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Effect of Solvent on Properties of the Liquid Metal Surface 
 

J.P. Badiali, University Pierre et Marie Curie 
M.L. Rosinberg, University Pierre et Marie Curie 

J. Goodisman, Syracuse University 
 

Abstract 
We calculate the difference in the surface potentials between the free surface of a liquid metal and the same metal in 
an ideally polarizable interface at the point of zero charge. This difference, δXm, is due to the deformation of the 
electronic cloud of the metal by the solvent molecules. The simple model used for the free (metal-metal vapor) 
surface yields qualitatively correct work functions for a number of metals (Hg, Cd, In, Zn, Pb, Ga, A1). Two simple 
ways to model the metal-solvent interaction are proposed and calculations of δXm made for each. One, the dielectric 
film model, considers only an electrostatic interaction between metal electrons and solvent, while the other, the 
repulsive core model, considers only the exchange repulsion between metal electrons and the cores of solvent 
molecules. For Zn, Cd and Hg the dielectric film model, with parameters chosen according to conventional 
electrochemical wisdom, gives values for δXm which are close to those estimated in the literature. For Ga and A1, the 
effect of the solvent is much greater because of the larger electron density and smaller ion size. The repulsive core 
model can give similar results, but there is an arbitrariness in the choice of the barrier strength parameter. Again, Ga 
is more sensitive to the presence of solvent. The effect of changing certain parameters in both models, and of 
combining the two, is considered. 
 

(I) Introduction 
It is generally accepted that the nature of the metal is important in determining the point of zero charge (pzc) of an 
ideally polarizable electrode (IPE). The correlation between the pzc and the work function of a metal has been 
discussed in a number of review articles (for example, refs. 1-3). On the other hand the importance of understanding 
how the solvent or solution phase of the IPE modifies the surface properties of the metal has long been recognized 
[4].  
 At the interface between a metal and its vapor, the concentration profiles of the [End of page 31] ions and 
the electrons are different. This produces a charge separation and a dipolar surface charge distribution which is the 
origin of the surface potential of the metal, Xm From experimental and theoretical data, Trasatti [5] has estimated 
that the change in Xm resulting from the modification of the dipolar distribution of Hg by water is a decrease of 
about 0.33 V. For Cd and Zn, Bockris and Habib [6] estimated the corresponding changes to be δXm = --0.45 and -
0.37 V respectively. 
  To our knowledge, there has been no theoretical calculation of δXm based on contemporary models of 
metal structure. In the present paper we calculate this quantity for a number of metals, to verify whether such 
calculations lead to values of the same order of magnitude as those derived by Bockris and co-workers, and to 
investigate how δXm depends on the nature of the metal. Subsequent work will investigate the effect on Xm of 
charging the electrode. By using the same model for all the metals, we hope to make the comparisons useful. We 
emphasize at the outset that no parameters are introduced which are specific to the effect under study; values used 
for all parameters in the model are those given by other workers in the theory of metals.  
 The model used to describe the metal-vapor interface is presented in Section (II). The calculations in this 
section yield values for Xm and for the work functions which are compared to those in the literature. The metal-
solvent interaction is modeled in two ways in Sections (III) and (IV). In each .case, δXm is calculated. Further 



   

discussion is given in Section (V). We note that in discussions of the electrochemical interface, the metal has been 
generallly represented as a charged wall and more or less sophisticated models developed for the electrolyte. Here, 
we do the reverse and introduce oversimplified models for the electrolyte which forms the metal's environment, 
treating the metal in some detail. 
 

(II) The Metal-Vapor Interface 
Using the density-functional formalism (see below), Lang and Kohn [7] have developed a model which allows the 
calculation of the electron density profile at a metal surface. From this density profile and that of the ions, one can 
obtain the work function [8] and, given a model for the interionic interactions, the surface energy. The Lang-Kohn 
(LK) model first uses a reference system in which the ions are replaced by a continuous positively charged 
background (jellium). The ionelectron interaction for solid metals is supposed to involve a core pseudopotential 
repulsion as well as a Coulombic attraction. The difference between the actual interactions between electrons and 
discrete ions, and interactions between electrons and the jellium, is treated as a perturbation in LK theory. The effect 
of this perturbation is of great importance for the surface energy of high-density metals, but relatively unimportant 
for the calculation of the work function.  
 Smith [9] suggested that, instead of solving a pseudo-Schrodinger equation for the electronic wave 
functions on jellium, as proposed by LK, one should determine the electron density profile variationally, using the 
density functional theory. This is done by calculating the surface energy using a function of given form for the [End 
of page 32] electron density profile, and minimizing the surface energy with respect to parameters in the function, 
which leads to algebraic equations to determine the parameters. Later workers [10-12] have included the 
pseudopotential part of the ion-electron interaction in such calculations. The electron density profile then varies 
from metal to metal not only because of differing electron densities but also through the properties of the metal ions 
(parameters in the pseudopotential). 
 In the present work, we assume that the ion density profile is sufficiently steep, relative to that of the 
electrons, to be approximated by a step function (since we are dealing with a liquid, the ions are distributed 
according to a continous density profile rather than occupying discrete lattice positions, as would be the case for a 
solid metal): 

 
Here, if  is the ion density in bulk metal, for z < O, and the Heaviside or step function Θ(z) is 0 for z < 0 and 1 for 
z > O. The electron density profile is taken to be of exponential form: 

 
with 

 
The charge or valence of an ion is Z, and atomic units are used: e = m = h = 1. The unit of length is 5.292 X 10 -11 m, 
and of energy 4.359 × 10 -18 J. The vapor density is assumed negligible here. The form of eqn. (2) allows the 
electronic distribution to be non-symmetric relative to z = 0. Of the five parameters only two are independent, say α 
and ß. The others are related to α and ß by the constraints that n_ (z) be continuous and with continuous derivative, 
and that the metal be electrically neutral: 

 
Using these conditions, we have: 

 



   

The Friedel-type oscillations [7] which must exist at the the surface are not included in the profile of eqn. (5). 
However, for the metals of relatively large electron density which interest us, Lang and Kohn have shown that these 
oscillations are of very small amplitude.  
 The electron density profile can, in principle, be obtained from the solution to a many-electron Schrodinger 
equation. The potential energy operator would include [End of page 33] the interelectronic repulsion plus a term 
representing the interaction between electrons and ions, obtained by averaging the single ion-electron potential over 
the distribution of ions (eqn. 1 in the present case). The great difficulties inherent in such a scheme can be avoided 
by use of the density-functional formalism, which is based on the theorem that the lowest energy of a many-electron 
system can be represented by a functional of the electron density. This means that there exists an expression F, 
involving the electron density and perhaps its derivatives, such that the electron density which minimizes F is the 
true electron density and the corresponding value of F the energy (apart from the kinetic energy of the heavy 
particles). Parameters in an electron density function n_ such as eqn. (5) are determined by evaluating F for n _ and 
minimizing with respect to variation of parameters (α and ß in the present case). For an infinite metal the energy is 
of course infinite, and one has to subtract an infinite homogeneous part which of course does not depend on the 
parameters of the surface. The quantity to be minimized is thus proportional to the surface energy. 
 The exact form of F is not known and various approximations to it have been used, such as representation 
of part of the electronic kinetic energy as the integral over space of  , which is correct for a homogeneous gas 
of electrons. Terms representing the electronic exchange and correlation energies are derived similarly, and a kinetic 
energy contribution proportional to the integral takes the inhomogeneity into account. We use this form 
of F (see eqns 6-12), which is readily evaluated for the profile eqn. (5).  
 Invoking the density-functional formalism, we determine the parameters α and ß by minimizing the surface 
energy of the metal, Us: 

 
The surface energy is written [12]: 

 
The electronic kinetic energy contribution is 

 
With . The electronic exchange energy is 

 
where , and the electronic correlation energy is 

 
[End of page 34] Inhomogeneities in the electron density contribute 

 
and the electrostatic contribution to the surface energy is 

 
because the electrostatic energy of the bulk system vanishes. For the contribution of the pseudopotential, we have: 

 
and we use a pseudopotential of the form given by Heine and Animalu [13]: 



   

 
The last term in eqn. (7) involves correlations between ions as well as the short-range (non-electrostatic) ion-ion 
interaction, owing to" the repulsion between the closed inner shells. It is not needed for the calculation of α and ß, 
since it is independent of the electronic distribution.  
 Furthermore, the electrostatic potential in the interface involves only the one particle densities for atoms 
and ions, not their correlations, so that specification of Uion is not necessary at all in the present work. It could be 
calculated for a solid metal (of known structure), but presents difficulties for a liquid, since it requires knowledge of 
the pair distribution functions in the interface.  
 All the remaining terms in Us are calculable. Grouping together the terms involving electrons alone, we 
have: 

 
where 

 
[End of page 35] The electrostatic interactions between ions and electrons give: 

 
Finally, the pseudopotential contribution is, for α -1 < ß-1, 

 
If α-1 > ß- 1, α and ß are interchanged in the last term.  
 In Table 1, we have listed the metals studied in the present work, together with the values of the parameters 
characterizing them: , and the crystallographic ion radius Rc. Using these values and eqns. (14-16), we 
have minimized the surface energy to find the parameters of the electron density profile, first assuming α = ß (giving 
αo) and then allowing α and ß to vary separately. The results are shown in Table 1.  
 Given these values, we can calculate the work function for each metal, which  



   

 
[End of page 36] involves two parts: the chemical potential for the electron in a metal, given [12] by 

 
and the surface potential, calculated from eqns. (1) and (5) to be 

 
The work function Φ is given by [8] 

 
Calculated values for μe, Xm and Φ are given in Table 2 (X0

m and ϕ0 are calculated with α = ß = α0). In the last 
column, for comparison, are given values for recommended by Trasatti [3].  
 The values we calculate for Φ are quite close to those obtained by Smith [9] and by Lang and Kohn [8]. In 
general, there is agreement with Trasatti's [3] values; the case of mercury is exceptional, and will be considered 
further below. (The present model, of course, is incapable of calculating differences in Xm and Φ associated with 
differences in crystallographic orientation; extension of the ideas of the model to do this are possible.) We take the 
results of Table 2 to indicate that our model is capable of yielding reasonable values for surface properties and is 
hence useful for discussing changes in these properties due to the environment, e.g. the solvent in the 
electrochemical interface. We now will see that the model is easily extended to take such interactions into account. 
 

(III) The Dielectric Film Model for the Metal-Solvent Interaction 
Two types of models have been used in the literature to study the interaction between a metal and an absorbate. In 
one type, the interaction between the metal 

 
[End of page 37] and a single molecule is studied in detail. This is appropriate for low surface coverage. On the 
other hand, if the surface coverage is high, one can consider the layer of adsorbed molecules as a continuous film 



   

covering the surface. For example the modification of the work function of a metal due to a layer of adsorbed alkali 
atoms was studied from this viewpoint by Lang [14] 
  In applying models of this type to the electrochemical interface, it seems reasonable to consider that, in the 
absence of specific adsorption, the coverage by the solvent is high. This suggests a model of the second type, the 
solvent in contact with the metal being represented by a film. Its response to charge is characterized by a dielectric 
constant, whose value must be significantly higher than unity (vacuum value) but less than the bulk value because of 
orienting effect of local fields. Solvent outside the film is characterized by the still higher bulk value of the dielectric 
constant. For a highly concentrated solution, this model is shown in Fig. la. It requires values for the two dielectric 
constants e1 and e2 and the two geometric parameters d1 and d2. The bulk value of 78 will be used for e2, in 
conformity with what is generally accepted in electrochemistry for the dielectric constant of water. The value of e1 is 
considerable smaller because of the orienting effect of fields at the 

 
[End of page 38] surface; we take ε1 = 6, which is often used in the electrochemical literature to characterize the 
response of the adsorbed layer to electric fields. The thickness of the film, d2 –d1, should correspond to a monolayer 
of water. This would make d2 – d1 = 0.3 nm or 5.67 a.u. For d1 we use Rc, the crystallographic ion radius for each 
metal; Rc plus 0.15 nm is then the distance of closeset approach of the center of a water molecule to the surface 
formed by the metal ions. 
  The electrons of the metal penetrate into the dielectric film, modifying the electrostatic energy as well as 
their contribution to the surface potential. By solving Poisson's equation, we obtain the electrostatic energy: 

 



   

The surface potential is now 

 
Using eqn. (20), minimization of the surface energy of the metal in the presence of the dielectric filml was carried 
out and led to the new values for α and ß given in Table 3. Also given are the new surface potentials and the 
changes: 

 

 
[End of page 39] The results X0

m and δX0 are calculated holding α = ß = α0.  
 Our calculated values for δX0

m and δXm are quite close to those suggested by Trasatti and Bockris for Hg 
and Cd [5,6]. However, there are significant changes when ß is allowed to be different from α. The metals Ga and 
A1 have the smallest crystallographic ion radii and largest bulk electron densities, so that the effect of the dielectric 
film on the electron density profile can be expected to be largest for them. It should also be noted that Xm and δX0

m 
are close to each other for the bare surfaces, so that the introduction of the second parameter ß (ß independent of α) 
does not change things much, but there is an appreciable difference between δXm and δX0

m for a number of the cases 
in Table 3.  
 In Fig. 2, the density profiles for the bare surface and for the surface in the presence of the film are shown 
for Ga. In the case of Hg, the change is smaller and the optimum profile corresponds to α ~ ß. In the case of Ga, α 
and ß are different and there is clearly an increase of electronic charge in the region of the film.  
 The model described in this section deals only with electrostatic effects. It does not take into account the 
exchange repulsion between the electrons of the metal and closed electron shells of the molecules. The model 
presented in Section (IV) considers such repulsions. 



   

 
[End of page 40]  
 

(IV) Repulsive Core Model 
In studying field emission, Duke and Alferieff [15] suggested that the effect of the repulsion between the electrons 
and the cores of adsorbed molecules could be considered in terms of Harrison's pseudopotential [16]. In this model, 
the layer of adsorbed molecules at a distance d1 from the metal surface interacts with the electrons with a potential 
λδ(z – d1 ), where δ is the Dirac delta function as shown in Fig. lb. It is not difficult to use this approach to calculate 
δXm.  
 The surface energy is simply increased by a term: 

 
All other terms in the energy, including the electrostatic contribution, are unchanged from their values for the bare 
surface. The expression for Xm is also unchanged from eqn. (18), but the inclusion of the term (23) in the energy 
expression to be minimized leads to changed values of α and ß and hence a changed profile and a different surface 
potential. We have allowed α and ß to vary separately as well as minimizing Us with a held equal to ß. For each 
metal, we have considered values of λ from 0.15 to 1.917 a.u., the last corresponding to mλ2/2h 2 = 50 eV. In each 
case we have taken d~ as the sum of the crystallographic ion radius and the radius of a water molecule, 0.15 nm. 
 By comparing the results of Tables4 and 5 with Xm from Table2, one sees the values of δXm change 
approximately linearly with λ, with a fall-off from linearity when mλ2/2h2 exceeds 7 eV (λ ~ 0.5) which is 
comparable to the Fermi energy for the metals considered here (7-12 eV). As expected, the barrier repels the 
electrons toward the interior of the metal. In Table4, we have given results for λ = 0.3; the values of α and ß are 
obviously respectively smaller and greater than those for the bare metal surfaces. For this value of λ (mλ2/2h2 = 1.22 
eV) the values of δXm are similar to that obtained from the dielectric model. Again, Ga and A1 are the metals for 
which the effect is greatest. 



   

 
[End of page 41]  

 
 

(V) Discussion 
The model, as applied to the bare metal (metal-vapor) interface, gives generally reasonable values for the work 
function (Table 2). However, the value of Φ in the case of mercury is about 30% lower than that suggested by 
Trasatti [3]. The difference may be due to an insufficiency in the model or simply to the parameters used in the 
pseudopotential. As we have noted, the interionic structure is never explicitly introduced, nor are modifications of 
the work function due to the crystallographic orientation considered. For solids, the replacement of the jellium by an 
ionic lattice, to take these into account, improves the agreement with experiment [8,11]. For liquids, the surface is 
characterized by the density profiles of ions and electrons. The former is unknown and we have used a step function 
for it, which may explain some of the discrepancies with the experimental results.  
 Furthermore, we have used a pseudopotential of Heine-Animalu form. The values of the parameters to be 
used for Hg are uncertain. In Table 6 the modifications of Φ, when the well depth A0 and the radius Rm are changed, 
are shown. The corresponding changes in δXm, using the dielectric film with α ≠ ß, are also given. It appears that δXm 
cannot be changed radically by varying these parameters over a reasonable range, although some increase in the 
magnitude of Φ is possible. Mercury having the smallest electron density of the metals considered, the neglect of 
Friedel oscillations in using eqn. (5) may be most serious and make for the large error in Φ and other properties. 
  The interaction between metal electrons and the solvent can be expected to involve both an electrostatic 
part and a repulsion due to the closed-shell cores. The models presented consider one or the other of these: The 
electrostatic effect is present in the dielectric film model and the repulsion in the delta-function model. Both models 
lead to a lowering of the work function of about 0.5 eV, which is the estimated order of magnitude [5,6]. However, 
the changes in the density profiles are quite different. Clearly, a more complete model should take both effects into 
account. [End of page 42] 



   

 
 We have carried out such calculations for mercury and for aluminium. For the former metal, the barrier 
with λ = 0.3, superimposed on the dielectric film, makes Xm = 5.00 V, but the profile is close to that for the barrier 
alone: the best α and ß values are 0.800 and 1.098. The change δXm of -0.37 is somewhat less than the sum of the δXm 
values for film and barrier separately (-0.20 and -0.21): indeed, there is some cancellation. For aluminium with λ = 
0.15, 0.3 and 0.6, Xm is changed by -1.87, -2.17 and -2.30V respectively, relative to the bare metal. Again, the 
effects of the barrier and the film are not additive, with the presence of the film diminishing the effect of the barrier, 
since δXm with a film and no barrier is - 1.37 V. We note again that we have no means of deciding what value to use 
for λ. 
 In neither model is there a separation in space between the metal and the solution, as is sometimes 
supposed to exist for the ideally polarizable electrode. However, spatial overlap is compatible with the behavior of 
IPE [17]. In any case, the concentration of metal electrons is quite low in the first layer of water molecules: for 
mercury, this concentration is of the order of 3 × 10 -4n _ at d2. As a result, our calculations are not sensitive to the 
values of ε2.  
 As we have mentioned, δXm is most important for the metals of largest electron density and smallest ionic 
radius, such as A1 and Ga. To investigate which factor is most significant, we have performed a series of dielectric 
film calculations for Ga, varying the distance d1 between jellium and die/ectric from the crystallographic ionic radius 
of 1.17 a.u. to 2.5 a.u. We always take d2 as d1 +0.3 nm. For d1 = 1.17, 1.5, 2.0 and 2.5 a.u. the values of δXm are -- 
1.01, --0.81, --0.57 and -0.39 V, so that, to reduce δXm to a value near that found for Hg by changing dl, the distance 
of the adsorbed water layer would have to be more than doubled. One could, of course, question the use of ε1 = 6, 
which we have used independently of d1.   
 The value of e~ reflects the effect of the intense local electric field which leads to dielectric saturation, and 
ε1 = 6 is commonly used in calculating the influence of a charge on the metal on the compact inner layer. In the 
present case, the field in the [End of page 43] film is equal to 

 
For Ga and Hg the fields in the center of the film are equivalent, respectively, to charges of 2.42 and 0.35 /μC cm -2. 
For such charges, the value ε1 = 6 seems reasonable, but, because the field for Ga is so much larger, one might 
consider using a lower value for ε1. Reducing ε1 to 2 lowers δXm to --0.51 V. Our conclusion is still that the change 
δXm is significantly larger in size than for Hg. Because of the small size of the ion Ga 3+ compared to the ion Hg 2+ , it 
appears that the effect of the solvent on the charges of the metal is much larger for gallium than for mercury. (In 
treating the effect of the metal on the solvent, one can, of course, use models [18,19] which dispense with the notion 
of dielectric constant entirely.) 
  Possible improvements in the model could involve use of an ionic profile differing from a step, or 
introduction of an interionic structure characteristic of a liquid metal. In the case of the dielectric film, ε could be 
made to vary continuously [20,21] according to the local electric field. It has been shown that the variation of the 
polarization in the interface can have important consequences for the derivation of the Lippmann equation [20]. 



   

Models which introduce a continuous variation of e have been proposed by Vorotyntsev and Kornyshev.[21]. We 
expect, however, to use the present models to discuss the response of the metal to charging of the interface. 
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