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A METHODOLOGY FOR DEVELOPING HIGH PERFORMANCE COMPUTINGMODELS: STORM-SCALE WEATHER PREDICTIONNikos Chrisochoides,� Kelvin Droegemeier,�� Geo�rey Fox,� Kim Mills�, Ming Xue���Northeast Parallel Architectures Center, Syracuse University111 College Place, Syracuse, NY, 13244-4100��Center for Analysis and Prediction of Storms, University of Oklahoma100 East Boyd, Norman, OK 73019-0628corresponding author: Kim Mills (kim@npac.syr.edu)ABSTRACTA methodology for developing future generations ofa storm-scale weather prediction model for MassivelyParallel Processing is described. The forecast model isthe Advanced Regional Prediction System (ARPS), athree-dimensional, fully compressible, non-hydrostaticpredictive model. In the short term, the computa-tional goals include developing a portable, scalablemodel for distributed memory SIMD and MIMD archi-tectures, while preserving a high degree of modularityto support rapid design and validation, maintainabil-ity, educational goals and operational testing. Longerterm computational goals include a parallel adaptivemesh re�nement scheme. A FortranD/High Perfor-mance Fortran version of the ARPS provides portabil-ity in the current version of the model, and supportsfuture model research goals.INTRODUCTIONWe present a survey of issues by the Center for Anal-ysis and Prediction of Storms (CAPS) at the Univer-sity of Oklahoma, and the Northeast Parallel Architec-tures Center (NPAC) at Syracuse University for ap-plying parallel computing technology to operationalstorm-scale numerical weather prediction.CAPS is a National Science Foundation Science andTechnology Center with the mission of demonstrat-ing the practicability of storm-scale numerical weatherprediction. A centerpiece of this e�ort is the devel-opment of a multi-scale, scalable/parallel model{theAdvanced Regional Prediction System (ARPS){ thatis based on advanced numerical techniques and treat-ments of physical processes, and that can be appliedto weather phenomena on scales ranging from a fewkilometers and tens of minutes (individual thunder-storms) to hundreds of kilometers and several hours(storm complexes and mesoscale systems) (Droege-meier 1990; Lilly 1990). Due to the sensitivity ofsmall-scale weather to local forcing, and the futureavailability of a national network of large bandwidth

WSR-88D (formerly called NEXRAD) Doppler radars,from which the ARPS will obtain its initial conditions,CAPS views its research as a prototype foundation forself-contained regional prediction centers. A numericalweather prediction model running on massively paral-lel computers is central to this plan.NPAC is a parallel computing research center sup-ported by industry, government, and university fund-ing with the mission of applying parallel computingtechnology to large scale problems in science and in-dustry. The FortranD portable, parallel compiler is akey technology development project being carried outat NPAC and Rice within the Center for Research inParallel Computation. FortranD is a research proto-type of industry standard High Performance Fortran(High Performance Fortran Forum 1992), and is cen-tral to our plans for developing a high performanceARPS.Our principal goal for the CAPS/NPAC collabo-ration is to attain problem sizes and model execu-tion rates with the ARPS that allow us to investi-gate new scienti�c problems and, in the future, tosupport operational prediction of storm-scale events.The model must be: portable across single instruc-tion multiple data (SIMD) and multiple instructionmultiple data (MIMD) distributed memory architec-tures, workstation-based distributed computing net-works, and shared-memory vector machines; scalableover system sizes ranging from tens to thousands ofnodes; and easily interfaced to related modules fordata assimilation, visualization, and post-processing.Two hour operational forecasts will require the collec-tion of approximately 30 minutes of observational data(100 MBytes/radar x 10 or so radars), the running ofa computationally intensive data assimilation model,and �nally, the forecast model. A two hour forecastnow takes approximately one hour to produce for adomain that is sixteen times smaller than that desiredfor operational use, resulting in a loss of one hour of ef-



fective forecast time and even more time when one con-siders the time required for data ingest, quality con-trol, assimilation, and forecast product disseminationto the public. Our current e�orts are directed towardshortening the time to run the forecast system.Our methodology for developing a high performanceimplementation of ARPS is based on High Perfor-mance Fortran (HPF). We are currently producing aset of ARPS implementations in various Fortran di-alects (Fortran77, Fortran77+message passing, For-tran90, and HPF) in order to evaluate parallel soft-ware issues. A HPF version of ARPS will support theimmediate goals of model portability and scalability,as well as the linking of future ARPS development ef-forts with the development of HPF. Through HPF, weexpect to apply the latest results in parallel comput-ing research to ARPS, including numerical methods,parallel algorithms, and grid adaption techniques.THE CAPS ADVANCED REGIONALPREDICTION SYSTEM (ARPS)The ARPS forecast model is a grid-based, three-dimensional, fully compressible, nonhydrostatic pre-dictive model. The primitive equations of 
uid 
oware solved using the �nite di�erence approach withexplicit time di�erencing on a spatially-staggered gridmesh (CAPS 1992). CAPS believes model domains onthe order of 1000 x 1000 x 20 km will be required forregional-scale prediction (1 km horizontal by 0.5 kmvertical). When related tasks are ignored, such as dataobservation, data assimilation, and post-processing, aforecast model of this size is estimated to require ap-proximately 10 GigaFlops performance to model theweather in real time. Producing a two hour forecast in1.2 minutes (model 100 times faster than the weather)would require 1 TeraFlops of performance.The ARPS model is designed to exploit the paral-lelism and modularity inherent in the governing hy-drodynamical equations in order to yield a code thatis naturally scalable and adaptable to wide varietiesof parallel computer architectures (CAPS, 1992). Forexample, a set of di�erencing and averaging operatorsis used as a building block throughout the code tocalculate mixing, advection, and Coriolis terms in themomentum equations. Our short term goal is to de-velop a portable, scalable ARPS model for distributedmemory SIMD and MIMD architectures, while pre-serving a high degree of modularity to support rapiddesign and validation, maintenance, educational andoperational testing goals.Future plans for model development include: im-proved numerical methods based on higher or-der di�erencing stencils; semi-Lagrangian integrationschemes to lengthen the model timestep without de-

grading the accuracy of the solution (Staniforth andCote 1991); use of a piecewise parabolic method asan alternative to conventional gridpoint methods tomodel 
ows in regions with sharp gradients (Carpenteret al. 1990); and grid adaption techniques to providelocally high spatial resolution in appropriate regions.Semi-Lagrangian techniques (e.g., Staniforth andCote 1991) introduce more complex communicationrequirements because the future state of a given gridpoint is no longer a function of a neighboring grid pointat the previous time step, but rather is a functionof an entire set of grid points in the vicinity of thegiven grid point. Pure Lagrangian methods have beenpreviously developed for parallel systems (Trease andCerutti 1992), and we expect to take advantage of thisearlier work. Piecewise parabolic methods have beenimplemented for meteorological 
ows in one dimen-sion (Carpenter et al. 1990); expanding this methodto three dimensions, and running on parallel systemsis the subject of ongoing research (Droegemeier et al.1992).The challenge to our research team is to produce amodel for operational forecast purposes that outper-forms a uniform �ne-mesh model in both the qualityof the solution as well as the ratio of wallclock timeto model simulated time. We base our approach ona HPF version of ARPS that supports current objec-tives (portability) as well as future goals (improvednumerical methods), but most notably, the develop-ment of parallel mesh re�nement techniques. This ap-proach complements related collaborative e�orts be-tween CAPS, the Army High Performance ComputingResearch Center at the University of Minnesota, andthe Supercomputer Computations Research Instituteat Florida State University.FORTRAND/HIGH PERFORMANCE FORTRANFortranD is a Center for Research on Parallel Com-putation (CRPC) software development project beingcarried out at Rice and Syracuse Universities withNSF and DARPA funding. The goal is to producea machine-independent parallel programming model.FortranD is built upon Fortran77 and Fortran90, withextensions for expressing parallelism in the problemapplication and mapping the problem to a speci�cmachine architecture. "Decomposition" and "align-ment" directives de�ne the size and dimensionality ofthe problem arrays, as well as alignments between ar-rays. "Distribute" directives specify the mapping ofa problem to a physical machine, taking into accountcharacteristics such as topology, the communicationnetwork, the size of local memory, and the number ofprocessors. The user is involved in this process by de-sign since he or she best understands the application



code; FortranD attempts to take attempts to exploitthis information. High Performance Fortran (HPF)was established as the industry standard data paral-lel Fortran in December, 1992, with a subset of For-tran90D built into HPF.The development of FortranD is based on a syner-gism between real world problems and software devel-opment. We view parallel software as the most impor-tant obstacle to developing parallel applications, anduse evaluations of challenging application problems tode�ne extensions and improvements required in For-tranD. FortranD, and current data parallel languages,provide support for expressing regular and loosely syn-chronous problems. The language support needed toimplement our proposed parallel adaptive mesh tech-niques is also available. By developing the ARPSmodel for both MIMD and SIMD machine architec-tures, and data parallel and message passing soft-ware architectures, we will be able to identify strate-gies for ARPS model development, and the exten-sions needed in FortranD to support these strategies.Thus, we have incorporated ARPS into our FortranDbenchmark suite of industrial and scienti�c applicationcodes.COMPUTATIONAL MODELSWe will use data parallel and explicit message pass-ing computational models to implement ARPS onmassively parallel processor systems. Data parallelcode tends to be easier to understand, write, anddebug than message passing codes. Although mes-sage passing works for a large set of applications onMIMD machines, it is not completely portable. Theprogrammer must explicitly express message passing,overlap of communication and calculation, and de-composition choices. Thus, although message passingworks, a more easily-implemented approach is desir-able. Fortran77 + message passing provides portabil-ity to all MIMD machines, and Fortran90D/HPF pro-vides portability to all SIMD and MIMD machines.Message passing modelThe ARPS model is grid-based and uses a second-order �nite di�erencing scheme. Issues relevant to anexplicit Fortran 77 plus message passing model includedomain partitioning and update ordering, interproces-sor communication, and scalability{the ratio of calcu-lation to communication time, and resulting e�ciencyof the algorithm as a function of problem size andnumber of processors. The uniform structure of thecurrent version of ARPS leads to a simple decompo-sition strategy (Figure 1). For example, using our 32node Connection Machine-5 and an ARPS model ofsize 32x32x32 grid cells, we will de�ne a 4x4x2 proces-sor grid. A model subdomain of 8x8x16 grid cells will

be assigned to each processor.
send and receive left to right

4x4x2 processor grid

8x8x16 subdomain

Figure 1: Decomposition of �nite di�erence problemfor multiple processors, (see Fox et al. 1988. SolvingProblems on Concurrent Processors. Prentice Hall,Englewood Cli�s, NJ. p. 121.)The discrete di�erence and averaging operators cur-rently used require only nearest neighbor commu-nication. Grid points within a subdomain requireonly data stored in local processor memory, whilegrid points within the subdomain boundary must ac-cess data stored in a neighboring processor's memory,thereby requiring interprocessor communication. Allgrid points on a face, or plane, of a three-dimensionalsubdomain will communicate with the neighboringprocessor, and all processors will send and receive mes-sages concurrently.We are following the model development approachof CAPS by emphasizing the use of �ne grain com-munication modules that are easy to understand andmodify (CAPS 1992). While implementation of theARPS as an explicit message passing model is not yetcomplete, preliminary results indicate that communi-cation time accounts for a small percentage of modelrun time on the CM-5, and we expect very good per-formance for the message passing version of the code.Data parallel modelWe will divide our analysis of the ARPS code intodynamic modules and physics modules. The dynam-ics modules are composed of di�erencing and averag-ing operators, and are used, for example, to calcu-late turbulent mixing terms for momentum equations,or advection of potential temperature. Only nearestneighbor communication is presently required. Oneof the physics modules we examined applies Kesslerwarm rain microphysics to water vapor, liquid water,



and temperature �elds. These calculations are appliedto vertical columns within the model domain, andare computationally independent. The regular, syn-chronous structure of the ARPS model makes it wellsuited as a data parallel model and a Fortran90 versionof ARPS is nearly complete. We observed speedups of300 times for di�erencing operators, and 70 times fora physics module when comparing model run times foran 8K Connection Machine-2 and a SUN4.PARALLEL MESH DEVELOPMENTA major challenge in Numerical Weather Predic-tion (NWP) is the accurate representation of localized,small-scale features (e.g., clouds) embedded in larger-scale 
ows. Techniques to accomplish this must becomputationally e�cient in a high-performance fore-cast model, and thus the use of a uniformly high res-olution throughout the model domain is an ine�ectivesolution for present-day machines. The most commonsolution involves adapting the grid in such a way thatincreased spatial resolution is provided in regions oflarge solution error (e.g., large gradients or regionswhere the gradient changes rapidly). A number ofadaptive schemes exist, and in this paper we considersolvers based on structured meshes and re�nementtechniques based on a combination of nested gridsand equidistribution approaches. The nested gridsare generated using domain decomposition methods(tile approach), with their points redistributed usingan attraction-repulsion (AR) method which we paral-lelize using systolic algorithms.Nested GridsThe basic idea of the nested grid approach for adap-tive grid re�nement (Berger and Oliger 1984) involvescreating and deleting �ner subgrids in a backgroundmesh in order to obtain a given level of accuracy witha minimal number of grid points. Figure 2 depicts anested grid in a shock region. The nested grid ap-proach combines the advantages of both global andpointwise re�nement approaches. Similar to pointwisere�nement approaches, nested grids increase the reso-lution of a coarse grid only within a neighborhood ofmarked grid points which de�ne regions of large solu-tion error (e.g., Skamarock 1989). At the same time,data structures remain similar to those used by globalre�nement approaches. Nested grids are consideredthe logical choice for adaptive weather models whichrequire simple and fast data management routines, to-gether with optimumdata storage schemes, in order tosolve realistic size problems (Skamarock et al. 1989) .In the following paragraphs, we outline the basicalgorithm for creating nested grids and discuss associ-ated implementation di�culties on distributed mem-ory MIMD/SIMD machines. We then describe how

Figure 2: Nested grid in a shock region. The gray areaindicates the high gradient regions.domain decomposition methods resolve some of theproblems related to parallel implementation of nestedgrid algorithms.The grid generation algorithm requires as input aninitial coarse grid and a list of marked grid points on acoarse grid. The algorithm returns as output rotated,rectangular, �ner subgrids containing marked coarsegrid points while minimizing the total area of the sub-grids. The algorithm consists of the following threesteps (Berger and Oliger 1984):1. separate the marked grid points into clusters,2. �t a rotated rectangular grid to each cluster, and3. repeat steps 1 and 2 to minimize the area of thesubgrids that is unnecessarily re�ned.Two major disadvantages of this algorithm are: (i)the limitations of clustering heuristics in the �rst stepof the algorithm, and (ii) the programming complexityrequired to achieve e�cient data parallel algorithms.Some of the clustering heuristics do not work wellon all input data (Berger 1985), and other heuris-tics require complicated data structures in order tocompute the minimum spanning tree of the marked,coarse grid points. Moreover, the e�cient implementa-tion of the clustering heuristics on distributed memoryMIMD/SIMD machines is even a more di�cult prob-lem. Referring to the second disadvantage, the varioustypes of interactions between adjacent or overlappingsubgrids increase the code complexity and the commu-nication overhead required to ensure the consistency ofthe distributed data structures. Arbitrarily orientednested subgrids make impractical domain decomposi-tion methods in developing data parallel models. Thedomain decomposition partitions the computation intounbalanced tasks, and the resulting mapping creates



unbalanced workloads among processors. For nestedgrids, it is better to map computations based on aweighted-partitioning of the nested grid levels (Mc-Cormick and Quinlan 1989).The following approach helps us to resolve the clus-tering and code complexity issues. In this approach(Gropp and Keyes 1990), the generation of nested gridsis based on the decomposition of the domain, D, intorectangular subdomains, Di;j, (\tiles") so that :Di;j \Dk;l = ; and [i;jDi;j = D;@D \ @Di;j = ; if Di;j interior= closed interval if Di;j boundary;and@Di;j\@Dk;l = ; if j i�k j> 1 and j j�l j> 1= point if j i � k j= 1 and j j � l j= 1= edge if j i�k j= 1 and j j�l j= 0or j i � k j= 0 and j j � l j= 1where @D, @Di;j are the boundary of the domain Dand subdomain Di;j respectively, and @Di;j is the clo-sure of the boundary of the subdomain Di;j (Rudin1976) The domain decomposition is based on a coarsegrid over the domain D. The coarseness of the grida�ects the load balance of the computation since weare not allowed to map the computation associatedwith a tile onto more than one processor. Figure 3depicts a nested grid (or quasi-uniform grid) based onthis approach. A detailed description on the inter-action between adjacent tiles is presented in Groppand Keyes (1990). Note that the tile-approach elimi-nates use of clustering heuristics and simpli�es the pro-gramming complexity and data structures for manag-ing the interfaces between tiles. The only disadvantageof this method is that the quasi-uniform grid does notautomatically align with sharp gradient features (e.g.fronts) (Figure 3). We try to eliminate this shortcom-ing in the next subsection which addresses the gridalignment problem. (Note that non-aligned sub-gridsmay be desirable for some physical problems.)Equidistribution techniquesIn this subsection, we review equidistribution tech-niques used to locally align grid points of each tile, andpresent a systolic algorithm for e�cient parallel imple-mentation of the AR technique on distributed memoryMIMD machines. Finally, we conclude by presentingan adaptive parallel grid generation method that is acombination of the tile-approach and the parallel ARequidistribution technique.
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Figure 3: Nested grids generated by domain decompo-sition into rectangular subdomains or tiles.Equidistribution techniques are based on reducingthe error by distributing grid points so that some pos-itive weight function, w(x), is \equally" distributedover the computational space (Brackbill and Saltz-man 1982; Thompson et al. 1985; Paine 1991; Di-etachmayer and Droegemeier 1992; Fiedler and Trapp1993).According to Babuska and Reinboldt (1978), thepoint distribution is asymptotically optimal if theweight function represents an error measure which isstable under perturbations of the point distribution.Russell and Christiansen (1978) reviewed a number ofdi�erent weight functions, including:w(x) = �xk jj u(k+1) jjw(x) =p1+ jj u2x jjw(x) = �xk times the residual; e:t:c:Here u(k) indicates the kth derivative in the x-directionof the solution which, in general, is the solution vectorof a linear system of equations, and �x indicates thelocal grid spacing.In two and three dimensional spaces, we must cou-ple the adaptation of the grid in the di�erent direc-tions in order to maintain, along with the optimalgrid distribution, some degree of orthogonality andsmoothness. For multiple space dimensions, there ex-ist two approaches for implementing equidistributiontechniques. The �rst is based on control functions(CF), and the second is based on a minimal principle.



The mathematical formulation of the minimumprinci-ple in the continuous form is based on variational (V)methods, and in the discrete form is based on linearminimization problems with linear constraints. Thediscrete problems are much harder to solve than theunconstrained problems that occur in the continuouscase. A comprehensive review of the CF and V tech-niques, for the continuous case, is presented in Thomp-son et al. (1985)In the continuous case, both the CF and V ap-proaches reduce the point distribution problem intoa problem of solving a linear or nonlinear system ofequations. These systems may be solved iterativelyusing the successive over-relaxation (SOR) or Jacobimethods, combined with red-black ordering. The lin-ear or nonlinear system comes from the discretization(by �nite-di�erence method, e.g., 5-point star sten-cil) of a system of elliptic partial di�erential equa-tions de�ned on a rectangular computational space.The SOR method combined with red-black orderingcan be implemented by using two Jacobi iterationsthrough the unknowns, each on roughly half of theunknowns (Hageman and Young 1981). Note thatthe parallel implementation of one Jacobi iteration ondistributed memory MIMD/SIMD machines requiresnearest neighbor communication (i.e., four messages), along with a number of global reduction operationsfor checking stopping criteria and accelerating conver-gence (Chrisochoides et al. 1992). For time-dependentmodels such as those used for weather prediction, itshould be noted that the solution and grid evolve to-gether at each time level. Redistribution of grid pointsis a relatively expensive process, and may require moreCPU time than the actual solver (Thompson et al.1985; Paine and Droegemeier 1991), though more ef-�cient methods have recently been developed (Fiedlerand Trapp 1993).Another technique for dynamically adaptive griddistribution is presented in Anderson and Rai (1982).This technique, similar to the variational methods, isbased on the assumption that the best grid is the onethat has the same error at each point; instead of mov-ing the grid points through a solution of partial di�er-ential equations, dynamic adaptive grid distributionmoves grid points under the in
uence of mutual at-traction or repulsion.In the following paragraphs we describe the basicidea of the attraction-repulsion method in one di-mension and our scalable algorithm for the imple-mentation of the AR method on distributed memoryMIMD/SIMD machines.Let jj wi jj be the magnitude of the error, or ofthe variation of the solution at the ith grid point, andlet jj w jjm be the arithmetic mean of the magnitude

of this measure over all grid points. In order to uni-formly distribute the error of the numerical solution(i.e., weather prediction) on a grid with �xed numberof mesh points, we must increase the number o pointsin regions of large error (i.e., jj wi jj � jj w jjm )and reduce the number of points in regions of smallerror (i.e., jj wi jj � jj w jjm ). Such a grid can beconstructed by forcing the points i, with jj wi jj largerthan jj w jjm to attract other points, and the points j,with jj wj jj smaller than jj w jjm, to repel other points.Since the purpose of the AR method is to capture localvariations of the error or of the solution, and to forcelocal alignment of the grid, we assume that distantpoints have little in
uence on each other. This can beenforced by a 1=rn law as an attenuation factor, wherer is the distance between the points i and j.Every point moves with a velocity whose magnitudeand direction depend upon the magnitude of the mea-sure w of all other points. Thus for two points i, j thegrid velocity at the ith point is given byVi;j = K jj wj jj � jj w jjmrnwhere n is the power that controls the attenuation, andK is a proportionality constant. For a problem with Npoints the velocity at the ith point is given byVi = C(K;xi) NXj=1 and j 6=i jj wj jj � jj w jjmrn (I)where C(K;xi) 2 C1. Thus, we obtain the new po-sition of each grid point by integrating equation (I)for each point. For multi-dimensional spaces, we com-pute the velocities and the new positions of the gridpoints by integrating equations similar to (I) in eachdirection.Next, we present the parallelization of the ARmethod in two dimensions on distributed memorymul-tiprocessor systems that support a mesh interconnec-tion topology. We employ systolic type techniquesto eliminate synchronization delay, and minimize thecommunication overhead among processors. Our ob-jectives in designing an algorithm for the parallel ARmethod are : i) the minimization of the so callededge/node contention (one or more links/nodes areshared between more than one paths in the computa-tional graph of the algorithm, ii) minimization of theamount of data transferred between processors, andiii) minimization of the synchronization delay.We assume that the rectangular computationalspace is decomposed into sub-blocks (or subdomainsor tiles, see Figure 1) Di;j with NpP � NpP grid pointsper sub-block stored on each processor (i,j). The newposition of the grid points in each Di;j sub-block is



computed in pP iterations. If we suppress the blockindices, then the computation carried out by each pro-cessor in the kth iteration consists of (i) sending themagnitudes of the measure w of the grid points thatthe (i,j) processor received in the (k-1)th iteration toprocessors (i, (j-1)mod P) and ((i+1)mod P, j) respec-tively, (ii) computing the new positions using its localdata, (iii) receiving the magnitudes of measure w fromprocessors (i, (j+1) mod pP ) and ((i-1) mod pP , j)respectively, and (iv) computing the new positions us-ing the recently arrived data.The interconnection of processor elements, which isa folded grid topology, and the distribution of inputare shown in Figure 4.
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Figure 4: The interconnection network and the distri-bution of data. PE (i,j) computes the new position forthe sub-block Di;j. Data are moved along the x-pathand y-path.DISCUSSION AND CONCLUSIONIn this paper, we described a methodology for devel-oping a storm-scale weather prediction model, the Ad-vanced Regional Prediction System (ARPS) developedby the Center for Analysis and Prediction of Storms,appropriate for use on massively parallel processors.Our approach is based on High Performance Fortran(HPF). A HPF implementation of ARPS will supportimmediate goals of model portability and scalabilityover distributed memory parallel architectures, sharedmemory vector architectures, and workstation-baseddistributed computing networks. The use of HPF as abase technology links ARPS development to industry-standard data parallel Fortran, while supporting fu-ture research plans such as implementing improved

numerical methods, parallel algorithms, grid adaptiontechniques, and eventual operational demonstration.At the same time, we use the ARPS as a challeng-ing application problem to help de�ne future improve-ments to FortranD/HPF.The CAPS research strategy is to continue develop-ing the ARPS as the �rst cloud/meso-scale model de-signed speci�cally for parallel computers and for op-erational testing and possible implementation. Thefuture availability of Tera
op computers, high band-width Doppler radars, and models such as the ARPSwill make operational weather forecasting based on theensemble strategy practical (e.g., Brooks et al. 1991).Ensemble forecasting involves the generation of multi-ple forecasts, valid for the same period, based on ini-tial conditions that vary slightly from each other in aphysically-plausible and statistically consistent man-ner. In this manner, one not only produces a forecast,but also information on the skill or variability of theforecast (e.g., Leith 1974; Kalnay 1987).Linking parallel grid adaption methods to ARPS de-velopment and HPF is a key research issue. We willgenerate nested grids based on domain decomposition.Rectangular subdomains or tiles will be aligned lo-cally with the the attraction/repulsion method. Thismethod can be implemented using regular data struc-tures, and existing directives of the current version ofFortranD/HPF. Alternative approaches, such as con-tinuous models based on partial di�erential equationsrequire sparse data structures which are not yet avail-able in FortranD/HPF. However, for the ARPS, con-tinuous adaptation (Dietachmayer and Droegemeier1992) is not deemed practical for two reasons: �rst,the global timestep is limited by the smallest zone inthe mesh, and second, it is not possible to use di�erentphysics parameterizations with di�erent resolutions, afeature which may be highly desirable in multi-scale
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