






For the denominator,

1

nT 2

n∑
i=1

T∑
t=2

û2
it−1

=
1

nT 2

n∑
i=1

T∑
t=2

[
(νit−1 − ν)− (β̂OLS − β)(xit−1 − x)

]2

=
1

nT 2

n∑
i=1

T∑
t=2

(νit−1 − ν)2

+
(√

n(β̂OLS − β)
)2 1

n2T 2

n∑
i=1

T∑
t=2

(xit−1 − x)2

−
(√

n(β̂OLS − β)
) 2

n3/2T 2

n∑
i=1

T∑
t=2

(νit−1 − ν)(xit−1 − x)

= I + II + III.

Consider II first. With the joint limit, one can see that

(√
n(β̂OLS − β)

)2 1

n2T 2

n∑
i=1

T∑
t=2

(xit−1 − x)2

=
(√

n(β̂OLS − β)
)2 1

n

1

n

n∑
i=1

T∑
t=2

(
xit−1√
T

)2
1

T

−
(√

n(β̂OLS − β)
)2 1

n3/2

(
1√
n

n∑
i=1

T∑
t=2

xit−1√
T

1

T

)2

= Op

(
1

n

)
+Op

(
1

n3/2

)
= Op

(
1

n

)

as (n, T )→∞ using the fact that if (n, T )→∞ and n
T
→ 0, then

√
n
(
β̂OLS − β

)
d→ N

(
0,

2σ2
e

3σ2
ε

)
= Op (1)

by Lemma 2.(4).
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Next III = Op(
1
n
) because

√
n(β̂OLS − β)

2

n3/2

n∑
i=1

1

T 2

T∑
t=2

(νit−1 − ν)(xit−1 − x)

=
√
n(β̂OLS − β)

2

n

1√
n

n∑
i=1

T∑
t=2

(
νit−1 − ν√

T
)(
xit−1 − x√

T
)

1

T

= Op(
1

n
)

using
1√
n

n∑
i=1

T∑
t=2

(
νit−1 − ν√

T
)(
xit−1 − x√

T
)

1

T
= Op(1)

where νit and xit are not correlated.

Accordingly, we conclude that

1

nT 2

n∑
i=1

T∑
t=2

û2
it−1 =

1

nT 2

n∑
i=1

T∑
t=2

(νit−1 − ν)2 +Op

(
1

n

)
+Op(

1

n
)

=
1

nT 2

n∑
i=1

T∑
t=2

(νit−1 − ν)2 +Op(
1

n
)

p→ σ2
e

6

by equation (C.3) in Kao (1999).
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For the numerator, ûit − ûit−1 = eit − (β̂OLS − β)εit + op(1). Hence

1

nT

n∑
i=1

T∑
t=2

(ûit − ûit−1) ûit−1

=
1

nT

n∑
i=1

T∑
t=2

[
eit − (β̂OLS − β)εit

] (
νit−1 − ν

)
−
(
β̂OLS − β

)
(xit−1 − ¯̄x)


=

1

nT

n∑
i=1

T∑
t=2

(
νit−1 − ν

)
eit

−
√
n(β̂OLS − β)

1

n3/2

n∑
i=1

1

T

T∑
t=2

εit
(
νit−1 − ν

)
−
√
n
(
β̂OLS − β

) 1

n3/2

n∑
i=1

1

T

T∑
t=2

(xit−1 − ¯̄x) eit

+
(√

n
(
β̂OLS − β

))2 1

n2

n∑
i=1

1

T

T∑
t=2

εit (xit−1 − ¯̄x)

= I + II + III + IV.

Consider I. One can verify that

1

nT

n∑
i=1

T∑
t=2

(
νit−1 − ν

)
eit = Op

(
1√
n

)

using 1√
nT

∑n
i=1

∑T
t=2 νit−1eit = Op(1) and 1

T

∑n
i=1

∑T
t=2 eitν = Op(1) as

(n, T )→∞.
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Consider II.

II =
√
n(β̂OLS − β)

1

n3/2

n∑
i=1

1

T

T∑
t=2

εit
(
νit−1 − ν

)
=
√
n(β̂OLS − β)

1

n

(
1√
n

n∑
i=1

T∑
t=2

εit√
T

νit−1√
T

)

−
√
n(β̂OLS − β)

1

n3/2

(
1√
nT

n∑
i=1

T∑
t=2

εit

)(
1√
nT 3/2

n∑
i=1

T∑
t=1

νit

)

= Op

(
1

n

)
+Op

(
1

n3/2

)
= Op

(
1

n

)

as (n, T )→∞.

Consider III and IV . In a similar vein as II, it is easy to see that

III = −
√
n
(
β̂OLS − β

) 1

n3/2

n∑
i=1

1

T

T∑
t=2

(xit−1 − ¯̄x) eit = Op

(
1

n

)

and

IV =
(√

n
(
β̂OLS − β

))2 1

n2

n∑
i=1

1

T

T∑
t=2

εit (xit−1 − ¯̄x) = Op

(
1

n3/2

)
.

Therefore,

1

nT

n∑
i=1

T∑
t=2

(ûit − ûit−1) ûit−1

= Op(
1√
n

) +Op

(
1

n

)
+Op

(
1

n

)
+Op

(
1

n3/2

)
= Op(

1√
n

) = op (1) .

Summarizing, we have

T (ρ̃− 1) =
1
nT

∑n
i=1

∑T
t=2 ∆ûitûit−1

1
nT 2

∑n
i=1

∑T
t=2 û

2
it−1

p→ 0
σ2e
6

= 0.
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Next we show σ̃2
e is a consistent estimator. It is clear that I → σ2

e as

(n, T )→∞ as shown already.

Consider II. In a similar process as above, one can show that

1
nT

∑n
i=1

∑T
t=1 (xit − ρ̂xit−1)2 −

{
1
nT

∑n
i=1

∑T
t=1 (xit − ρ̂xit−1)

}2

+
{

1
n

∑n
i=1

1
T

∑T
t=1 ((xit − xi.)− ρ̂ (xit−1 − xi.))

}2

= 1
n

∑n
i=1[ 1

T

∑T
t=1 ε

2
it + {T (ρ̂−1)}2

T 3

∑T
t=1 x

2
it−1 −

2T (ρ̂−1)
T 2

∑T
t=1 εitxit−1]

−
[

1
n

∑n
i=1

{
1
T

∑T
t=1 εit −

T (ρ̂−1)
T 2

∑T
t=1 xit−1

}]2

+
{

1
n

∑n
i=1

[
1
T

∑T
t=1 εit −

T (ρ̂−1)
T 2

∑T
t=1 xit−1 + T (ρ̂−1)

T 2

∑T
t=1 xi.

]}2

= σ2
ε + op(1)

as (n, T )→∞. Hence we have

II ≈

(√
n
(
β̂OLS − β

))2

n

[
1

nT
x′EnT

(
In ⊗ Ĉ ′Ĉ

)
EnTx

]
= Op(

1

n
) = op (1)

since if (n, T )→∞ and n
T
→ 0, then

√
n
(
β̂OLS − β

)
d→ N

(
0,

2σ2
e

3σ2
ε

)
.

Also because III = op(1) by the Cauchy-Schwarz inequality, we get

σ̃2
e

p→ σ2
e.
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F Proof of Theorem 3

Preparation: Note that from equation (9), we have

y = γιnT + xβ + u = γιnT + xβ + Zµµ+ ν

where y is nT × 1, x is a vector of xit of dimension nT × 1, ιnT is a vector of ones of

dimension nT , u is nT × 1, µ is a vector of µi, ν is a vector of νit and Zµ = In ⊗ ιT .

Also recall from equation (13) that

Φ−1 = In ⊗
[

1

σ2
e

(
A−1 −

σ2
µ

σ2
e + θσ2

µ

A−1ιT ι
′
TA
−1

)]
.

Here we define z = [ιnT ,x], then

γ̂GLS
β̂GLS

 =
(
z′Φ−1z

)−1 (
z′Φ−1y

)

=


ι′nT
x′

Φ−1

[
ιnT x

]
−1

ι′nT
x′

Φ−1y


=

ι′nTΦ−1ιnT ι′nTΦ−1x

x′Φ−1ιnT x′Φ−1x


−1 ι′nTΦ−1y

x′Φ−1y


=

F11 F12

F21 F22


ι′nTΦ−1y

x′Φ−1y


=

F11ι
′
nTΦ−1y + F12x

′Φ−1y

F21ι
′
nTΦ−1y + F22x

′Φ−1y


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where

F11 =
[
ι′nTΦ−1ιnT − ι′nTΦ−1x

(
x′Φ−1x

)−1
x′Φ−1ιnT

]−1

,

F12 = −
(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1x

[
x′Φ−1x− x′Φ−1ιnT

(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1x

]−1

,

F21 = −
[
x′Φ−1x− x′Φ−1ιnT

(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1x

]−1

x′Φ−1ιnT
(
ι′nTΦ−1ιnT

)−1
,

and

F22 =
[
x′Φ−1x− x′Φ−1ιnT

(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1x

]−1

.

Hence, we have

β̂GLS = F21ι
′
nTΦ−1y + F ′22x

′Φ−1y

=
[
x′Φ−1x− x′Φ−1ιnT

(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1x

]−1

×
[
x′Φ−1y − x′Φ−1ιnT

(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1y

]

and

β̂GLS − β = G−1
1 G2

where

G1 = x′Φ−1x− x′Φ−1ιnT
(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1x

and

G2 = x′Φ−1u− x′Φ−1ιnT
(
ι′nTΦ−1ιnT

)−1
ι′nTΦ−1u

respectively.

Proof. Following Baltagi et al. (2008), we first define matrices Â and Ĉ which

replace ρ in the matrix A and C in equation (12) and (14) with ρ̃ given by,

ρ̃ =

∑n
i=1

∑T
t=2 ûitûit−1∑n

i=1

∑T
t=2 û

2
it−1
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where ûit denotes the it-th OLS residual. Using the definition of Φ−1 in equation (13)

and σ̃2
e given by,

σ̃2
e =

1

n(T − 1)
û∗′û∗

where û∗ = (In ⊗ Ĉ)û and û denotes the nT × 1 vector of the OLS residuals, one

obtains:

x′Φ̂−1x =
1

σ̃2
e

n∑
i=1

(
x′iÂ

−1
i xi

)
,

x′Φ̂−1ιnT =
1

σ̃2
e

n∑
i=1

(
x′iÂ

−1ιT

)
,

ι′nT Φ̂−1ιnT =
1

σ̃2
e

n∑
i=1

(
ι′T Â

−1ιT

)
,

x′Φ̂−1ν =
1

σ̃2
e

n∑
i=1

(
x′iÂ

−1νi

)
,

and

ι′nT Φ̂−1ν =
1

σ̃2
e

n∑
i=1

(
ι′T Â

−1νi

)
where

x′iÂ
−1xi = x′iĈ

′Ĉxi ≈
T∑
t=1

(xit − ρ̃xit−1)2 ,

x′iÂ
−1νi = x′iĈ

′Ĉνi ≈
T∑
t=1

(xit − ρ̃xit−1) (νit − ρ̃νit−1) ,

x′iÂ
−1ιT = x′iĈ

′ĈιT ≈ (1− ρ̃)

T∑
t=1

(xit − ρ̃xit−1) ,

ι′T Â
−1νi = ι′T Ĉ

′Ĉνi ≈ (1− ρ̃)
T∑
t=1

(νit − ρ̃νit−1) ,

and

θ = ι′T Â
−1ιT = ι′T Ĉ

′ĈιT = (1− ρ̃2) + (T − 1)(1− ρ̃)2 ≈
T∑
t=1

(1− ρ̃)2 = T (1− ρ̃)2 .
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In this section, we assume that (n, T )→∞ and n
T
→ 0 unless otherwise specified.

1. |ρ| < 1, |λ| < 1 case

(a) Define

1

nT
Ĝ1 =

1

nT
x′Φ̂−1x− x

′Φ̂−1ιnT
nT

(
ι′nT Φ̂−1ιnT

nT

)−1
ι′nT Φ̂−1x

nT
.

First we consider

1

nT
x′Φ̂−1x

=
1

n

1

σ̃2
e

n∑
i=1

1

T
x′iÂ

−1xi.

Expanding this equation, we will show that

1

n

n∑
i=1

1

T
x′iÂ

−1xi ≈
1

n

n∑
i=1

1

T

T∑
t=1

(xit − ρ̃xit−1)2

=
1

n

n∑
i=1

1

T

T∑
t=1

(εit + λxit−1 − ρ̃xit−1)2

=
1

n

n∑
i=1



1
T

∑T
t=2 ε

2
it + (ρ̃− ρ)2 1

T

∑T
t=1 x

2
it−1

+(λ− ρ)2 1
T

∑T
t=1 x

2
it−1

− (ρ̃− ρ) 2
T

∑T
t=1 εitxit−1

+(λ− ρ) 2
T

∑T
t=1 εitxit−1

− (ρ̃− ρ) (λ− ρ) 2
T

∑T
t=1 x

2
it−1


=

1

nT

n∑
i=1

T∑
t=1

ε2
it +

(λ− ρ)2

nT

n∑
i=1

T∑
t=1

x2
it−1

+I + II + III + IV

=
(1− 2ρλ+ ρ2)(

1− λ2
) σ2

ε + op (1)

as (n, T )→∞.
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Consider I.

I =
(√

nT (ρ̃− ρ)
)2 1

nT

1

nT

n∑
i=1

T∑
t=1

x2
it−1 = Op(

1

nT
)

using
1

nT

n∑
i=1

T∑
t=1

x2
it−1 = Op (1) .

Consider II.

II = −2
(√

nT (ρ̃− ρ)
) 1

nT

1√
nT

n∑
i=1

T∑
t=1

εitxit−1 = Op(
1

nT
)

using
1√
nT

n∑
i=1

T∑
t=1

εitxit−1 = Op (1)

and
√
nT (ρ̃− ρ) = Op (1) .

Consider III.

2(λ− ρ)
1√
nT

1√
nT

n∑
i=1

T∑
t=1

εitxit−1 = Op(
1√
nT

).

Consider IV .

−2
(√

nT (ρ̃− ρ)
)

(λ− ρ)
1√
nT

1

nT

n∑
i=1

T∑
t=1

x2
it−1 = Op(

1√
nT

).
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Hence, we have

1

n

n∑
i=1

1

T

T∑
t=1

(xit − ρ̃xit−1)2

=
1

nT

n∑
i=1

T∑
t=1

ε2
it +

(λ− ρ)2

nT

n∑
i=1

T∑
t=1

x2
it−1

+Op(
1

nT
) +Op(

1

nT
) +Op(

1√
nT

) +Op(
1√
nT

)

=
1

nT

n∑
i=1

T∑
t=1

ε2
it +

(λ− ρ)2

nT

n∑
i=1

T∑
t=1

x2
it−1 +Op(

1√
nT

).

Because
1

nT

n∑
i=1

T∑
t=1

ε2
it

p→ σ2
ε

and
(λ− ρ)2

nT

n∑
i=1

T∑
t=1

x2
it−1

p→ (λ− ρ)2σ2
ε

(1− λ2)
,

one concludes that

1

nT
x′Φ̂−1x =

1

n

1

σ̃2
e

n∑
i=1

1

T
x′iÂ

−1xi
p→ (1− 2ρλ+ ρ2)σ2

ε(
1− λ2

)
σ2
e

.

Next consider

1

nT
x′Φ̂−1ιnT =

1

n

1

σ̃2
e

n∑
i=1

(
1

T
x′iÂ

−1ιT

)

≈ (1− ρ̃)
1

σ̃2
e

1

nT

n∑
i=1

T∑
t=1

[εit + (λ− ρ)xit−1 − (ρ̃− ρ)xit−1]

= Op

(
1√
nT

)
+Op

(
1√
nT

)
+Op

(
1

nT

)
= Op

(
1√
nT

)

as (n, T )→∞.
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Also note

1

nT
ι′nT Φ̂−1ιnT ≈

1

n

1

σ̃2
e

n∑
i=1

1

T
T (1− ρ̃)2 p→ (1− ρ)2

σ2
e

= Op (1) .

Hence,

1

nT
Ĝ1 =

1

nT
x′Φ̂−1x− x

′Φ̂−1ιnT
nT

(
ι′nT Φ̂−1ιnT

nT

)−1
ι′nT Φ̂−1x

nT

p→ (1− 2ρλ+ ρ2)σ2
ε(

1− λ2
)
σ2
e

as (n, T )→∞.

(b) Now we investigate Ĝ2.

1√
nT

Ĝ2 =
1√
nT
x′Φ̂−1ν − x

′Φ̂−1ιnT
nT

(
ι′nT Φ̂−1ιnT

nT

)−1
ι′nT Φ̂−1ν√

nT

Consider first

1√
nT
x′Φ̂−1ν

=
1

σ̃2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

.
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Here

1√
n

n∑
i=1

x′iÂ
−1νi√
T

≈ 1√
n

n∑
i=1

1√
T

T∑
t=1

(xit − ρ̃xit−1) (νit − ρ̃νit−1)

=
1√
n

n∑
i=1

1√
T

T∑
t=1

 [εit + (λ− ρ)xit−1 − (ρ̃− ρ)xit−1]

· [eit − (ρ̃− ρ)νit−1]


=

1√
nT

n∑
i=1

T∑
t=1

[εit + (λ− ρ)xit−1] eit

−
√
nT (ρ̃− ρ)

nT

n∑
i=1

T∑
t=1

[εit + (λ− ρ)xit−1] νit−1

−
√
nT (ρ̃− ρ)

nT

n∑
i=1

T∑
t=1

xit−1eit

+
(
√
nT (ρ̃− ρ))2

n3/2T 3/2

n∑
i=1

T∑
t=1

xit−1νit−1

=
1√
nT

n∑
i=1

T∑
t=1

[εit + (λ− ρ)xit−1] eit + I + II + III.

Consider I. Note that we have

I = −
√
nT (ρ̃− ρ)√

nT

1√
nT

n∑
i=1

T∑
t=1

εitνit−1

−(λ− ρ)

√
nT (ρ̃− ρ)√

nT

1√
nT

n∑
i=1

T∑
t=1

xit−1νit−1

= Op

(
1√
nT

)
+Op

(
1√
nT

)
= Op

(
1√
nT

)

using 1√
nT

∑n
i=1

∑T
t=1 εitνit−1 = Op (1) and 1√

nT

∑n
i=1

∑T
t=1 xit−1νit−1 =

Op (1).

By a similar process, it can be shown that

II = −
√
nT (ρ̃− ρ)√

nT

1√
nT

n∑
i=1

T∑
t=1

xit−1eit = Op

(
1√
nT

)
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and

III =
(
√
nT (ρ̃− ρ))2

nT

1√
nT

n∑
i=1

T∑
t=1

xit−1νit−1 = Op

(
1

nT

)
.

Hence,

1√
n

n∑
i=1

x′iÂ
−1νi√
T

≈ 1√
nT

n∑
i=1

T∑
t=1

[εit + (λ− ρ)xit−1] eit

+Op

(
1√
nT

)
+Op

(
1√
nT

)
+Op

(
1

nT

)

=
1√
nT

n∑
i=1

T∑
t=1

 εit + (λ− ρ)εit−1

+λ(λ− ρ)εit−2 + · · ·

 eit
+Op

(
1√
nT

)
.

Because

1√
nT

n∑
i=1

T∑
t=1

[εit + (λ− ρ)εit−1 + λ(λ− ρ)εit−2 + · · · ] eit

d→ N(0,
(1− 2ρλ+ ρ2)σ2

eσ
2
ε

1− λ2 ),

we get

1√
nT
x′Φ̂−1ν =

1

σ̃2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

d→ N(0,
(1− 2ρλ+ ρ2)σ2

ε(
1− λ2

)
σ2
e

)

Next consider

1√
nT
ι′nT Φ̂−1ν =

1

σ̃2
e

1√
n

n∑
i=1

ι′T Â
−1νi√
T

.
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From

1√
n

n∑
i=1

ι′T Â
−1νi√
T

≈ (1− ρ̃)√
nT

n∑
i=1

T∑
t=1

(νit − ρ̃νit−1)

= (1− ρ̃)
1√
nT

n∑
i=1

T∑
t=1

(eit − (ρ̃− ρ)νit−1)

= (1− ρ̃)
1√
nT

n∑
i=1

T∑
t=1

eit

− (1− ρ̃)

√
nT (ρ̃− ρ)√

nT

1√
nT

n∑
i=1

T∑
t=1

νit−1,

it is easy to see that

(1− ρ̃)
1√
nT

n∑
i=1

T∑
t=1

eit
d→ (1− ρ)N(0, σ2

e)

and

(1− ρ̃)

√
nT (ρ̃− ρ)√

nT

1√
nT

n∑
i=1

T∑
t=1

νit−1 = Op

(
1√
nT

)
.

Accordingly, we have

1√
nT
ι′nT Φ̂−1ν

d→ (1− ρ)N(0,
1

σ2
e

).

Also recall that 1
nT
x′Φ−1ιnT = Op(

1√
nT

); 1
nT
ι′nTΦ−1ιnT

p→ (1−ρ)2

σ2e
as shown

above.

Hence, we have

1√
nT

Ĝ2 =
1√
nT
x′Φ̂−1ν − x

′Φ̂−1ιnT
nT

(
ι′nT Φ̂−1ιnT

nT

)−1
ι′nT Φ̂−1ν√

nT

d→ N(0,
(1− 2ρλ+ ρ2)σ2

ε

(1− λ2)σ2
e

)

as (n, T )→∞.
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(c) We conclude that

tFGLS =

[
(1− 2ρλ+ ρ2)σ2

ε(
1− λ2

)
σ2
e

]−1/2

N

(
0,

(1− 2ρλ+ ρ2)σ2
ε

(1− λ2)σ2
e

)
= N(0, 1).

2. ρ = 1, |λ| < 1 case

(a) Let

1

nT
Ĝ1 =

1

nT
x′Φ̂−1x− T (1− ρ̃)

x′Φ̂−1ιnT
nT (1− ρ̃)

(
ι′nT Φ̂−1ιnT
n (1− ρ̃)

)−1
ι′nT Φ̂−1x

nT (1− ρ̃)
.

Using a similar argument as above, we first consider

1

nT
x′Φ̂−1x =

1

n

1

σ̃2
e

n∑
i=1

1

T
x′iÂ

−1xi.
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Expanding this equation, we get

1

n

n∑
i=1

1

T
x′iÂ

−1xi ≈
1

n

n∑
i=1

1

T

T∑
t=1

(xit − ρ̃xit−1)2

=
1

nT

n∑
i=1

T∑
t=1

(εit + λxit−1 − ρ̃xit−1)2

=
1

nT

n∑
i=1

T∑
t=1

ε2
it +

1

T 2
{T (ρ̃− 1)}2 1

nT

n∑
i=1

T∑
t=1

x2
it−1

+(λ− 1)2 1

nT

n∑
i=1

T∑
t=1

x2
it−1

− 2

T
T (ρ̃− 1)

1

nT

n∑
i=1

T∑
t=1

εitxit−1

+(λ− 1)
2

nT

n∑
i=1

T∑
t=1

εitxit−1

− 2

T
T (ρ̃− 1) (λ− 1)

1

nT

n∑
i=1

T∑
t=1

x2
it−1

=
1

nT

n∑
i=1

T∑
t=1

ε2
it + (λ− 1)2 1

nT

n∑
i=1

T∑
t=1

x2
it−1

+I + II + III + IV.

Consider I. With the joint limit, we have

I = (ρ̃− 1)2 1

nT

n∑
i=1

T∑
t=1

x2
it−1 = op

(
1

T 2

)

using
1

nT

n∑
i=1

T∑
t=1

x2
it−1 = Op (1)

and

(ρ̃− 1) = op

(
1

T

)
.
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using

1

n

n∑
i=1

(
1√
T

T∑
t=1

eit

)2

= Op(1),

1

n

n∑
i=1

(
1√
T

T∑
t=1

νit−1

)2

= Op(1),

and
1

n

n∑
i=1

(
1√
T

T∑
t=1

eit

)(
1√
T

T∑
t=1

νit−1

)
= Op(1).

Also note that T

d̂2
= T

2ρ̂
1−ρ̂+T

p→ 1 as T →∞.

Consider II. It can be also shown that

II =
(β̂OLS−β)

2

n

∑n
i=1[ 1

T

∑T
t=1 ε

2
it + (ρ̂−ρ)2

T

∑T
t=1 x

2
it−1 + (λ−ρ)2

T

∑T
t=1 x

2
it−1

−2(ρ̂−ρ)
T

∑T
t=1 εitxit−1 + 2(λ−ρ)

T

∑T
t=1 εitxit−1 − 2(ρ̂−ρ)(λ−ρ)

T

∑T
t=1 x

2
it−1]

−(β̂OLS−β)
2
T

nd̂2

∑n
i=1

 1
T

∑T
t=1 εit − (ρ̂− ρ) 1

T

∑T
t=1 xit−1

+(λ− ρ) 1
T

∑T
t=1 xit−1


2

= Op(
1
nT

).

This follows because if (n, T )→∞ and n
T
→ 0, then

√
nT
(
β̂OLS − β

)
d→ N

(
0,
σ2
µ

σ2
ε

+
(1 + ρλ)(1− λ2)σ2

e

(1− ρλ)(1− ρ2)σ2
ε

)

using a similar argument as in Phillips and Moon (1999) and Baltagi et al.

(2008).

Consider III. From Lemma 1 (B), we know that

III ≤
√
I × II p→ 0.
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Hence,

σ̂2
e

p→ σ2
e.

(b) Next, we show that σ̂2
µ is a consistent estimator of σ

2
µ. From Lemma 2 (B),

one can see that

I = (1− ρ̂)2 d̂
2

T

 1

n

n∑
i=1

µ2
i −

(
1

n

n∑
i=1

µi

)2
 p→ (1− ρ)2 σ2

µ.

Consider II next. It can be shown that

II =
1

n

n∑
i=1

(
T

d̂2

)[
1

T

T∑
t=1

(νit − ρ̂νit−1)

]2

+
(1− ρ̂)2

nT

d̂2

T

[
1

nT

n∑
i=1

T∑
t=1

νit

]2

−2 (1− ρ̂)

n

[
1

nT

n∑
i=1

T∑
t=1

(νit − ρ̂νit−1)

][
1

nT

n∑
i=1

T∑
t=1

νit

]
= Op(

1

T
) +Op(

1

n3/2T 3/2
) +Op(

1

n2T
) = Op(

1

T
).

For the first term, from (a), we know that

1

n

n∑
i=1

(
T

d̂2

)[
1

T

T∑
t=1

(νit − ρ̂νit−1)

]2

= Op(
1

T
).

For the second term,

(1− ρ̂)2

nT

d̂2

T

[
1

nT

n∑
i=1

T∑
t=1

νit

]2

=
(1− ρ̂)2

n3/2T 3/2

d̂2

T

[
1√
nT

n∑
i=1

T∑
t=1

νit

]2

= Op(
1

n3/2T 3/2
)

using
1√
nT

n∑
i=1

T∑
t=1

νit = Op(1).
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Let us look at the last term. We have

2 (1− ρ̂)

n

[
1

nT

n∑
i=1

T∑
t=1

(νit − ρ̂νit−1)

][
1

nT

n∑
i=1

T∑
t=1

νit

]

=
2 (1− ρ̂)

n

[
1

nT

n∑
i=1

T∑
t=1

eit − (ρ̂− ρ)
1

nT

n∑
i=1

T∑
t=1

νit−1

][
1

nT

n∑
i=1

T∑
t=1

νit

]

=
2 (1− ρ̂)

n2T

(
1√
nT

n∑
i=1

T∑
t=1

eit

)(
1√
nT

n∑
i=1

T∑
t=1

νit

)

−2 (1− ρ̂)

n5/2T 3/2

√
nT (ρ̂− ρ)

(
1√
nT

n∑
i=1

T∑
t=1

νit−1

)(
1√
nT

n∑
i=1

T∑
t=1

νit

)
= Op(

1

n2T
) +Op(

1

n5/2T 3/2
) = Op(

1

n2T
).

Accordingly, we have

IV ≤
√
I × II p→ 0.

Finally, consider III.

III =

(
β̂OLS − β

)2

n

n∑
i=1

(
T

d̂2

)[
1

T

T∑
t=1

(xit − ρ̂xit−1)

]2

+

(
β̂OLS − β

)2

(1− ρ̂)2

nT

d̂2

T

[
1

nT

n∑
i=1

T∑
t=1

xit

]2

−
2
(
β̂OLS − β

)2

(1− ρ̂)

n

[
1

nT

n∑
i=1

T∑
t=1

(xit − ρ̂xit−1)

][
1

nT

n∑
i=1

T∑
t=1

xit

]
.

It can be easily shown that III = op(1) as (n, T )→∞ in a similar way as

above. This follows because if (n, T )→∞ and n
T
→ 0, then

√
nT
(
β̂OLS − β

)
d→ N

(
0,
σ2
µ

σ2
ε

+
(1 + ρλ)(1− λ2)σ2

e

(1− ρλ)(1− ρ2)σ2
ε

)
.

Hence, by the fact that V ≤
√
I × III p→ 0 and V I ≤

√
II × III p→ 0, we
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get
1

T
σ̂2
α

p→ (1− ρ)2 σ2
µ.

One concludes that

σ̂2
µ =

1

θ̂

(
σ̂2
α − σ̂2

e

)
=
T

θ̂

(
σ̂2
α

T
− σ̂2

e

T

)
p→ 1

(1− ρ)2

[
(1− ρ)2 σ2

µ − 0
]

= σ2
µ

using

1

T
θ̂ =

1

T
(1− ρ̂)2 d̂2

=
1

T
(1− ρ̂)2

[(
2ρ̂

1− ρ̂

)
+ T

]
= (1− ρ̂)2

[
1

T

(
2ρ̂

1− ρ̂

)
+ 1

]
p→ (1− ρ)2 .

(c) Let us calculate the term Ĝ1 in equation (14) first.

1

nT
Ĝ1 =

1

nT
x′Φ̂−1x− 1

T

x′Φ̂−1ιnT
n

(
ι′nT Φ̂−1ιnT

n

)−1
ι′nT Φ̂−1x

n
.

We investigate

1

nT
x′Φ̂−1x =

1

nσ̂2
e

n∑
i=1

(
x′iÂ

−1xi
T

−
σ̂2
µ

σ̂2
α/T

x′iÂ
−1ιT
T

ι′T Â
−1xi
T

)

from Lemma 3 (B). As shown in Theorem 3.1.(a), one can see that

1

nσ̂2
e

n∑
i=1

1

T
x′iÂ

−1xi
p→ (1− 2ρλ+ ρ2)σ2

ε(
1− λ2

)
σ2
e

.
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Next, it can be shown that

1

n

1

σ̂2
e

n∑
i=1

(
x′iÂ

−1ιT
T

ι′T Â
−1xi
T

)

=
(1− ρ̂)2

σ̂2
e

1

n

n∑
i=1

[
1

T

T∑
t=1

εit +
(λ− ρ)

T

T∑
t=1

xit−1 −
(ρ̂− ρ)

T

T∑
t=1

xit−1

]2

=
(1− ρ̂)2

σ̂2
e

1

n

n∑
i=1



(
1
T

∑T
t=1 εit

)2

+
(

(λ−ρ)
T

∑T
t=1 xit−1

)2

+
(

(ρ̂−ρ)
T

∑T
t=1 xit−1

)2

+2
(

1
T

∑T
t=1 εit

)(
(λ−ρ)
T

∑T
t=1 xit−1

)
−2
(

1
T

∑T
t=1 εit

)(
(ρ̂−ρ)
T

∑T
t=1 xit−1

)
−2
(

(λ−ρ)
T

∑T
t=1 xit−1

)(
(ρ̂−ρ)
T

∑T
t=1 xit−1

)


= I + II + III + IV + V + V I.

Consider I and II. One can see that

I =
(1− ρ̂)2

σ̂2
e

1

T

1

n

n∑
i=1

(
1√
T

T∑
t=1

εit

)2

= Op

(
1

T

)

and

II =
(1− ρ̂)2

σ̂2
e

1

T

1

n

n∑
i=1

(
(λ− ρ)√

T

T∑
t=1

xit−1

)2

= Op

(
1

T

)
.

Consider III.

III =
(1− ρ̂)2

σ̂2
e

(√
nT (ρ̂− ρ)

)2 1

nT 2

1

n

n∑
i=1

(
1√
T

T∑
t=1

xit−1

)2

= Op

(
1

nT 2

)
.

Consider IV .

IV =
2 (1− ρ̂)2

σ̂2
e

1

T

1

n

n∑
i=1

(
1√
T

T∑
t=1

εit

)(
(λ− ρ)√

T

T∑
t=1

xit−1

)
= Op

(
1

T

)
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using
1

n

n∑
i=1

(
1√
T

T∑
t=1

εit

)(
(λ− ρ)√

T

T∑
t=1

xit−1

)
= Op (1) .

Lastly, consider V and V I. It can be shown that

V = −2 (1− ρ̂)2

σ̂2
e

√
nT (ρ̂− ρ)√
nT 3/2

1

n

n∑
i=1

(
1√
T

T∑
t=1

εit

)(
1√
T

T∑
t=1

xit−1

)

= Op

(
1√
nT 3/2

)

and

V I = −2 (1− ρ̂)2

σ̂2
e

√
nT (ρ̂− ρ)√
nT 3/2

1

n

n∑
i=1

(
(λ− ρ)√

T

T∑
t=1

xit−1

)(
1√
T

T∑
t=1

xit−1

)

= Op

(
1√
nT 3/2

)
.

Therefore, we conclude that

1

n

1

σ̂2
e

n∑
i=1

(
x′iÂ

−1ιT
T

ι′T Â
−1xi
T

)

= Op

(
1

T

)
+Op

(
1

T

)
+Op

(
1

nT 2

)
+Op

(
1

T

)
+Op

(
1√
nT 3/2

)
+Op

(
1√
nT 3/2

)
= Op

(
1

T

)
.

Then we have
1

nT
x′Φ̂−1x

p→ (1− 2ρλ+ ρ2)σ2
ε(

1− λ2
)
σ2
e

.

One can also verify that

1

n
x′Φ̂−1ιnT =

1√
nT

1√
n

n∑
i=1

(
1

σ̂2
α/T

x′iÂ
−1ιT√
T

)
= Op

(
1√
nT

)
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and
1

n
ι′nT Φ̂−1ιnT =

θ̂/T

σ̂2
α/T

p→ (1− ρ)2

(1− ρ)2 σ2
µ

=
1

σ2
µ

.

Finally, we get
1

nT
Ĝ1

p→ (1− 2ρλ+ ρ2)σ2
ε(

1− λ2
)
σ2
e

as (n, T )→∞.

Now we turn to Ĝ2. Note that

1√
nT

Ĝ2 =
1√
nT
x′Φ̂−1u− 1√

T

x′Φ̂−1ιnT
n

(
ι′nT Φ̂−1ιnT

n

)−1
ι′nT Φ̂−1u√

n
.

Consider first

1√
nT
x′Φ̂−1u

=
1

σ̂2
e

1√
n

n∑
i=1

 1√
T

σ̂2e
σ̂2α/T

µi
x′iÂ

−1ιT
T

+
(
x′iÂ

−1νi√
T
− σ̂2µ

σ̂2α/T

x′iÂ
−1ιT
T

ι′T Â
−1νi√
T

)
 .

For the first term, one can show that

1

σ̂2
e

1√
n

n∑
i=1

1√
T

(
σ̂2
e

σ̂2
α/T

µi

)(
x′iÂ

−1ιT
T

)

= (1− ρ̂)

(
1

σ̂2
α/T

)
1

T

1√
nT

n∑
i=1

T∑
t=1

µi [xit − ρ̂xit−1]

= (1− ρ̂)

(
1

σ̂2
α/T

)
1

T

1√
nT

n∑
i=1

T∑
t=1

µi

 εit + (λ− ρ)xit−1

−
√
nT (ρ̂− ρ)xit−1√

nT


= Op

(
1

T

)
+Op

(
1

T

)
+Op

(
1√
nT 3/2

)
= Op

(
1

T

)

using
1√
nT

n∑
i=1

T∑
t=1

µiεit = Op (1)
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and
1√
nT

n∑
i=1

T∑
t=1

µixit−1 = Op (1) .

Also recall from Theorem 3.1.(b) that

1√
n

n∑
i=1

x′iÂ
−1νi√
T

d→ N(0,
(1− 2ρλ+ ρ2)σ2

eσ
2
ε

1− λ2 )

as (n, T )→∞.

For the last term, it can be shown that

1

σ̂2
e

1√
T

1√
n

n∑
i=1

σ̂2
µ

σ̂2
α/T

x′iÂ
−1ιT√
T

ι′T Â
−1νi√
T

= Op

(
1√
T

)

in a similar way as above.

Therefore, we conclude that

1√
nT
x′Φ̂−1u =

1

σ̂2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

+Op

(
1

T

)
+Op

(
1√
T

)
=

1

σ̂2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

+Op

(
1√
T

)
d→ N(0,

(1− 2ρλ+ ρ2)σ2
ε(

1− λ2
)
σ2
e

).

Next, recall that 1
n
x′Φ̂−1ιnT

p→ 0 and 1
n
ι′nT Φ̂−1ιnT

p→ 1
σ2µ
from above.

Finally, it can be shown that

1√
n
ι′nT Φ̂−1u =

1√
n

n∑
i=1

1

σ̂2
e + θ̂σ̂2

µ

(
θ̂µi + ι′T Â

−1νi

)
=

1√
n

n∑
i=1

1

σ̂2
α/T

[(
θ̂

T

)
µi +

1√
T

(
ι′T Â

−1νi√
T

)]
= I + II.
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Consider I.

I =

(
θ̂

T

)(
1

σ̂2
α/T

)
1√
n

n∑
i=1

µi

d→ 1

(1− ρ)2 σ2
µ

(1− ρ)2N
(
0, σ2

µ

)

using θ̂
T
→ (1− ρ)2 and σ̂2

α/T → (1− ρ)2 σ2
µ.

Consider II.

II =
1

σ̂2
α/T

1√
nT

n∑
i=1

ι′T Â
−1νi =

(1− ρ̂)

σ̂2
α/T

1√
nT

n∑
i=1

T∑
t=1

(νit − ρ̂νit−1)

=
(1− ρ̂)

σ̂2
α/T

1√
nT

n∑
i=1

T∑
t=1

[eit − (ρ̂− ρ)νit−1]

=
(1− ρ̂)

σ̂2
α/T

1√
T

1√
nT

n∑
i=1

T∑
t=1

eit −
(1− ρ̂)

σ̂2
α/T

√
nT (ρ̂− ρ)√

nT

1√
nT

n∑
i=1

T∑
t=1

νit−1

= Op

(
1√
T

)
+Op

(
1√
nT

)
= Op

(
1√
T

)
.

Hence,

1√
n
ι′nT Φ̂−1u =

(
θ̂

T

)(
1

σ̂2
α/T

)
1√
n

n∑
i=1

µi +Op

(
1√
T

)
d→ 1

(1− ρ)2 σ2
µ

(1− ρ)2N
(
0, σ2

µ

)
= N

(
0,

1

σ2
µ

)
.

Summarizing, we have

1√
nT

Ĝ2
d→ N(0,

(1− 2ρλ+ ρ2)σ2
ε

(1− λ2)σ2
e

)

as (n, T )→∞. Finally,

tFGLS =

(
1

nT
Ĝ1

)−1/2(
1√
nT

Ĝ2

)
d→ N (0, 1) .
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2. When ρ = 1, |λ| < 1, if T (ρ̂− 1)
p→ κ

(a) First, let us show that σ̂2
e is a consistent estimator of σ

2
e.

From Lemma 1 (B), it can be shown, in a similar way as 1.(a) that

I =
1

n

n∑
i=1

 1
T

∑T
t=1 e

2
it −

2[T (ρ̂−1)]
T

(
1
T

∑T
t=1 eitνit−1

)
+ [T (ρ̂−1)]2

T

(
1
T 2

∑T
t=1 ν

2
it−1

)


−
(
T

d̂2

)
1

n

n∑
i=1

[
1

T

T∑
t=1

eit −
1√
T

[T (ρ̂− 1)]

(
1

T 3/2

T∑
t=1

νit−1

)]2

p→ σ2
e

as (n, T ) → ∞ using 1
nT

∑n
i=1

∑T
t=1 e

2
it

p→ σ2
e,

1√
nT

∑n
i=1

∑T
t=1 eitνit−1 =

Op (1), 1
nT 2

∑n
i=1

∑T
t=1 ν

2
it−1 = Op (1), and 1√

nT 3/2

∑n
i=1

∑T
t=1 νit−1 = Op (1).

Also note that T (ρ̂− 1)
p→ κ and

T

d̂2
=

T
1+ρ̂
1−ρ̂ + T − 1

=
T (1− ρ̂)

2ρ̂+ T (1− ρ̂)

p→ −κ
2− κ.

Consider II. From Lemma 1 (B), we have

1
n

∑n
i=1[ 1

T

∑T
t=1 ε

2
it + (ρ̂−1)2

T

∑T
t=1 x

2
it−1 + (λ−1)2

T

∑T
t=1 x

2
it−1

−2(ρ̂−1)
T

∑T
t=1 εitxit−1 + 2(λ−1)

T

∑T
t=1 εitxit−1 − 2(ρ̂−1)(λ−1)

T

∑T
t=1 x

2
it−1]

− T

nd̂2

∑n
i=1

[
1
T

∑T
t=1 εit − (ρ̂− 1) 1

T

∑T
t=1 xit−1 + (λ− 1) 1

T

∑T
t=1 xit−1

]2

= 2σ2
ε/ (1 + λ) + op(1)

as (n, T )→∞. This is because 1
nT

∑n
i=1

∑T
t=1 ε

2
it

p→ σ2
ε,

1√
nT

∑n
i=1

∑T
t=1 εitxit−1 =

Op(1), 1
nT

∑n
i=1

∑T
t=1 x

2
it−1

p→ σ2
ε/
(
1− λ2

)
, 1√

nT

∑n
i=1

∑T
t=1 εit = Op(1),

and 1√
nT

∑n
i=1

∑T
t=1 xit−1 = Op(1).
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Hence,

II ≈

[√
n
(
β̂OLS − β

)]2

n

1

nT
x
′
(
In ⊗ ĈÊα

T Ĉ
)
x = Op(

1

n
) = op(1)

using the fact that if (n, T )→∞ and n
T
→ 0, then

√
n
(
β̂OLS − β

)
d→ N

(
0,

(1− λ)2σ2
e

2σ2
ε

)
.

This follows from a similar argument as in Phillips and Moon (1999) and

Baltagi et al. (2008).

Since III ≤
√
I × II p→ 0, we conclude that

σ̂2
e

p→ σ2
e.

(b) Let us show that σ̂2
µ is not a consistent estimator of σ

2
µ.

Using Lemma 2 (B), we have

1

T (1− ρ̂)
σ̂2
α

=
1

nT (1− ρ̂)
û∗′
(
In ⊗ ̂̄JαT) û∗

=
(1− ρ̂) d̂2

nT
µ′Enµ

+
1

nT (1− ρ̂)
ν
′ (
InT − J̄nT

) (
In ⊗ Ĉ ′̂̄JαT Ĉ) (InT − J̄nT )ν

+
1

nT (1− ρ̂)

(
β̂OLS − β

)2

x
′ (
InT − J̄nT

) (
In ⊗ Ĉ ′̂̄JαT Ĉ) (InT − J̄nT )x

+
2

nT
µ
′
(
En ⊗ ι̂α′T Ĉ

) (
InT − J̄nT

)
ν

+
2

nT

(
β̂OLS − β

)
µ
′
(
En ⊗ ι̂α′T Ĉ

) (
InT − J̄nT

)
x

+
1

nT (1− ρ̂)

(
β̂OLS − β

)
ν
′ (
InT − J̄nT

) (
In ⊗ Ĉ ′̂̄JαT Ĉ) (InT − J̄nT )x

= I + II + III + IV + V + V I.
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Consider I. It is easy to see that

I =
(1− ρ̂) d̂2

T

 1

n

n∑
i=1

µ2
i −

(
1

n

n∑
i=1

µi

)2
 p→ 0

using (1− ρ̂) d̂2 = 2ρ̂+ T (1− ρ̂)
p→ 2− κ.

Consider II.

II = 1
n

∑n
i=1

1

(1−ρ̂)d̂2

[
1√
T

∑T
t=1 eit + [T (1− ρ̂)]

(
1

T 3/2

∑T
t=1 νit−1

)]2

+ (1−ρ̂)d̂2

nT

[
1
n

∑n
i=1

1
T 3/2

∑T
t=1 νit

]2

−2T (1−ρ̂)
nT

[
1
n

∑n
i=1

(
1√
T

∑T
t=1 eit + T (1− ρ̂) 1

T 3/2

∑T
t=1 νit−1

)]
·
[

1
n

∑n
i=1

1
T 3/2

∑T
t=1 νit

]
.

Let us look at the first term. It can be shown that

1

(1− ρ̂) d̂2

1

n

n∑
i=1

[
1√
T

T∑
t=1

eit + [T (1− ρ̂)]

(
1

T 3/2

T∑
t=1

νit−1

)]2

=
1

(1− ρ̂) d̂2

1

n

n∑
i=1


(

1√
T

∑T
t=1 eit

)2

+ [T (1− ρ̂)]2
(

1
T 3/2

∑T
t=1 νit−1

)2

+2T (1− ρ̂)
(

1√
T

∑T
t=1 eit

)(
1

T 3/2

∑T
t=1 νit−1

)


=
1

(1− ρ̂) d̂2

1

n

n∑
i=1

(
1√
T

T∑
t=1

eit

)2

+
(T (1− ρ̂))2

(1− ρ̂) d̂2

1

n

n∑
i=1

(
1

T 3/2

T∑
t=1

νit−1

)2

+
2T (1− ρ̂)

(1− ρ̂) d̂2

1

n

n∑
i=1

(
1√
T

T∑
t=1

eit

)(
1

T 3/2

T∑
t=1

νit−1

)
p→ 1

2− κσ
2
e

(
κ2

3
− κ+ 1

)

135



since

1

n

n∑
i=1

(
1√
T

T∑
t=1

eit

)2

p→ σ2
e,

1

n

n∑
i=1

(
1

T 3/2

T∑
t=1

νit−1

)2

p→ σ2
e

3
,

and
1

n

n∑
i=1

(
1√
T

T∑
t=1

eit

)(
1

T 3/2

T∑
t=1

νit−1

)
p→ σ2

e

2
.

Also note that the second and third terms of II are op (1) as (n, T )→∞.

Therefore,

II
p→ κ2 − 3κ+ 3

3 (2− κ)
σ2
e

and from Lemma 2 (B),

IV ≤
√
I × II p→ 0.

Consider III next.

III =
(β̂OLS−β)

2

n

∑n
i=1

(
1

(1−ρ̂)d̂2

) 1√
T

∑T
t=1 εit −

T (ρ̂−1)

T 3/2

∑T
t=1 xit−1

+ (λ−1)√
T

∑T
t=1 xit−1


2

+
(β̂OLS−β)

2
(1−ρ̂)d̂2

nT 2

[
1
n

∑n
i=1

1
T

∑T
t=1 xit

]2

−2(β̂OLS−β)
2

n

[
1
nT

∑n
i=1

∑T
t=1 (xit − ρ̂xi,t−1)

] [
1
nT

∑n
i=1

∑T
t=1 xit

]
.

In a similar process as in II, one can verify that III = Op(
1
n
) as (n, T )→

∞ using the fact that if (n, T )→∞ and n
T
→ 0, then

√
n
(
β̂OLS − β

)
d→ N

(
0,

(1− λ)2σ2
e

2σ2
ε

)

and accordingly that V ≤
√
I × III p→ 0, V I ≤

√
II × III p→ 0, respec-
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tively.

Summarizing, we have

σ̂2
α

T (1− ρ̂)

p→ κ2 − 3κ+ 3

3 (2− κ)
σ2
e.

Since σ̂2
µ = 1

θ̂

(
σ̂2
α − σ̂2

e

)
and θ̂ = (1− ρ̂)2 d̂2, we have

(1− ρ̂) σ̂2
µ = (1− ρ̂) 1

θ̂

(
σ̂2
α − σ̂2

e

)
= 1

(1−ρ̂)d̂2

(
σ̂2
α − σ̂2

e

)
=

(
T

d̂2

)(
σ̂2α

T (1−ρ̂)

)
− σ̂2e

(1−ρ̂)d̂2

p→
( −κ

2−κ
) (

κ2−3κ+3
3(2−κ)

σ2
e

)
−
(

1
2−κσ

2
e

)
= −κ3+3κ2−6

3(2−κ)2
σ2
e.

If we plug k = −3 into this equation, we get

(1− ρ̂) σ̂2
µ

p→ 48

75
σ2
e =

16

25
σ2
e.

(c) We start from Ĝ1 in equation (14). Let us define

1

nT
Ĝ1 =

1

nT
x′Φ̂−1x− x

′Φ̂−1ιnT
n

(
T

n
ι′nT Φ̂−1ιnT

)−1
ι′nT Φ̂−1x

n
.

From Lemma 3 (B), we have

1

nT
x′Φ̂−1x =

1

nσ̂2
e

n∑
i=1

(
x′iÂ

−1xi
T

− T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

x′iÂ
−1ιT

T (1− ρ̂)

ι′T Â
−1xi

T (1− ρ̂)

)
.

Firstly, recall from Theorem 3.2.(a) that

1

n

1

σ̂2
e

n∑
i=1

1

T
x′iÂ

−1xi
p→ 2σ2

ε

(1 + λ)σ2
e

.
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Note also that

1

nσ̂2
e

n∑
i=1

T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

x′iÂ
−1ιT

T (1− ρ̂)

ι′T Â
−1xi

T (1− ρ̂)
= Op(

1

T
)

using
x′iÂ

−1ιT
T (1− ρ̂)

= Op(
1√
T

)

as shown in 1.(c) and

T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

=
(1− ρ̂) σ̂2

µ

σ̂2
α/T (1− ρ̂)

p→
−κ3+3κ2−6

3(2−κ)2
σ2
e

κ2−3κ+3
3(2−κ)

σ2
e

=
−k3 + 3k2 − 6

(2− k)(k2 − 3k + 3)
.

Hence,
1

nT
x′Φ̂−1x

p→ 2σ2
ε

(1 + λ)σ2
e

as (n, T )→∞.

Next, one can shown in a similar way that

1

n
x′Φ̂−1ιnT =

1

n

n∑
i=1

(
1

σ̂2
α/T (1− ρ̂)

x′iÂ
−1ιT

T (1− ρ̂)

)

=
1

σ̂2
α/T (1− ρ̂)

1√
nT

1√
n

n∑
i=1

(
x′iÂ

−1ιT√
T (1− ρ̂)

)
= Op(

1√
nT

).

Also

T

n
ι′nT Φ̂−1ιnT =

θ̂/ (1− ρ̂)

σ̂2
α/T (1− ρ̂)

p→ 2− k
κ2−3κ+3
3(2−κ)

σ2
e

=
1

σ2
e

3 (2− κ)2

κ2 − 3κ+ 3
.

Therefore,
1

nT
Ĝ1

p→ 2σ2
ε

(1 + λ)σ2
e

.
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Now we turn to Ĝ2.

1√
nT

Ĝ2 =
1√
nT
x′Φ̂−1u− x

′Φ̂−1ιnT
n

(
T

n
ι′nT Φ̂−1ιnT

)−1
√
T√
n
ι′nT Φ̂−1u.

We have

1√
nT
x′Φ̂−1u =

1

σ̂2
e

1√
n

n∑
i=1

1√
T

(
σ̂2
e

σ̂2
α/T (1− ρ̂)

)(
x′iÂ

−1ιT
T (1− ρ̂)

)
µi

+
1

σ̂2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

−T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

1

σ̂2
e

1√
n

n∑
i=1

(
x′iÂ

−1ιT
T (1− ρ̂)

)(
ι′T Â

−1νi√
T (1− ρ̂)

)
= I + II + III.

For I, with the joint CLT we have

I =
1

σ̂2
e

1√
n

n∑
i=1

1√
T

(
σ̂2
e

σ̂2
α/T (1− ρ̂)

)(
x′iÂ

−1ιT
T (1− ρ̂)

)
µi

=

(
1

σ̂2
α/T (1− ρ̂)

)
1

T

1√
nT

n∑
i=1

T∑
t=1

µi [xit − ρ̂xit−1]

=

(
1

σ̂2
α/T (1− ρ̂)

)
1

T

1√
nT

n∑
i=1

T∑
t=1

µi

[
εit + (λ− 1)xit−1 − T (ρ̂− 1)

xit−1

T

]
= Op

(
1

T

)
+Op

(
1

T

)
+Op

(
1√
nT 2

)
= Op

(
1

T

)
.

For II, recall from Theorem 3 that

1

σ̂2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

d→ N(0,
2σ2

ε

(1 + λ)σ2
e

).
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For III, it is easy to see III = Op

(
1√
T

)
using

1√
n

n∑
i=1

(
x′iÂ

−1ιT√
T (1− ρ̂)

)(
ι′T Â

−1νi√
T (1− ρ̂)

)
= Op (1) .

Also, as shown already, T (1− ρ̂)2 σ̂2µ
σ̂2α

p→ −k3+3k2−6
(2−k)(k2−3k+3)

and σ̂2
α/T (1− ρ̂)

p→
κ2−3κ+3
3(2−κ)

σ2
e.

Finally, we conclude that

1√
nT
x′Φ̂−1u

d→ N(0,
2σ2

ε

(1 + λ)σ2
e

)

as (n, T )→∞.

Next it can be shown that

√
T√
n
ι′nT Φ̂−1u =

1√
n

n∑
i=1


(

1√
T

)
θ̂/(1−ρ̂)

σ̂2α/T (1−ρ̂)
µi

+ 1
σ̂2α/T (1−ρ̂)

(
ι′T Â

−1νi√
T (1−ρ̂)

)


= Op (1)

using

1√
n

n∑
i=1

ι′T Â
−1νi√

T (1− ρ̂)

=
1√
n

n∑
i=1

[
1√
T

T∑
t=1

eit +
T (1− ρ̂)

T 3/2

T∑
t=1

νit−1

]
= Op (1)

and

θ̂/ (1− ρ̂)
p→ 2− k,

σ̂2
α

T (1− ρ̂)

p→ κ2 − 3κ+ 3

3 (2− κ)
σ2
e,
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respectively.

Therefore,
1√
nT

Ĝ2
d→ N(0,

2σ2
ε

(1 + λ)σ2
e

)

as (n, T ) → ∞ using 1
n
x′Φ̂−1ιnT

p→ 0 and T
n
ι′nT Φ̂−1ιnT

p→ 1
σ2e

3(2−κ)2

κ2−3κ+3
from

above.

We conclude that

tFGLS =

(
1

nT
Ĝ1

)−1/2(
1√
nT

Ĝ2

)
d→ N (0, 1) .

3. When |ρ| < 1, λ = 1, if ρ̂
p→ ρ

(a) First, let us show that σ̂2
e is a consistent estimator of σ

2
e. From Lemma 1

(B), we have

I =
1

n

n∑
i=1

[
1

T

T∑
t=1

e2
it − 2 (ρ̂− ρ)

1

T

T∑
t=1

eitνit−1 + (ρ̂− ρ)2 1

T

T∑
t=1

ν2
it−1

]

−
(
T

d̂2

)
1

n

n∑
i=1

[
1

T

T∑
t=1

eit − (ρ̂− ρ)
1

T

T∑
t=1

νit−1

]2

p→ σ2
e

as shown in 1.(a).

141



Consider II. It can be shown similarly that

II =

(√
nT
(
β̂OLS − β

))2

n2

n∑
i=1



1
T 2

∑T
t=1 ε

2
it

+
(
√
nT (ρ̂−ρ))

2

nT 3

∑T
t=1 x

2
it−1

+ (1−ρ)2

T 2

∑T
t=1 x

2
it−1

−2
√
nT (ρ̂−ρ)√
nT 5/2

∑T
t=1 εitxit−1

+2(1−ρ)
T 2

∑T
t=1 εitxit−1

−2
√
nT (ρ̂−ρ)(1−ρ)√

nT 5/2

∑T
t=1 x

2
it−1



−

(√
nT
(
β̂OLS − β

))2

n2

T

d̂2

n∑
i=1


1

T 3/2

∑T
t=1 εit

−
√
nT (ρ̂− ρ) 1√

nT 2

∑T
t=1 xit−1

+(1− ρ) 1
T 3/2

∑T
t=1 xit−1


2

= op(1).

This follows because, if (n, T )→∞ and n
T
→ 0, we get

√
nT
(
β̂OLS − β

)
d→ N

(
0,

4σ2
µ

3σ2
ε

)

using a similar argument as in Phillips and Moon (1999) and Baltagi et al.

(2008). Also note that

√
nT (ρ̂− ρ)

d→ N
(
0, 1− ρ2

)
from Lemma 1. This is because 1

nT 2

∑n
i=1

∑T
t=1 ε

2
it = Op(1), 1

nT 2

∑n
i=1

∑T
t=1 x

2
it−1 =

Op(1), 1√
nT

∑n
i=1

∑T
t=1 εitxit−1 = Op(1), and 1√

nT 3/2

∑n
i=1

∑T
t=1 xit−1 = Op(1).

Also note that from Lemma 1 (B),

III ≤
√
I × II p→ 0.
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We conclude that

σ̂2
e

p→ σ2
e.

(b) Next, let us show that σ̂2
µ is a consistent estimator of σ

2
µ. From Lemma

2 (B), we know that I
p→ (1− ρ)2 σ2

µ, II
p→ 0, and accordingly IV ≤

√
I × II p→ 0 as shown 1.(b).

Let us look at III.

III =

(√
nT
(
β̂OLS − β

))2

n2

n∑
i=1

(
T

d̂2

)[
1

T 3/2

T∑
t=1

(xit − ρ̂xit−1)

]2

+

(√
nT
(
β̂OLS − β

))2

(1− ρ̂)2

n2

d̂2

T

[
1

nT 2

n∑
i=1

T∑
t=1

xit

]2

−
2
(√

nT
(
β̂OLS − β

))2

(1− ρ̂)

n2

[
1

nT 3/2

n∑
i=1

T∑
t=1

(xit − ρ̂xit−1)

]

·
[

1

nT 3/2

n∑
i=1

T∑
t=1

xit

]
.

With a similar process to 2.(b), it can be shown that III = op(1) because

if (n, T )→∞ and n
T
→ 0, then

√
nT
(
β̂OLS − β

)
d→ N

(
0,

4σ2
µ

3σ2
ε

)
.

Hence, with V ≤
√
I × III p→ 0 and V I ≤

√
II × III p→ 0, we finally

have
1

T
σ̂2
α

p→ (1− ρ)2 σ2
µ

and accordingly

σ̂2
µ =

1

θ̂

(
σ̂2
α − σ̂2

e

)
=
T

θ̂

(
σ̂2
α

T
− σ̂2

e

T

)
p→ 1

(1− ρ)2

[
(1− ρ)2 σ2

µ − 0
]

= σ2
µ.
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(c) Let us start from the term Ĝ1 in equation (14). Recall

1

nT 2
Ĝ1 =

1

nT 2
x′Φ̂−1x− 1

T

x′Φ̂−1ιnT

n
√
T

(
ι′nT Φ̂−1ιnT

n

)−1
ι′nT Φ̂−1x

n
√
T

.

From Lemma 3 (B), we have

1

nT 2
x′Φ̂−1x =

1

nσ̂2
e

n∑
i=1

(
x′iÂ

−1xi
T 2

−
σ̂2
µ

σ̂2
α/T

x′iÂ
−1ιT

T 3/2

ι′T Â
−1xi

T 3/2

)
.

From Theorem 3.3.(a), we have

1

nσ̂2
e

n∑
i=1

1

T 2
x′iÂ

−1xi
p→ (1− ρ)2 σ

2
ε

2σ2
e

.

Next, it can be shown that

1

nσ̂2
e

n∑
i=1

σ̂2
µ

σ̂2
α/T

x′iÂ
−1ιT

T 3/2

ι′T Â
−1xi

T 3/2

p→ (1− ρ)2 σ
2
ε

3σ2
e

using the fact that

1

n

n∑
i=1

x′iÂ
−1ιT

T 3/2

ι′T Â
−1xi

T 3/2

=
1

n

n∑
i=1

[
(1− ρ̂)

1

T 3/2

T∑
t=1

(xit − ρ̂xit−1)

]2

=
1

n

n∑
i=1

[
(1− ρ̂)

1

T 3/2

T∑
t=1

((1− ρ̂)xit−1 + εit)

]2

=
1

n

n∑
i=1

 (1− ρ̂)4
(

1
T 3/2

∑T
t=1 xit−1

)2

+ (1− ρ̂)2 1
T 2

(
1√
T

∑T
t=1 εit

)2

(1− ρ̂)3 1
T

(
1

T 3/2

∑T
t=1 xit−1

)(
1√
T

∑T
t=1 εit

)


=
1

n

n∑
i=1

(1− ρ̂)4

(
1

T 3/2

T∑
t=1

xit−1

)2

+Op

(
1

T 2

)
+Op

(
1

T

)

= (1− ρ̂)4 1

n

n∑
i=1

(
1

T 3/2

T∑
t=1

xit−1

)2

+Op

(
1

T

)
p→ (1− ρ)4σ

2
ε

3

144



and
σ̂2µ
σ̂2α/T

p→ 1
(1−ρ)2

. Hence,

1

nT 2
x′Φ−1x =

1

nσ̂2
e

n∑
i=1

(
1

T 2
x′iÂ

−1xi −
σ̂2
µ

σ̂2
α/T

x′iÂ
−1ιT

T 3/2

ι′T Â
−1xi

T 3/2

)
p→ (1− ρ)2 σ

2
ε

2σ2
e

− (1− ρ)2 σ
2
ε

3σ2
e

=
(1− ρ)2 σ2

ε

6σ2
e

as (n, T )→∞.

Next, one can verify that

1

n
√
T
x′Φ̂−1ιnT =

1

n

1

σ̂2
α/T

n∑
i=1

(
x′iÂ

−1ιT
T 3/2

)
= Op(

1√
n

)

as shown in Theorem 3.3.(a). Also recall that

1

n
ι′nT Φ̂−1ιnT

p→ 1

σ2
µ

as shown in 1.(c).

Hence, we have
1

nT 2
Ĝ1

p→ (1− ρ)2 σ2
ε

6σ2
e

as (n, T )→∞.

Now we investigate Ĝ2. Let

1√
nT

Ĝ2 =
1√
nT
x′Φ̂−1u− 1√

T

x′Φ̂−1ιnT

n
√
T

(
1

n
ι′nT Φ̂−1ιnT

)−1
1√
n
ι′nT Φ̂−1u.
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Consider that

1√
nT
x′Φ̂−1u

=
1

σ̂2
e

1√
n

n∑
i=1

 1√
T

(
σ̂2e

σ̂2α/T

x′iÂ
−1ιT

T 3/2

)
µi

+
(
x′iÂ

−1νi
T

− σ̂2µ
σ̂2α/T

x′iÂ
−1ιT

T 3/2
ι′T Â

−1νi√
T

)
 .

Firstly, in a similar vein as 1.(c) it can be shown that

1

σ̂2
e

1√
n

n∑
i=1

1√
T

(
σ̂2
e

σ̂2
α/T

x′iÂ
−1ιT

T 3/2

)
µi = Op

(
1√
T

)

using
1√
n

n∑
i=1

(
σ̂2
e

σ̂2
α/T

x′iÂ
−1ιT

T 3/2

)
µi = Op(1).

Next, recall from Theorem 3.3.(b) that

1

σ̂2
e

1√
n

n∑
i=1

x′iÂ
−1νi
T

d→ N(0,
(1− ρ)2σ2

ε

2σ2
e

).

Lastly, we consider

1√
n

n∑
i=1

x′iÂ
−1ιT

T 3/2

ι′T Â
−1νi√
T

≈ 1√
n

n∑
i=1

1

T 2

[
(1− ρ̂)

T∑
t=1

(xit − ρ̂xit−1)

][
(1− ρ̂)

T∑
t=1

(νit − ρ̂νit−1)

]

=
1√
n

n∑
i=1

(1− ρ̂)2

T 2

[
T∑
t=1

((1− ρ̂)xit−1 + εit)

][
T∑
t=1

(eit − (ρ̂− ρ) νit−1)

]

=
1√
n

n∑
i=1

(1− ρ̂)2

T 2



∑T
t=1 (1− ρ̂)xit−1

∑T
t=1 eit

+
∑T

t=1 εit
∑T

t=1 eit

−
∑T

t=1 (1− ρ̂)xit−1

∑T
t=1 (ρ̂− ρ) νit−1

−
∑T

t=1 (ρ̂− ρ) εit
∑T

t=1 νit−1


= I + II + III + IV.
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Consider II first.

II =
1

T

(1− ρ̂)2

√
n

n∑
i=1

(
1√
T

T∑
t=1

εit

)(
1√
T

T∑
t=1

eit

)

= Op

(
1

T

)

using 1√
n

∑n
i=1

(
1√
T

∑T
t=1 εit

)(
1√
T

∑T
t=1 eit

)
= Op (1) where εit and eit are

not correlated.

Consider III and IV . It is easy to see that

III = − (1− ρ̂)3 1√
nT

√
nT (ρ̂− ρ)√

n

(
1

T 3/2

T∑
t=1

xit−1

)(
1√
T

T∑
t=1

νit−1

)

= Op

(
1√
nT

)

using √
nT (ρ̂− ρ)√

n

(
1

T 3/2

T∑
t=1

xit−1

)(
1√
T

T∑
t=1

νit−1

)
and

IV = − (1− ρ̂)2 1√
nT 3/2

√
nT (ρ̂− ρ)√

n

n∑
i=1

(
1√
T

T∑
t=1

εit

)(
1√
T

T∑
t=1

νit−1

)

= Op

(
1√
nT 3/2

)
.

Lastly, consider I. it can be shown that

I =
1√
n

n∑
i=1

(1− ρ̂)3

(
1

T 3/2

T∑
t=1

xit−1

)(
1√
T

T∑
t=1

eit

)
d→ (1− ρ)3N(0,

σ2
εσ

2
e

3
).
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Therefore,

1

σ̂2
e

1√
n

n∑
i=1

σ̂2
µ

σ̂2
α/T

x′iÂ
−1ιT

T 3/2

ι′T Â
−1νi√
T

d→ (1− ρ)N(0,
σ2
ε

3σ2
e

)

and accordingly it can be shown that

1√
nT
x′Φ̂−1u

d→ N

(
0,

(1− ρ)2 σ2
ε

6σ2
e

)

by using a similar process as in Phillips and Moon (1999).

Next consider

1√
n
ι′nT Φ̂−1u =

1√
n

n∑
i=1

1

σ̂2
α/T

[(
θ̂

T

)
µi +

1√
T

(
ι′T Â

−1νi√
T

)]

=
1√
n

n∑
i=1

1

σ̂2
α/T

(
θ̂

T

)
µi +

1√
T

1√
n

n∑
i=1

1

σ̂2
α/T

(
ι′T Â

−1νi√
T

)
= I + II.

Consider I. Recall from 1.(c) that

I =
1

σ̂2
α/T

(
θ̂

T

)
1√
n

n∑
i=1

µi
d→ 1

(1− ρ)2 σ2
µ

(1− ρ)2N
(
0, σ2

µ

)
.

Consider II.

II =
1√
T

1√
n

n∑
i=1

1

σ̂2
α/T

(
ι′T Â

−1νi√
T

)
= Op

(
1√
T

)

using 1√
n

∑n
i=1

(
ι′T Â

−1νi√
T

)
= Op (1). We conclude that

1√
n
ι′nT Φ̂−1u

d→ N

(
0,

1

σ2
µ

)
.

Because we also know that 1
n
√
T
x′Φ−1ιnT

p→ 0 and 1
n
ι′nT Φ̂−1ιnT

p→ 1
σ2µ
,
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which are proved above, we have

1√
nT

Ĝ2
d→ N

(
0,

(1− ρ)2 σ2
ε

6σ2
e

)
.

Finally,

tFGLS =

(
1

nT 2
Ĝ1

)−1/2(
1√
nT

Ĝ2

)
d→ N (0, 1) .

4. When ρ = 1, λ = 1 if T (ρ̂− 1)
p→ κ

(a) First, let us show that σ̂2
e is a consistent estimator of σ

2
e. From Lemma 1

(B), we have

I =
1

n

n∑
i=1

 1
T

∑T
t=1 e

2
it −

2[T (ρ̂−1)]
T

(
1
T

∑T
t=1 eitvit−1

)
+ [T (ρ̂−1)]2

T

(
1
T 2

∑T
t=1 v

2
it−1

)


−
(
T

d̂2

)
1

n

n∑
i=1

[
1

T

T∑
t=1

eit −
1√
T

[T (ρ̂− 1)]

(
1

T 3/2

T∑
t=1

vit−1

)]2

p→ σ2
e

as (n, T )→∞, as shown already in 2.(a).

Consider II. Using a similar argument, one can easily show that

II =
(
√
n(β̂OLS−β))

2

n2

∑n
i=1

 1
T

∑T
t=1 ε

2
it + (T (ρ̂−1))2

T
1
T 2

∑T
t=1 x

2
it−1

−2T (ρ̂−1)
T

1
T

∑T
t=1 εitxit−1


−(
√
n(β̂OLS−β))

2

n2

(
T

d̂2

)∑n
i=1

[
1√
T

1√
T

∑T
t=1 εit −

T (ρ̂−1)√
T

1
T 3/2

∑T
t=1 xit−1

]2

= op (1)

because if (n, T )→∞ and n
T
→ 0, then

√
n
(
β̂OLS − β

)
d→ N

(
0,

2σ2
e

3σ2
ε

)
.
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Consider III. From Lemma 1 (B), we know

III ≤
√
I × II p→ 0.

We conclude that

σ̂2
e

p→ σ2
e.

(b) Next, we investigate σ̂2
µ. From Lemma 2 (B), we have

1

T (1− ρ̂)
σ̂2
α

=
1

nT (1− ρ̂)
û∗′
(
In ⊗ ̂̄JαT) û∗

=
(1− ρ̂) d̂2

nT
µ′Enµ

+
1

nT (1− ρ̂)
ν
′ (
InT − J̄nT

) (
In ⊗ Ĉ ′̂̄JαT Ĉ) (InT − J̄nT )ν

+
1

nT (1− ρ̂)

(
β̂OLS − β

)2

x
′ (
InT − J̄nT

) (
In ⊗ Ĉ ′̂̄JαT Ĉ) (InT − J̄nT )x

+
2

nT
µ
′
(
En ⊗ ι̂α′T Ĉ

) (
InT − J̄nT

)
ν

+
2

nT

(
β̂OLS − β

)
µ
′
(
En ⊗ ι̂α′T Ĉ

) (
InT − J̄nT

)
x

+
1

nT (1− ρ̂)

(
β̂OLS − β

)
ν
′ (
InT − J̄nT

) (
In ⊗ Ĉ ′̂̄JαT Ĉ) (InT − J̄nT )x

= I + II + III + IV + V + V I.

Consider I.

I =
(1− ρ̂) d̂2

T

 1

n

n∑
i=1

µ2
i −

(
1

n

n∑
i=1

µi

)2
 p→ 0

as (n, T )→∞ with (1− ρ̂) d̂2 = 2ρ̂+ T (1− ρ̂)
p→ 2− κ.
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Consider II. As shown in 2.(b), we have

II
p→ κ2 − 3κ+ 3

3 (2− κ)
σ2
e

and accordingly

IV ≤
√
I × II p→ 0.

Consider III next.

III =
(
√
n(β̂OLS−β))

2

n2

∑n
i=1

(
1

(1−ρ̂)d̂2

) [
1√
T

∑T
t=1 εit −

T (ρ̂−1)

T 3/2

∑T
t=1 xit−1

]2

+
(
√
n(β̂OLS−β))

2
(1−ρ̂)d̂2

n2

[
1
n

∑n
i=1

1
T 2

∑T
t=1 xit

]2

−2(
√
n(β̂OLS−β))

2

n2

[
1
n

∑n
i=1

(
1√
T

∑T
t=1 εit −

T (ρ̂−1)

T 3/2

∑T
t=1 xit−1

)]
·
[

1
nT 3/2

∑n
i=1

∑T
t=1 xit

]
.

One can show that III = op(1) as (n, T ) → ∞ using the fact that if

(n, T )→∞ and n
T
→ 0, then

√
n
(
β̂OLS − β

)
d→ N

(
0,

2σ2
e

3σ2
ε

)

and that V ≤
√
I × III p→ 0, V I ≤

√
II × III p→ 0, respectively.

Summarizing, we have the same result as 2.(b),

σ̂2
α

T (1− ρ̂)

p→ κ2 − 3κ+ 3

3 (2− κ)
σ2
e

and

(1− ρ̂) σ̂2
µ

p→ −κ
3 + 3κ2 − 6

3 (2− κ)2 σ2
e.

With k = −3,

(1− ρ̂) σ̂2
µ

p→ 16

25
σ2
e.
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(c) Let us first look at Ĝ1 in equation (14). Define

1

nT
Ĝ1 =

1

nT
x′Φ̂−1x− x

′Φ̂−1ιnT
n

(
T

n
ι′nT Φ̂−1ιnT

)−1
ι′nT Φ̂−1x

n
.

From Lemma 3 (B), we have

1

nT
x′Φ̂−1x =

1

nσ̂2
e

n∑
i=1

(
x′iÂ

−1xi
T

− T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

x′iÂ
−1ιT

T (1− ρ̂)

ι′T Â
−1xi

T (1− ρ̂)

)
.

Note that
1

nσ̂2
e

n∑
i=1

x′iÂ
−1xi
T

p→ σ2
ε

σ2
e

as shown in Theorem 3.4.(a).

Next, one can easily see that

1

nσ̂2
e

n∑
i=1

T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

x′iÂ
−1ιT

T (1− ρ̂)

ι′T Â
−1xi

T (1− ρ̂)
= Op

(
1

T

)

using

x′iÂ
−1ιT

T (1− ρ̂)
≈ 1√

T

1√
T

T∑
t=1

(xit − ρ̂xit−1)

=
1√
T

[
1√
T

T∑
t=1

εit + T (1− ρ̂)
T∑
t=1

xit−1√
T

1

T

]
= Op(

1√
T

)

and T (1− ρ̂)2 σ̂2µ
σ̂2α

p→ −k3+3k2−6
(2−k)(k2−3k+3)

as shown already.

Hence, we have

1

nT
x′Φ̂−1x =

1

nσ̂2
e

n∑
i=1

x′iÂ
−1xi
T

+Op

(
1

T

)
p→ σ2

ε

σ2
e

as (n, T )→∞.
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Note also that

1

n
x′Φ̂−1ιnT =

1√
nT

1

σ̂2
α/T (1− ρ̂)

1√
n

n∑
i=1

(
x′iÂ

−1ιT√
T (1− ρ̂)

)
= Op(

1√
nT

).

Lastly, recall that

T

n
ι′nT Φ̂−1ιnT =

θ̂/ (1− ρ̂)

σ̂2
α/T (1− ρ̂)

p→ 2− k
κ2−3κ+3
3(2−κ)

σ2
e

=
1

σ2
e

3 (2− κ)2

κ2 − 3κ+ 3
.

Therefore, we conclude that

1

nT
Ĝ1

p→ σ2
ε

σ2
e

.

Now we turn to Ĝ2. Let

1√
nT

Ĝ2 =
1√
nT
x′Φ̂−1u− x

′Φ̂−1ιnT
n

(
T

n
ι′nT Φ̂−1ιnT

)−1
√
T√
n
ι′nT Φ̂−1u.

Consider

1√
nT
x′Φ̂−1u =

1

σ̂2
e

1√
n

n∑
i=1


1√
T

(
σ̂2e

σ̂2α/T (1−ρ̂)

)(
x′iÂ

−1ιT
T (1−ρ̂)

)
µi

+

 x′iÂ
−1νi√
T

−T (1− ρ̂)2 σ̂2µ
σ̂2α

(
x′iÂ

−1ιT
T (1−ρ̂)

)(
ι′T Â

−1νi√
T (1−ρ̂)

)

 .

Note that

1√
n

n∑
i=1

1

T

(
1

σ̂2
α/T (1− ρ̂)

)(
x′iÂ

−1ιT√
T (1− ρ̂)

)
µi = Op

(
1

T

)
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and recall from Theorem 3.4.(b) that

1

σ̂2
e

1√
n

n∑
i=1

x′iÂ
−1νi√
T

d→ N(0,
σ2
ε

σ2
e

).

Lastly, it can be shown that

1

σ̂2
e

1√
n

1√
T

n∑
i=1

T (1− ρ̂)2 σ̂
2
µ

σ̂2
α

(
x′iÂ

−1ιT√
T (1− ρ̂)

)(
ι′T Â

−1νi√
T (1− ρ̂)

)
= Op

(
1√
T

)

using 1√
n

∑n
i=1

(
x′iÂ

−1ιT√
T (1−ρ̂)

)(
ι′T Â

−1νi√
T (1−ρ̂)

)
= Op(1) and T (1− ρ̂)2 σ̂2µ

σ̂2α

p→ −k3+3k2−6
(2−k)(k2−3k+3)

.

Therefore,
1√
nT
x′Φ̂−1u

d→ N(0,
σ2
ε

σ2
e

).

Also, using the results above, 1
n
x′Φ̂−1ιnT = Op(

1√
nT

) and T
n
ι′nT Φ̂−1ιnT

p→
1
σ2e

3(2−κ)2

κ2−3κ+3
.

Summarizing, we have

1√
nT

Ĝ2
d→ N(0,

σ2
ε

σ2
e

)

and accordingly,

tFGLS =

(
1

nT
Ĝ1

)−1/2(
1√
nT

Ĝ2

)
d→ N (0, 1) .
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Essay II: Testing Cross-sectional Dependence Using
Bootstrap F-tests
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1 Introduction

Cross-sectional dependence caused by common shocks can seriously impact inference

as well as estimation. Andrews (2005) demonstrates that common shocks can result

in inconsistent estimates in cross-sectional regressions and accordingly serious con-

sequences for statistical inference.1 To deal with the problems of common shocks,

Bai (2003, 2004) considers the common factor model, and proposes principal compo-

nent analysis (PCA) to consistently estimate the factors and factor loadings under

stationarity, e.g., Bai (2003), and non-stationarity of the factors, e.g., Bai (2004).

In addition, Bai (2009) and Bai, Kao and Ng (2009) extend this analysis to a panel

data model that includes regressors as well as factors. Bai (2009) assumes stationary

regressors and factors while Bai, et al. (2009) allow for non-stationary regressors

and factors (i.e., panel cointegration case2). This paper considers the problem of

testing cross-sectional independence in a panel data model using the factor structure

proposed by Bai (2003, 2004, 2009) and Bai, et al. (2009).

Given this setting, it is natural to consider the simple F -statistic to test the null

hypothesis that all the factor loadings are zero (i.e., cross-sectional independence). It

is well known that the limiting distribution of the F -statistic can be approximated by

a chi-squared distribution, when n is fixed and T is large. From the results of Boos

and Brownie (1995) and Akritas and Arnold (2000) one can infer that the asymptotic

distribution of an appropriately normalized F -statistic for the case of large n and fixed

T, is also normal. However, we could not find any result regarding the asymptotic

distribution of this F -statistic when both n and T are large. This paper suggests the

use of the bootstrap F -test, proposed by Mammen (1993b), for testing cross-sectional

independence. For this purpose, we adopt the wild bootstrap method which is well

1These common shocks could be macroeconomic, political, environmental, health, and/or socio-
logical shocks in nature to mention a few, see Andrews (2005).

2Note that a large literature on panel cointegration exists with an assumption of cross-section
independence (See, e.g., Baltagi and Kao (2000) for a survey, and Baltagi (2008) for a textbook
treatment).
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developed in the statistical literature. Section 2 introduces the factor model. Section

3 discusses the proposed wild bootstrap F -test. Section 4 presents the Monte Carlo

results, while Section 5 concludes. All the proofs are relegated to the appendix.

For the asymptotic results in this paper, we use both the sequential limit (n→∞

following T → ∞, i.e., (n, T )
seq→ ∞) and the joint limit (n and T going to infinity

simultaneously, i.e., (n, T ) → ∞) depending on the case considered. For details of

these methods, see Phillips and Moon (1999). We use
p→ and d→ to denote convergence

in probability and in distribution, respectively. Unless indicated explicitly, we will

refer to Ft as the factor (or the global stochastic trend) while Fλ as the F -statistic

to avoid any confusion. The bootstrap sample or the bootstrap test statistic will

be denoted with superscript star. For example, F ∗λ and P
∗ indicate the bootstrap

F -statistic and the bootstrap probability measure. We also define the matrix that

projects onto the orthogonal space of z as Mz = IT − z
(
z
′
z
)−1

z
′
. Lastly, K (·, ·)

denotes the Kolmogorov metric, i.e., K (P,Q) = supx |P (x)−Q (x)| for marginal

distributions P and Q.

2 The Model

Consider the panel data factor model

yit = x
′

itβ + λ
′

iFt + uit for i = 1, . . . , n and t = 1, . . . , T (1)

where yit is a scalar, xit is a set of k regressors, β is a k × 1 vector of the common

slope parameters, λi is an r×1 factor loadings, Ft is an r×1 vector of latent common

factors, and uit is the error. The error terms are assumed to be uncorrelated across

cross-section and over time series components. To test the null hypothesis of cross-
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sectional independence, we set the null

H0 : λi = 0 for all i (2)

against the alternative that

Ha : λi 6= 0 for some i.

To construct the F -statistic, define RRSS =
∑n

i=1

∑T
t=1 ŵ

2
it as the sum of squared

residuals from the restricted model:

yit = x′itβ̃ + ŵit (3)

where β̃ is the least squares estimator of β. Also let URSS =
∑n

i=1

∑T
t=1 û

2
it be the

sum of squared residuals from the unrestricted model when Ft is not observed:

yit = x′itβ̂ + λ̂
′

iF̂t + ûit (4)

where β̂, λ̂i, and F̂t can be obtained from, e.g., Bai (2009) or Bai, et al. (2009). Then,

the standard F -statistic is defined as

Fλ =
nT − k − nr

nr

RRSS − URSS
URSS

. (5)

Given this basic setting, the following sections briefly introduce the estimation pro-

cedures suggested in the literature under various scenarios depending on whether

regressors are included and whether xit and Ft are stationary.
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2.1 Case 1: Without regressors

2.1.1 Stationary factors

Let us start from our benchmark case by dropping the regressors in equation (1).

That is,

yit = λ
′

iFt + uit (6)

which is the common factor model. Rewriting equation (6) in matrix notation, we

have

y = FΛ
′
+ u (7)

where y is a T × n matrix of observed data and u is a T × n matrix of idiosyncratic

errors. The matrices Λ (n × r) and F (T × r) are unknown. In fact, Bai (2003)

studies the Ft = I(0) case, while Bai (2004) investigates the Ft = I(1) case.3 The

number of factors, r, is assumed to be known. If this is not the case, note that r can

be consistently estimated as in Bai and Ng (2002).

First, we consider the Ft = I(0) case. It is important to note that Ft (t =

1, 2, . . . , T ) may or may not be observable. If the factors are observable, λi can be

estimated using least squares. That is,

Λ̃ = y
′
F
(
F

′
F
)−1

and accordingly we haveRRSS =
∑n

i=1

∑T
t=1 y

2
it and URSS =

∑n
i=1

∑T
t=1

(
yit − λ̃

′

iFt

)2
.

Then, the F -statistic is constructed as follows:

Fλ =
(nT − n)

n

RRSS − URSS
URSS

.

On the other hand, if Ft is not observable, one can estimate Ft using the method

3Note that when Ft = I(1), testing H0 : λi = 0 for all i is not only testing for cross section
indepenence, but it is also testing if yit follows an I(0) process.
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of PCA subject to the constraint F
′
F/T = Ir. As illustrated in Bai (2003), F̂ ,

the vector of estimated factors, is
√
T times the eigenvectors corresponding to the r

largest eigenvalues of yy
′
. Given F̂ , Λ̂

′
= F̂

′
y/T can be obtained as well. Therefore,

in this case we have RRSS =
∑n

i=1

∑T
t=1 y

2
it and URSS =

∑n
i=1

∑T
t=1

(
yit − λ̂

′

iF̂t

)2
.

2.1.2 Non-stationary factors

Now let us assume that Ft are non-stationary:

Ft = Ft−1 + ηt for t = 1, 2, . . . , T (8)

where ηt is the idiosyncratic error. If the factors are observable, then we can estimate

λi using least squares as in the Ft = I(0) case. However, if the factors are unknown,

one estimates the factors subject to the constraint F
′
F/T 2 = Ir. As a matter of fact,

F̂ is T times the eigenvectors corresponding to the r largest eigenvalues of yy
′
in this

setting. Λ̂
′
can be also computed by F̂

′
y/T 2, which is the corresponding matrix of

the estimated factor loadings. It is straightforward to construct the F -statistic with

estimates of the factors and factor loadings.

2.2 Case 2: With regressors

2.2.1 Stationary regressors and factors

Next we consider the panel data model with interactive fixed effects, see Bai (2009),

by adding regressors as well as common factors. In matrix notation, we have

y = Xβ + FΛ
′
+ u.

Note that the regressors as well as the interactive fixed effects are assumed to be

stationary. When Ft are known, the estimate of β is easily obtained using least
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squares as follows:

β̃ =

(
n∑
i=1

x
′

iMFxi

)−1( n∑
i=1

x
′

iMFyi

)

where xi = (xi1, xi2, . . . , xiT )
′
, yi = (yi1, yi2, . . . , yiT )

′
, and MF = IT − F

(
F

′
F
)−1

F
′
.

Given β̃, one can compute Λ̃
′

=
(
F

′
F
)−1

F
′
(
y −Xβ̃

)
. If Ft are not observed, one

has the following set of nonlinear equations for estimation subject to the constraint

F
′
F/T = Ir.

β̂ =

(
n∑
i=1

x
′

iMF̂xi

)−1( n∑
i=1

x
′

iMF̂yi

)
(9)

and [
1

nT

n∑
i=1

(
yi − xiβ̂

)(
yi − xiβ̂

)′]
F̂ = F̂ VnT (10)

where MF̂ = IT − F̂
(
F̂

′
F̂
)−1

F̂
′
and VnT is a diagonal matrix consisting of the r

largest eigenvalues of the matrix in brackets in equation (10). The solution
(
β̂, F̂

)
for (9) and (10) can be obtained using iteration. From these results, one can compute

Λ̂ = F̂
′
(
y −Xβ̂

)
/T . For details of this estimation procedure, see Bai (2009). Using

these results, one can easily construct the corresponding F -statistic.

2.2.2 Non-stationary regressors and factors

This is the case of panel cointegration with global stochastic trend under which both

regressors and factors (or global stochastic trends) are assumed to be non-stationary.

This case is investigated in Bai, et al. (2009).4 More specifically, we have the following

equations:

yit = x
′

itβ + λ
′

iFt + uit,

xit = xit−1 + εit,

4For simplicity, the mixed I(0)/I(1) case among xit and Ft will not be considered in this paper
although this extension is possible. For details, see Bai, et al. (2009).
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and

Ft = Ft−1 + ηt

where xit, Ft, and uit are potentially correlated. The framework here is the panel

cointegration model so that uit = yit − x
′
itβ − λ

′

iFt is jointly stationary. Note that

a fully-modified (FM) estimator is constructed along the line of Phillips and Hansen

(1990) because of possible correlation among xit, Ft, and uit. Let us assume first that

Ft are observed. Then, β̃LSFM can be estimated as follows:

β̃LSFM =

(
n∑
i=1

x
′

iMFxi

)−1( n∑
i=1

x
′

iMF ỹ
+
i − T

(
∆̃+
εui − δ

′

i∆̃
+
ηu

))

where ỹ+ and ∆̃+ are consistent estimates of y+ and ∆+ with

y+it = yit − ΩubiΩ
−1
bi

 4xit
4Ft

 and u+it = uit − ΩubiΩ
−1
bi

 4xit
4Ft

 .

Note that Ωi is the long-run covariance matrix of wit =
(
uit, ε

′
it, η

′
it

)′
which is given

by,

Ωi =
∞∑

j=−∞
E
(
wi0w

′

ij

)
=


Ωui Ωuεi Ωuηi

Ωεui Ωεi Ωεηi

Ωηui Ωηεi Ωη


and ∆i is the one-sided covariance defined as follows:

∆i =

∞∑
j=0

E
(
wi0w

′

ij

)
=


∆ui ∆uεi ∆uηi

∆εui ∆εi ∆εηi

∆ηui ∆ηεi ∆η

 .
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We also define

Ωbi =

 Ωεi Ωεηi

Ωηεi Ωη


corresponding to εit and ηt for convenience. We need to estimate the nuisance para-

meter by using a kernel estimator. Let

Ω̂i =
T−1∑

j=−(T−1)

ω

(
j

K

)
Γ̂i (j)

and

∆̂i =
T−1∑
j=0

ω

(
j

K

)
Γ̂i (j)

where Γ̂i (j) = 1
T

∑T−j
t=1 ŵit+jŵ

′
it and ŵit =

(
ûit,4x

′
it,4F

′
t

)′
with the kernel function

ω (·) and the bandwidth parameter K.5

When Ft is not observed, however, one needs to estimate the set of two nonlinear

equations:

β̂ =

(
n∑
i=1

x
′

iMF̂xi

)−1( n∑
i=1

x
′

iMF̂yi

)
and [

1

nT 2

n∑
i=1

(
yi − xiβ̂

)(
yi − xiβ̂

)′]
F̂ = F̂ VnT

by iteratively solving for β̂ and F̂ subject to the constraint F
′
F/T 2 = Ir. Compared

to the known Ft case, estimation of the stochastic trends affects the limiting behavior

of the estimator, so bias correction becomes essential for estimation. In fact, Bai,

et al. (2009) propose two FM estimators, i.e., the bias-corrected Cup (continuously

updated) estimator, β̂CupBC , and the FM Cup estimator, β̂CupFM . The details of the

estimation procedure can be found in Bai, et al. (2009). However, it is worthwhile

emphasizing the basic difference between these two estimators. CupBC corrects the

5 β̃LSFM can be alternatively written as the bias-corrected estimator, β̃LSBC . For details, see
Bai, et al. (2009).
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bias only in the final stage of iterations while CupFM modifies the data to remove

serial correlation and endogeneity in each iteration. CupBC and CupFM have the

same asymptotic distribution although constructed in different ways.

3 F -test with Bootstrapped Samples

We discuss the asymptotic behavior of the F -statistic for three cases: (i) fixed n /

large T , (ii) large n / fixed T , and (iii) large n / large T . Based on the results, we

argue that the F distribution may not be always appropriate to use but the bootstrap

F -test can be a good alternative.

3.1 The asymptotics of the F -statistic

To simplify the arguments, we assume that the factors are known and stationary.

Also, the number of factors is assumed to be one (r = 1) unless indicated otherwise.

In order to construct the F statistic to test the null H0 : λi = 0 for all i, we compute

RRSS =
∑n

i=1

∑T
t=1 y

2
it and URSS =

∑n
i=1

∑T
t=1

(
yit − λ̂iFt

)2
. Then, we have

Fλ =
nT − n
n

RRSS − URSS
URSS

.

For the case of fixed n / large T , one can rewrite the above formula as follows:

Fλ =
χ2a
a
χ2b
b

where a = n and b = nT − n. Accordingly, the approximation by a chi-squared

distribution is given by,

aFλ
d→ χ2a

because a is fixed and b→∞.
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We next turn to the case of large n / fixed T . In the statistics literature, Boos and

Brownie (1995) and Akritas and Arnold (2000) consider the asymptotic distribution of

the ANOVA F -statistic for this case where n and T denote the number of treatments

and replications per treatment, respectively. Under their settings, it is shown that

√
n (F − 1)

d→ N

(
0,

2T

T − 1

)

as n → ∞ with fixed T . That is, the F statistic is asymptotically normal with

expected value 1. They also show that the asymptotics above hold in a two-way

fixed effects model as well. Extending these results to the interaction effects model,

Bathke (2004) shows that the limiting normal distribution can be still achievable with

the F -statistic centered at 1. Interestingly, in the econometrics literature, Orme and

Yamagata (2006) consider a panel data model with one-way fixed effects and derive

the same limiting distribution as that of Boos and Brownie (1995) and Akritas and

Arnold (2000).

3.1.1 The asymptotics of the F -statistic in a high-dimensional framework

As mentioned earlier, the F -statistic with large n and T have not been explored in

the literature. In this section, we sketch the asymptotic properties of the F -statistic

under this setting.

Consider the common factor model:

yit = λiFt + uit for i = 1, . . . , n and t = 1, . . . , T

where λi and Ft are scalars. Our analysis is based on the following assumptions:

Assumption 1 uit
i.i.d.∼ (0, σ2) for all i and t with finite fourth order cumulants.
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Assumption 2 The factor and factor loadings are assumed to be independent of uit

with E(uit | Ft) = E(uit | λi) = 0 such that:

1. 0 < limT→∞
1
T

∑T
t=1 F

2
t = φF <∞.

2. 0 < limn→∞
1
n

∑n
i=1 λ

2
i = φλ <∞.

These assumptions are similar to those in Bai (2003).6 In what follows, we dis-

tinguish between cases where the factor Ft is observable or not. If Ft is observable,

then one can easily obtain λ̃i using least squares. If Ft is not known, one relies on

the method of PCA to compute λ̂iF̂t. In the lemma below, we consider the limiting

distribution of λ̃i or λ̂iF̂t. Note that the result for λ̂iF̂t is taken from Bai (2003).

Lemma 1 1. If Ft is observable, then for each i as T →∞

√
T
(
λ̃i − λi

)
(
σ2φ−1F

)1/2 d→ N(0, 1).

2. If Ft is unobservable, then as (n, T )→∞

δnT

(
λ̂iF̂t − λiFt

)
(
δ2nT
n
Vit +

δ2nT
T
Wit

)1/2 d→ N(0, 1)

where δnT = min
{√

n,
√
T
}
, Vit =

λ2i
φλ
σ2, and Wit =

F 2t
φF
σ2.

Lemma 1 shows that we can asymptotically achieve the standard normal distribu-

tion whether or not Ft is observable. Note that: (i) We have the limiting distribution

of λ̃i with known Ft. On the other hand, the limiting distribution of λ̂iF̂t is derived for

an unknown Ft. (ii) The convergence rate when Ft is unobservable is min
{√

n,
√
T
}

with no restriction on the relationship between n and T , see Bai (2003). Given the

6For simplicity, we assume the i.i.d. error terms, while Bai (2003) allows for time series and
cross-section dependence in the error terms.
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above results, we derive the asymptotic normality of the F -statistic when the factor

is known and unknown, respectively.

Theorem 1 Assume (n, T )
seq→∞ and Ft is observable. Then

√
n (Fλ − 1)

d→ N(0, 2).

Theorem 1 shows that the asymptotic distribution of the F -statistic with (n, T )
seq→

∞ will converge to the normal distribution if Ft is known. Note that this result is

quite similar to the one reported in previous studies, e.g., the ANOVA literature and

Orme and Yamagata (2006) which do not assume the high-dimensional framework,

in the sense that the F -statistic gets centered at 1 with the asymptotic normality.

If Ft is not observable, however, one needs to estimate common components λiFt

using the method of PCA. Next we investigate the limiting distributions of the F -

statistic under two specific cases, i.e., T
n
→ 0 and n

T
→ 0, following Bai (2003).

Theorem 2 Assume (n, T )→∞ and Ft is not observable.

1. If T
n
→ 0, then

√
nT (Fλ − 1)

d→ N(
(F 2t − φF )

φF
,
ψ

σ4
)

where ψ = V ar (a2it − u2it) <∞ and ait = Ft

(
1
T

∑T
t=1 F

2
t

)−1
1√
T

∑T
s=1 Fsuis.

2. If n
T
→ 0, then the asymptotic distribution of Fλ is not feasible.

From Theorem 2, one finds that there will be a shift term in the limiting distribu-

tion of the F -statistic. The F -statistic will not be asymptotically centered around 1

any more. Instead, the F -statistic will converge to the sequence, 1 +
F 2t −φF
φF

if T
n
→ 0.

For the other case, i.e., n
T
→ 0, we cannot obtain the asymptotic properties because

our current assumption, φλ > 0, is violated under the null H0 : λi = 0 for all i.7

7Note that the asymptotic normality with δnT = min
{√

n,
√
T
}
is also not feasible, under the

null, because φλ cannot be defined.
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To conclude this section, we find that using the asymptotic F distribution in a

high-dimensional framework may fail especially when the factors are unknown. In the

following sections, we discuss the bootstrap procedure as an alternative that avoids

all these complexities.

3.2 Bootstrap data generating process

Before we go into the validity of bootstrap F -tests, we briefly discuss a bootstrap

data generating process (DGP). Resampling in a regression can be implemented in

various ways. One can consider first the pairs bootstrap, one of the most general and

widely used bootstrap DGP, which is proposed in Freedman (1981). The idea of

this method is simply resampling the dependent and independent variables in pairs.

However, this method does not condition on the independent variable, X, in a DGP

(Instead, each bootstrap sample has a different X∗). As a result, this DGP can be

misleading in inference when test statistics depend on X according to MacKinnon

(2007). Therefore one may conclude that the pairs bootstrap is not satisfactory for

bootstrap inference.

Secondly, the residual bootstrap can be considered. Let

yt = xtβ + ut, ut ∼ IID(0, σ2).

The first step of the residual bootstrap is estimating β̃ and the residuals ũt under the

null. After rescaling the residuals, the residual bootstrap DGP can be written as

y∗t = xtβ̃ + u∗t

where u∗t is obtained from the empirical distribution of rescaled ũt. Note that the

validity of this method depends crucially on the assumption ut ∼ IID(0, σ2), i.e.,

independent and identically distributed error term. Hence, under heteroskedasticity
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this bootstrap DGP is not recommended.

Finally, with independent but possibly heteroskedastic errors, one can rely on

the wild bootstrap. First of all, this method is quite simple to implement from its

construction. In addition to this, as shown in simulations of Davidson and Flachaire

(2008), wild bootstrap tests perform well in practice under heteroskedasticity. In fact,

a specific version (using Rademacher distribution) of the wild bootstrap is shown to

outperform another version of the wild bootstrap as well as the pairs bootstraps even

when the disturbances are homoskedastic.

We adopt the wild bootstrap using Rademacher distribution in our simulations

because it is robust to heteroskedasticity. Let

yit = xitβ + uit where uit ∼ IID(0, σ2),

then the corresponding bootstrap DGP is constructed as follows:

y∗it = xitβ̃ + ũitε
∗
it (11)

where y∗it is newly generated data, ũit is the restricted residual, and β̃ is an estimate

under the null.8 ε∗it follows the Rademacher distribution:

ε∗it =

 1 with probability 0.5

−1 with probability 0.5
(12)

which is introduced by Liu (1988) and developed by Davidson and Flachaire (2008).9

8Note that the model is estimated under the null to obtain restricted estimates β̃. MacKinnon
(2006) points out that using the unrestricted residuals is not appropriate because otherwise the
bootstrap DGP will not satisfy the null hypothesis.

9Alternatively, one may want to use the following bootstrap DGP suggested by Mammen (1993b)
especially when the distribution of the error terms is suffi ciently asymmetric.

ε∗it =


−(
√
5−1)
2 with probability p = (

√
5+1)
2
√
5

(
√
5+1)
2 with probability 1− p

.
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Note that one has E (ε∗it) = 0 and E (ε∗2it ) = 1 with this setting.10

Next we describe in some details how to implement the wild bootstrap test for

the common factor model.

Step 1 : One estimates the common factor model. If Ft are known, we simply

obtain the OLS residuals. If Ft are not observed, we use the method of PCA. Note

that the unrestricted residuals as well as the restricted residuals should be computed

in order to calculate the F -statistic. Let this empirical statistic be Fλ.

Step 2 : After we obtain the residuals from step 1, we re-generate the data using

the restricted residuals and an external random variable ε∗it. For example, one can

generate artificial data for the common factor model by,

y∗it = uitε
∗
it

where i = 1, . . . , n; t = 1, . . . , T . Note that we simply use uit as the restricted

residuals which are the same as yit under the null H0 : λi = 0 for all i.11 Now

one can compute the bootstrap counterpart of our test statistic, i.e., the bootstrap F

statistic. Let us denote this statistic as F ∗λ .

Step 3 : One repeats Step 2, say B times. Then we obtain the distribution of F ∗λ

and calculate the percentile of F ∗λ which are greater than or equal to Fλ. Finally

setting this proportion at α∗, one can test the null by rejecting α∗ < α, at the 5%

significance level.

However, in their simulations Davidson and Flachaire (2008) show that the version we adopt here
performs at least as good as this version even when the disturbances are asymmetric.
10The further condition E

(
ε∗3it
)
= 1 is often added for the bootstrap error in the literature.

11If we have regressors as well as factors in our equation, then y∗it = x
′

itβ̃ + ŵitε
∗
it where ŵit =

yit − x
′

itβ̃ are the restricted residuals under the null H0 : λi = 0 for all i.
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3.3 The validity of the bootstrap F -test

Mammen (1993b) seems to be the first to show that under some regularity condi-

tions the asymptotic distribution of the F statistic is equivalent to that of the wild

bootstrap counterpart in a high-dimensional framework. Using simulation results,

Flachaire (2005) shows that the wild bootstrap F -test performs well compared to

other bootstrap methods such as the pairs bootstrap. We sketch the validity of the

bootstrap F -test for cross-sectional dependence relying on the results of Mammen

(1993b).

Consider first a simple regression model

yt = x
′

tβ + εt for t = 1, . . . , n

where β is a k-dimensional parameter and εt is the error. Mammen (1993b) studies

the case in which k may also increase as n increases. For the testing problem β ∈ H0

versus β ∈ H1, the F -statistic can be constructed by,

F =

[∑n
t=1

(
yt − x

′
1,tβ̂1

)2
−
∑n

t=1

(
yt − x

′
0,tβ̂0

)2]
/ (k1 − k0)∑n

t=1

(
yt − x′1,tβ̂1

)2
/ (n− k1)

(13)

where each squared sum indicates the square of the projection of y onto H0 and H1.

Under the hypothesis Hi, β̂i is the least squares estimator, ki is the dimension of the

parameters, and xi,t is a set of ki regressors. It is important to note that the degrees

of freedom of both the numerator and denominator cannot be assumed to be fixed

and that simply applying the F distribution in testing may fail. Mammen (1993b)

shows that the asymptotic distribution of the bootstrap F -statistic is consistent for

that of the F -statistic.12

12To compute the bootstrap F statistic, F ∗ =

[∑n
t=1

(
y∗t−x

′
1,tβ̂

∗
1

)2
−
∑n

t=1

(
y∗t−x

′
0,tβ̂

∗
0

)2]
/(k1−k0)∑n

t=1(y∗t−x
′
1,tβ̂

∗
1)

2
/(n−k1)

where
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One may observe that Mammen’s results can be readily extended to our case if

the factors are observable. For the common factor model with a single factor,13 the

F -statistic is defined as:

Fλ =

[∑n
i=1

∑T
t=1 y

2
it −

∑n
i=1

∑T
t=1

(
yit − λ̃iFt

)2]
/n∑n

i=1

∑T
t=1

(
yit − λ̃iFt

)2
/ (nT − n)

(14)

where the Ft is known. The bootstrap F -statistic can be constructed by,

F ∗λ =

[∑n
i=1

∑T
t=1 y

∗2
it −

∑n
i=1

∑T
t=1

(
y∗it − λ̃

∗
iFt

)2]
/n∑n

i=1

∑T
t=1

(
y∗it − λ̃

∗
iFt

)2
/ (nT − n)

where λ̃
∗
i denotes the bootstrap estimate which is the least squares estimator for λ̃i

from y∗it = λ̃iFt + uitε
∗
it. In fact, equation (14) is a set up similar to (13): (i) Degrees

of freedom of both the numerator and denominator are not bounded. For example,

n, the number of factor loadings, corresponds to k1 in equation (13) with k0 = 0.

Also nT , the number of total observations, is the counterpart of n in equation (13)

as well. (ii) Both (13) and (14) are obtained from least squares estimation. (iii) Note

that one of the key conditions in Mammen (1993b) to identify the parameters under

a high-dimensional framework, i.e., k1
n
→ 0, is automatically satisfied in our panel

data model, because n
nT

= 1
T
→ 0.14

Proposition 3 Assume (n, T )
seq→∞. If Assumptions 1-2 hold and Ft is observable,

β̂
∗
1 and β̂

∗
0 denote the least squares estimators from newly generated bootstrap data under the null

and alternative, respectively.
13The dimension k of β is not a concern in this paper and is assumed to be fixed. Therefore, we

only consider the common factor model dropping the regressors without loss of generality.
14Our model is similar to that of Mammen in that we have an infinite number of parameters

to estimate as the sample size tends to infinity. However, our model is also different from that of
Mammen, because the number of Ft is assumed to be fixed. Hence, λi for all i can be estimated
with large T . Therefore, we do not need the corresponding condition (k1n → 0) in Mammen (1993b).
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then

K (L (Fλ) ,L∗ (F ∗λ ))
p→ 0

where L (Fλ) = P (
√
n (Fλ − 1) ≤ x) and L∗ (F ∗λ ) = P ∗ (

√
n (F ∗λ − 1) ≤ x).

Proposition 3 provides the consistency of the bootstrap distribution of the F -

statistic. Hence, one can infer that the bootstrap method can be justified in testing

cross-sectional dependence when the factors are known. We also notice that one does

not necessarily have to theoretically derive the limiting distribution of the F -statistic

now that the distribution of the bootstrap statistic can mimic it asymptotically. In

fact, the asymptotic distribution of the F -statistic can remain unknown, while one

can still properly test the null using the bootstrap F -statistic.

3.3.1 Bootstrapping PCA

When the factors are not observed, another important issue needs to be taken into con-

sideration. With unknown factors one computes URSS =
∑n

i=1

∑T
t=1

(
yit − λ̂iF̂t

)2
by the method of PCA instead of using least squares. Namely, we need to bootstrap

the PCA estimators. Diaconis and Efron (1983) introduce an application of bootstrap

to principal component analysis and illustrate how to bootstrap the eigenvalue and

eigenvector components. However, this is done without theoretical justification.

Recently, Gonçalves and Perron (2010) establish the asymptotic validity of the

bootstrap for factor-augmented regressions under a high-dimensional framework. They

provide an appropriate set of assumptions under which the wild bootstrap procedure

can be used to estimate the bootstrap factors by principal components.15 Note also

that Mammen (1993a) shows that the wild bootstrap in a high-dimensional model is

valid as long as the asymptotic normality holds. To carry this point, we recall that the

15Note that Gonçalves and Perron (2010) focus on the factors which cannot be identified separately
with the factor loadings. However, identification problem is not the concern of this paper. In fact,
in order to construct the F -statistic, we only need to estimate the common components (λiFt, not
Ft) which are identifiable.
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asymptotic normality of the estimated common components for λiFt as (n, T ) → ∞

can be achieved, as shown in Lemma 1.

Proposition 4 Assume (n, T )→∞ and T
n
→ 0. If Assumptions 1-2 hold and Ft is

unobservable, then

K (HnT , HBoot)
p→ 0

where HnT = P (τ ≤ x) is the c.d.f. with a functional τ =
√
T
(
λ̂iF̂t − λiFt

)
, HBoot =

P ∗ (τ ∗ ≤ x) is the empirical c.d.f. with τ ∗ =
√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
.

Proposition 4 indicates the consistency of bootstrapping PCA. Hence, this implies

that the bootstrap F -statistic can be used for the unobservable Ft case. Note that

the condition T
n
→ 0 is required to achieve the asymptotic normality of the estimated

common components under a high-dimensional framework. Based on this, we also

check the consistency of the distribution of the bootstrap F -test using PCA.

Proposition 5 Under the assumptions of Proposition 4,

K (L (Fλ) ,L∗ (F ∗λ ))
p→ 0

where L (Fλ) = P (
√
n (Fλ − 1) ≤ x) and L∗ (F ∗λ ) = P ∗ (

√
n (F ∗λ − 1) ≤ x).

According to Proposition 5, the distribution of the bootstrap F -statistic will uni-

formly converge to the distribution of the empirical F -statistic. Hence, combining

this result with that of Proposition 3, one can conclude that the bootstrap F -statistic

can be used in testing cross-sectional dependence whether the factors are known or

not. The following section presents the various simulation results in support of this

conclusion.
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4 Monte Carlo Results

4.1 Experiment design

We consider the following equation:

yit = xitβ + λiFt + uit for i = 1, . . . , n and t = 1, . . . , T

where β = 2 and λi = 0 for all i. xit and Ft follow either I(0) or I(1) processes. For

simplicity, we assume that both λi and β are scalars. uit is generated by IIDN(0, 1)

for our benchmark case. In the common factor model, the regressor, xit, is simply

dropped. We study the finite sample properties of the F -statistic for H0 : λi = 0 for

all i; based on various estimators discussed in Section 2. We denote the empirical F

statistic and the bootstrap F statistic as EF and BF, respectively. The sample sizes

n and T are varied over the range {10, 50, 100} for the model without the regressor,

and {10, 20, 50} for the model with the regressor.

For each experiment, we perform 1, 000 replications and 200 bootstrap iterations.

GAUSS 7.0.6 is used to perform the simulations. Random numbers for uit, Ft, and xit

are generated by the GAUSS procedure RNDNS. We generate n(T + 1000) random

numbers and then split them into n series so that each series has the same mean and

variance. The first 1, 000 observations are discarded for each series.

4.2 Case 1: Without the regressor

This section runs Monte Carlo experiments for the common factor model:

yit = λiFt + uit for i = 1, . . . , n and t = 1, . . . , T.

Note that in this case we generate the bootstrap data from y∗it = ũitε
∗
it where ũit

is simply yit itself (or uit) under the null. We discuss the case of stationary and
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non-stationary factors subsequently.

4.2.1 Stationary factors

Let us first consider the benchmark case under which both Ft and uit are generated

from IIDN(0, 1).16 Table 1 shows the empirical size of EF and BF when Ft = I(0)

with true size 5%. Given this setting, we find the following: (i) If Ft is known, both

EF and BF are quite close to their true size. (ii) In contrast, when Ft is unknown, EF

gets extremely shifted to the right so that its size becomes almost 100%, which implies

rejection for almost all cases. BF, however, mimics the empirical F distribution quite

well so that its size stays very close to 5%. For example, with (n, T ) = (50, 100) the

size of EF is 99.9% while that of BF is 4.9% when the factors are not observed.

Next, in order to examine the power of the F -test under some alternative hypothe-

ses, we divide our cases into strong and weak cross section dependence. Weak depen-

dence is set at λi ∼ IIDU (0.01, 0.2) while strong dependence at λi ∼ IIDU (0.2, 0.5).

All the results are reported in Table 2. Overall, the power of the F test seems sat-

isfactory: (i) The power increases as λi increases as expected. (ii) Also, the power

increases as n or T increases. (iii) With weak dependence, both EF and BF have

no power or very low power if any, when Ft is unknown. In fact, even in the largest

sample size of our experiments, (n, T ) = (100, 100), the power of EF and BF is no

more than 46%.

We also check robustness of our benchmark results to heteroskedasticity and serial

correlation in the error terms. We first introduce heteroskedasticity into the error as

follows:

uit = σivit

where vit is generated from N(0, 1) and σi is set as either standard normal or simply

16We also run experiments with AR(1) factors and linear trended factors. All the results are
similar to those when the factors follow IIDN(0, 1).
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10. That is,

σi

 ∼ N(0, 1) for i = 1, . . . , 4n
5

= 10 for i = 4n
5

+ 1, . . . , n
.

Notice that we do not correct for heteroskedasticity to compute the residuals.17 All

the results are reported in Table 3. We find that BF stays robust despite huge

heteroskedasticity. More specifically, the following can be observed: (i) With het-

eroskedasticity, EF gets over-sized although Ft is known. In fact, the empirical size

of EF varies from 13 to 20%. This is different from our benchmark case where the

size of EF stays close to 5% when Ft is known. (ii) When Ft is unknown, as ex-

pected, EF shows extreme over-rejection like in the benchmark case. However, BF

behaves well whether or not the factors are observable. In fact, the empirical size

of BF consistently stays robust varying from 4-6% for all experiments. Therefore,

we conclude that bootstrap F -test in the common factor model can be used under

heteroskedasticity.

For serial correlation, the error terms are set as follows:

uit = ρuit−1 + νit

where ρ = 0.4 and νit ∼ N(0, 1). Again we do not correct for serial correlation. In

Table 4, one can observe that: (i) Overall, it appears that both EF and BF are not

appropriate to use because of considerable over-rejections. In fact, they get more

over-sized as n increases.18 (ii) More specifically, we have the empirical size of EF

and BF varying between 5 to 16% even when the factors are known. (iii) This is an

expected result in the sense that the wild bootstrap method used in this paper is not

17Since our concern in this paper is consistency, we do not go into details into the effi ciency
problem. Note that Choi (2008) proposes effi cient estimation of factor models (when the factors
are unknown), the so-called generalized principal component estimators (GPCEs). In fact, he uses
maximum likelihood estimation of the factors and factor loadings under the assumption of normal
error terms.
18We run also ρ = {0.2, 0.8, 0.99} and find that EF and BF get more over-sized as ρ increases.
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designed for the serially correlated case. Note that Gonçalves and Perron (2010) also

obtain some noticeable size distortions for the serially correlated error terms. Hence,

one needs to explore alternative bootstrap methods (such as the block bootstrap)

rather than the wild bootstrap for this case.

4.2.2 Non-stationary factors

This section considers non-stationary factors, i.e., Ft = Ft−1+ηt where ηt is generated

by IIDN(0, 1). From Table 5, one can observe the following: (i) Basically, the results

are similar to the case of stationary factors. With observable Ft both EF and BF

are quite close to their true size. However, with unobservable Ft, EF gets extremely

over-sized while the size of BF stays close to 5% varying from 4 to 6%. (ii) In addition

to this, note that one obtains exactly the same size of EF and BF whether Ft = I(0)

or Ft = I(1) if Ft is unknown. This is because the restricted bootstrap residuals are

used to compute the F -statistic. That is, estimates of the factor and factor loadings

are calculated based on yit which is the same under the null whether Ft is I(0) or

I(1).

To compute the size-adjusted power, we again divide our cases into strong and

weak cross section dependence as in the previous section. All the results are reported

in Table 6 and we find the following: (i) The power increases as λi increases, as in

the Ft = I(0) case. (ii) The overall power is higher with the non-stationary factors as

compared with the stationary factors for each sample size. This may be due to the

fact that the explanatory power of the estimated model increases because the signal

with an I(1) process is stronger than the one with an I(0) process.19

We also check robustness to heteroskedasticity and serial correlation. Table 7

reports the results for heteroskedasticity. We again find that BF stays robust despite

huge heteroskedasticity, while EF shows over-sized results even when the factors are

19Note that with the non-stationary regressor it is easier to identify coeffi cient estimates because
of the stronger signal.
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observable. In fact, the size of BF varies from 4 to 6% while that of EF from 14

to 21%. Combining this with Table 3, one concludes that BF in the common factor

model can be used with heteroskedasticity regardless of whether or not the factors

are stationary and whether or not the factors are known.

Table 8 re-confirms that some alternative bootstrap methods should be inves-

tigated for the serially correlated case. Figures 1 to 6 overlap the F distribution

(Theoretical F ), the empirical F distribution, and the bootstrap F distribution for

the benchmark case depending on observability and stationarity of Ft. From the

graphical illustrations, it can be seen that we have the consistent results with the

previous literature, e.g., ANOVA literature and Orme and Yamagata (2006). In fact,

when we vary n from 5 to 100, the distribution of EF converges to the normal shaped

curve centered at 1 if Ft is known.

4.3 Case 2: With the regressor

4.3.1 Stationary regressor and factors

In this case, we add the regressor, xit, as well as Ft:

yit = xitβ + λiFt + uit for i = 1, . . . , n and t = 1, . . . , T

where β = 2 and λi = 0 for all i. Both xit and Ft follow I(0) processes and are gen-

erated from N(0, 1). For the benchmark case, we first generate uit from IIDN(0, 1).

The maximum number of iterations (when Ft is unobserved, for the interactive fixed

effects estimator for β) is set at 5. Table 9 reports the empirical size of EF and

BF. We basically observe similar results as in Case 1: (i) If Ft is known, the size

of EF and BF are quite close to the true size (5%). (ii) If Ft is unknown, EF gets

extremely over-sized while BF mimics the distribution of EF pretty well with huge

improvements in size. Again, Figures 7 to 10 overlap the F distribution, EF, and BF
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for varying n = {5, 50} and T = {10, 20, 40, 50}. One can easily check that we have

a similar pattern with that in Section 4.2.1.

Table 10 indicates the size-adjusted power under strong and weak dependence.

Again, the power seems good under strong dependence especially when Ft is known.

Under weak dependence, however, both EF and BF have much less power. In fact,

if Ft is unobserved, then the size-adjusted power of EF and BF ranges between 4

and 9%. Also note that the power increases as λi or the sample size increases. Het-

eroskedasticity and serial correlation are again introduced into the error terms (Table

11 and 12) and we have the similar findings as in Case 1.

4.3.2 Non-stationary regressor and factors

In this section, xit and Ft are assumed to be non-stationary. The data are generated

as follows: For i = 1, . . . , n and t = 1, . . . , T ,

yit = 2xit + λiFt + uit,

xit = xit−1 + εit,

and

Ft = Ft−1 + ηt

where


uit

εit

ηt

 iid∼ N




0

0

0

 ,


1 σ12 σ13

σ21 1 σ23

σ31 σ32 1


.

We follow most of the settings in Bai, et al. (2009) for the simulation. In par-

ticular, we set σ32 at 0.4 while varying σ21 and σ31 over {0, 0.2, 0.8}. The long-run

covariance matrix is estimated using the KERNEL procedure in COINT 2.0. We

use the Bartlett window with the truncation set at 5. The maximum number of it-

erations to estimate β (when Ft is unknown) is also set at 5. The empirical size for
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each case is reported Tables 13 to 15 depending on the combination of σ21 and σ31.

We find the following: (i) Suppose first that Ft is observable. In this case, if σ21 is

low (σ21 = 0 or σ21 = 0.2), each of EF and BF shows the correct size (Table 13 and

14). However, for σ21 = 0.8, both EF and BF get over-sized in relatively small sample

sizes although this distortion seems to quickly get better as T increases (Table 15).

In fact, for (n, T ) = (50, 50) the size of EF and BF varies between 8 and 9%. This

can be explained by the fact that one needs to have enough samples to estimate the

long-run covariance matrix. One can also observe that σ21 rather than σ31 affects the

performance of EF and BF. This phenomenon stems from the fact that σ31 does not

matter much under the null. (ii) If Ft is unobserved, EF almost always rejects the

null like in the previous cases. BF shows the correct size for σ21 = 0 or σ21 = 0.2.

Interestingly, if σ21 = 0.8, the performance of BF using CupFM is quite different from

that using CupBC although the size of both improves as T increases. In fact, CupFM

leads to the reasonable size varying between 3-8% while CupBC causes considerable

over-sizing.20 Note that the distortion using CupBC gets worse with larger n and

smaller T . This implies that correcting for endogeneity and serial correlation at every

iteration (CupFM), not only at the final stage (CupBC), is helpful in improving the

goodness of the long-run covariance matrix estimation. (iii) Overall, with low σ21,

similar conclusions with the previous sections continue to hold. Both EF and BF

(with LSFM) can be used if the factors are known, while only BF should be used if

the factors are unknown. However, with high σ21, using CupFM instead of CupBC

seems to be more appropriate. (iv) Lastly, note that the results when σ21 = 0 and

σ31 = 0 are graphically displayed in Figures 11 to 16.

Tables 16 to 24 present the size-adjusted power for each case. The results seem

20We compute the signal-to-noise ratio = 2+2σ23
5+4σ21

and observe that we have the lower signal-
to-noise ratio as σ21 increases (so more size distortion is expected). In fact, we vary σ21 over
{0, 0.2, 0.4, 0.6, 0.8} although not reported here. The size of CupBC clearly gets worse as σ21 increases
but seems to be relatively robust until σ21 = 0.4. In contrast, increasing σ23 (the stronger signal)
leads to slight improvement in size.
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satisfactory and one can basically draw the same conclusion as in the previous sec-

tions. We also check robustness to heteroskedasticity and serial correlation. The

empirical size under heteroskedasticity is reported in Tables 25 to 27. One observes

the following: (i) When Ft is observed, EF becomes over-sized and this gets worse

with higher σ21. However, even with high σ21, BF is much less over-sized than EF. In

fact, with σ21 = 0.8 the size of BF gets quickly closer to true size 5% as T increases

(Table 27). (ii) When Ft is not observed, EF gets extremely over-sized again. The

size of BF using CupFM, however, stays relatively robust varying from 3 to 9% and

clearly improves as the sample size increases. Hence, the size of BF using CupFM

under heteroskedasticity seems to perform well whether the regressor is included or

not and whether xit and Ft follow I(0) or I(1). In contrast, BF is consistently over-

sized for all the experiments and gets worse as the sample size increases when serial

correlation is present, see Tables 28 to 30.

5 Conclusion

High-dimensional data analysis for large n / large T has become an integral part of

the macro panel data literature. This paper suggests using the bootstrap F -test to

test for cross-sectional independence. This circumvents the diffi culty of deriving the

asymptotic distribution of this statistic with large n / large T . The simulation results

show that the bootstrap F -test performs well in testing cross-sectional independence

and is recommended in practice. This F -test has the added advantage of being feasible

even when we do not observe the factors. Extensive simulations show that the wild

bootstrap F -test is robust to heteroskedasticity but sensitive to serial correlation.
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Figure 1: Case 1, The Histogram of Bootstrap F When Ft Is I(0) and Known (n = 5)
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Figure 2: Case 1, The Histogram of Bootstrap F When Ft Is I(0) and Known (n =
100)
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Figure 3: Case 1, The Histogram of Bootstrap F When Ft Is I(1) and Known (n = 5)
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Figure 4: Case 1, The Histogram of Bootstrap F When Ft Is I(1) and Known (n =
100)
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Figure 5: Case 1, The Histogram of Bootstrap F When Ft Is Unknown (n = 5)
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Figure 6: Case 1, The Histogram of Bootstrap F When Ft Is Unknown (n = 100)
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Figure 7: Case 2, The Histogram of Bootstrap F When Ft Is I (0) and Known (n = 5)
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Figure 8: Case 2, The Histogram of Bootstrap FWhen Ft Is I (0) and Known (n = 50)
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Figure 9: Case 2, The Histogram of Bootstrap F When Ft Is I (0) and Unknown
(n = 5)
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Figure 10: Case 2, The Histogram of Bootstrap F When Ft Is I (0) and Unknown
(n = 50)
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Figure 11: Case 2, The Histogram of Bootstrap FWhen Ft Is I (1) and Known (n = 5)
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Figure 12: Case 2, The Histogram of Bootstrap F When Ft Is I (1) and Known
(n = 50)
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Figure 13: Case 2, The Histogram of Bootstrap F When Ft Is I (1) and Unknown
(CupBC, n = 5)
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Figure 14: Case 2, The Histogram of Bootstrap F When Ft Is I (1) and Unknown
(CupBC, n = 50)
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Figure 15: Case 2, The Histogram of Bootstrap F When Ft Is I (1) and Unknown
(CupFM, n = 5)
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Figure 16: Case 2, The Histogram of Bootstrap F When Ft Is I (1) and Unknown
(CupFM, n = 50)
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Table 1: Case 1, The Size (%) of F-test When Ft Is I (0) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 90 10, 490 10, 990 50, 450 50, 2450 50, 4950 100, 900 100, 4900 100, 9900

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 4.1 4.7 5.3 6.3 5.1 4.3 3.6 5.0 5.6

BF 5.1 5.8 5.2 6.2 5.6 4.6 5.1 5.3 5.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 4.5 4.8 4.5 6.2 5.8 4.9 5.4 5.9 5.6

Note: True size is 5%

Table 2: Case 1, The Size-adjusted Power (%) of F-test When Ft Is I (0) (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 59.5 99.8 100.0 92.6 100.0 100.0 98.6 100.00 100.00

BF 64.1 99.9 100.0 95.6 100.0 100.0 98.6 100.00 100.00

Unknown Ft EF 15.5 73.8 95.8 62.7 100.0 100.0 86.4 100.00 100.00

BF 20.4 73.8 95.7 66.9 100.0 100.0 86.1 100.00 100.00

Weak dependence: λi ∼ IIDU (0.01, 0.2)

Known Ft EF 8.7 39.4 72.3 14.4 85.4 99.4 28.2 97.7 100.0

BF 10.1 40.9 72.5 20.9 86.8 99.3 27.4 98.3 100.0

Unknown Ft EF 5.1 6.0 6.7 6.0 9.0 17.0 6.7 16.7 45.3

BF 5.4 5.5 6.2 6.7 9.6 17.2 7.3 19.1 46.1
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Table 3: Case 1, The Size (%) of F-test under Heteroskedasticity When Ft Is I (0) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 90 10, 490 10, 990 50, 450 50, 2450 50, 4950 100, 900 100, 4900 100, 9900

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 15.8 16.8 13.9 19.7 19.6 19.6 19.0 18.1 20.9

BF 4.5 6.2 5.7 4.8 4.3 5.3 4.7 4.8 5.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 5.2 5.2 4.3 5.8 5.9 5.0 5.6 5.0 5.1

Table 4: Case 1, The Size (%) of F-test under Serial Correlation When Ft Is I (0) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 90 10, 490 10, 990 50, 450 50, 2450 50, 4950 100, 900 100, 4900 100, 9900

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 6.1 5.8 6.3 14.1 9.0 6.8 16.3 10.5 8.2

BF 7.4 5.7 6.5 15.1 9.4 7.2 16.7 10.4 8.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 31.4 29.6 28.7 99.4 98.3 98.6 100.0 100.0 100.0
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Table 5: Case 1, The Size (%) of F-test When Ft Is I (1) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 90 10, 490 10, 990 50, 450 50, 2450 50, 4950 100, 900 100, 4900 100, 9900

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 4.5 4.3 5.3 6.5 5.1 4.7 4.0 4.8 4.9

BF 6.3 5.7 5.9 6.0 5.4 5.6 4.5 5.2 5.3

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 4.5 4.8 4.5 6.2 5.8 4.9 5.4 5.9 5.6

Note: True size is 5%

Table 6: Case 1, The Size-adjusted Power (%) of F-test When Ft Is I (1) (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 88.6 100.0 100.0 97.5 100.0 100.0 99.0 100.0 100.0

BF 89.3 100.0 100.0 98.6 100.0 100.0 99.1 100.0 100.0

Unknown Ft EF 64.0 100.0 100.0 89.1 100.0 100.0 96.1 100.0 100.0

BF 66.0 100.0 100.0 90.5 100.0 100.0 95.9 100.0 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

Known Ft EF 33.9 97.9 100.0 55.7 100.0 100.0 69.0 100.0 100.0

BF 35.2 97.7 100.0 60.6 100.0 100.0 70.4 100.0 100.0

Unknown Ft EF 12.8 75.8 94.9 29.0 96.5 100.0 42.2 98.9 100.0

BF 15.0 75.0 95.1 33.1 96.5 100.0 43.8 99.1 100.0

195



Table 7: Case 1, The Size (%) of F-test under Heteroskedasticity When Ft Is I (1) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 90 10, 490 10, 990 50, 450 50, 2450 50, 4950 100, 900 100, 4900 100, 9900

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 16.9 16.7 14.9 17.6 17.4 18.8 20.2 21.2 20.0

BF 5.3 5.6 5.5 4.0 4.6 5.6 5.4 5.3 6.1

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 5.2 5.2 4.3 5.8 5.9 5.0 5.6 5.0 5.1

Table 8: Case 1, The Size (%) of F-test under Serial Correlation When Ft Is I (1) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 90 10, 490 10, 990 50, 450 50, 2450 50, 4950 100, 900 100, 4900 100, 9900

(n, T ) (10, 10) (10, 50) (10, 100) (50, 10) (50, 50) (50, 100) (100, 10) (100, 50) (100, 100)

Known Ft EF 48.2 59.1 63.1 84.8 98.9 98.8 91.6 99.9 99.9

BF 49.6 60.5 64.4 87.8 98.9 98.8 92.6 99.9 100.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 31.4 29.6 28.7 97.4 98.3 98.6 100.0 100.0 100.0
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Table 9: Case 2, The Size (%) of F-test When Ft Is I (0) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 4.2 5.8 4.4 4.2 6.2 5.6 6.4 5.5 5.4

BF 3.8 6.0 5.8 5.6 6.5 5.8 6.0 5.8 5.4

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 5.1 5.4 4.8 5.1 5.5 4.1 5.9 5.3 5.6

Note: True size is 5%

Table 10: Case 2, The Size-adjusted Power (%) of F-test When Ft Is I (0) (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 59.4 88.9 99.9 77.6 97.4 100.0 92.0 100.0 100.0

BF 63.4 90.3 99.9 81.7 98.0 100.0 95.7 100.0 100.0

Unknown Ft EF 15.8 29.1 73.2 31.0 60.0 97.1 62.5 93.3 100.0

BF 20.4 34.1 73.8 33.6 63.5 97.0 67.1 93.8 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 8.2 15.9 39.4 12.6 20.7 54.3 14.4 33.6 85.1

BF 9.5 16.6 40.2 15.4 24.6 59.0 21.1 39.9 86.9

Unknown Ft EF 4.9 5.1 6.2 5.3 5.5 6.9 6.1 6.0 9.1

BF 5.4 5.5 5.7 5.5 6.0 6.0 6.7 6.2 9.7
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Table 11: Case 2, The Size (%) of F-test under Heteroskedasticity When Ft Is I (0) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 15.6 17.1 16.7 17.4 17.7 18.9 19.7 18.3 19.7

BF 4.6 5.6 6.2 4.9 5.5 6.5 4.7 5.6 4.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 6.2 6.8 5.8 5.1 6.7 5.9 6.0 4.8 5.9

Table 12: Case 2, The Size (%) of F-test under Serial Correlation When Ft Is I (0) (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 6.2 6.7 5.7 10.2 7.9 5.4 14.1 10.5 9.0

BF 7.1 6.5 6.1 11.4 8.6 5.2 15.1 11.5 9.4

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

BF 31.1 29.8 29.7 57.9 61.1 61.8 97.2 98.1 98.3
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Table 13: Case 2, The Size (%) of F-test When Ft Is I (1) Where σ21 = 0 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 4.7 5.6 5.2 4.6 4.5 6.7 5.7 5.7 5.0

(LSFM) BF 6.2 6.1 4.3 4.5 5.2 6.8 5.6 5.9 5.4

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 4.6 5.3 4.8 5.3 5.5 4.3 6.0 5.5 5.7

Unknown Ft EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 4.6 5.3 4.9 5.2 5.5 4.3 6.1 5.5 5.7

σ31 = 0.2

Known Ft EF 5.0 5.5 5.0 4.0 4.5 6.7 5.9 6.2 4.9

(LSFM) BF 5.2 6.6 4.8 4.7 5.7 6.9 5.8 6.9 5.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 4.6 5.3 4.8 5.3 5.5 4.3 6.0 5.5 5.7

Unknown Ft EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 4.6 5.3 4.9 5.2 5.5 4.3 6.1 5.5 5.7

σ31 = 0.8

Known Ft EF 5.6 4.3 5.5 4.5 5.6 5.3 4.8 5.2 4.0

(LSFM) BF 6.3 5.7 6.5 4.9 6.0 5.5 5.0 6.4 4.9

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 4.6 5.3 4.7 5.3 5.5 4.3 6.0 5.5 5.7

Unknown Ft EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 4.5 5.3 4.9 5.2 5.6 4.3 6.0 5.5 5.7

Note: True size is 5% 199



Table 14: Case 2, The Size (%) of F-test When Ft Is I (1) Where σ21 = 0.2 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 5.4 6.2 5.4 5.0 4.0 6.1 5.7 6.1 5.4

(LSFM) BF 6.1 6.5 5.5 5.4 4.9 6.4 6.1 6.2 6.0

Unknown Ft EF 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 4.6 5.2 5.1 6.5 6.3 5.0 6.5 5.3 6.4

Unknown Ft EF 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 4.6 5.1 5.1 6.0 5.9 4.6 5.5 4.8 5.7

σ31 = 0.2

Known Ft EF 5.8 6.3 5.0 4.4 4.0 6.2 5.4 6.3 5.2

(LSFM) BF 6.3 7.2 5.3 5.0 5.2 6.6 6.1 6.4 5.4

Unknown Ft EF 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 4.6 5.2 5.2 6.5 6.3 5.0 6.5 5.3 6.4

Unknown Ft EF 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 4.6 5.1 5.0 6.1 5.9 4.6 5.4 4.8 5.7

σ31 = 0.8

Known Ft EF 5.1 4.4 5.6 4.5 5.7 4.8 4.5 5.1 4.6

(LSFM) BF 6.5 5.2 6.0 5.3 5.4 5.7 4.7 5.9 5.1

Unknown Ft EF 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 4.6 5.1 5.2 6.6 6.3 5.0 6.5 5.3 6.4

Unknown Ft EF 99.7 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 4.6 5.1 5.0 6.2 5.9 4.6 5.4 4.8 5.7
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Table 15: Case 2, The Size (%) of F-test When Ft Is I (1) Where σ21 = 0.8 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 22.7 20.6 11.7 19.8 15.1 10.3 22.6 18.4 8.4

(LSFM) BF 11.3 11.2 7.3 12.0 11.5 8.7 19.0 16.0 8.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9

(CupBC) BF 30.4 22.9 14.5 57.0 49.8 22.6 85.8 82.9 47.7

Unknown Ft EF 98.5 99.9 99.9 96.4 99.9 99.9 89.2 99.9 99.9

(CupFM) BF 8.4 5.7 5.1 5.9 5.4 4.5 4.9 3.5 5.3

σ31 = 0.2

Known Ft EF 21.9 19.7 12.5 20.9 15.9 9.2 22.8 19.6 8.7

(LSFM) BF 11.3 11.0 6.9 13.3 9.9 9.2 19.6 15.8 9.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9

(CupBC) BF 30.4 23.0 14.5 57.0 49.8 22.6 85.9 82.9 47.7

Unknown Ft EF 98.5 99.9 99.9 96.4 99.9 99.9 89.2 99.9 99.5

(CupFM) BF 8.4 5.9 5.1 5.9 5.4 4.5 4.9 3.5 5.2

σ31 = 0.8

Known Ft EF 23.2 18.7 11.9 21.6 16.3 9.1 23.8 19.0 9.4

(LSFM) BF 13.2 9.7 7.5 14.2 10.8 8.0 20.1 14.7 9.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.9

(CupBC) BF 31.0 23.3 14.6 56.9 49.6 23.0 85.8 82.9 47.6

Unknown Ft EF 98.4 99.9 99.9 96.4 99.9 99.9 89.3 99.9 99.9

(CupFM) BF 8.3 5.9 5.1 6.0 5.5 4.4 4.9 3.5 5.2
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Table 16: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0 and σ31 = 0 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 86.9 99.6 100.0 94.3 99.8 100.0 97.6 100.0 100.0

(LSFM) BF 89.0 99.6 100.0 94.4 99.8 100.0 98.6 100.0 100.0

Unknown Ft EF 64.0 92.0 100.0 77.1 97.0 100.0 89.1 99.4 100.0

(CupBC) BF 65.9 92.9 100.0 79.6 96.8 100.0 90.1 99.4 100.0

Unknown Ft EF 64.0 91.9 100.0 77.2 97.0 100.0 88.8 99.4 100.0

(CupFM) BF 65.3 92.9 100.0 79.7 96.8 100.0 90.2 99.4 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 33.0 66.7 98.1 43.4 81.2 99.3 56.6 89.3 100.0

(LSFM) BF 35.0 69.9 97.8 45.2 81.8 99.3 60.7 89.0 100.0

Unknown Ft EF 13.1 31.0 75.1 15.9 46.4 84.9 29.3 62.4 96.4

(CupBC) BF 13.3 34.6 75.5 18.6 49.4 85.6 33.6 62.6 96.3

Unknown Ft EF 13.9 30.9 75.2 15.9 46.3 84.9 29.4 62.3 96.4

(CupFM) BF 13.8 33.9 75.5 18.6 49.2 85.5 33.3 62.5 96.3

Note: Ft follows an I (1) process hereafter
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Table 17: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0 and σ31 = 0.2 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 86.1 99.3 100.0 95.0 99.8 100.0 97.2 100.0 100.0

(LSFM) BF 88.6 99.6 100.0 95.2 99.8 100.0 98.8 100.0 100.0

Unknown Ft EF 64.3 91.3 100.0 78.0 96.4 100.0 89.2 99.4 100.0

(CupBC) BF 65.6 92.7 100.0 79.8 96.6 100.0 90.7 99.5 100.0

Unknown Ft EF 63.8 91.4 100.0 78.0 96.4 100.0 89.2 99.4 100.0

(CupFM) BF 65.3 92.5 100.0 79.7 96.6 100.0 90.8 99.5 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 32.8 67.6 98.0 43.3 80.8 99.3 55.8 90.3 100.0

(LSFM) BF 35.6 70.4 98.0 45.0 82.4 99.4 61.5 90.9 100.0

Unknown Ft EF 13.4 30.6 75.7 15.5 45.9 85.6 32.0 63.6 96.3

(CupBC) BF 14.3 33.1 75.6 19.0 48.5 85.6 34.3 64.1 96.2

Unknown Ft EF 14.0 30.4 75.7 15.3 45.2 85.5 31.7 63.8 96.3

(CupFM) BF 14.7 32.5 75.6 18.7 48.6 85.5 34.2 63.7 96.3
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Table 18: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0 and σ31 = 0.8 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 85.4 99.3 100.0 92.9 99.9 100.0 97.9 100.0 100.0

(LSFM) BF 88.3 99.4 100.0 93.5 100.0 100.0 98.9 100.0 100.0

Unknown Ft EF 63.9 92.7 100.0 77.2 96.6 100.0 89.7 99.5 100.0

(CupBC) BF 65.0 93.4 100.0 78.9 96.7 100.0 90.8 99.6 100.0

Unknown Ft EF 63.9 92.7 100.0 77.3 96.5 100.0 89.6 99.5 100.0

(CupFM) BF 64.5 93.4 100.0 78.8 96.7 100.0 90.7 99.6 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 30.1 71.1 97.3 43.8 77.6 99.2 59.8 91.4 99.9

(LSFM) BF 34.4 71.5 97.6 44.5 80.2 99.2 63.8 91.4 99.9

Unknown Ft EF 13.2 29.6 75.9 15.0 46.2 87.8 32.7 65.3 95.8

(CupBC) BF 13.7 33.4 75.8 17.7 46.2 88.1 35.0 65.5 96.0

Unknown Ft EF 13.1 28.8 75.8 14.9 45.9 87.8 32.4 65.2 95.8

(CupFM) BF 13.5 32.5 75.6 17.6 46.1 88.1 34.6 65.3 95.9
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Table 19: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0.2 and σ31 = 0 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 85.5 99.6 100.0 94.2 99.8 100.0 97.7 100.0 100.0

(LSFM) BF 89.1 99.7 100.0 94.9 99.8 100.0 98.2 100.0 100.0

Unknown Ft EF 63.6 92.1 100.0 77.4 96.9 100.0 89.0 99.4 100.0

(CupBC) BF 66.4 93.4 100.0 80.0 96.7 100.0 90.2 99.4 100.0

Unknown Ft EF 63.2 92.2 100.0 76.8 96.8 100.0 88.9 99.4 100.0

(CupFM) BF 65.6 93.1 100.0 79.4 96.6 100.0 90.0 99.4 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 30.6 64.5 97.8 43.2 81.5 99.2 56.5 89.1 100.0

(LSFM) BF 34.4 70.2 97.9 45.9 82.3 99.3 59.4 89.7 100.0

Unknown Ft EF 13.1 32.2 75.3 16.0 47.2 85.4 30.6 62.2 96.6

(CupBC) BF 14.3 34.2 75.6 19.8 50.5 85.9 35.4 64.1 96.7

Unknown Ft EF 12.7 31.2 75.0 15.3 47.0 85.5 30.0 61.8 96.4

(CupFM) BF 13.9 32.7 75.3 18.4 48.9 85.3 33.1 63.0 96.5

205



Table 20: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0.2 and σ31 = 0.2 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 84.5 99.3 100.0 94.5 99.8 100.0 97.3 100.0 100.0

(LSFM) BF 87.8 99.6 100.0 95.0 99.7 100.0 98.4 100.0 100.0

Unknown Ft EF 64.4 91.6 99.9 77.8 96.5 100.0 89.2 99.4 100.0

(CupBC) BF 65.5 93.0 100.0 79.9 96.7 100.0 90.6 99.4 100.0

Unknown Ft EF 63.4 91.6 99.9 77.5 96.5 100.0 89.1 99.3 100.0

(CupFM) BF 64.8 92.8 100.0 79.3 96.4 100.0 90.2 99.4 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 31.0 67.3 98.0 43.9 81.0 99.4 55.9 89.8 100.0

(LSFM) BF 35.7 70.8 98.1 45.6 82.1 99.5 60.5 90.8 100.0

Unknown Ft EF 12.9 31.2 75.5 16.4 44.8 85.5 32.8 63.8 96.0

(CupBC) BF 14.2 33.6 75.9 19.8 48.9 86.0 36.2 64.5 96.3

Unknown Ft EF 12.6 30.7 75.1 15.6 45.2 85.7 32.2 63.4 96.1

(CupFM) BF 14.3 32.5 75.6 18.4 48.0 85.5 33.5 63.7 96.0
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Table 21: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0.2 and σ31 = 0.8 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 85.7 99.3 100.0 92.9 99.7 100.0 98.9 100.0 100.0

(LSFM) BF 88.5 99.7 100.0 92.9 99.9 100.0 98.9 100.0 100.0

Unknown Ft EF 62.4 91.7 100.0 75.7 96.6 100.0 90.8 99.3 100.0

(CupBC) BF 65.1 92.7 100.0 78.3 97.0 100.0 92.2 99.3 100.0

Unknown Ft EF 61.4 91.5 100.0 75.3 96.4 100.0 90.7 99.3 100.0

(CupFM) BF 64.7 92.5 100.0 78.0 96.8 100.0 91.5 99.3 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 31.8 70.1 97.5 42.8 77.4 99.2 60.4 90.1 100.0

(LSFM) BF 34.7 70.7 97.8 44.5 80.2 99.2 62.2 90.6 100.0

Unknown Ft EF 12.7 31.5 76.4 15.9 46.0 87.1 33.2 64.0 95.8

(CupBC) BF 14.6 34.4 76.5 18.4 48.4 87.4 36.4 65.4 96.4

Unknown Ft EF 12.2 30.6 76.4 15.3 46.0 87.0 33.3 63.0 95.8

(CupFM) BF 14.1 33.8 75.9 17.3 47.0 86.8 35.1 63.9 96.3
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Table 22: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0.8 and σ31 = 0 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 82.4 99.2 100.0 91.1 99.9 100.0 94.4 99.9 100.0

(LSFM) BF 88.0 99.6 100.0 94.9 99.9 100.0 98.5 99.9 100.0

Unknown Ft EF 59.3 90.5 99.9 68.3 94.9 100.0 78.0 97.8 100.0

(CupBC) BF 77.3 94.5 100.0 89.4 99.2 100.0 98.3 100.0 100.0

Unknown Ft EF 61.2 91.2 99.9 76.3 97.1 100.0 88.1 99.4 100.0

(CupFM) BF 67.5 92.1 99.9 78.0 97.4 100.0 87.5 99.2 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 21.7 59.5 97.9 26.0 76.0 99.4 31.5 85.1 99.9

(LSFM) BF 32.8 71.2 97.8 39.2 82.6 99.6 53.6 92.7 100.0

Unknown Ft EF 11.4 32.6 74.2 14.7 45.2 85.5 16.1 51.2 92.5

(CupBC) BF 41.6 52.4 81.9 64.4 78.0 91.4 86.0 94.0 99.0

Unknown Ft EF 12.5 29.4 72.9 19.5 46.4 83.1 33.2 64.8 96.1

(CupFM) BF 17.4 33.1 74.5 22.3 47.1 83.9 32.2 62.8 96.2
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Table 23: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0.8 and σ31 = 0.2 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 80.7 98.8 100.0 90.9 99.7 100.0 93.5 99.9 100.0

(LSFM) BF 88.8 99.3 100.0 95.5 99.7 100.0 99.0 100.0 100.0

Unknown Ft EF 58.0 90.8 99.8 67.7 94.4 100.0 77.0 97.9 100.0

(CupBC) BF 76.3 95.6 100.0 89.8 98.3 100.0 97.9 100.0 100.0

Unknown Ft EF 60.4 91.0 99.9 75.8 96.3 100.0 87.7 99.1 100.0

(CupFM) BF 65.4 92.1 99.9 77.6 96.4 100.0 87.4 99.1 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 20.6 57.8 97.6 27.3 76.0 99.5 33.4 85.1 100.0

(LSFM) BF 32.7 70.7 98.0 41.4 85.3 99.6 55.7 93.3 100.0

Unknown Ft EF 11.9 33.3 75.2 14.4 44.9 86.5 16.3 51.1 91.9

(CupBC) BF 42.8 53.5 82.4 64.0 78.3 92.1 86.2 94.6 98.7

Unknown Ft EF 12.6 29.7 72.8 19.4 47.1 84.9 32.7 62.8 95.6

(CupFM) BF 18.2 33.2 74.2 21.9 47.4 84.9 32.0 60.9 95.6
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Table 24: Case 2, The Size-adjusted Power (%) of F-test Where σ21 = 0.8 and σ31 = 0.8 (Ha : λi 6= 0 for all i)
Strong dependence: λi ∼ IIDU (0.2, 0.5)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 79.0 99.1 100.0 88.6 99.5 100.0 93.6 100.0 100.0

(LSFM) BF 87.9 99.8 100.0 94.2 99.9 100.0 98.5 100.0 100.0

Unknown Ft EF 55.3 89.3 99.9 66.7 94.2 100.0 76.0 97.7 100.0

(CupBC) BF 76.2 94.8 99.9 89.1 98.5 100.0 98.9 99.9 100.0

Unknown Ft EF 59.0 90.6 99.9 75.5 96.2 100.0 88.2 99.7 100.0

(CupFM) BF 65.8 91.4 99.9 77.4 96.3 100.0 87.9 99.6 100.0

Weak dependence: λi ∼ IIDU (0.01, 0.2)

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

Known Ft EF 19.7 60.9 97.7 26.2 70.7 98.9 28.4 82.5 100.0

(LSFM) BF 33.9 70.1 98.0 41.9 80.8 99.1 53.1 92.6 100.0

Unknown Ft EF 10.9 34.9 74.6 14.1 43.8 87.4 17.4 51.1 91.6

(CupBC) BF 40.3 54.8 81.1 62.9 76.2 93.1 86.5 95.6 98.4

Unknown Ft EF 12.5 29.8 73.0 18.4 44.2 86.8 32.5 62.6 95.5

(CupFM) BF 18.6 33.4 73.7 21.0 44.4 86.1 31.1 61.4 95.3
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Table 25: Case 2, The Size (%) of F-test under Heteroskedasticity Where σ21 = 0 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 18.3 14.8 14.2 17.6 17.2 18.9 17.2 17.9 17.7

(LSFM) BF 5.5 5.7 4.6 7.0 5.4 5.4 4.8 4.1 4.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 7.0 6.4 5.8 4.8 6.9 5.7 5.9 5.0 5.9

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 6.8 6.4 5.8 4.6 6.9 5.7 5.9 5.0 5.9

σ31 = 0.2

Known Ft EF 17.0 16.4 15.8 17.6 17.0 18.4 18.3 18.7 18.8

(LSFM) BF 6.1 5.5 5.9 6.4 6.2 6.8 4.6 4.8 5.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 7.0 6.4 5.8 4.8 6.9 5.7 5.9 5.0 5.9

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 6.8 6.4 5.8 4.6 6.9 5.7 5.9 5.0 5.9

σ31 = 0.8

Known Ft EF 14.9 16.1 15.7 16.5 16.6 17.6 18.5 20.8 19.0

(LSFM) BF 6.0 5.9 5.7 6.4 4.6 5.8 5.4 5.4 4.9

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 7.0 6.4 5.8 4.8 6.9 5.7 5.9 5.0 5.9

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 6.8 6.4 5.8 4.6 6.9 5.7 5.9 5.0 5.9
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Table 26: Case 2, The Size (%) of F-test under Heteroskedasticity Where σ21 = 0.2 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 28.8 28.6 23.8 24.8 25.1 20.3 21.6 22.8 16.3

(LSFM) BF 5.1 6.1 5.4 6.5 5.2 5.0 6.3 5.8 4.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 7.2 7.4 6.4 6.9 8.7 7.2 13.2 9.3 8.7

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 6.4 6.3 5.3 4.0 6.8 6.0 4.8 4.5 6.1

σ31 = 0.2

Known Ft EF 27.0 26.7 25.3 25.5 23.4 22.1 20.6 22.2 17.3

(LSFM) BF 6.0 6.6 6.4 6.4 6.3 6.2 5.8 5.7 4.7

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 7.2 7.4 6.4 6.9 8.8 7.2 13.2 9.3 8.7

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 6.4 6.3 5.5 4.0 6.7 6.0 4.8 4.5 6.1

σ31 = 0.8

Known Ft EF 25.0 28.6 24.2 26.7 22.8 23.6 21.8 19.5 21.6

(LSFM) BF 11.1 7.4 6.3 6.5 8.4 6.9 6.1 5.4 7.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 7.3 7.3 6.4 7.0 8.8 7.2 13.3 9.3 8.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 6.5 6.3 5.4 3.9 6.7 6.0 4.8 4.5 6.1
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Table 27: Case 2, The Size (%) of F-test under Heteroskedasticity Where σ21 = 0.8 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 47.2 42.2 31.5 44.4 41.1 27.4 43.4 37.9 24.0

(LSFM) BF 7.8 7.5 6.3 8.8 9.8 4.1 12.2 10.2 6.2

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 14.1 12.4 8.8 27.0 24.2 14.1 69.7 54.1 26.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 98.9 99.9 99.9

(CupFM) BF 9.7 7.2 5.6 7.0 6.7 5.5 4.7 3.4 5.9

σ31 = 0.2

Known Ft EF 46.6 42.3 34.1 47.5 36.4 29.2 42.5 40.0 24.7

(LSFM) BF 9.4 9.6 6.3 11.1 8.3 7.3 9.5 10.7 7.2

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 13.9 12.4 8.7 26.9 24.1 14.1 69.7 54.1 26.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 98.9 99.9 99.9

(CupFM) BF 9.8 7.2 5.7 7.0 6.7 5.5 4.7 3.4 5.9

σ31 = 0.8

Known Ft EF 41.7 41.9 32.5 45.6 31.6 28.9 46.2 39.9 25.9

(LSFM) BF 17.2 10.6 5.9 11.2 14.9 8.0 13.9 12.2 10.4

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 13.9 12.6 8.7 26.9 23.9 14.1 69.7 54.0 26.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 98.8 99.9 99.9

(CupFM) BF 9.9 6.9 5.7 6.9 6.7 5.5 4.6 3.4 5.9
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Table 28: Case 2, The Size (%) of F-test under Serial Correlation Where σ21 = 0 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 44.6 53.3 58.7 64.3 72.7 81.9 84.8 93.9 98.5

(LSFM) BF 45.6 54.3 60.6 67.9 76.0 83.6 87.1 94.7 98.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 32.4 31.7 32.1 59.5 61.1 62.1 97.5 97.9 98.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 31.4 30.4 32.0 58.7 60.8 61.7 97.0 97.8 98.6

σ31 = 0.2

Known Ft EF 45.7 54.3 59.2 63.1 73.7 83.0 84.5 94.4 98.2

(LSFM) BF 46.8 56.4 60.9 67.3 76.4 84.5 87.4 94.9 98.4

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 32.4 31.6 32.1 59.4 61.1 62.1 97.5 97.9 98.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 31.3 30.6 32.0 58.7 60.8 61.7 97.0 97.8 98.6

σ31 = 0.8

Known Ft EF 44.1 52.4 57.4 62.6 74.5 81.8 86.6 94.4 98.2

(LSFM) BF 44.8 55.4 59.5 65.9 77.8 83.2 88.0 95.7 98.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 32.3 31.3 32.1 59.6 61.1 62.2 97.5 97.9 98.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 31.4 30.2 31.8 58.6 60.8 61.9 97.0 97.8 98.6
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Table 29: Case 2, The Size (%) of F-test under Serial Correlation Where σ21 = 0.2 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 44.5 55.6 62.2 64.9 76.0 83.9 85.0 95.2 98.9

(LSFM) BF 45.7 56.0 63.8 68.8 78.7 84.9 88.2 95.5 98.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 33.3 32.9 32.9 61.3 64.3 64.3 97.3 99.2 98.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 32.5 31.2 31.6 60.2 61.6 62.3 96.6 98.6 98.2

σ31 = 0.2

Known Ft EF 44.1 55.8 63.0 65.1 75.7 84.7 84.9 94.3 98.6

(LSFM) BF 46.1 57.5 64.9 68.0 78.7 85.4 88.3 95.2 98.6

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 33.3 32.9 32.9 61.3 64.3 64.3 97.3 99.2 98.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 32.4 31.1 31.6 60.1 61.7 62.3 96.5 98.6 98.2

σ31 = 0.8

Known Ft EF 42.5 53.6 61.7 63.2 75.7 83.3 87.5 95.0 98.8

(LSFM) BF 44.6 55.6 63.4 65.7 77.4 85.6 89.5 96.7 98.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 33.3 32.9 32.8 61.4 64.4 64.2 97.3 99.2 98.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 32.0 31.4 31.7 60.0 61.7 62.1 96.6 98.6 98.2

215



Table 30: Case 2, The Size (%) of F-test under Serial Correlation Where σ21 = 0.8 (H0 : λi = 0 for all i)

D.F.(num, den) 10, 89 10, 189 10, 489 20, 179 20, 379 20, 979 50, 449 50, 949 50, 2449

(n, T ) (10, 10) (10, 20) (10, 50) (20, 10) (20, 20) (20, 50) (50, 10) (50, 20) (50, 50)

σ31 = 0

Known Ft EF 51.0 68.1 79.8 64.0 85.3 94.0 82.9 97.2 99.7

(LSFM) BF 51.4 71.3 82.0 65.4 85.9 94.7 84.0 97.4 99.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 77.2 80.0 66.4 97.0 98.8 95.8 100.0 100.0 100.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 54.2 51.9 41.7 78.8 80.9 72.1 99.1 99.2 99.4

σ31 = 0.2

Known Ft EF 50.5 70.2 80.2 63.7 84.1 94.8 81.8 97.4 99.7

(LSFM) BF 51.0 71.1 80.1 64.7 86.0 94.5 82.4 97.3 99.8

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 77.0 80.3 66.3 97.0 98.8 95.9 100.0 100.0 100.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 54.5 52.0 41.6 78.8 80.8 72.3 99.1 99.2 99.4

σ31 = 0.8

Known Ft EF 49.7 67.0 79.8 64.7 84.6 93.9 79.0 96.6 99.4

(LSFM) BF 50.1 69.2 81.2 65.6 85.9 94.7 81.2 97.5 99.5

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupBC) BF 76.7 80.4 66.4 97.1 98.8 96.0 100.0 100.0 100.0

Unknown Ft EF 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

(CupFM) BF 54.7 51.7 41.2 79.0 80.9 72.0 99.1 99.2 99.4
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Appendix: Proofs of Lemmas, Theorems, and
Propositions

This appendix includes proofs for the main results in the text.

A Proof of Lemma 1

Proof. It is straightforward to prove part 1 with the given assumptions, so omitted

here. For part 2, one can find the complete proof in Bai (2003).

B Proof of Theorem 1

We start from the lemma below. In this lemma, we check the consistency of the

F -statistic when Ft is observable. First, note that given our assumptions, we have

the following results using central limit theorem (CLT).

For each t, as n→∞,

1√
n

n∑
i=1

λiuit
d→ N(0, σ2φλ).

For each i, as T →∞,

1√
T

T∑
t=1

Ftuit
d→ N(0, σ2φF ).

Lemma 1 (B) Assume (n, T )
seq→∞. If Ft is observable, then

Fλ =
RRSS − URSS

URSS

(nT − n)

n

p→ 1.
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Proof. Because λi can be estimated using least squares, we have

λ̃i =

∑T
t=1 Ftuit∑T
t=1 F

2
t

,

RRSS =
n∑
i=1

T∑
t=1

y2it,

and

URSS =

n∑
i=1

T∑
t=1

(
yit − λ̃iFt

)2
.

Then,

Fλ =
(RRSS − URSS) /n

URSS/ (nT − n)

can be readily obtained.

1. First, we consider the denominator.

URSS

(nT − n)
=

1

n (T − 1)

n∑
i=1

T∑
t=1

(
yit − λ̃iFt

)2
=

1

n (T − 1)

n∑
i=1

T∑
t=1

[
uit −

(
λ̃i − λi

)
Ft

]2
=

1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2it +

(
λ̃i − λi

)2
F 2t − 2

(
λ̃i − λi

)
uitFt

]

=
1

n (T − 1)

n∑
i=1

T∑
t=1

u2it +
1

n (T − 1)

n∑
i=1

(
λ̃i − λi

)2 T∑
t=1

F 2t

− 2

n (T − 1)

n∑
i=1

(
λ̃i − λi

) T∑
t=1

uitFt

= I + II + III

Note that 1√
T

∑T
t=1 uitFt = Op (1) by a CLT since there is no correlation between

uit and Ft.
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Consider I. It is easy to see that

I =
1

n (T − 1)

n∑
i=1

T∑
t=1

u2it ≈
1

nT

n∑
i=1

T∑
t=1

u2it

p→ σ2

as (n, T )
seq→∞.

For II and III, one can show that

II =
1

n (T − 1)

n∑
i=1

(
λ̃i − λi

)2 T∑
t=1

F 2t

≈ 1

T

1

n

n∑
i=1

{√
T
(
λ̃i − λi

)}2 1

T

T∑
t=1

F 2t = Op

(
1

T

)
= op (1)

and

III =
2

n (T − 1)

n∑
i=1

(
λ̃i − λi

) T∑
t=1

uitFt

≈ 1

T

2

n

n∑
i=1

{√
T
(
λ̃i − λi

)} 1√
T

T∑
t=1

uitFt = Op

(
1

T

)
= op (1)

using
1

n

n∑
i=1

{√
T
(
λ̃i − λi

)}2
= Op (1) ,

1

T

T∑
t=1

F 2t = Op (1) ,

and
1√
T

T∑
t=1

uitFt = Op (1)

provided uit and Ft are uncorrelated. Hence, for the denominator we conclude

URSS

(nT − n)

p→ σ2
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as (n, T )
seq→∞.

2. Next, we turn to the numerator.

(RRSS − URSS)

n
=

1

n

n∑
i=1

T∑
t=1

y2it −
1

n

n∑
i=1

T∑
t=1

(
yit − λ̃iFt

)2
=

1

n

n∑
i=1

T∑
t=1

[
u2it − u2it −

(
λ̃i − λi

)2
F 2t + 2

(
λ̃i − λi

)
uitFt

]

= − 1

n

n∑
i=1

{√
T
(
λ̃i − λi

)}2 1

T

T∑
t=1

F 2t

+
2

n

n∑
i=1

{√
T
(
λ̃i − λi

)} 1√
T

T∑
t=1

uitFt

= I + II.

Note that in the constrained regression, we have yit = λiFt + uit = uit with the

restriction λi = 0 for all i.

Consider I first. For a fixed n, we have

I = − 1

n

n∑
i=1

{√
T
(
λ̃i − λi

)}2 1

T

T∑
t=1

F 2t

p→ − 1

n

n∑
i=1

Z2i φF

where
√
T
(
λ̃i − λi

)
d→ Zi ∼ N(0, σ2φ−1F ) and 1

T

∑T
t=1 F

2
t

p→ φF as T →∞. As

a result, we have 1
n

∑n
i=1 Z

2
i φF → φFE(Z2i ) = φFσ

2φ−1F = σ2 as n→∞.

Hence, one concludes that

I
p→ −σ2

as (n, T )
seq→∞.
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For II, it can be shown that

II =
2

n

n∑
i=1

{√
T
(
λ̃i − λi

)} 1√
T

T∑
t=1

uitFt

p→ 2σ2

as (n, T )
seq→∞ using 1√

T

∑T
t=1 uitFt

d→ N (0, σ2φF ) as T →∞.

Combining the results, we obtain that

(RRSS − URSS)

n

p→ σ2

as (n, T )
seq→∞.

3. Finally, we conclude that

Fλ =
RRSS − URSS

URSS

(nT − n)

n

p→ 1

which implies that the F -statistic gets centered at 1 as (n, T )
seq→ ∞.

Given the above results, for the proof of Theorem 1 we write

Fλ =
Rλ

σ̂2

where Rλ = (RRSS−URSS)
n

and σ̂2 = URSS
(nT−n) using a set up which is similar to Orme

and Yamagata (2006). Rearranging the terms, we have

√
n (Fλ − 1) =

1

σ̂2
√
n
(
Rλ − σ̂2

)
.
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Proof. Expanding the equations, we have

Rλ − σ̂2 =
(RRSS − URSS)

n
− URSS

(nT − n)

=
1

n

n∑
i=1

T∑
t=1

[
−
(
λ̃i − λi

)2
F 2t + 2

(
λ̃i − λi

)
uitFt

]

− 1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2it +

(
λ̃i − λi

)2
F 2t − 2

(
λ̃i − λi

)
uitFt

]

= − 1

nT

n∑
i=1

T∑
t=1

{√
T
(
λ̃i − λi

)}2
F 2t

+
2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̃i − λi

)}
uitFt

− 1

n (T − 1)

n∑
i=1

T∑
t=1

u2it −
1

nT (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̃i − λi

)}2
F 2t

+
2

n
√
T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̃i − λi

)}
uitFt

= I + II + III + IV + V.

Consider I. It can be shown that

I = − 1

n

n∑
i=1

[√
T
(
λ̃i − λi

)]2 [ 1

T

T∑
t=1

F 2t

]

= − 1

n

n∑
i=1

[
1√
T

T∑
t=1

uitFt

]2 [
1

T

T∑
t=1

F 2t

]−1
= Op (1) .

For II,

II =
2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̃i − λi

)}
uitFt

=
2

n

n∑
i=1

[
1√
T

T∑
t=1

uitFt

]2 [
1

T

T∑
t=1

F 2t

]−1
= Op (1) .
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For III,

III = − 1

n

n∑
i=1

1

T − 1

T∑
t=1

u2it = Op (1) .

For IV and V , as already shown above,

IV ≈ − 1

n

n∑
i=1

{√
T
(
λ̃i − λi

)}2 1

T 2

T∑
t=1

F 2t = Op

(
1

T

)
= op (1)

and

V ≈ 2

n

n∑
i=1

{√
T
(
λ̃i − λi

)} 1

T 3/2

T∑
t=1

uitFt = Op

(
1

T

)
= op (1) .

After rearranging all the terms, one has

Rλ − σ̂2 =
1

n

n∑
i=1

[
1√
T

T∑
t=1

uitFt

]2 [
1

T

T∑
t=1

F 2t

]−1

− 1

n

n∑
i=1

1

T − 1

T∑
t=1

u2it + op (1)

and accordingly

√
n
(
Rλ − σ̂2

)
=

1√
n

n∑
i=1

[
1√
T

T∑
t=1

uitFt

]2 [
1

T

T∑
t=1

F 2t

]−1

− 1√
n

n∑
i=1

1

T − 1

T∑
t=1

u2it + op (1) .

To apply the CLT, we recall that

1√
T

T∑
t=1

uitFt
d→ Wi ∼ N(0, σ2φF )

for all i as T →∞ and establish the standard normal random variables such that

Wi√
σ2φF

∼ N(0, 1).
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Furthermore, one can construct the random variables, W 2
i

σ2φF
, such that

E

(
W 2
i

σ2φF

)
= 1

and

V ar

(
W 2
i

σ2φF

)
= 2

because W 2
i

σ2φF
follows a chi-squared distribution. Rewriting above,

E
(
W 2
i

)
= σ2φF

and

V ar
(
W 2
i

)
= 2σ4φ2F .

Hence, we have

√
n
(
Rλ − σ̂2

)
=

1√
n

[
n∑
i=1

W 2
i φ
−1
F −

n∑
i=1

σ2

]
+ op (1)

d→ N(0, 2σ4)

as n→∞. This is because E
(
W 2
i φ
−1
F − σ2

)
= σ2−σ2 = 0 and V ar

(
W 2
i φ
−1
F − σ2

)
=

2σ4.

Finally, we obtain

√
n (Fλ − 1) =

1

σ̂2
√
n
(
Rλ − σ̂2

) d→ N(0, 2)

as (n, T )
seq→∞ using σ̂2

p→ σ2.
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C Proof of Theorem 2

Next let us assume that Ft is unknown. Again, we first look at the consistency of the

F -statistic in the lemma below. Note that in this case we cannot simply use least

squares estimation and need to use the method of PCA.

Lemma 2 (B) Assume (n, T )→∞ and Ft is not observable.

1. If T
n
→ 0, then

Fλ =
RRSS − URSS

URSS

(nT − n)

n

p→ 1 +
F 2t − φF
φF

.

2. If n
T
→ 0,

Not feasible.

Proof. We check two specific cases separately, i.e., T
n
→ 0 and n

T
→ 0, following Bai

(2003).

1. Assume T
n
→ 0.

Consider the denominator. We have

URSS

(nT − n)
=

1

n (T − 1)

n∑
i=1

T∑
t=1

(
yit − λ̂iF̂t

)2
=

1

n (T − 1)

n∑
i=1

T∑
t=1

[
uit −

(
λ̂iF̂t − λiFt

)]2
=

1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2it +

(
λ̂iF̂t − λiFt

)2
− 2

(
λ̂iF̂t − λiFt

)
uit

]

=
1

n (T − 1)

n∑
i=1

T∑
t=1

u2it +
1

n (T − 1)

n∑
i=1

T∑
t=1

(
λ̂iF̂t − λiFt

)2
− 2

n (T − 1)

n∑
i=1

T∑
t=1

(
λ̂iF̂t − λiFt

)
uit

= I + II + III.
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Firstly, note that if T
n
→ 0, then

√
T
(
λ̂iF̂t − λiFt

)
d→ N (0,Wit) as (n, T )→∞

where Wit =
F 2t
φ2F
σ2φF =

F 2t
φF
σ2 by, e.g., Bai (2003).

Consider I. One can easily verify that

I =
1

n (T − 1)

n∑
i=1

T∑
t=1

u2it ≈
1

nT

n∑
i=1

T∑
t=1

u2it
p→ σ2

as (n, T )→∞.

For II and III,

II =
1

n (T − 1)

n∑
i=1

T∑
t=1

(
λ̂iF̂t − λiFt

)2
≈ 1

nT 2

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)}2
= Op

(
1

T

)

and

III =
2

n (T − 1)

n∑
i=1

T∑
t=1

(
λ̂iF̂t − λiFt

)
uit

≈ 2

nT 3/2

n∑
i=1

T∑
t=1

√
T
(
λ̂iF̂t − λiFt

)
uit

=
2

nT 3/2

n∑
i=1

T∑
t=1

Qituit = Op

(
1√
T

)

where Qit =
√
T
(
λ̂iF̂t − λiFt

)
. Note that

Qit =
√
T
(
λ̂iF̂t − λiFt

)
= Ft

(
1

T

T∑
t=1

F 2t

)−1
1√
T

T∑
s=1

Fsuis + op (1)

d→ N

(
0,
F 2t
φF
σ2
)

as (n, T )→∞.
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Accordingly, one can obtain that

URSS

(nT − n)
= I +Op

(
1

T

)
+Op

(
1√
T

)
= I +Op

(
1√
T

)
p→ σ2

as (n, T )→∞.

Next, consider the numerator.

(RRSS − URSS)

n
=

1

n

n∑
i=1

T∑
t=1

y2it −
1

n

n∑
i=1

T∑
t=1

(
yit − λ̂iF̂t

)2
=

1

n

n∑
i=1

T∑
t=1

[
u2it − u2it −

(
λ̂iF̂t − λiFt

)2
+ 2

(
λ̂iF̂t − λiFt

)
uit

]

= − 1

nT

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)}2
+

2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)}
uit

= I + II.

Consider I first.

I = − 1

nT

n∑
i=1

T∑
t=1

Q2it → −E
(
Q2it
)

= −F
2
t

φF
σ2

as (n, T )→∞ where Qit
d→ N

(
0,

F 2t
φF
σ2
)
.

227



For II,

II =
2

n
√
T

n∑
i=1

T∑
t=1

Qituit

=
2

n
√
T

n∑
i=1

T∑
t=1

Ft( 1

T

T∑
t=1

F 2t

)−1
1√
T

T∑
s=1

Fsuis

uit
=

2

n

n∑
i=1

(
1√
T

T∑
t=1

Ftuit

)(
1√
T

T∑
s=1

Fsuis

)(
1

T

T∑
t=1

F 2t

)−1

=
2

n

n∑
i=1

(
1√
T

T∑
t=1

Ftuit

)2(
1

T

T∑
t=1

F 2t

)−1
p→ 2F 2t

φF
σ2

as (n, T )→∞. To see why, it can be shown that

2

n

n∑
i=1

(
1

T

T∑
t=1

F 2t

)−1(
1√
T

T∑
s=1

Fsuis

)2

=
2

n

n∑
i=1

(
1

T

T∑
t=1

F 2t

)(
1

T

T∑
t=1

F 2t

)−2(
1√
T

T∑
s=1

Fsuis

)2

=
2

nT

n∑
i=1

T∑
t=1

F 2t

(
1

T

T∑
t=1

F 2t

)−2(
1√
T

T∑
s=1

Fsuis

)2

=
2

nT

n∑
i=1

T∑
t=1

Ft( 1

T

T∑
t=1

F 2t

)−1(
1√
T

T∑
s=1

Fsuis

)2

=
2

nT

n∑
i=1

T∑
t=1

Q2it ( = 2 times of term I).

Combining the results, we obtain that

(RRSS − URSS)

n

p→ F 2t
φF
σ2.

Hence, one concludes that

Fλ =
RRSS − URSS

URSS

(nT − n)

n

p→ F 2t
φF

= 1 +
F 2t − φF
φF
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as (n, T )→∞. Clearly, now we have the shift term which cannot be specified.

2. Assume n
T
→ 0. Note that if this is the case, then

√
n
(
λ̂iF̂t − λiFt

)
d→ N (0, Vit)

where Vit =
λ2i
φ2λ
σ2φλ =

λ2i
φλ
σ2 as in Bai (2003). However, we cannot obtain Vit

since λi = 0 for all i = 1, . . . , n under the null and φλ cannot be defined.

Next, we check the asymptotic normality of the F -statistic by proving Theorem

2 with an assumption T
n
→ 0.

Proof. For the sketch of proof, we write

Rλ − σ̂2 =
(RRSS − URSS)

n
− URSS

(nT − n)

=
1

n

n∑
i=1

T∑
t=1

[
−
(
λ̂iF̂t − λiFt

)2
+ 2

(
λ̂iF̂t − λiFt

)
uit

]

− 1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2it +

(
λ̂iF̂t − λiFt

)2
− 2

(
λ̂iF̂t − λiFt

)
uit

]

= − 1

nT

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)}2
+

2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)
uit

}
− 1

n (T − 1)

n∑
i=1

T∑
t=1

u2it

− 1

nT (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)}2
+

2

n
√
T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̂iF̂t − λiFt

)
uit

}
= I + II + III + IV + V.
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Note that IV = Op

(
1
T

)
and V = Op

(
1√
T

)
, as shown above. Next, to apply the CLT,

√
nT
(
Rλ − σ̂2

)
≈ 1√

nT

n∑
i=1

T∑
t=1

Q2it −
1√
nT

n∑
i=1

T∑
t=1

u2it + op (1) .

Again, the standard normal random variables can be defined as follows:

Qit√
F 2t
φF
σ2

d→ N(0, 1)

as (n, T )→∞. It can be also shown that

E

 Q2it
F 2t
φF
σ2

 = 1

and

V ar

 Q2it
F 2t
φF
σ2

 = 2

since Q2it
σ2φF

follows a chi-squared distribution. Then above can be rewritten by,

E
(
Q2it
)

=
F 2t
φF
σ2

and

V ar
(
Q2it
)

= 2
F 4t
φ2F
σ4.

Hence, one can see that

√
nT
(
Rλ − σ̂2

)
=

1√
nT

n∑
i=1

T∑
t=1

[
Q2it − u2it

]
+ op (1)

d→ N(
(F 2t − φF )

φF
σ2, ψ)
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if E (Q2it − u2it) =
F 2t
φF
σ2 − σ2 =

(F 2t −φF )
φF

σ2 and ψ = V ar (Q2it − u2it) < ∞ as (n, T ) →

∞. Finally, we obtain

√
nT (Fλ − 1) =

1

σ̂2
√
nT
(
Rλ − σ̂2

) d→ N(
(F 2t − φF )

φF
,
ψ

σ4
)

as (n, T )→∞ using σ̂2
p→ σ2.

D Proof of Proposition 3

We next consider the limiting distribution of the bootstrap F -statistic when Ft is

known. With the assumption (n, T )
seq→ ∞, consider the bootstrap DGP like the

following:

y∗it = λ̃iFt + uitε
∗
it

where λ̃
∗
i denotes the bootstrap least squares estimator.

We first write

F ∗λ =
R∗λ
σ̂∗2

where Rλ = (RRSS∗−URSS∗)
n

and σ̂∗2 = URSS∗

(nT−n) with

RRSS∗ =
n∑
i=1

T∑
t=1

y∗2it

and

URSS∗ =
n∑
i=1

T∑
t=1

(
y∗it − λ̃

∗
iFt

)2
.

Rearranging terms, we have

√
n (F ∗λ − 1) =

√
n
(
R∗λ − σ̂

∗2)
σ̂∗2

.

Before we sketch the proof of the consistency of the bootstrap F -statistic, we first
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derive the asymptotic distribution of it in the following lemma.

Lemma 3 (B) Assume (n, T )
seq→∞ and Ft is observable. Then

√
n (F ∗λ − 1)

d→ N(0, 2).

Proof. Expanding the terms, one has

R∗λ − σ̂∗2 =
(RRSS∗ − URSS∗)

n
− URSS∗

(nT − n)

=
1

n

n∑
i=1

T∑
t=1

[
u2itε

∗2
it − u2itε∗2it −

(
λ̃
∗
i − λ̃i

)2
F 2t + 2

(
λ̃
∗
i − λ̃i

)
uitFtε

∗
it

]

− 1

n (T − 1)

n∑
i=1

T∑
t=1

[
uitε

∗
it −

(
λ̃
∗
i − λ̃i

)
Ft

]2
=

1

n

n∑
i=1

T∑
t=1

[
−
(
λ̃
∗
i − λ̃i

)2
F 2t + 2

(
λ̃
∗
i − λ̃i

)
uitFtε

∗
it

]

− 1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2itε

∗2
it +

(
λ̃
∗
i − λ̃i

)2
F 2t − 2

(
λ̃
∗
i − λ̃i

)
uitFtε

∗
it

]

= − 1

nT

n∑
i=1

T∑
t=1

{√
T
(
λ̃
∗
i − λ̃i

)}2
F 2t +

2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̃
∗
i − λ̃i

)}
uitFtε

∗
it

− 1

n (T − 1)

n∑
i=1

T∑
t=1

u2itε
∗2
it −

1

nT (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̃
∗
i − λ̃i

)}2
F 2t

+
2

n
√
T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̃i − λi

)}
uitFtε

∗
it

= I + II + III + IV + V.

Consider I.

I = − 1

n

n∑
i=1

[√
T
(
λ̃
∗
i − λ̃i

)]2 [ 1

T

T∑
t=1

F 2t

]

= − 1

n

n∑
i=1

[
1√
T

T∑
t=1

Ftuitε
∗
it

]2 [
1

T

T∑
t=1

F 2t

]−1
= Op (1)
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since we know
√
T
(
λ̃
∗
i − λ̃i

)
= Op (1).

For II,

II =
2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̃
∗
i − λ̃i

)}
uitFtε

∗
it

=
2

n

n∑
i=1

[
1√
T

T∑
t=1

Ftuitε
∗
it

]2 [
1

T

T∑
t=1

F 2t

]−1
= Op (1) .

For III,

III = − 1

n

n∑
i=1

1

T − 1

T∑
t=1

u2itε
∗2
it = Op (1) .

For IV and V , note that

IV ≈ − 1

n

n∑
i=1

{√
T
(
λ̃
∗
i − λ̃i

)}2 1

T 2

T∑
t=1

F 2t = Op

(
1

T

)
= op (1)

and

V ≈ 2

n

n∑
i=1

{√
T
(
λ̃
∗
i − λ̃i

)} 1

T 3/2

T∑
t=1

Ftuitε
∗
it = Op

(
1

T

)
= op (1) .

After rearranging all the terms, we have

R∗λ − σ̂∗2 =
1

n

n∑
i=1

[
1√
T

T∑
t=1

Ftuitε
∗
it

]2 [
1

T

T∑
t=1

F 2t

]−1
− 1

n

n∑
i=1

1

T − 1

T∑
t=1

u2itε
∗2
it + op (1)

and

√
n
(
R∗λ − σ̂∗2

)
=

1√
n

n∑
i=1

[
1√
T

T∑
t=1

Ftuitε
∗
it

]2 [
1

T

T∑
t=1

F 2t

]−1

− 1√
n

n∑
i=1

1

T − 1

T∑
t=1

u2itε
∗2
it + op (1) .

To apply the CLT, note that

1√
T

T∑
t=1

Ftuitε
∗
it

d→ W ∗
i ∼ N(0, σ2φF )
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as T →∞ using the fact that ε∗it is an external random variable with E (ε∗it) = 0 and

E (ε∗2it ) = 1.

Hence, the standard normal random variables can be defined as

W ∗
i√

σ2φF
∼ N(0, 1)

and we can construct the random variable, W ∗2i
σ2φF

, satisfying

E

(
W ∗2
i

σ2φF

)
= 1

and

V ar

(
W ∗2
i

σ2φF

)
= 2

because W ∗2i
σ2φF

follows a chi-squared distribution.

Rewriting above, it can be shown that

E
(
W ∗2
i

)
= σ2φF

and

V ar
(
W ∗2
i

)
= 2σ4φ2F .

Next, we consider

σ̂∗2 =
URSS∗

(nT − n)
=

1

n (T − 1)

n∑
i=1

T∑
t=1

(
u∗it −

(
λ̃
∗
i − λ̃i

)
Ft

)2
=

1

n (T − 1)

n∑
i=1

T∑
t=1

u2itε
∗2
it +

1

n (T − 1)

n∑
i=1

(
λ̃
∗
i − λ̃i

)2 T∑
t=1

F 2t

− 2

n (T − 1)

n∑
i=1

(
λ̃i − λi

) T∑
t=1

uitFtε
∗
it

= I + II + III.
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For I, it is easy to see that

1

n (T − 1)

n∑
i=1

T∑
t=1

u2itε
∗2
it ≈

1

nT

n∑
i=1

T∑
t=1

u2itε
∗2
it

p→ σ2.

For II and III, it is straightforward to show II = Op

(
1
T

)
= op (1) and III =

Op

(
1
T

)
= op (1) using

√
T
(
λ̃
∗
i − λ̃i

)
= Op (1).

Combining the results above, we have

√
n
(
R∗λ − σ̂∗2

)
=

1√
n

[
n∑
i=1

(
W ∗2
i φ

−1
F − σ2

)]
+ op (1)

d→ N(0, 2σ4)

as n→∞. This is becauseE
(
W ∗2
i φ

−1
F − σ2

)
= σ2−σ2 = 0 and V ar

(
W ∗2
i φ

−1
F − σ2

)
=

2σ4. Finally, we obtain

√
n (F ∗λ − 1) =

1

σ̂∗2
√
n
(
R∗λ − σ̂∗2

) d→ N(0, 2)

as (n, T )
seq→∞ using σ̂∗2

p→ σ2.

From above, we can see that the asymptotic distribution of the bootstrap F -

statistic coincides with the empirical one: convergence to the normal distribution.

Based on this, we next sketch the proof for the validity of the bootstrap F -statistic. In

this proof, we use Kolmogorov metric which is defined asK (F,G) = supx |F (x)−G (x)| .

With an assumption (n, T )
seq→ ∞, the F -statistc and the bootstrap counterpart

can be defined as follows:

Fλ =
(RRSS − URSS) /n

URSS/ (nT − n)
=
Rλ

σ̂2
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and

F ∗λ =
(RRSS∗ − URSS∗) /n
URSS∗/ (nT − n)

=
R∗λ
σ̂∗2

.

Proof. We consider the denominator and the numerator subsequently.

1. We first treat the denominators of Fλ and F ∗λ .

For the denominators of Fλ and F ∗λ , it is already shown that

URSS

(nT − n)
= σ̂2 = σ2 +Op

(
1

T

)

and
URSS∗

(nT − n)
= σ̂∗2 = σ2 +Op

(
1

T

)
as (n, T )

seq→∞.

2. Now we treat the numerators of Fλ and F ∗λ . Notice that
√
n is the right norming

factor in this case.

Recall that we have
√
n
(
Rλ − σ̂2

) d→ N(0, 2σ4)

and √
n
(
Rλ − σ̂2

)
(2σ4)1/2

d→ N(0, 1)

as (n, T )
seq→∞.

We define L (Rλ) = P
(√

n
(
Rλ − σ̂2

)
≤ x

)
andL∗ (R∗λ) = P ∗

(√
n
(
R∗λ − σ̂

∗2) ≤ x
)
,

respectively. Note that P ∗ denotes an empirical (or bootstrap) distribution.
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Then we write

K (L (Rλ) ,L∗ (R∗λ)) = sup
x

∣∣∣∣∣∣∣∣
P

(√
n(Rλ−σ̂2)
(2σ4)1/2

≤ x

(2σ4)1/2

)
−P ∗

(√
n(R∗λ−σ̂

2)
(s2)1/2

≤ x

(s2)1/2

)
∣∣∣∣∣∣∣∣

= sup
x

∣∣∣∣∣∣∣∣∣∣∣

[
P

(√
n(Rλ−σ̂2)
(2σ4)1/2

≤ x

(2σ4)1/2

)
− Φ

(
x

(2σ4)1/2

)]
+
[
Φ
(

x

(2σ4)1/2

)
− Φ

(
x

(s2)1/2

)]
+

[
Φ
(

x

(s2)1/2

)
− P ∗

(√
n(R∗λ−σ̂

∗2)
(s2)1/2

≤ x

(s2)1/2

)]
∣∣∣∣∣∣∣∣∣∣∣

≤ sup
x

∣∣∣∣∣P
(√

n
(
Rλ − σ̂2

)
(2σ4)1/2

≤ x

(2σ4)1/2

)
− Φ

(
x

(2σ4)1/2

)∣∣∣∣∣
+ sup

x

∣∣∣∣∣Φ
(

x

(2σ4)1/2

)
− Φ

(
x

(s2)1/2

)∣∣∣∣∣
+ sup

x

∣∣∣∣∣Φ
(

x

(s2)1/2

)
− P ∗

(√
n
(
R∗λ − σ̂

∗2)
(s2)1/2

≤ x

(s2)1/2

)∣∣∣∣∣
= I + II + III

using triangle inequality where Φ (·) indicates the c.d.f. of a standard normal

distribution and s2 = V ar∗
(√

n
(
R∗λ − σ̂

∗2)).
Consider I. It can be shown that

I = sup
x

∣∣∣∣∣P
(√

n
(
Rλ − σ̂2

)
(2σ4)1/2

≤ x

(2σ4)1/2

)
− Φ

(
x

(2σ4)1/2

)∣∣∣∣∣→ 0

by Polya’s theorem since P
(√

n(Rλ−σ̂2)
(2σ4)1/2

≤ x

(2σ4)1/2

)
d→ Φ

(
x

(2σ4)1/2

)
and Φ (·) is

a continuous cdf. For details of Polya’s theorem, see, e.g., Lehmann (1999).

For II, obviously

II = sup
x

∣∣∣∣∣Φ
(

x

(2σ4)1/2

)
− Φ

(
x

(s2)1/2

)∣∣∣∣∣→ 0

using continuous mapping theorem (CMT) because s2 = V ar∗
(√

n
(
R∗λ − σ̂

∗2)) p→
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2σ4.

Lastly, one can apply Berry-Esseen theorem (see, e.g., Lehmann (1999)) to show

III → 0. That is, there exists a positive constant C such that,

III ≤ C√
n

Γ3nT
(s)3
→ 0

where Γ3nT = E∗
∣∣R∗λ − σ̂∗2∣∣3.

Combining above results, we have

I + II + III
p→ 0

and hence,

K (L (Rλ) ,L∗ (R∗λ))
p→ 0

as (n, T )
seq→∞.

E Proof of Proposition 4

Proof. We sketch the proof of the consistency of bootstrapping PCA with an as-

sumption T
n
→ 0.

Let us define first

HnT = P (τ ≤ x)

where a functional τ =
√
T
(
λ̂iF̂t − λiFt

)
.

Accordingly, the bootstrap counterpart can be defined as

HBoot = P ∗ (τ ∗ ≤ x)
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where τ ∗ =
√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
. Note that P ∗ denotes the empirical (or bootstrap)

distribution.

Recall from Bai (2003) that

√
T
(
λ̂iF̂t − λiFt

)
(Wit)

1/2

d→ N(0, 1)

where Wit =
F 2t
φF
σ2. Then we can write the following as in Proposition 3:

K (HnT , HBoot) = sup
x

∣∣∣∣∣∣∣P
(

τ

(Wit)
1/2
≤ x

(Wit)
1/2

)
− P ∗

 τ ∗(
Ŵit

)1/2 ≤ x(
Ŵit

)1/2

∣∣∣∣∣∣∣

= sup
x

∣∣∣∣∣∣∣∣∣∣∣

[
P
(

τ

(Wit)
1/2 ≤ x

(Wit)
1/2

)
− Φ

(
x

(Wit)
1/2

)]
+

[
Φ
(

x

(Wit)
1/2

)
− Φ

(
x

(Ŵit)
1/2

)]
+

[
Φ

(
x

(Ŵit)
1/2

)
− P ∗

(
τ∗

(Ŵit)
1/2 ≤ x

(Ŵit)
1/2

)]
∣∣∣∣∣∣∣∣∣∣∣

≤ sup
x

∣∣∣∣∣P
(

τ

(Wit)
1/2
≤ x

(Wit)
1/2

)
− Φ

(
x

(Wit)
1/2

)∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣∣Φ
(

x

(Wit)
1/2

)
− Φ

 x(
Ŵit

)1/2

∣∣∣∣∣∣∣

+ sup
x

∣∣∣∣∣∣∣Φ
 x(

Ŵit

)1/2
− P ∗

 τ ∗(
Ŵit

)1/2 ≤ x(
Ŵit

)1/2

∣∣∣∣∣∣∣

= I + II + III.

Consider I. It can be shown that

I = sup
x

∣∣∣∣∣P
(

T

(Wit)
1/2
≤ x

(Wit)
1/2

)
− Φ

(
x

(Wit)
1/2

)∣∣∣∣∣→ 0

since P
(

T

(Wit)
1/2 ≤ x

(Wit)
1/2

)
d→ Φ

(
x

(Wit)
1/2

)
and Φ (·) is a continuous cdf.
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We turn to II. Obviously,

II = sup
x

∣∣∣∣∣∣∣Φ
(

x

(Wit)
1/2

)
− Φ

 x(
Ŵit

)1/2

∣∣∣∣∣∣∣→ 0

using CMT because Ŵit
p→ Wit. For details of consistency of Ŵit for Wit, see Bai

(2003).

Lastly, we can apply Berry-Esseen theorem to show III → 0. That is, there exists

a positive constant C such that,

III ≤ C√
T

Γ3nT(
Ŵit

)3/2 → 0

if Γ3nT = E∗
∣∣∣λ̂∗i F̂ ∗t − λ̂iF̂t∣∣∣3 and var∗ (√T (λ̂∗i F̂ ∗t − λ̂iF̂t)) = Ŵit.

Therefore, we obtain

I + II + III
p→ 0.

and conclude that

K (HnT , HBoot)
p→ 0

as (n, T )→∞.

F Proof of Proposition 5

This section considers the validity of the bootstrap F -statistic when Ft is unknown.

With an assumption (n, T )→∞, consider the bootstrap DGP as follows:

y∗it = λ̂iF̂t + uitε
∗
it

where λ̂
∗
i F̂
∗
t denotes the bootstrap principal component estimates of above equation.
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We again write

F ∗λ =
R∗λ
σ̂∗2

where Rλ = (RRSS∗−URSS∗)
n

and σ̂∗2 = URSS∗

(nT−n) with

RRSS∗ =
n∑
i=1

T∑
t=1

y∗2it

and

URSS∗ =
n∑
i=1

T∑
t=1

(
y∗it − λ̂

∗
i F̂
∗
t

)2
.

We first derive the asymptotic distribution of the bootstrap F -statistic.

Lemma 4 (B) Assume (n, T )→∞ and T
n
→ 0 with unobservable Ft. Then,

√
nT (F ∗λ − 1)

d→ N(
(F 2t − φF )

φF
,
ψ

σ4
)

where ψ = V ar (Q∗2it − u2itε∗2it ) <∞ and

Q∗it =
√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
=

T∑
t=1

F̂t

(
1

T

T∑
t=1

F̂ 2t

)−1
1√
T

T∑
s=1

F̂suisε
∗
is + op (1) .
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Proof. For the limiting distribution of the bootstrap F -statistic, consider

R∗λ − σ̂∗2 =
(RRSS∗ − URSS∗)

n
− URSS∗

(nT − n)

=
1

n

n∑
i=1

T∑
t=1

[
−
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)2
+ 2

(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
uitε

∗
it

]

− 1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2itε

∗2
it +

(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)2
− 2

(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
uitε

∗
it

]

= − 1

nT

n∑
i=1

T∑
t=1

{√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)}2
+

2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
uitε

∗
it

}
− 1

n (T − 1)

n∑
i=1

T∑
t=1

u2itε
∗2
it −

1

nT (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)}2
+

2

n
√
T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
uitε

∗
it

}
= I + II + III + IV + V.

For I,

I = − 1

nT

n∑
i=1

T∑
t=1

{√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)}2
= − 1

nT

n∑
i=1

T∑
t=1

Q∗2it → −E
(
Q∗2it
)

= −F
2
t

φF
σ2

as (n, T )→∞ using the consistency of bootstrapping PCA.
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For II,

II =
2

n
√
T

n∑
i=1

T∑
t=1

{√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
uitε

∗
it

}

=
2

n
√
T

n∑
i=1

T∑
t=1

F̂t( 1

T

T∑
t=1

F̂ 2t

)−1
1√
T

T∑
s=1

F̂suisε
∗
is

uitε∗it
=

2

n

n∑
i=1

(
1√
T

T∑
t=1

F̂tuitε
∗
it

)(
1√
T

T∑
s=1

F̂suisε
∗
is

)(
1

T

T∑
t=1

F̂ 2t

)−1

=
2

n

n∑
i=1

(
1√
T

T∑
t=1

F̂tuitε
∗
it

)2(
1

T

T∑
t=1

F̂ 2t

)−1

=
2

nT

n∑
i=1

T∑
t=1

Q∗2it .

Note that the last equality can be shown by

2

n

n∑
i=1

(
1√
T

T∑
t=1

F̂tuitε
∗
it

)2(
1

T

T∑
t=1

F̂ 2t

)−1

=
2

n

n∑
i=1

(
1

T

T∑
t=1

F̂ 2t

)(
1

T

T∑
t=1

F̂ 2t

)−2(
1√
T

T∑
t=1

F̂tuitε
∗
it

)2

=
2

nT

n∑
i=1

T∑
t=1

F̂ 2t

(
1

T

T∑
t=1

F̂ 2t

)−2(
1√
T

T∑
t=1

F̂tuitε
∗
it

)2

=
2

nT

n∑
i=1

T∑
t=1

F̂t( 1

T

T∑
t=1

F̂ 2t

)−1
1√
T

T∑
s=1

F̂suisε
∗
is

2

=
2

nT

n∑
i=1

T∑
t=1

Q∗2it

using Q∗it =
√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
=
∑T

t=1 F̂t

(
1
T

∑T
t=1 F̂

2
t

)−1
1√
T

∑T
s=1 F̂suisε

∗
is + op (1)

as (n, T )→∞.

For III, one can easily find that

III = − 1

n (T − 1)

n∑
i=1

T∑
t=1

u2itε
∗2
it

p→ −σ2
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using an external random variable with E (ε∗2it ) = 1.

For IV and V , It can be shown that IV = Op

(
1
T

)
and V = Op

(
1√
T

)
using

√
T
(
λ̂
∗
i F̂
∗
t − λ̂iF̂t

)
= Op (1).

We finally conclude that

√
nT
(
R∗λ − σ̂∗2

)
≈ 1√

nT

n∑
i=1

T∑
t=1

Q∗2it −
1√
nT

n∑
i=1

T∑
t=1

u2itε
∗2
it + op (1)

=
1√
nT

n∑
i=1

T∑
t=1

[
Q∗2it − u2itε∗2it

]
+ op (1) .

Following a similar process to that in Theorem 2 using the consistency of boot-

strapping PCA (i.e., Q∗it for Qit), it can be shown that

√
nT
(
R∗λ − σ̂∗2

) d→ N(
(F 2t − φF )

φF
σ2, ψ∗)

where E (Q∗2it − u2itε∗2it ) =
F 2t
φF
σ2 − σ2 =

(F 2t −φF )
φF

σ2 and ψ∗ = V ar (Q∗2it − u2itε∗2it ) as

(n, T )→∞.

Hence, we obtain

√
nT (F ∗λ − 1) =

1

σ̂∗2
√
nT
(
R∗λ − σ̂∗2

) d→ N(
(F 2t − φF )

φF
,
ψ

σ4
)

as (n, T )→∞ by showing σ̂∗2
p→ σ2 and ψ∗

p→ ψ = V ar (Q2it − u2it).

Now we check the validity of the bootstrap F -statistic when Ft is unknown. With

(n, T )→∞ and T
n
→ 0, consider again

Fλ =
(RRSS − URSS) /n

URSS/ (nT − n)

and

F ∗λ =
(RRSS∗ − URSS∗) /n
URSS∗/ (nT − n)

.
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Proof. We treat the denominator first and then the numerator in a similar fashion

with the case of known factors.

1. Consider the denominators of Fλ and F ∗λ .

For the denominators of Fλ and F ∗λ , it is already shown that

URSS

(nT − n)
= σ̂2 = σ2 +Op

(
1√
T

)

and
URSS∗

(nT − n)
= σ̂∗2 = σ2 +Op

(
1√
T

)
as (n, T )→∞.

2. Now we treat the numerator. We normalize it so that we have the normal

distribution with zero mean, which is given by,

√
nT

(
Rλ − σ̂2 −

(F 2t − φF )

φF
σ2
)

d→ N(0, 2
F 4t
φ2F
σ4)

and hence,
√
nT

(
Rλ − σ̂2 −

(F 2t −φF )
φF

σ2
)

(
2
F 4t
φ2F
σ4
)1/2 d→ N(0, 1)

as (n, T )→∞. Notice that
√
nT is the right norming factor in this case.

We again define

L (Rλ) = P

(√
nT

(
Rλ − σ̂2 −

(F 2t − φF )

φF
σ2
)
≤ x

)

and

L∗ (R∗λ) = P ∗
(√

nT

(
R∗λ − σ̂∗2 −

(F 2t − φF )

φF
σ2
)
≤ x

)
.
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Using Kolmogorov metric, one writes

K (L (Rλ) ,L∗ (R∗λ))

= sup
x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P

√nT
(
Rλ−σ̂2−

(F2t −φF )
φF

σ2

)
(
2
F4t
φ2
F

σ4
)1/2 ≤ x(

2
F4t
φ2
F

σ4
)1/2


−P ∗

√nT
(
R∗λ−σ̂

∗2−(F2t −φF )
φF

σ2

)
(s′2)

1/2 ≤ x

(s′2)
1/2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= sup
x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P
√nT

(
Rλ−σ̂2−

(F2t −φF )
φF

σ2

)
(
2
F4t
φ2
F

σ4
)1/2 ≤ x(

2
F4t
φ2
F

σ4
)1/2

− Φ

 x(
2
F4t
φ2
F

σ4
)1/2




+

Φ

 x(
2
F4t
φ2
F

σ4
)1/2

− Φ

(
x

(s′2)
1/2

)
+

Φ

(
x

(s′2)
1/2

)
− P ∗

√nT
(
R∗λ−σ̂

∗2−(F2t −φF )
φF

σ2

)
(s′2)

1/2 ≤ x

(s′2)
1/2




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ sup

x

∣∣∣∣∣∣∣∣P

√
nT

(
Rλ − σ̂2 −

(F 2t −φF )
φF

σ2
)

(
2
F 4t
φ2F
σ4
)1/2 ≤ x(

2
F 4t
φ2F
σ4
)1/2

− Φ

 x(
2
F 4t
φ2F
σ4
)1/2


∣∣∣∣∣∣∣∣

+ sup
x

∣∣∣∣∣∣∣Φ
 x(

2
F 4t
φ2F
σ4
)1/2

− Φ

(
x

(s′2)1/2

)∣∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣∣∣Φ
(

x

(s′2)1/2

)
− P ∗


√
nT

(
R∗λ − σ̂

∗2 − (F 2t −φF )
φF

σ2
)

(s′2)1/2
≤ x

(s′2)1/2


∣∣∣∣∣∣∣∣

= I + II + III

where s
′2 = V ar∗

(√
nT

(
R∗λ − σ̂

∗2 − (F 2t −φF )
φF

σ2
))

p→ 2
F 4t
φ2F
σ4.
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Consider I. It can be shown that

I = sup
x

∣∣∣∣∣∣∣∣∣∣∣∣∣

P

√nT
(
Rλ−σ̂2−

(F2t −φF )
φF

σ2

)
(
2
F4t
φ2
F

σ4
)1/2 ≤ x(

2
F4t
φ2
F

σ4
)1/2


−Φ

 x(
2
F4t
φ2
F

σ4
)1/2



∣∣∣∣∣∣∣∣∣∣∣∣∣
→ 0

since P

√nT
(
Rλ−σ̂2−

(F2t −φF )
φF

σ2

)
(
2
F4t
φ2
F

σ4
)1/2 ≤ x(

2
F4t
φ2
F

σ4
)1/2

 d→ Φ

 x(
2
F4t
φ2
F

σ4
)1/2

.
For II, obviously

II = sup
x

∣∣∣∣∣∣∣Φ
 x(

2
F 4t
φ2F
σ4
)1/2

− Φ

(
x

(s′2)1/2

)∣∣∣∣∣∣∣→ 0

using s
′2 p→ 2

F 4t
φ2F
σ4.

For III, by Berry-Esseen theorem it can be shown that there exists a positive

constant C such that,

III ≤ C√
nT

Γ3nT
(s′)3

→ 0

where Γ3nT = E∗
∣∣∣∣R∗λ − σ̂∗2 − (F 2t −φF )

φF
σ2
∣∣∣∣3. Hence, we obtain

I + II + III
p→ 0,

and conclude that

K (L (Rλ) ,L∗ (R∗λ))
p→ 0

as (n, T )→∞.
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