
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

School of Information Studies - Faculty 
Scholarship School of Information Studies (iSchool) 

2002 

Exploring Strengths and Limits on Open Source Software Exploring Strengths and Limits on Open Source Software 

Engineering Processes: A Research Agenda Engineering Processes: A Research Agenda 

Kevin Crowston 
Syracuse University, School of Information Studies 

Barbara Scozzi 
Politecnico di Bari, Dipartimento di Ingegneria meccanica e Gestionale 

Follow this and additional works at: https://surface.syr.edu/istpub 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Exploring the strengths and limits of Open Source Software engineering processes: A research agenda 
(with B. Scozzi) (Presentation at the 2nd Workshop on Open Source Software Engineering, 24th 
International Conference on Software Engineering (ICSE 2002), Orlando, FL, 25 May). 

This Article is brought to you for free and open access by the School of Information Studies (iSchool) at SURFACE 
at Syracuse University. It has been accepted for inclusion in School of Information Studies - Faculty Scholarship by 
an authorized administrator of SURFACE at Syracuse University. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/istpub
https://surface.syr.edu/istpub
https://surface.syr.edu/ischool
https://surface.syr.edu/istpub?utm_source=surface.syr.edu%2Fistpub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Fistpub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Exploring Strengths and Limits on Open Source Software Engineering Processes: Exploring Strengths and Limits on Open Source Software Engineering Processes: 
A Research Agenda A Research Agenda 

Description/Abstract Description/Abstract 
Many researchers have investigated the nature and characteristics of open source software (OSS) 
projects and their developer communities. In this position paper, after examining some success factors, 
we discuss potential limits on the replicability and portability of OSS engineering processes. Based on 
this analysis, we propose a research agenda to better understand the current nature of the processes and 
thus the strengths and the limitations. 

Keywords Keywords 
open source software, OSS, software development 

Disciplines Disciplines 
Computer Engineering 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 3.0 License. 

This article is available at SURFACE at Syracuse University: https://surface.syr.edu/istpub/121 

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://surface.syr.edu/istpub/121


 

Exploring the Strengths and Limits of Open Source 
Software Engineering Processes:  

A Research Agenda 
Kevin Crowston 
Syracuse University  

School of Information Studies 
4-206 Centre for Science and Technology 

Syracuse, NY  13244–4100 USA 
+1 (315) 443–1676 

crowston@syr.edu 

Barbara Scozzi 
Politecnico di Bari 

Dipartimento di Ingegneria meccanica e Gestionale 
Viale Iapigia, 182 
70126 Bari—Italy 

+39 (080) 59 62 722 

bscozzi@dimeg.poliba.it 

 

1. INTRODUCTION 
Many researchers have investigated the nature and characteristics 
of open source software (OSS) projects and their developer 
communities. In this position paper, after examining some success 
factors, we discuss potential limits on the replicability and 
portability of OSS engineering processes. Based on this analysis, 
we propose a research agenda to better understand the current 
nature of the processes and thus the strengths and the limitations.  

2. THREE FACTORS IN THE SUCCESS 
OF OSS PROJECTS 
The success of OSS projects has been mostly attributed to the 
speed of development and the reliability, portability, and 
scalability of the resulting software [1-6]. In turn, these qualities 
are attributed to three main issues, namely the fact that developers 
are usually also users of the software, the public availability of the 
source code, and the fact that developers are members of a 
community of developers.  

First, OSS projects often originate from a personal need [7, 8]. 
Such needs attract the attention of other user-developers and 
inspire them to contribute to the project. This approach to 
software offers some real benefits in the design process.  

Since developers are users of the software, they understand the 
requirements in a deep way. As a result, the ambiguity that often 
characterizes the identification of user needs or requests for 
improvement in the traditional software development process is 
eliminated: programmers know their own needs [9].  

 

Second, in OSS projects, the source code is open to inspection by 
and contributions from any interested individual. Therefore, users 
can also be developers. If they find bugs, they can fix them 
themselves rather than having to wait for the developers to do so; 
if a specialized feature is needed, it can be added, even if it is not 
one that the developers feel is cost-justified. As a result, OSS bugs 
can be fixed and features evolved more quickly.  

Finally, developers are part of a community. The OSS community 
represents a nexus of exchanges in which people report bugs 
expecting that other members will fix them. Similarly those who 
fix bugs expect other developers to contribute to other parts of the 
project [10]. Reputation is another important aspect—the 
community is in fact frequently described as being based on peer 
recognition and in some cases on a “cult of the personality”. In 
particular, peer recognition is a value for the community that can 
sometimes lead to employment opportunities or access to venture 
capital [11]. In such an environment, developers may be 
motivated to do the best work they can, rather than anonymously 
finishing code so it can be shipped.  

The main implication of the three characteristics described above 
is that OSS software engineering processes have evolved to 
develop software that meets developers’ needs [12]. On the other 
hand, OSS, with its reliance on self-interested developers, may be 
less well suited for developing applications that address problems 
that developers tend not to face. We see very good OSS tools for 
software development and good end-user tools for issues faced by 
developers (e.g., email, word processing), for example, but would 
expect to see few OSS applications for problems developers rarely 
face (e.g., accounting, textual analysis).  

There is some empirical support for this limitation to the OSS 
software engineering process. In our analysis of projects 
supported by SourceForge (http://sourceforge.net/) [13], for 
example, we found fewer projects for business and specialized 
topics. Furthermore, these projects tended to be in earlier stages of 
development and less used. Therefore, for the OSS model to work 
for a broad class of applications, projects need mechanisms to 
address the potential divide between developers and non-
developers.  
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3. PROPOSED RESEARCH AGENDA 
Based on the analysis above, we propose a research agenda for 
exploring the strengths and limits of OSS engineering processes. 
Since we are interested in projects where there is a sharp divide 
between users and developers, we must first clearly identify the 
population of such projects. Are there many successful OSS 
applications that are used primarily or exclusively by non-
developers? What kinds?  

For these project, we are interested first in requirements analysis. 
How are requirements developed for OSS projects on non-
developer topics, where developers do not have a deep knowledge 
of the domain?  

A possible source for requirements is direct communications from 
users. We are interested in how often feature requests are 
submitted. What is the process for handling feature requests? 
What happens when feature requests require substantial changes 
to the system design? Is there a role for user testing? How is it 
carried out in OSS? Can OSS software engineering processes 
support the development of novel user interface metaphors for 
such applications? 

Also, we are interested in the nature of the bug fixing process. 
What kind of bugs are reported (e.g., architectural vs. non-
architectural)? Which is the nature of bug reports? For example, 
what proportion of bug reports include code fixes or patches vs. 
just symptoms? What is the process for handling bug report (i.e., 
what is the sequence of activities, who actually perform them, and 
how are dependencies managed)? How do projects handle 
symptom reports? How are bug fixes from diverse sources 
integrated and tested?  

Finally, we are interested in the role the support community (e.g., 
people involved in writing support documentation) play in 
projects developed for non-developers. Their role is considered 
not relevant in most OSS projects, but it can reveal fundamental in 
developing software that will not be used by developers.  

As data for these studies, we hope to use available archives 
created during the process of software development. For example, 
many projects maintain archives of bug reports and disposition, 
which could be used to address some of these questions.  

 

 

 

 

 

 

 

 

For other questions, we may carry out detailed case studies of 
particular projects. 

4. REFERENCES 
[1] Prasad, G.C. A hard look at Linux’s claimed strengths. 

http://www.osopinion.com/opinions/GaneshCPrasad/Gane
shCPrasad2-2html#LinuxStrenghts, 1999.  

[2] Valloppillil, V. Halloween I: Open Source Software. 
http://www.opensource.org/halloween/halloween1.html, 
1998. 

[3] Valloppillil, V., and Cohen, J. Halloween II: Linux OS 
Competitive Analysis. http://www.opensource.org/ 
halloween/halloween2.html, 1998. 

[4] Hallen J., Hammarqvist, A., Juhlin, F., and Chrigstrom, A. 
Linux in the workplace. IEEE Software, 16 (1999), 52–57. 

[5] Pfaff, B. Society and open source: Why open source 
software is better for society than proprietary closed 
source software. http://www.msu.edu/user/ 
pfaffben/writings/anp/oss-is-better.html, 1998 

[6] Leibovitch, E. The business case for Linux. IEEE 
Software, 16 (1999), 40–44. 

[7] Moody, G. Rebel code—Inside Linux and the open source 
movement. Perseus Publishing, Cambridge, MA, 2001. 

[8] Vixie, P. Software engineering, in Open sources: Voices 
from the open source revolution, C. Di Bona, S. Ockman, 
and M. Stone, O’Reilly, Eds. San Francisco, 1999. 

[9] Kraut, R. E., and Streeter L. A. Coordination in software 
development. Communications of the ACM, 38 (1995), 
69–81. 

[10] Moon,  J. Y., and Sproull L. Essence of distributed work: 
The case of Linux kernel. First Monday, 5, (2000). 

[11] Markus, M. L., Manville, B., and Agres, E. C. What makes 
a virtual organization work?. Sloan Management Review, 
42 (2000), 13–26. 

[12] Ousterhout, J., Free Software needs profit. 
Communications of the ACM, 42 (1999), 44–45. 

[13] Crowston, K., and Scozzi, B. Open source software 
projects as virtual organizations: Competency rallying for 
software development.  IEE Proceedings Software, In 
press. 


	Exploring Strengths and Limits on Open Source Software Engineering Processes: A Research Agenda
	Recommended Citation

	Exploring Strengths and Limits on Open Source Software Engineering Processes: A Research Agenda
	Description/Abstract
	Keywords
	Disciplines
	Creative Commons License

	title exploring strengths and limits.pdf
	INTRODUCTION
	2.THREE FACTORS IN THE SUCCESS OF OSS PROJECTS
	3.PROPOSED RESEARCH AGENDA
	
	
	4.REFERENCES





