
Syracuse University Syracuse University

SURFACE at Syracuse University SURFACE at Syracuse University

School of Information Studies - Faculty
Scholarship School of Information Studies (iSchool)

2002

Exploring Strengths and Limits on Open Source Software Exploring Strengths and Limits on Open Source Software

Engineering Processes: A Research Agenda Engineering Processes: A Research Agenda

Kevin Crowston
Syracuse University, School of Information Studies

Barbara Scozzi
Politecnico di Bari, Dipartimento di Ingegneria meccanica e Gestionale

Follow this and additional works at: https://surface.syr.edu/istpub

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Exploring the strengths and limits of Open Source Software engineering processes: A research agenda
(with B. Scozzi) (Presentation at the 2nd Workshop on Open Source Software Engineering, 24th
International Conference on Software Engineering (ICSE 2002), Orlando, FL, 25 May).

This Article is brought to you for free and open access by the School of Information Studies (iSchool) at SURFACE
at Syracuse University. It has been accepted for inclusion in School of Information Studies - Faculty Scholarship by
an authorized administrator of SURFACE at Syracuse University. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/istpub
https://surface.syr.edu/istpub
https://surface.syr.edu/ischool
https://surface.syr.edu/istpub?utm_source=surface.syr.edu%2Fistpub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Fistpub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Exploring Strengths and Limits on Open Source Software Engineering Processes: Exploring Strengths and Limits on Open Source Software Engineering Processes:
A Research Agenda A Research Agenda

Description/Abstract Description/Abstract
Many researchers have investigated the nature and characteristics of open source software (OSS)
projects and their developer communities. In this position paper, after examining some success factors,
we discuss potential limits on the replicability and portability of OSS engineering processes. Based on
this analysis, we propose a research agenda to better understand the current nature of the processes and
thus the strengths and the limitations.

Keywords Keywords
open source software, OSS, software development

Disciplines Disciplines
Computer Engineering

Creative Commons License Creative Commons License

This work is licensed under a Creative Commons Attribution 3.0 License.

This article is available at SURFACE at Syracuse University: https://surface.syr.edu/istpub/121

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://surface.syr.edu/istpub/121

Exploring the Strengths and Limits of Open Source
Software Engineering Processes:

A Research Agenda
Kevin Crowston
Syracuse University

School of Information Studies
4-206 Centre for Science and Technology

Syracuse, NY 13244–4100 USA
+1 (315) 443–1676

crowston@syr.edu

Barbara Scozzi
Politecnico di Bari

Dipartimento di Ingegneria meccanica e Gestionale
Viale Iapigia, 182
70126 Bari—Italy

+39 (080) 59 62 722

bscozzi@dimeg.poliba.it

1. INTRODUCTION
Many researchers have investigated the nature and characteristics
of open source software (OSS) projects and their developer
communities. In this position paper, after examining some success
factors, we discuss potential limits on the replicability and
portability of OSS engineering processes. Based on this analysis,
we propose a research agenda to better understand the current
nature of the processes and thus the strengths and the limitations.

2. THREE FACTORS IN THE SUCCESS
OF OSS PROJECTS
The success of OSS projects has been mostly attributed to the
speed of development and the reliability, portability, and
scalability of the resulting software [1-6]. In turn, these qualities
are attributed to three main issues, namely the fact that developers
are usually also users of the software, the public availability of the
source code, and the fact that developers are members of a
community of developers.

First, OSS projects often originate from a personal need [7, 8].
Such needs attract the attention of other user-developers and
inspire them to contribute to the project. This approach to
software offers some real benefits in the design process.

Since developers are users of the software, they understand the
requirements in a deep way. As a result, the ambiguity that often
characterizes the identification of user needs or requests for
improvement in the traditional software development process is
eliminated: programmers know their own needs [9].

Second, in OSS projects, the source code is open to inspection by
and contributions from any interested individual. Therefore, users
can also be developers. If they find bugs, they can fix them
themselves rather than having to wait for the developers to do so;
if a specialized feature is needed, it can be added, even if it is not
one that the developers feel is cost-justified. As a result, OSS bugs
can be fixed and features evolved more quickly.

Finally, developers are part of a community. The OSS community
represents a nexus of exchanges in which people report bugs
expecting that other members will fix them. Similarly those who
fix bugs expect other developers to contribute to other parts of the
project [10]. Reputation is another important aspect—the
community is in fact frequently described as being based on peer
recognition and in some cases on a “cult of the personality”. In
particular, peer recognition is a value for the community that can
sometimes lead to employment opportunities or access to venture
capital [11]. In such an environment, developers may be
motivated to do the best work they can, rather than anonymously
finishing code so it can be shipped.

The main implication of the three characteristics described above
is that OSS software engineering processes have evolved to
develop software that meets developers’ needs [12]. On the other
hand, OSS, with its reliance on self-interested developers, may be
less well suited for developing applications that address problems
that developers tend not to face. We see very good OSS tools for
software development and good end-user tools for issues faced by
developers (e.g., email, word processing), for example, but would
expect to see few OSS applications for problems developers rarely
face (e.g., accounting, textual analysis).

There is some empirical support for this limitation to the OSS
software engineering process. In our analysis of projects
supported by SourceForge (http://sourceforge.net/) [13], for
example, we found fewer projects for business and specialized
topics. Furthermore, these projects tended to be in earlier stages of
development and less used. Therefore, for the OSS model to work
for a broad class of applications, projects need mechanisms to
address the potential divide between developers and non-
developers.

2nd Workshop on Open Source Software engineering, May 25, 2002,
Orlando, Florida.

mailto:crowston@syr.edu

3. PROPOSED RESEARCH AGENDA
Based on the analysis above, we propose a research agenda for
exploring the strengths and limits of OSS engineering processes.
Since we are interested in projects where there is a sharp divide
between users and developers, we must first clearly identify the
population of such projects. Are there many successful OSS
applications that are used primarily or exclusively by non-
developers? What kinds?

For these project, we are interested first in requirements analysis.
How are requirements developed for OSS projects on non-
developer topics, where developers do not have a deep knowledge
of the domain?

A possible source for requirements is direct communications from
users. We are interested in how often feature requests are
submitted. What is the process for handling feature requests?
What happens when feature requests require substantial changes
to the system design? Is there a role for user testing? How is it
carried out in OSS? Can OSS software engineering processes
support the development of novel user interface metaphors for
such applications?

Also, we are interested in the nature of the bug fixing process.
What kind of bugs are reported (e.g., architectural vs. non-
architectural)? Which is the nature of bug reports? For example,
what proportion of bug reports include code fixes or patches vs.
just symptoms? What is the process for handling bug report (i.e.,
what is the sequence of activities, who actually perform them, and
how are dependencies managed)? How do projects handle
symptom reports? How are bug fixes from diverse sources
integrated and tested?

Finally, we are interested in the role the support community (e.g.,
people involved in writing support documentation) play in
projects developed for non-developers. Their role is considered
not relevant in most OSS projects, but it can reveal fundamental in
developing software that will not be used by developers.

As data for these studies, we hope to use available archives
created during the process of software development. For example,
many projects maintain archives of bug reports and disposition,
which could be used to address some of these questions.

For other questions, we may carry out detailed case studies of
particular projects.

4. REFERENCES
[1] Prasad, G.C. A hard look at Linux’s claimed strengths.

http://www.osopinion.com/opinions/GaneshCPrasad/Gane
shCPrasad2-2html#LinuxStrenghts, 1999.

[2] Valloppillil, V. Halloween I: Open Source Software.
http://www.opensource.org/halloween/halloween1.html,
1998.

[3] Valloppillil, V., and Cohen, J. Halloween II: Linux OS
Competitive Analysis. http://www.opensource.org/
halloween/halloween2.html, 1998.

[4] Hallen J., Hammarqvist, A., Juhlin, F., and Chrigstrom, A.
Linux in the workplace. IEEE Software, 16 (1999), 52–57.

[5] Pfaff, B. Society and open source: Why open source
software is better for society than proprietary closed
source software. http://www.msu.edu/user/
pfaffben/writings/anp/oss-is-better.html, 1998

[6] Leibovitch, E. The business case for Linux. IEEE
Software, 16 (1999), 40–44.

[7] Moody, G. Rebel code—Inside Linux and the open source
movement. Perseus Publishing, Cambridge, MA, 2001.

[8] Vixie, P. Software engineering, in Open sources: Voices
from the open source revolution, C. Di Bona, S. Ockman,
and M. Stone, O’Reilly, Eds. San Francisco, 1999.

[9] Kraut, R. E., and Streeter L. A. Coordination in software
development. Communications of the ACM, 38 (1995),
69–81.

[10] Moon, J. Y., and Sproull L. Essence of distributed work:
The case of Linux kernel. First Monday, 5, (2000).

[11] Markus, M. L., Manville, B., and Agres, E. C. What makes
a virtual organization work?. Sloan Management Review,
42 (2000), 13–26.

[12] Ousterhout, J., Free Software needs profit.
Communications of the ACM, 42 (1999), 44–45.

[13] Crowston, K., and Scozzi, B. Open source software
projects as virtual organizations: Competency rallying for
software development. IEE Proceedings Software, In
press.

	Exploring Strengths and Limits on Open Source Software Engineering Processes: A Research Agenda
	Recommended Citation

	Exploring Strengths and Limits on Open Source Software Engineering Processes: A Research Agenda
	Description/Abstract
	Keywords
	Disciplines
	Creative Commons License

	title exploring strengths and limits.pdf
	INTRODUCTION
	2.THREE FACTORS IN THE SUCCESS OF OSS PROJECTS
	3.PROPOSED RESEARCH AGENDA
	
	
	4.REFERENCES

