F; EF 13.1 28.8 75.8 14.9 45.9 87.8 324 65.2 95.8
(CupFM) BF 13.5 32.5 75.6 17.6 46.1 88.1 34.6 65.3 95.9
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Table 19: Case 2, The Size-adjusted Power (%) of F-test Where 091 = 0.2 and 031 =0 (H, : A\; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 855 99.6 100.0 94.2 99.8 100.0 97.7 100.0 100.0
(LSFM) BEF  89.1 99.7 100.0 94.9 99.8 100.0 98.2 100.0 100.0
Unknown F; EF  63.6 92.1 100.0 7.4 96.9 100.0 89.0 99.4 100.0
(CupBCQ) BF 664 93.4 100.0 80.0 96.7 100.0 90.2 99.4 100.0
Unknown F; EF  63.2 92.2 100.0 76.8 96.8 100.0 88.9 99.4 100.0
(CupFM) BF  65.6 93.1 100.0 79.4 96.6 100.0 90.0 99.4 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  30.6 64.5 97.8 43.2 81.5 99.2 56.5 89.1 100.0
(LSFM) BEF 344 70.2 97.9 45.9 82.3 99.3 09.4 89.7 100.0
Unknown F; EF 13.1 32.2 75.3 16.0 47.2 85.4 30.6 62.2 96.6
(CupBC) BF 143 34.2 75.6 19.8 50.5 85.9 35.4 64.1 96.7
Unknown F; EF 12.7 31.2 75.0 15.3 47.0 85.5 30.0 61.8 96.4
(CupFM) BF 13.9 32.7 75.3 18.4 48.9 85.3 33.1 63.0 96.5
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Table 20: Case 2, The Size-adjusted Power (%) of F-test Where 091 = 0.2 and o33 = 0.2 (H, : \; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 845 99.3 100.0 94.5 99.8 100.0 97.3 100.0 100.0
(LSFM) BEF  87.8 99.6 100.0 95.0 99.7 100.0 98.4 100.0 100.0
Unknown F; EF 644 91.6 99.9 77.8 96.5 100.0 89.2 99.4 100.0
(CupBCQ) BEF  65.5 93.0 100.0 79.9 96.7 100.0 90.6 99.4 100.0
Unknown F; EF 634 91.6 99.9 77.5 96.5 100.0 89.1 99.3 100.0
(CupFM) BF 648 92.8 100.0 79.3 96.4 100.0 90.2 99.4 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 310 67.3 98.0 43.9 81.0 99.4 55.9 89.8 100.0
(LSFM) BEF 357 70.8 98.1 45.6 82.1 99.5 60.5 90.8 100.0
Unknown F; EF 12.9 31.2 75.5 16.4 44.8 85.5 32.8 63.8 96.0
(CupBCQ) BF 14.2 33.6 75.9 19.8 48.9 86.0 36.2 64.5 96.3
Unknown F; EF 12.6 30.7 75.1 15.6 45.2 85.7 32.2 63.4 96.1
(CupFM) BF 14.3 32.5 75.6 18.4 48.0 85.5 33.5 63.7 96.0
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Table 21: Case 2, The Size-adjusted Power (%) of F-test Where 091 = 0.2 and o33 = 0.8 (H, : A\; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  85.7 99.3 100.0 92.9 99.7 100.0 98.9 100.0 100.0
(LSFM) BEF  88.5 99.7 100.0 92.9 99.9 100.0 98.9 100.0 100.0
Unknown F; EF 624 91.7 100.0 75.7 96.6 100.0 90.8 99.3 100.0
(CupBCQ) BEF  65.1 92.7 100.0 78.3 97.0 100.0 92.2 99.3 100.0
Unknown F; EF 614 91.5 100.0 75.3 96.4 100.0 90.7 99.3 100.0
(CupFM) BF  64.7 92.5 100.0 78.0 96.8 100.0 91.5 99.3 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 318 70.1 97.5 42.8 774 99.2 60.4 90.1 100.0
(LSFM) BEF 347 70.7 97.8 44.5 80.2 99.2 62.2 90.6 100.0
Unknown F; EF 12.7 31.5 76.4 15.9 46.0 87.1 33.2 64.0 95.8
(CupBCQ) BF 14.6 34.4 76.5 18.4 48.4 87.4 36.4 65.4 96.4
Unknown F; EF 12.2 30.6 76.4 15.3 46.0 87.0 33.3 63.0 95.8
(CupFM) BF 14.1 33.8 75.9 17.3 47.0 86.8 35.1 63.9 96.3
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Table 22: Case 2, The Size-adjusted Power (%) of F-test Where 091 = 0.8 and 031 =0 (H, : \; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 824 99.2 100.0 91.1 99.9 100.0 94.4 99.9 100.0
(LSFM) BEF  88.0 99.6 100.0 94.9 99.9 100.0 98.5 99.9 100.0
Unknown F; EF  59.3 90.5 99.9 68.3 94.9 100.0 78.0 97.8 100.0
(CupBCQ) BEF 773 94.5 100.0 89.4 99.2 100.0 98.3 100.0 100.0
Unknown F; EF  61.2 91.2 99.9 76.3 97.1 100.0 88.1 99.4 100.0
(CupFM) BF 675 92.1 99.9 78.0 97.4 100.0 87.5 99.2 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 217 99.5 97.9 26.0 76.0 99.4 31.5 85.1 99.9
(LSFM) BEF 328 71.2 97.8 39.2 82.6 99.6 53.6 92.7 100.0
Unknown F; EF 11.4 32.6 74.2 14.7 45.2 85.5 16.1 51.2 92.5
(CupBC) BF 416 52.4 81.9 64.4 78.0 91.4 86.0 94.0 99.0
Unknown F; EF 12.5 294 72.9 19.5 46.4 83.1 33.2 64.8 96.1
(CupFM) BF 17.4 33.1 74.5 22.3 47.1 83.9 32.2 62.8 96.2
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Table 23: Case 2, The Size-adjusted Power (%) of F-test Where 091 = 0.8 and o33 = 0.2 (H, : \; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  80.7 98.8 100.0 90.9 99.7 100.0 93.5 99.9 100.0
(LSFM) BEF  88.8 99.3 100.0 95.5 99.7 100.0 99.0 100.0 100.0
Unknown F; EF  58.0 90.8 99.8 67.7 94.4 100.0 77.0 97.9 100.0
(CupBCQ) BEF  76.3 95.6 100.0 89.8 98.3 100.0 97.9 100.0 100.0
Unknown F; EF 604 91.0 99.9 75.8 96.3 100.0 87.7 99.1 100.0
(CupFM) BF 654 92.1 99.9 77.6 96.4 100.0 87.4 99.1 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  20.6 d7.8 97.6 27.3 76.0 99.5 33.4 85.1 100.0
(LSFM) BEF 327 70.7 98.0 41.4 85.3 99.6 95.7 93.3 100.0
Unknown F; EF 11.9 33.3 75.2 14.4 44.9 86.5 16.3 51.1 91.9
(CupBC) BF 4238 53.5 82.4 64.0 78.3 92.1 86.2 94.6 98.7
Unknown F; EF 12.6 29.7 72.8 194 47.1 84.9 32.7 62.8 95.6
(CupFM) BF 18.2 33.2 74.2 21.9 474 84.9 32.0 60.9 95.6
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Table 24: Case 2, The Size-adjusted Power (%) of F-test Where 091 = 0.8 and o33 = 0.8 (H, : \; # 0 for all i)

Strong dependence: \; ~ I1DU (0.2,0.5)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF  79.0 99.1 100.0 88.6 99.5 100.0 93.6 100.0 100.0
(LSFM) BEF 879 99.8 100.0 94.2 99.9 100.0 98.5 100.0 100.0
Unknown F; EF  55.3 89.3 99.9 66.7 94.2 100.0 76.0 97.7 100.0
(CupBCQ) BEF  76.2 94.8 99.9 89.1 98.5 100.0 98.9 99.9 100.0
Unknown F; EF  59.0 90.6 99.9 75.5 96.2 100.0 88.2 99.7 100.0
(CupFM) BF  65.8 91.4 99.9 77.4 96.3 100.0 87.9 99.6 100.0
Weak dependence: \; ~ I1DU (0.01,0.2)

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20)  (50,50)
Known F} EF 19.7 60.9 97.7 26.2 70.7 98.9 28.4 82.5 100.0
(LSFM) BEF 339 70.1 98.0 41.9 80.8 99.1 53.1 92.6 100.0
Unknown F; EF 10.9 34.9 74.6 14.1 43.8 87.4 17.4 51.1 91.6
(CupBCQ) BF  40.3 54.8 81.1 62.9 76.2 93.1 86.5 95.6 98.4
Unknown F; EF 12.5 29.8 73.0 18.4 44.2 86.8 32.5 62.6 95.5
(CupFM) BF 18.6 33.4 73.7 21.0 44.4 86.1 31.1 61.4 95.3
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Table 25: Case 2, The Size (%) of F-test under Heteroskedasticity Where g91 =0 (Hy : A\; = 0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449
(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)

031 =0

Known F; EF 18.3 14.8 14.2 17.6 17.2 18.9 17.2 17.9 17.7
(LSFM) BF 5.5 5.7 4.6 7.0 5.4 5.4 4.8 4.1 4.5
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 7.0 6.4 5.8 4.8 6.9 5.7 5.9 5.0 5.9
Unknown F; EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 6.8 6.4 5.8 4.6 6.9 5.7 5.9 5.0 5.9
031 = 0.2

Known F} EF 17.0 16.4 15.8 17.6 17.0 18.4 18.3 18.7 18.8
(LSFM) BF 6.1 5.5 5.9 6.4 6.2 6.8 4.6 4.8 5.0
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 7.0 6.4 5.8 4.8 6.9 5.7 5.9 5.0 5.9
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 6.8 6.4 5.8 4.6 6.9 5.7 5.9 5.0 5.9
031 = 0.8

Known Fj EF 14.9 16.1 15.7 16.5 16.6 17.6 18.5 20.8 19.0
(LSFM) BF 6.0 5.9 5.7 6.4 4.6 5.8 5.4 5.4 4.9
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 7.0 6.4 5.8 4.8 6.9 5.7 5.9 5.0 5.9
Unknown F; EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 6.8 6.4 5.8 4.6 6.9 5.7 5.9 5.0 5.9
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Table 26: Case 2, The Size (%) of F-test under Heteroskedasticity Where 91 = 0.2 (Hy: \; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)

031 =0

Known F; EF 28.8 28.6 23.8 24.8 25.1 20.3 21.6 22.8 16.3
(LSFM) BF 5.1 6.1 5.4 6.5 5.2 5.0 6.3 5.8 4.5
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 7.2 7.4 6.4 6.9 8.7 7.2 13.2 9.3 8.7
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 6.4 6.3 5.3 4.0 6.8 6.0 4.8 4.5 6.1
031 = 0.2

Known F} EF 27.0 26.7 25.3 25.5 23.4 22.1 20.6 22.2 17.3
(LSFM) BF 6.0 6.6 6.4 6.4 6.3 6.2 5.8 5.7 4.7
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 7.2 7.4 6.4 6.9 8.8 7.2 13.2 9.3 8.7
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 6.4 6.3 5.5 4.0 6.7 6.0 4.8 4.5 6.1
o31 = 0.8

Known F; EF 25.0 28.6 24.2 26.7 22.8 23.6 21.8 19.5 21.6
(LSFM) BF 11.1 7.4 6.3 6.5 8.4 6.9 6.1 5.4 7.6
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 7.3 7.3 6.4 7.0 8.8 7.2 13.3 9.3 8.6
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 6.5 6.3 5.4 3.9 6.7 6.0 4.8 4.5 6.1
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Table 27: Case 2, The Size (%) of F-test under Heteroskedasticity Where 91 = 0.8 (Hy: \; =0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
031 =0
Known F} EF 472 42.2 31.5 44.4 41.1 27.4 43.4 379 24.0
(LSFM) BF 7.8 7.5 6.3 8.8 9.8 4.1 12.2 10.2 6.2
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BEF 141 12.4 8.8 27.0 24.2 14.1 69.7 04.1 26.5
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 98.9 99.9 99.9

(CupFM) BF 9.7 7.2 5.6 7.0 6.7 5.5 4.7 3.4 5.9
031 = 0.2

Known F} EF  46.6 42.3 34.1 47.5 36.4 29.2 42.5 40.0 24.7
(LSFM) BF 9.4 9.6 6.3 11.1 8.3 7.3 9.5 10.7 7.2
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 13.9 12.4 8.7 26.9 24.1 14.1 69.7 54.1 26.5
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 98.9 99.9 99.9
(CupFM) BF 9.8 7.2 5.7 7.0 6.7 5.5 4.7 3.4 5.9
o31 = 0.8

Known F; EF  41.7 41.9 32.5 45.6 31.6 28.9 46.2 39.9 25.9
(LSFM) BF 17.2 10.6 5.9 11.2 14.9 8.0 13.9 12.2 10.4
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 13.9 12.6 8.7 26.9 23.9 14.1 69.7 54.0 26.6
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 98.8 99.9 99.9
(CupFM) BF 9.9 6.9 5.7 6.9 6.7 5.5 4.6 3.4 5.9
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Table 28: Case 2, The Size (%) of F-test under Serial Correlation Where 091 =0 (Ho : A\; = 0 for all i)

D.F.(num, den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
031 =0
Known F} EF 446 53.3 58.7 64.3 2.7 81.9 84.8 93.9 98.5
(LSFM) BF  45.6 54.3 60.6 67.9 76.0 83.6 87.1 94.7 98.8

Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 324 31.7 32.1 59.5 61.1 62.1 97.5 97.9 98.6
Unknown F;, EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 314 30.4 32.0 58.7 60.8 61.7 97.0 97.8 98.6

031 = 0.2

Known F} EF 457 54.3 59.2 63.1 73.7 83.0 84.5 94.4 98.2
(LSFM) BF  46.8 56.4 60.9 67.3 76.4 84.5 87.4 94.9 98.4
Unknown F; EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBCQ) BF 324 31.6 32.1 59.4 61.1 62.1 97.5 97.9 98.6
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF  31.3 30.6 32.0 58.7 60.8 61.7 97.0 97.8 98.6

031 = 0.8

Known F} EF 441 52.4 57.4 62.6 74.5 81.8 86.6 94.4 98.2
(LSFM) BEF  44.8 55.4 59.5 65.9 77.8 83.2 88.0 95.7 98.6
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 323 31.3 32.1 59.6 61.1 62.2 97.5 97.9 98.6
Unknown F; EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF 314 30.2 31.8 58.6 60.8 61.9 97.0 97.8 98.6
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Table 29: Case 2, The Size (%) of F-test under Serial Correlation Where 091 = 0.2 (Hy: \; =0 for all i)

D.F.(num,den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
031 =0
Known F; EF 445 55.6 62.2 64.9 76.0 83.9 85.0 95.2 98.9
(LSFM) BF 457 56.0 63.8 68.8 78.7 84.9 88.2 95.5 98.8
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 333 32.9 32.9 61.3 64.3 64.3 97.3 99.2 98.5
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 325 31.2 31.6 60.2 61.6 62.3 96.6 98.6 98.2
031 = 0.2

Known F; EF 441 55.8 63.0 65.1 75.7 84.7 84.9 94.3 98.6
(LSFM) BF  46.1 57.5 64.9 68.0 78.7 85.4 88.3 95.2 98.6
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 333 32.9 32.9 61.3 64.3 64.3 97.3 99.2 98.5
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 324 31.1 31.6 60.1 61.7 62.3 96.5 98.6 98.2

031 — 0.8
Known F; EF 425 53.6 61.7 63.2 5.7 83.3 87.5 95.0 98.8

(LSFM) BEF 446 55.6 63.4 65.7 774 85.6 89.5 96.7 98.8
Unknown F;, EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF 333 32.9 32.8 61.4 64.4 64.2 97.3 99.2 98.5
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF  32.0 31.4 31.7 60.0 61.7 62.1 96.6 98.6 98.2
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Table 30: Case 2, The Size (%) of F-test under Serial Correlation Where 091 = 0.8 (Hy: \; =0 for all i)

D.F.(num,den) 10,89 10,189 10,489 20,179 20,379 20,979 50,449 50,949 50,2449

(n,T) (10,10) (10,20) (10,50) (20,10) (20,20) (20,50) (50,10) (50,20) (50,50)
031 =20
Known F; EF  51.0 68.1 79.8 64.0 85.3 94.0 82.9 97.2 99.7
(LSFM) BF 514 71.3 82.0 65.4 85.9 94.7 84.0 97.4 99.8
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 772 80.0 66.4 97.0 98.8 95.8 100.0 100.0 100.0
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF  54.2 51.9 41.7 78.8 80.9 72.1 99.1 99.2 99.4
031 = 0.2

Known F; EF  50.5 70.2 80.2 63.7 84.1 94.8 81.8 97.4 99.7
(LSFM) BF  51.0 71.1 80.1 64.7 86.0 94.5 82.4 97.3 99.8

Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF  77.0 80.3 66.3 97.0 98.8 95.9 100.0 100.0 100.0
Unknown F;, EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BEF 545 52.0 41.6 78.8 80.8 72.3 99.1 99.2 99.4

031 = 0.8

Known F; EF  49.7 67.0 79.8 64.7 84.6 93.9 79.0 96.6 99.4
(LSFM) BEF  50.1 69.2 81.2 65.6 85.9 94.7 81.2 97.5 99.5
Unknown F;, EF 999 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupBC) BF  76.7 80.4 66.4 97.1 98.8 96.0 100.0 100.0 100.0
Unknown F; EF  99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9
(CupFM) BF  54.7 51.7 41.2 79.0 80.9 72.0 99.1 99.2 99.4
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Appendix: Proofs of Lemmas, Theorems, and
Propositions

This appendix includes proofs for the main results in the text.

A Proof of Lemma 1

Proof. It is straightforward to prove part 1 with the given assumptions, so omitted

here. For part 2, one can find the complete proof in Bai (2003). m

B Proof of Theorem 1

We start from the lemma below. In this lemma, we check the consistency of the
F-statistic when F} is observable. First, note that given our assumptions, we have
the following results using central limit theorem (CLT).

For each t, as n — oo,
! im < N(0, 0%,
—= Wit 5 A
\/51:1

For each i, as T' — o0,

T
1
ﬁ Z Fyugy i N(07 02¢F)-

t=1

seq

Lemma 1 (B) Assume (n,T) — oco. If F; is observable, then

7 _ RRSS —URSS (nT —n) » )
A URSS n '
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Proof. Because \; can be estimated using least squares, we have

and

Then,

T - T P
(2 - T )
2t FY

n T
RRSS = Y > ui

i=1 t=1

n T

URSS =3 (- Xm)z .

i=1 t=1

(RRSS — URSS) /n

F p—
AT T URSS/(nT —n)

can be readily obtained.

1. First, we consider the denominator.

URSS

(nT —n)

1 n T N 9
n (T __1) ; ; <yit - )\iFt>
n T

ﬁ ZZ [“it - (Xz‘ - )\z’> Ft]2
S 2 [ (=) =2 (=) ]

n T n T
1 9 1 ~ 2 9
nEID L o o ()
i=1 t=1 i=1 t=1
2 n » T
n(T —1) 2 (AZ’ Az) 2wk
=1 t=1
I+1T+1I1

Note that \/LT Zthl uiFy = O, (1) by a CLT since there is no correlation between

u; and Fj.
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Consider [. It is easy to see that

n T n
1 1
I = ——— uj N — u?
n(T—l);; t nTi:ltX; t
p 2
HO’

as (n,T) = oco.

For IT and 11, one can show that

and
2 [~ -
12 ¢ < RN 1
~ T VT (=) 7T 2 =0 <f> =)
using
1< ~ 2
A VT () =0,
1 7
TZF;:OPG)?
t=1
and -
% ZuitFt = Op (1)

provided u;; and F; are uncorrelated. Hence, for the denominator we conclude

URSS P 2
(nT —n)

219



as (n,T) = oo.

. Next, we turn to the numerator.

n T

RRSS — URSS 1 & 1 ~ N2
( - ) _ ﬁzzyi_ﬁZZ@“_)‘lE)

i=1 t=1 =1 t=1

1 n T - 9 -
- n Z Z {“Zﬁ — g, — ()\i - )\i) FZ+2 (Ai - )\1') UitFt]

i=1 t=1

1 ~ 21 e,
= VT (-N)) F R
i=1 t=1
9 ~ 1 <
4= {\/T(Az—)w)}—zmtﬂ
niil Tt:l
— T+1II

Note that in the constrained regression, we have y; = A\ F}; + u;; = u;; with the

restriction \; = 0 for all 3.

Consider [ first. For a fixed n, we have

I = —li{ﬁ(X-—A»)}ZliFQ
N n’iil ' Z Tt:l '

p 1 2
N7
- n 121 'quF
where /T <X, — )\i) 2 Z; ~ N(0,02¢7") and AT 25 gpas T — oo, As

a result, we have 13" | 720 — ¢pE(Z?) = ¢ppo’dy = 0% as n — oc.

Hence, one concludes that

as (n,T) = oco.
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For 11, it can be shown that

I = %i{ﬁ(X—A)}%iutﬂ

p
L 942

as (n,T) = oo using \/LT ST uaFy 4 N(0,02¢,) as T — oc.

Combining the results, we obtain that

(RRSS —URSS) »
»,

o

n

as (n, T) = 0.

3. Finally, we conclude that

P = RRSS —URSS (nT —n) ? 4
URSS n

which implies that the F-statistic gets centered at 1 as (n,T) = ooc.

|
Given the above results, for the proof of Theorem 1 we write
Ry
F\=—=
o
where R) = w and 67 = (%?‘_g 5) using a set up which is similar to Orme

and Yamagata (2006). Rearranging the terms, we have

ﬁ(FA—l)_%\/ﬁ(RA—62).
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Proof. Expanding the equations, we have

- )\i>2 F2 42 (Xi - Ai> uitFt}

i {U?t + <Xz — )\i>2 F? -2 (Xl — )\i> uitFtl

o (RRSS—URSS) URSS
By—5" = n ~ (nT —n)
1 n T -
- 2
i=1 t=1
J— 1 -
n(T-1) i=1 t=1
1 n T > 9
R SR

2

2
+—
nVT (T —1) Pl
I+ 1T +I1IT+1V+V.

Consider I. It can be shown that

1

Uy —
<" nT(T —1)

S {VT (- a)

n T

3 ()

I N VT (N = A RS
SEONCEVEISS
. o g qa
= | E | g R =0
_ z 2l _,
ni:l Tt:l _Tt=1 i
For I1,
n T
2 -
m=—= {\/T()\i—/\z>}uitFt
nﬁz‘:1 =1
n T 2 T -1
9 1 1
= = — Y wu | |=Y F| =0,(1
[ﬁz PR -0
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For 111,
1<~ 1 &
IN=—-=y — 2 -0

For IV and V, as already shown above,
v li{ﬁ(i A>}2 ! XT:FQ o, (2 (1)
~ —_ X\ N — — | =o0
[ Z Z T* t=1 t AT ’

and

V%%i{\/f(f):i—)\i)}#iunﬂ:()p <%> =0, (1).

=1

After rearranging all the terms, one has

-1

and accordingly

-1

To apply the CLT, we recall that

T
1
ﬁ E (T i Wi ~ N(0702¢F)
t=1

for all 7 as T' — oo and establish the standard normal random variables such that

Wi

VR

~ N(0,1).
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Furthermore, one can construct the random variables, 2 ¢ , such that
2
B(0)
br
and
W2
Var( 5 ) =2
0o
E (VI/’LQ) =0 2¢F
and
Var (VVf) = 207
Hence, we have
1 n
Vil (R =7) = [ZW%F S 0| 40, (1)
i=1
< N(0,20%)

as n — oo. This is because F (ngﬁ}l —o0?) =0?—0?=0and Var (V[/ig(b;’l —o?
204,

Finally, we obtain

Vn(Fy—1)= 0_1\/_(RA—62)—>N(0 2)

2

as (n,T) = oo using 5° 5 0%
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C Proof of Theorem 2

Next let us assume that F; is unknown. Again, we first look at the consistency of the
F-statistic in the lemma below. Note that in this case we cannot simply use least

squares estimation and need to use the method of PCA.
Lemma 2 (B) Assume (n,T) — oo and F; is not observable.
1. If% — 0, then

7 _ RRSS —URSS (nT —n) ﬂ)l_’_Ff—(ﬁF
A URSS n bp

2. If 2 — 0,
Not feasible.

Proof. We check two specific cases separately, i.e., % — 0 and % — 0, following Bai

(2003).

1. Assume % — 0.

Consider the denominator. We have

URSS 1 " N2
T —n) n(T—l);ZI:(y”_)\i )
n T

1 5 ~ o~ 2
_ uz—|—<)\l _\F, —Z(AZF /\F)u}
S [ (VR A M)
1 n T 1 n T 9
W 1) 2 2 ) 2 2 (WA AR
9 n T R
SN (MFi— NF) w
n(T'=1) i=1 t=1
= I+ II+111.
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Firstly, note that if% — 0, then VT (XZE — )\iFt) 4N (0, Wy) as (n,T) — oo

where W;; = 5—3202¢F = %ﬁ by, e.g., Bai (2003).
F

Consider /. One can easily verify that

as (n,T) — oc.

For IT and I11,

2
S
lﬂb—*
Mﬂﬁ
——
3
/N
)
=)
|
>
>
N——
[\
I
Q
hei
VR
N~
N————

and

2 -~

Q
DO
g
\g
3
%)
s
-
>
N
$

2 e 1
= WZZQ’MU#:O;D (ﬁ)

i=1 t=1

where Q;; = VT (Xﬁt - )\iFt). Note that

Qi = VT (j\\zﬁt — )\iFt>
1 & T
= F, (_ZFE> —ZFsuis+Op (1)

T t=1 ﬁ s=1

2

4N (O, F—taz)
bF
as (n,T) — oc.
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Accordingly, one can obtain that

URSS
(nT —n)

as (n,T) — oo
Next, consider the numerator.

T n T

RRSS — URSS 1 | s
( = ) _ EZZyi—EZZ@u—/\iFt)

i=1 t=1 =1 t=1

n T
1 -~ 2 ~

=1 t=1

- (VT (V)Y
;§§{<tﬂmwn

= I+1I.

Consider [ first.

n

T 2
— ZQ;—) E ): ul o?

1
nzltl ¢F

as (n,T) — oo where Q; 4N (0, 5—502>.
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For I1,

II = n\/—ZZtauzt

as (n,T) — oo. To see why, it can be shown that

Combining the results, we obtain that

(RRSS —URSS) , F? ,

n Op

Hence, one concludes that

_ _ 2 2
F/\:RRSS’ URSS (nT H)LF_t:1+Ft oy

URSS n bp bp
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as (n,T) — oo. Clearly, now we have the shift term which cannot be specified.

2. Assume % — 0. Note that if this is the case, then
Vi (NF = NE) 5 N (0,Va)

2 2
where Vj; = ;‘—302@\ = ;—202 as in Bai (2003). However, we cannot obtain Vj;
A

since \; =0 for all ¢ = 1,...,n under the null and ¢, cannot be defined.

Next, we check the asymptotic normality of the F-statistic by proving Theorem

T

2 with an assumption - — 0.

Proof. For the sketch of proof, we write

(RRSS —URSS)  URSS

~2
R,\—O' = —

n (nT —n)
1 n T R 9 R
- ¥y {— (MF = xF) + 2 (NE - AF) uit]
(g
1 n T SR 5 R

n T’LZ]. t=1

1 L
_n(T—l) — tzlu“

1 n T \/_ R 9
- nT(T —1) izl;{ T(AiFt_AiFt)}

2 n T R
+—n\/T -1 ;; {\/T <)\iE — )\iFt) uit}

= I+ 11+ 111+ 1V+V.
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Note that IV = O, (%) and V =0, (\/%T), as shown above. Next, to apply the CLT,

n T

VAT (R, — ) %zz@;—%zzum%m

i=1 t=1 i=1 t=1

Q

Again, the standard normal random variables can be defined as follows:

Qf < N(0,1)
I 52
oy

as (n,T) — oo. It can be also shown that

and

Var u =2

2
U(;?tF follows a chi-squared distribution. Then above can be rewritten by,

since

and
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2_
if F( ft—u?t):F—302—02:Ma2 and ¢ = Var (Q% —u?) < oo as (n,T) —

b o

oo. Finally, we obtain

VnT (Fy—1) = %\/ﬁ(}h —5) 4 N(—(Ft2 — %r) i)

2P
as (n,T) — oo using 6~ — o2, =

D Proof of Proposition 3

Op "ot

We next consider the limiting distribution of the bootstrap F-statistic when F; is

known. With the assumption (n,7) = oo, consider the bootstrap DGP like the

following:

* N *
Yir = NFy + Uit €4y

where X: denotes the bootstrap least squares estimator.

We first write

. _ Iy
FY==3
o
where Ry = (RRSS*;—URSS*) and 6% = gf;ﬁ% with
n T
S
i=1 t=1
and

n T

URSS =33 (y;; X Ft)Q .

=1 t=1

Rearranging terms, we have

Vi (75 —57)

Before we sketch the proof of the consistency of the bootstrap [F-statistic, we first
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derive the asymptotic distribution of it in the following lemma.

Lemma 3 (B) Assume (n,T) = oo and F, is observable. Then
Vn(Fr —1) % N(0,2).

Proof. Expanding the terms, one has

(RRSS* —URSS*)  URSS*

m-a" = n ~ (nT —n)
n T
= %Z Z {Uftng - u?tng - (X: - X1>2 Ft2 +2 <X: - Xz) uitﬂgzt:|
i=1 t=1
1 n T ) - _ 9
_n(T——l);; [uitgit - (Ai _ Ai) Ft]
1 n T - 2 - _
= -, {— (Ai - Ai) F2+2 ()\i . )\Z-> uitth;;}
i=1 t=1
—;ii {u?a’@ + (X*f - X>2F2 —2 <X* - X) % ngk}
Tl(T— 1) s =t 7 ? t i 1 L t<qt
B lnT\/_X*X2F2 2nT\/TX*X b
— _ﬁilg{ T<@'_ z)} t+m;;{ <i_ 1)}U1t tEit
n T n
g o e - L (VT (R - A} R
i=1 t=1 i=1 t=1
92 n T = .
T 2 o VT (e X e
= I+I11+I1IT+1V+V.
Consider I.
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since we know /T (X: - Xl) =0, (1).

For 11,
2 o Y .
o= AR R VT (R s
n r 2 T -

For I11,

m———zT_lzufts:z— W,
For IV and V', note that

n

et \/TX*X”TF?—Ol— 1
ISR A -0 (3) o
and
2 — o~ 1 1
V= EZ{\/T@\Z —)\i>}mletUit5;:Op (f) =0, (1).
t=

After rearranging all the terms, we have

2 n T

. -1
SAEE N ESSLURINES | IEED SFLD S SONE

and

-1

3

Vi (R -5 = %Z

n

1 T
TZFt2

2 %2
E :uztgzt + 0, (1
t=1

\/_ Z Fouyer,
T

sl
ﬂ
H

=1

To apply the CLT, note that

Fuuel, 5 Wi~ N(0,0%,)

M=

1
VT 5
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as T — oo using the fact that ¢, is an external random variable with £ (¢},) = 0 and
E(eff) = 1.
Hence, the standard normal random variables can be defined as
W
~— ~ N(0,1)

vV 02¢p

. W2 . .
and we can construct the random variable, e satisfying
F

*2
E Wi =1
U2¢F

and
W2
Var( P ) =2
oo
because :Zgi follows a chi-squared distribution.

Rewriting above, it can be shown that
E (W) = a0,

and

Var (W?) = 20%¢7.

Next, we consider

. URSS* I SRR
7 = (nT —n) - n(T —1) 121 — (uit a (/\i a Ai) Ft)
1 Lo 2 42 1 "L 2 \2 9
= n(T_l)ZZuztgzt + (T—I)Z(Al /\Z> ZFt
=1 t=1 =1 t=1
9 n - T
n(T—1) 2 (Ai N A’) 2 uikiy
= t=

= I+ I11+1I1.
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For I, it is easy to see that

n T n T

DI DUE LS 9 B E,
=1 =l i—1 t=1

5 o,

For II and I11, it is straightforward to show I1 = O, (7) = 0, (1) and I1] =
O, (%) = 0, (1) using VT (X: — X1> =0, (1).

Combining the results above, we have
+ 0, (1)
Vi |5 ’
< N(0,20%)

Vn (R -57%) = L [Z (W2¢p" —o?)

asn — oo. Thisis because E (W;?¢," — 02) = 02—0? = 0 and Var (W ¢ — 0?) =

20, Finally, we obtain

* ]‘ * ~%k
Vn(Ff—1) = g\/ﬁ(}y — %) % N(0,2)

seq . ~%2 P
as (n,T) = oo using 0™ — 02. =

From above, we can see that the asymptotic distribution of the bootstrap F-
statistic coincides with the empirical one: convergence to the normal distribution.
Based on this, we next sketch the proof for the validity of the bootstrap F-statistic. In
this proof, we use Kolmogorov metric which is defined as K (F, G) = sup, |F' () — G (z)].

With an assumption (n,T) ¥ 00, the F-statistc and the bootstrap counterpart

can be defined as follows:

(RRSS —URSS) /n Ry

F, = el
A" URSS/(nT —n) 52
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and
. (RRSS*—URSS*)/n  Rj
A URSS*/(nT —n) &%

Proof. We consider the denominator and the numerator subsequently.

1. We first treat the denominators of F and FY.

For the denominators of F and F}, it is already shown that

URSS o 1
—(nT—n)_U =0 —i—Op(T)

and

URSS* .o 1
(nT—n)_J =0 —i—Op(T)

as (n,T) = oo.

2. Now we treat the numerators of F) and Fy. Notice that y/n is the right norming

factor in this case.

Recall that we have

Vi (Ry =) % N(0,20%)

and

Vi (Ry=7") 4
N0

as (n,T) = oo.

We define £ (Ry) = P (y/n (Ry — %) <) and £* (R}) = P* (vn (R, — %) < 2),

respectively. Note that P* denotes an empirical (or bootstrap) distribution.

236



Then we write

Vn(Ry—0C
P( 2( ”2) = (204)1/2)

32 1/2 = 3)61/2)

- P * [q) <<2of>1/2> -

\/H(RA _82) T . _r
Sgp p ( (204)1/2 < (204)1/2) ® ((204)1/2>|
+oup |0 (W) ! ((32)1/2)'

x (v (R, -5 x > ‘
sup|®| ——= | — P
+ mp ((32)1/2> ( (52)1/2 < (32)1/2

= [+ I1I+1I1

K(L(Ry), L7 (Ry)) = sup

IA

using triangle inequality where ® () indicates the c.d.f. of a standard normal

distribution and s? = Var* (v/n (R} —5*%)).

Counsider I. It can be shown that

Vv (Ry — %) T B x B
P ( (204)12 < (204>1/2> o ((204)1/2)‘

n —52
by Polya’s theorem since P (*féfj)m ) < (205)1/2> 4 (W) and ® () is

a continuous cdf. For details of Polya’s theorem, see, e.g., Lehmann (1999).

o —2 J-o[—2_) =0
(@) -2 ()

using continuous mapping theorem (CMT) because s* = Var* (v/n (R — %)) -

I =sup

T

For I1, obviously

11 = sup
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204,
Lastly, one can apply Berry-Esseen theorem (see, e.g., Lehmann (1999)) to show

11T — 0. That is, there exists a positive constant C' such that,

3
FnT

C
1171 < — — 0
~ Vi (s)

3 * * ~x2|3
where I') , = E* |Ry —0 7| .

Combining above results, we have
[+ 1I+11150

and hence,

K (L(Ry), L (R3)) © 0

as (n,T) = oo.

E Proof of Proposition 4

Proof. We sketch the proof of the consistency of bootstrapping PCA with an as-

T

n

Let us define first

sumption = — 0.

HnT:P<T§l’)

where a functional 7 = /T <X1ﬁt - )\Z-Ft>.

Accordingly, the bootstrap counterpart can be defined as
HBoot =P (7-* < 512')
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where 7* = /T (X:Z/i* — Xlﬁt> Note that P* denotes the empirical (or bootstrap)
distribution.

Recall from Bai (2003) that

where W;; = §—§02. Then we can write the following as in Proposition 3:

T T

W-)1/2§(W?)1/2>_P* IS T
R\ @) ()

K(HnT7HBoot) = 8sup P<<

()

&)
! [‘I’ (W) @ s @3””

VAN

[

8 =
ko]
@)

/N
=
[\

VAN
F |8
=
[\
N—— —

tsup|® | ——— | - P

= [+ II+111.
Consider I. It can be shown that

T T T
" ((Wit)1/2 = (Wz’t)l/2> -7 ((Wz‘ )1/2>‘ o

NS (W) and @ (-) is a continuous cdf.

I =sup

xT

: T T
since P <(Wit)1/2 < (Wit)1/2>
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We turn to /1. Obviously,

7

x x
Uzsup@(—)—@ —F= || —0
e\ (W) (m)” ’

using CMT because /I/IZ-t 2, W,. For details of consistency of ﬁf\l-t for Wy, see Bai
(2003).
Lastly, we can apply Berry-Esseen theorem to show 71 — 0. That is, there exists
a positive constant C' such that,
c T3

IHSﬁW_)O

~ —

A~k AN o~ o~ 3 A~k ~ o~
i 13, = B* |\ B — NE)| and var (\/T ()\i Fr - AE)) = W,

Therefore, we obtain

I+II+1IT2%0.

and conclude that

K (HnTa HBoot) ﬁ) 0

as (n,T) — oco. m

F Proof of Proposition 5

This section considers the validity of the bootstrap F-statistic when F; is unknown.

With an assumption (n,T") — oo, consider the bootstrap DGP as follows:
Y = Xzﬁt + Ui
where /):: ﬁt* denotes the bootstrap principal component estimates of above equation.
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We again write

*
F* o R)\
AT ~x%2

where R) = (RRSS"—URSS") ;URSS ) and 52 = ((fﬁii ) with

n T
RRSS* =Y "> "y

i=1 t=1
and

URSS® — Zn: ZT: (v - Xjﬁ;)z |

=1 t=1

We first derive the asymptotic distribution of the bootstrap F-statistic.

Lemma 4 (B) Assume (n,T) — 0o and £ — 0 with unobservable F,. Then,

VnT (F; —1) 3% N(—(Ft2 — ¢F), i)

Op ot

where ¢ = Var (QiF — ule?) < oo and
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Proof. For the limiting distribution of the bootstrap F-statistic, consider

2
Ry, —0" =

For I,

(RRSS* — URSS*)  URSS*

n - (nT —n)
1 n T e N2 sk~ ~ o~
n i=1 t=1
1 n T 2
B 2 42 Xfﬁ*_}ijf) _2<X“fﬁ*_2ﬁ) et
—n (T — 1) 2 ; |iult51t + ( L t it t )] UitE
1 n \/_ s PN 2

n\/_ —1) z; ;{ <>‘ F - Xiﬁf) “"tsjt}

I+ I1T+I1IT+1V+V.

re TR )

i=1 t=1

*2 th 2
= ZZQ - E zt):_@a

=1 t=1

as (n,T) — oo using the consistency of bootstrapping PCA.
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For 11,

j —

2 1 <~ 1 «
= - _Z tuztg;ft _ZFSU’LSE
nz:l( Tt:l )( Ts:l
n T 2 T -1
= = — Fyuye, = ?

using Q;, = VT (NF; = NF) = S B (350, F?)
as (n,T) — oo

For I11, one can easily find that

n T
111 = > ude B

—1
=1 t=1
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1
&Y

T
s=1

~

Fyuisejs + 0p (1)



using an external random variable with E (¢}?) = 1.
For IV and V, It can be shown that IV = O,(7) and V = O, (\/LT) using
VT <Xjﬁ; - XZE) = 0,(1).

We finally conclude that

n T n T
1 1
VT (B —57) ~ —=> ) Qi ——=>_ Y ulel+0,(1)
nT = o nT = 5
1

Following a similar process to that in Theorem 2 using the consistency of boot-

strapping PCA (i.e., QF, for Q;;), it can be shown that

\/ﬁ(Rf\—’o\ﬁ) iN((E2_¢F)U2,¢*)

o
2
where F (Q:2 —u%ei?) = %02 — 0% = (Ft¢F¢F)02 and ¢" = Var (QFf — ujel) as
(n,T) — oo.
Hence, we obtain
1 -
VT (Ff —1) = —VnT (R, - 5"%) % n(E—2r) %)
o Op o

as (n,T) — oo by showing % 5 0% and ¢* 2 ¢ = Var (Q% —u2). m

Now we check the validity of the bootstrap F-statistic when F; is unknown. With

(n,T) — oo and £ — 0, consider again

RRSS — URSS) /n

_(
b= URSS/ (nT — n)

and
RRSS* —URSS*) /n

.
= URSS*/ (nT —n)
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Proof. We treat the denominator first and then the numerator in a similar fashion

with the case of known factors.

1. Consider the denominators of F\ and FY.

For the denominators of F\ and FY, it is already shown that

URSS ., 1
ot =7 =0 (77)

and

URSS* .o 1
)7 ~° *Op<ﬁ>

as (n,T) — oc.

2. Now we treat the numerator. We normalize it so that we have the normal

distribution with zero mean, which is given by,

VnT (RA 5% — %;Fma?) < N(o, 25—504)

and hence,

2_
T (RA —g2 - o)

1/2
(25")

as (n,T) — oo. Notice that vnT is the right norming factor in this case.

) < N(0,1)

We again define

L(R) =P (\/ﬁ (RA 5% — W(ﬂ) < x)

and

L*(R) = P (\/n_T(Rj—E*Q—MUZ) gx).
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Using Kolmogorov metric, one writes

K(L(R),L"(R))

~—

\/ﬁ(RA—EZ— (FE¢_¢F)U2
P . v
Fa 1/2 = ™ 1/2
(25%) (255)
= Su
o m<R;a*2(Ft2 *;F) 2>
— P (,2)1/2 < (8,296)1/2
\/ﬁ(RA 52 (F3F¢F)U2>
P Fgl . 1/2 Ft4$4 1/2 Ft4x4 1/2
e w) e
— su + 1ol —= | —(—2=__
- (i) (<s'2>“2>
E
M(R;—&*Q—( Poor) 2
F
i (w)“) ) )" = )7
2_
\/TL_T R)\ ~2 (Ft¢ ¢F> 2
< P - < x ) z
= SUp o N\1/2 = N2 a
(25*) (2) (260
X X
_’_Slwlp @ <2F_t40,4)1/2 - @ ((8/2)1/2>
o
2_
VnT (R; _ge_ Ln ¢F¢F>02>
x . x
+Sl;p @ << /2)1/2> - ( 12)1/2 — ( /2)1/2

= [+ 11+111

I A~k 2—
where 52 = Var* <\/nT (Rf\ . (thb—fF)UQ>> 2 9l 54,
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Counsider I. It can be shown that

X
P Pl 1/2 S 4 1/2
)
I = sup “r F — 0
x
X
- Fé 1/2
"
F
. Fy—op
. \/ﬁ(R)\UQ (t¢>F ) 2> ) . )
since P 2 N1/2 < 2 N2 | T P 2 N1/?
@) e
F F F

For II, obviously

T T
H=swpld| —" | -o -0
- <2F4 4) 1/2 <(8/2)1/2>

t
=0
bF

. 19 P o Ff
using s 2 = 2¢—§U4.
F

For I11, by Berry-Esseen theorem it can be shown that there exists a positive

constant C' such that,
= VnT (s)?
3
02| . Hence, we obtain

171

(F2—or)
or

3 _ * *  ~x2
where I') . = E* |Ry — 0

I+I1I+1115%0,

and conclude that

K (L (Ry), L (R3)) © 0

as (n,T) — oc.
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