
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

1990

Arithmetic Classification of Perfect Models of Stratified Programs Arithmetic Classification of Perfect Models of Stratified Programs

(Addendum) (Addendum)

Krzysztof R. Apt

Howard A. Blair
Syracuse University, School of Computer and Information Science, blair@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Apt, Krzysztof R. and Blair, Howard A., "Arithmetic Classification of Perfect Models of Stratified Programs
(Addendum)" (1990). Electrical Engineering and Computer Science - Technical Reports. 90.
https://surface.syr.edu/eecs_techreports/90

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/90?utm_source=surface.syr.edu%2Feecs_techreports%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Arithmetic Classification of

Perfect Models of Stratified Programs
(Addendum)*)

Krzysztof R. Apt
Centre for Mathematics and Computer SCience

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and

Department of Computer SCiences, University of Texas at Austin,
Austin, Texas 78712-1188, U.S.A.

Howard A. Blair
SChool of Computer and Information SCience,

4-116 CST
Syracuse University, Syracuse, N. Y. 13244-4100, U.S.A.

RECURSION-FREE PROGRAMS

The following section completes the analysis of arithmetic complexity of perfect models and has been
inadvertently omitted in the previous version of the paper.

We say that a general program P is reCW"sion{ree if in its dependency graph Dp there is no cycle.
Clearly recursion-free programs form a subclass of stratified programs. Recursion-free programs form
a very simple generalization of the class of hierarchical programs introduced in [C78]. Hierarchical
programs satisfy an additional condition on variable occurrences in clauses that prevents flOWldering,
i.e.. a forced selection of a non-ground negative literal in an SLDNF- derivation.. In this section we
study the complexity of perfect models of recursion-free programs..

1. Hierarchical stratifications
We call a stratification

P==P 1 U .. · .. UPn

of a general program hierarchical if for i = l,,n and for every relation symbol which occurs in a
body of a general clause from P;, its definition is contained within some Pj for j <i.

The following lemma shows that general programs admitting hierarchical stratifications and
recursion-free programs coincide.. It is in fact a special case of the well known fact that a finite rela­
tion can be topologically sorted iff it is acyclic. Therefore we omit the proof..

LEMMA I: A general program P is reeursionfree iff there is a hierarchical stratification ofP. 0

2. Completions of recursion{ree programs
In the sequel we shall study comp(P), CLARK'S [C78] completion of a general program P. Its
definition can be found in [US7]. comp(P) is a theory whose language is the first order language L(P)
of the general program P augmented by the equality relation symbol "=". Given a general program

*) to the version of this paper that appeared in Fundamenta Infonnaticae 13, pp.1-18, 1990.

2

P we denote by L(=) the language obtained by deleting from L(P) all relation symbols and by
adding "=" to it. From now on in presence of a general program P we denote L(P) by L.

comp(P) is a set of formulas which consists of free equality axioms, which we denote by Eq,
together with certain other formulas, about which we only need to know the following two properties.

PROPERTY 1: For every m-ary relation symbol q of L with the empty definition in P, the formula

VXI .. · VXm -, q(Xh · · · , xm)

is in comp (P).

PROPERTY 2: For every m-ary relation symbol q of L with the non-empty definition in P, there is in
comp (P) a formula of the form

q(xJ, · · · , xm)~\fIq

such that every relation symbol occurring in o/q, other than "=", occurs in the definition of q in P.
The equality axioms in Eq are the usual axioms of first-order logic with equality that say that = is

a congruence, together with axioms that say that the function symbols of L, including the O-ary ones,
denote one-one functions with disjoint ranges, and axioms which say that all functions definable by
composition from the given function symbols have no fixed points. As pointed out by KUNEN [K87],
these are the axioms required for justifying the soundness of both success and failure of unification.

In the proof of the next lemma we shall need the following result from mathematical logic (see
[Sh67] p. 34).

THEOREM 2: (Equivalence Theorem). Let T be a theory and tP a formula. Suppose that tP' is obtainedfrom
tP by replacing some, possibly all occurrences of subformulas 1/JI' · · · , 1/In by o/'t, · . · ,""n respectivelyw
Then iffor i = I, ... , n,

Tr\fli~1/J'j,

then

o
Here replacing involves an appropriate renaming of variables performed in order to avoid variable

clashes.

LEMMA 3: Let P be a recursion1ree program. For every atom A of L there exists aformula tPA of L(=)
all of whose free variables occur in A such that

comp(P)rA ~epA. (1)

PROOF. Let P = PI U · · . U Pn be a hierarchical stratification of P whose existence is guaranteed by
lemma 1. We define a mapping height from relation symbols of L into {a, 1,, n} as follows..

Let r be a relation symbol of L whose definition within P is empty. 1ben we put height(r)=O. Oth­
erwise we put height(r)=i iff the definition of r is contained in Pi.

Suppose that A=r(t 1, ••. , tm) for a relation symbol r and terms t 1, ••• ,tm • We prove the lemma
by induction on the height of r. If height(r)=O, then by property 1

comp(P) 1- A ~Jakie,

so we can take false for tl>A. We can regard false as an abbreviation of -,'Vx(x =x).
If height (r)= 1, then by property 2 "'r is a formula from L(=) with free variables Xl, ••• , Xm. Let
lfIr stand for o/r{Xt/tt, ••. , xm/tm}. Then o/'r is a formula from L(=) all of whose free variables
occur in A such that

comp(P)I-A ~ljIn

3

(2)

so we can take "", for q,A •

Assume now that the claim holds for all relation symbols with height <k and suppose that
height(r)=kw By property 2, (2) holds, but where, instead of tV, being a formula of L(=), every rela­
tion symbol q occurring in l/J', and different from "=" occurs in the definition of r in P. But the
stratification

P=P 1 U···UPn

of P is hierarchical, so every such relation symbol q is of height <k. Thus by the induction
hypothesis, for every atom B occurring in "", and whose relation symbol differs from "=u, there
exists a formula CPB if L (=) all of whose free variables occur in B such that

comp(P) I- B ~t/>B. (3)

Now, replace each occurrence of such an atom B in ..p', by epB and call the resulting formula 4>A. Note
that q,A is a formula of L (=) and that all its free variables appear in A. Now by theorem 2 we get (I)
by virtue of (2) and (3).

D

COROLLARY 4: Let P be a recursionjree programw For every formula ep of L there exists a formula 1/1 of
L (=) all of whose free variables occur as free variables in t/> and such that

comp(P) I- ep~l/J.w

PROOF. By lemma 3 for every atom A occurring in .p there exists a formula epA of L (=) all of whose
free variables occur in A and such that (1) holds. Now, replace each occurrence of an atom A in ep by
<PA and call the resulting formula 1f4'w Then 0/4' is a formula of L(=) all of whose free variables occur
as free variables in ep. By theorem 2 we now get the desired conclusion by virtue of (1).

o

3. Domain closure axiom
In the sequel we shall refer to a number of basic concepts from mathematical logic which we now
briefly recall.

By a closed formula we mean a formula without free variables. A theory T is called complete if for
all closed formulas ep either T...ep or T... ...,q>w A theory T is called consistent if for no formula 4> both TI-q,
and T1-...,epw Finally, a theory T is called decidable if (after the standard encoding) the set {ep:T...'P} is
recursive.

Let L be a first order language with finitely many function symbols and constants. By DCA (the
domain closure axiom) we mean the following first order formula of L:

"Ix V 3Y1 . w w 3Yn (x= f(yh · · . ,Yn»,
f

where n is the number of arguments of f, and is 0 if ! is a constant. Thanks to the restriction on L,
DCA is indeed a first order formula. For example, if L contains one constant a, one· unary function
symbol f and one binary function symbol g, then DCA can be taken as

V'x(x =a V 3y(x =!(Y) V 3y 13Y2(X =g(y I ,Y2»).

We now need the following result due to MAHER [M88].

THEOREM 5: Let L be a first order language with = and with finitely many function symbols and con..
stants but at least with one constantw Then Eq U {DCA} is a complete and decidable theory. 0

Note that the Herbrand base corresponding to the language L augmented by "=" is a model of

(4)

4

Eq U {DCA}) so Eq U {DCA} is also a consistent theory.
Recall that we originally assumed that each general program P contains at least one constant and

one function symbol. So we can apply the above theorem here. We can now prove the main result of
this section..

THEOREM 6: Let P be a reeursionfree program. Then comp(P) U {DCA} is a complete and decidable
theory.

PROOF. Let 4> be a closed formula of the language L(P) augmented by =. lben the formula 1/Itp from
corollary 4 is closed, as well. By corollary 4

comp(P) U {DCA }I- <P iff comp(P) U {DCA} r1/ltp .

Moreover by theorem 5

comp(P) U {DCA} t-lJItp iff Eq U {DCA }I-l/J." ,

since comp(P) U {DCA} is consistent. Combining these two equivalences we get

comp(P) U {DCA} I- ep iff Eq U {DCA} 1-0/•.

But by the form of 0/+ we have that 1/1-.. is identical to -,1/14» so since iq, is a closed formula, as we~

comp(P) U {DCA }r-.q, iff Eq U {DCA }1--,0/.. (5)

Now by virtue of theorem 5, (4) implies that comp(P) U {DCA} is decidable and (4) and (5) imply
that comp(P) U {DCA} is complete..

o

COROLLARY 7: Let P be a recursion/ree program. Thenfor every ground atom A

A EMp iff comp{P) U {DCA}~A .

PROOF. M p is a model of comp{P) U {DCA}. Thus A EMp implies that comp(P) U {DCA } ~ --,A does
not hold which by theorem 6 implies comp(P)U{DCA}rA. Also) A f£;Mp implies that comp
(P)U {DCA }~A does not hold.

o

We can obtain the desired conclusion.

COROLLARY 8: Let P be a recursion1ree program. Then M p is recursive.

PROOF. By corollary 7 and theorem 6.
o

4. Discussion
It is straightforward to define the completion of a program, hence Eq, and in the case of stratified
programs, the standard model M p , with respect to a language L with possibly infinitely many func­
tion and relation symbols, where L is any particular extension of the smallest language L (P) in which
the clauses of P can be expressed. It is easy to see that M p is in fact dependent on the underlying
language L. The point of view where all programs are taken as sets of clauses over the same denu­
merable (effectively presented) language L is extensively discussed by Maher [M88a].

If comp(P) and M p are defined in this way with respect to L, the fundamental results that M p is
independent of the stratification of P, and that M p is a model of comp(p) continue to hold.

5

If the set of function symbols of L is infinite (and the sets of function and relation symbols of L are
suitably effectively presented), then the theorem and corollaries of section 3 continue to hold, pro­
vided DCA is deleted from their statements and proofs. This holds because for such a language L,
the equality theory Eq, (without a domain closure axiom, which would require an infinite disjunction
to express) is complete and decidable, (cf.. [K87])..

REFERENCES

[C78]

[L184]
[K87]

[M88]

[M88a]

K.L. CLARK, Negation as Failure, in: Logic and Databases, (H. Gallaire and J. Minker,
eds.), Plenum Press, New York, 1978, pp. 293-322.
J.W. LLOYD, FowuJations of Logic Programming, 2nd edition, Springer-Verlag, 1987.
K. KUNEN, Negation in Logic Programming. J. of Logic Programming, Vol. 4, 1987, pp.
289-308.
M.J. MAHER, Complete Axiomatizations of the Algebras of Finite, Rational and Infinite
Trees, in: Proc. of the 3rd Logics in Computer Science Conference, 1988, pp. 348-357.
M.J. MAHER, Equivalences of Logic Programs, in: Foundations of Deductive Databases
and Logic Programming, (Jack Minker, eel.) Morgan-Kaufmann, Los Altos, CA. 1988,
pp. 627-658.

	Arithmetic Classification of Perfect Models of Stratified Programs (Addendum)
	Recommended Citation

	SU-CIS-90-26_001c
	SU-CIS-90-26_002c
	SU-CIS-90-26_003c
	SU-CIS-90-26_004c
	SU-CIS-90-26_005c

