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Travis J. Lybbert,† Christopher B. Barrett, John G. McPeak, Winnie K. Luseno‡ 
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Abstract 

Temporal climate risk weighs heavily on many of the world’s poor. Model-based climate 

forecasts could benefit such populations, provided recipients use forecast information to update 

climate expectations. We test whether pastoralists in southern Ethiopia and northern Kenya update 

their expectations in response to forecast information and find that they indeed do, albeit with a 

systematic bias towards optimism. In their systematic optimism, these pastoralists are remarkably 

like Wall Street’s financial analysts and stockbrokers. If climate forecasts have limited value to these 

pastoralists, it is due to the flexibility of their livelihood rather than an inability to process forecast 

information.  
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Bayesian Herders: Optimistic Updating of Rainfall Beliefs 
In Response To External Forecasts 

 

I. Introduction 

Information can be valuable when it facilitates improved decision-making in the face of temporal 

uncertainty, such as that associated with rainfall fluctuations.  Since climate variability can result in 

massive financial and human losses due to droughts, floods and costly risk mitigation strategies, it may 

pay to have timely, reliable climate forecasts to help people choose optimal state-contingent livelihood 

strategies, both to avoid disaster and to capitalize on temporary, favorable states of nature.  Recognizing 

the value seasonal climate forecasts could have to subsistence farmers and pastoralists4 living in the arid 

and semi-arid lands (ASAL) of Sub-Saharan Africa (SSA) and elsewhere, several development agencies 

have directed attention and funding to establishing Famine Early Warning Systems (FEWS) over the 

past two decades (Barrett 2002, Walker 1989).  More recently, a big push has been made to augment 

FEWS with computer models of coupled atmospheric-oceanic circulation patterns that translate data 

on wind speed and direction, topography and sea surface temperatures into seasonal precipitation 

forecasts issued one to six months ahead. 

Simply having climate forecasts does not make them valuable, however.  If the poor are to 

benefit directly from climate forecasting innovations, then several necessary conditions must be met.  

(i) Computer-based climate forecasts must forecast local rainfall or rainfall-related outcomes, 

such as pasture quality or crop yields, reasonably accurately.   

(ii) Local decision-takers must receive and believe external forecasts satisfying (i).  

(iii) Those who receive and believe these forecasts must update their prior climate beliefs in 

response to external forecasts. 

(iv) Decision-takers must then be able and willing to change behavior in response to updated 

climate beliefs. 

Necessary condition (i) has been addressed adequately in the atmospheric sciences literature for several 

locations in Africa (Agatsiva 1997, Barnston, et al. 1996, Beltrando and Camberlin 1993, Cane, et al. 

1994, Folland, et al. 1991, Hulme, et al. 1992a, Hulme, et al. 1992b, Ogallo 1994). A companion paper 

that studies (ii) and explores the complex issues surrounding (iv) concludes that East African 

pastoralists make no ex ante changes in their livelihood strategies after receiving climate forecasts 

                                                 
4 Pastoralists are nomadic or transhumant herders whose livelihoods depend primarily on extensive grazing of livestock 
in arid and semi-arid regions.  Agropastoralists couple extensive grazing with crop cultivation. 
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(Luseno, et al. 2003). Pastoralists’ non-responsiveness to climate forecasts may be explained by the 

inherent flexibility of pastoralism, relative to agriculture for example, but may also be due to pastoralists 

failing to update their climate expectations after receiving forecasts. Since the implications of these 

potential explanations are quite different, one must first clearly establish why pastoralists appear to 

disregard climate forecasts in practice before expecting to leverage, if possible, climate forecasts on 

their behalf. The present paper seeks to establish which of these competing explanations is valid by 

addressing question (iii). Using a unique data set collected among pastoralists and agropastoralists in 

southern Ethiopia and northern Kenya, an area that has suffered repeated serious droughts in recent 

years, we estimate whether those receiving and believing climate forecast information change their 

beliefs about uncertain future states of nature and, if so, how.   

To the best of our knowledge, this paper presents the first empirical study of beliefs updating 

either in a development context or in response to climate forecast information. We conclude that, 

despite their limited familiarity with computer-based forecasting methods and the existence of 

competing forecasts based on widely-accepted, indigenous methods, pastoralists who receive external 

climate forecasts indeed update their rainfall expectations, albeit in ways that suggest a cognitive bias 

towards optimism. In the systematic optimism they display when interpreting information, east African 

pastoralists appear remarkably similar to financial analysts on Wall Street (see Easterwood and Nutt 

1999).  

The plan for the remainder of the paper is as follows.  In Section II, we briefly review the extant 

literature on updating. Section III outlines a model of updating that structures our econometric analysis 

in Section IV. We present conclusions in Section V. 

 

II. Belief Updating & Cognitive Biases 

Uncertainty enters importantly into many economic decisions. When uncertain outcomes are assigned 

probabilities, uncertainty becomes risk and can, in theory, be more easily managed. Given probabilities 

on outcomes, and assuming economic agents behave rationally, economic theorists can devise models 

of expected utility and risk aversion to predict market outcomes. The objective probabilities required by 

such models, however, are mostly missing in reality. Instead, economic agents must formulate their 

own beliefs about uncertain outcomes and thus largely deal in subjective, not objective, probabilities. In 

formulating these subjective probabilities, people typically start with some initial (perhaps naïve) beliefs 

about underlying probability distributions, then commonly seek supplementary information. They then 
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update their prior beliefs in response to new information, thereby generating a new, posterior subjective 

probability distribution.  

Consider, for example, an individual i who initially believes an event will occur with probability 

πi who receives from some external source a competing subjective probability, πm, for the same event. 

Her updated conditional (posterior) subjective probability, πi|m, can be expressed as5 

(1)  
(1 )

( )
i m i ii m

i i m i

π δ π δ π

π δ π π

= + −

= + −
 

where δi is individual i’s updating weight and indicates her confidence in πm and its source.  

Informational flows and the process of belief updating can directly affect behavior and market 

outcomes and has hence been the focus of considerable psychological and, increasingly, economic 

research. Hirshleifer and Riley (1992) propose a general framework based on traditional Bayesian 

updating rules and derive three useful propositions. First, an individual’s confidence in his prior beliefs 

largely determines whether he seeks additional information and, if he seeks and receives it, how he 

processes it. This confidence is represented statistically in the tightness of the prior probability 

distribution. Second, the greater the individual’s confidence in the message—represented by δi in (1)—

the greater its effect on the individual’s posterior probability distribution. Third, the more surprising a 

message relative to the individual’s prior beliefs—represented by (πm – πi) in (1)—the greater the 

updating effect. Of the second and third, people typically update beliefs with a predictable bias towards 

the extremeness of a message (Griffin and Tversky 1992, Tversky and Kahneman 1974). Thus, a 

surprising message with little credibility may incite a greater updating effect than a credible one that 

differs only slightly from initial beliefs.  

Testing these abstract propositions empirically is challenging because the updating of prior 

beliefs is fundamentally an unobservable cognitive process that is explicitly expressed only in rare 

circumstances. Consequently, empirical work on how people respond to new information relies either 

on data generated from clever experiments or on inference based on non-experimental data (see Rabin 

1998 for an excellent survey). One general aim of this research is to assess the effect of existing beliefs 

on the interpretation of new information. The anchoring-and-adjustment heuristic (Tversky and 

Kahneman 1974) suggests that initial beliefs, or even irrelevant starting values if individuals are 

sufficiently inexperienced, tend to anchor one’s processing of information. Adjustment away from this 

                                                 
5 In its more general form, Bayesian updating rules involve the ratio of a joint probability that two events occur and the 
unconditional probability that one of the events occur. The updating rule presented here is a special case of this general 
rule in which a prior is updated with a competing subjective probability. For purposes of this paper, including the 
empirical analysis herein, this simple updating rule suffices.  
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initial anchor in response to new information is typically insufficient (Bruner and Potter 1964, Epley 

and Gilovich 2001). Consequently, people who formulated their existing beliefs on weak evidence have 

difficulty interpreting subsequent information that contradicts these initial hypotheses, even if this new 

information is recognized to be more accurate (Bruner and Potter 1964).6  

In struggling to reconcile existing beliefs with new information, people often tend to ignore 

new information altogether, a tendency called belief perseverance, or proactively to misread the new 

evidence as supportive of existing hypotheses, a tendency called confirmation bias (Darley and Gross 

1983, Lord, et al. 1979, Plous 1991, Rabin and Schrag 1999). These cognitive biases become especially 

pronounced when new information is genuinely ambiguous (Griffin and Tversky 1992, Keren 1987), 

but fail to disappear even when a person has expertise and training (Kahneman and Tversky 1982, 

Tversky and Kahneman 1982). Such biases can directly affect an individual’s capacity to forecast an 

outcome after having processed new information, especially if the individual has a vested stake in the 

outcome in which case individual preferences introduce yet another cognitive bias (Kunda 1990). As a 

consequence, preference-consistent information is taken at face value, while preference-inconsistent 

information is processed critically and subjectively (Ditto and Lopez 1992, Hales 2003).         

Analysis of non-experimental data tends generally to corroborate the conclusions of the 

experimental literature reviewed above. Empirical analyses that study the cognitive processing of risk 

and subsequent forecasts of risky outcomes are especially relevant. Slovic (1987), in a classic study 

examining how people formulate risk judgments about chemical and nuclear technologies, concludes 

that while experts employ sophisticated risk assessment tools to evaluate hazards, most everyone else 

relies on intuitive risk judgments or risk perception. Noting experts’ frustration with citizens’ inability to 

formulate accurate perceptions of risk, Slovic (1987) points out that one should not expect disputes 

about risk to vanish when credible evidence is presented since strongly-held prior beliefs affect the way 

subsequent information is processed. Slovic observes that risk communication and management must 

consequently be structured as a two-way process in which both the public and the experts engage in a 

dialogue, an observation directly relevant to contemporary, largely top-down efforts to anticipate 

climate shocks in marginal areas of the developing world.  

One’s familiarity and experience with risk directly affects one’s capacity to make accurate 

judgments about risk and forecasts. For example, only a fraction of homeowners who had voluntarily 

tested the radon levels in their homes and learned that these levels were high enough to merit 

mitigation actually followed through with the recommended mitigation (McClelland, et al. 1991). 

                                                 
6 An extreme case is modeled in the abstract by Rabin and Schrag (1999) who show that an agent may come to believe 
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Radon, however, presents an invisible and unfamiliar risk to most homeowners. That few homeowners 

apparently updated their perceptions about radon risks even after being informed that radon levels were 

high is therefore understandable. Experts, on the other hand, are better able to process information and 

to update beliefs when appropriate. Investigating the futures market for concentrated orange juice, a 

commodity that is highly sensitive to frost, Roll (1984) finds a significant relationship between returns 

on orange juice futures and errors in National Weather Service temperature forecasts for the central 

Florida region where most juice oranges are grown. Most participants in commodity markets seem to 

update their beliefs predictably in response to temperature forecasts, and, consequently, prices on 

orange juice futures incorporate these expectations. Only when these incorporated forecasts are wrong 

do traders respond by adjusting prices.7  

While experts seem more Bayesian than non-experts, they are still subject to complex human 

emotions and cognitive limitations. In financial markets, sunshine is significantly correlated with daily 

stock returns (Hirshleifer and Shumway 2003). Even experts are not immune to feeling a bit more 

optimistic on sunny days—or on rainy days, if it is rain that is hoped for—and updating their 

expectations accordingly. Furthermore, experts’ cognitive biases do not only arise from their general 

mood. Specialized financial analysts with training and experience often display ‘systematic optimism,’ 

underreacting to negative information and overreacting to positive information (Easterwood and Nutt 

1999). Experience may be the best teacher, but new information is often read optimistically, rather than 

objectively, despite its tutelage. No one, it seems, is a perfect Bayesian. But how Bayesian are some of 

the world’s least educated and technology savvy subpopulations, such as pastoralists in the Horn of 

Africa? 

 

III. A Model of Climate Forecast Updating 

A. Updating Herders’ Beliefs 

In this section, we develop a simple model of an east African pastoralist’s updating of climate beliefs 

and then derive two econometric approaches to test whether locals who receive external climate 

forecasts update their climate expectations.  Assume there exist three possible precipitation states, 

above normal (A), normal (N) and below normal (B) rainfall, such that s={A, N, B} where the aridity 

                                                                                                                                                                  
with near certainty in a false hypothesis despite receiving an infinite amount of information.  
7 There is, however, an important difference between forecasting market outcomes and forecasting climate outcomes. 
Because market outcomes are endogenous, forecasting them is essentially an exercise in forecasting others’ forecasts. 
Incidentally, this introduces the possibility that additional information might make an agent worse off if it leads her to 
overpredict how much information others have (the so-called ‘curse of knowledge’ (Camerer, et al. 1989)). In contrast, 
climate outcomes are purely exogenous to others’ forecasts of them and are therefore not subject to this ‘curse’. 
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of the locale implies that A is preferred to N, which is preferred to B. We use this formulation because 

seasonal climate forecasts issued in the Horn of Africa in fact follow this trinomial structure.  The 

herder-farmer chooses among several feasible actions, including herd migration, livestock sales or 

slaughter, crop or varietal choice, timing of planting, protection against pests, application of inorganic 

fertilizers, etc. For simplicity, we refer to a vector of actions as strategies (y=1,…,Y). The outcomes 

(Cys) of these strategies and states of nature can be described by a results matrix as follows:8 

 
The value of updating beliefs lies in the variability of outcomes conditional on realized states of 

nature and the correlation between forecast probabilities and states of nature.  If one strategy is optimal 

regardless of the state of nature or if the forecast is uncorrelated with observed states of nature, the 

decision-taker generally gains nothing by updating beliefs.  If forecasts are correlated with realized 

states and the optimal strategy is state-contingent, however, it generally benefits decision makers to 

update probabilistic beliefs in response to informative signals received. The benefits associated with 

updating increase as the costs to switching strategies ex post increase and are highest ceteris paribus when 

switching strategies ex post is impossible. The value of updating one’s beliefs also increases as the set of 

strategies at one’s disposal expands. For example, if wealthier households enjoy a broader range of 

productive options and the rank ordering of the returns to these strategies is state-dependent, then the 

value of updating beliefs in response to a signal is an increasing function of wealth.  Subpopulations 

with relatively few options available to them, but with some capacity to switch strategies ex post–like the 

pastoralists of southern Ethiopia and northern Kenya who we study–might therefore benefit little from 

updating their beliefs.  Finding updating in our subject population is thus relatively strong evidence in 

favor of the hypothesis that even non-experts with a limited stake indeed update beliefs in Bayesian 

fashion.  

                                                 
8 Although this matrix does not directly relate to the empirical implementation that follows, because we look solely at 
the updating process and not at outcomes, it is nonetheless important to situate the updating process within a broader 
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Let the unconditional prior beliefs distribution of individual i in village j be summarized by 

prior means πij
A, πij

N, πij
B for A, N, and B, respectively, with πij

A+πij
N+πij

B=1.  In the present context, 

one’s priors would be formed through past experience and, perhaps especially, by a rich array of 

indigenous climate forecasts universally available within pastoralist communities in the region.  Within 

the region we study, every community has at least one traditional forecaster9 who interprets stars, 

clouds, trees, wildlife behavior, the intestines of slaughtered livestock, dreams or other phenomena and 

issues predictions about the upcoming season’s climate.10  Many of these methods generate long-lead, 

seasonal forecasts that roughly match the time scale of external, model-based forecasts.  Virtually 

everyone within a community receives such indigenous climate forecasts (Luseno, et al. 2003), so we 

treat these as a common, location-specific component to each individual’s prior.  

In the Horn of Africa, the Drought Monitoring Centre (DMC), based in Nairobi, is responsible 

for releasing climate forecasts, which are then disseminated through national meteorological agencies. If 

a pastoralist receives the DMC forecast and has complete confidence in the validity and relevance of 

this external forecast, he is likely to update completely and immediately, replacing his priors with the 

DMC’s set of probabilities, which he implicitly considers to be objective. A pastoralist who has 

reservations about the validity or relevance of the DMC forecast –because the broad DMC forecast is 

not conditioned on the specifics of his location for example – treats it as a set of competing subjective 

probabilities and must reconcile his own prior beliefs with the DMC forecast. The updating equation 

that determines his posterior beliefs was presented as equation (1), which (with updated notation) is 

given by 

(2)  ij
s
ij

s
jDMC

s
ij

s
DMCij δππππ )( ,| −+=  

where πs
DMC,j

 is the mean of the external forecast probability distribution for state s and s={A, N, B}. 

This updating equation simply states that an individual’s posterior probability is computed as her prior 

probability adjusted for the difference between the DMC’s forecast and her own prior probability 

multiplied by δij, an updating weight representing the individual’s willingness to abandon her own prior 

in favor of the DMC forecast probability.11  Where modern and traditional climate forecasters differ, 

                                                                                                                                                                  
analytical framework of choice under uncertainty. 
9 These traditional forecasters are called laibon in Samburu, yub or raga in Boran/Gabra, and by other names among the 
remaining ethnic groups in our sample. 
10 In addition to forecasting seasonal rainfall, these traditional seers also predict other events (e.g., raids on livestock) 
and are often contracted to mix potions or cast spells.  
11 In the literature on Bayesian updating, confidence in competing probabilities is often represented as a variance that 
the individual assigns to the source. The appropriate updating weight in such a case is one that is some monotonically 
increasing function of inverse variance (i.e., the lower the variance assigned to a source, the more confidence and the 
larger the updating weight.) 
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the seemingly simple updating weight represents a complex cognitive process that involves the 

‘objective’ information value of these competing forecasts, but also surely entails more subjective 

assessments of their source and means of delivery.  

If the DMC forecast was perfectly, uniformly disseminated and receiving the forecast was 

costless, then the simple updating model above would suffice for empirical investigation. However, 

access to external climate forecast information is unevenly distributed in the region. Some people 

actively seek out the forecast, primarily via radio but also, to a far lesser degree, from neighbors, 

extension agents and printed media. Others may inadvertently hear the forecast, for example, over the 

radio at a local tea shop when they visit town. Moreover, even those receiving the DMC forecast may 

express no confidence in the forecast.  We must adapt the updating equations above to reflect these 

facts. If an individual does not receive the DMC forecast, the updating weight on πs
DMC, j should be 

zero. Likewise if an individual who receives the DMC forecast does not believe it, this weight should be 

negligible. A more appropriate updating equation is therefore 

(3)  ][]1[ ,| ijij
s

jDMCijij
s
ij

s
DMCij RCRC δπδππ +−=  

where RCij=1 if individual i in village j receives and has confidence in the DMC forecast and RCij=0 

otherwise. When δij=1 and RCij=1, individual i is willing to adopt completely the DMC’s forecast as her 

own (i.e., treats the DMC’s forecast as an objective probability). By subtracting πs
DMC,j from both sides, 

the updating equation in (3) can be further simplified to 

(4)  ijij
s
ij

s
ij

s
DMCij RCddd δ−=|  

where dij
s=(πij

s-πs
DMC,j) and ds

ij|DMC=(πs
ij|DMC-πs

DMC,j).  Note that when RCij=0, dij
s= ds

ij|DMC since 

information not received could not have affected the individual’s climate beliefs. When RCij=1, 

however, |dij
s|>|ds

ij|DMC| implies that the person has updated his beliefs towards the DMC forecast 

and that 0>δij >1. When RCij=1, complete updating (δij=1) is implied by dij
s≠0 and ds

ij|DMC=0. 

 

B. Econometric Approaches to Estimating Updating 

Our data provide only a single belief observation for each individual, expressed as a trinomial 

probability forecast, which was collected after the DMC issued its forecast. For those who either did 

not receive or did not believe the DMC forecast (i.e., RCij=0), this set of beliefs represents both their 

prior and posterior beliefs. For those with RCij=1, on the other hand, this observed set of beliefs 

represents their posterior beliefs, which are different from their priors if any updating has occurred. 

Thus, a primary challenge to estimating econometrically the model above is that πij
s—a critical baseline 

from which any updating is measured—is unobservable for individuals with RCij=1, precisely the 
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individuals whose updating behavior we wish to estimate.  There are two econometric approaches 

worth considering when addressing this challenge. Both approaches rely on ds
ij|DMC as a dependent 

variable, but differ in how they treat unobservable priors for those with RCij=1.   

 

Direct Approach: The direct approach involves directly recovering πij
s for individuals who receive and 

believe the DMC forecast. This requires an explicit model of πij
s, but enables one to estimate (4) 

directly. Because the equation in (4) has no intercept, this specification estimates two regression lines 

constrained to go through the origin – one for the control group (RCij=0) and one for the treatment 

group (RCij=1). While the slope of the control regression line is one by construction, the slope of the 

treatment regression line is unconstrained and estimated as the coefficient δij. This coefficient thus 

represents the conditional mean updating weight implied by the treatment group.  

Prior beliefs (πij
s) are founded on complex cognitive processes that are difficult either to model 

explicitly or to elicit for direct empirical investigation. Nonetheless, external traits provide signals about 

how an individual processes information and formulates beliefs. In particular, those with formal 

education, especially scientific training, may learn differently from those without formal education and 

may therefore come to very different conclusions than the uneducated. As with most individual beliefs, 

climate beliefs are also partly a function of prevailing social norms. Community level covariates – such 

as available indigenous forecasts – thus matter to an individual’s priors. Individual i’s prior, πij
s, can thus 

be written as a function of a vector of individual characteristics, xij, a vector of village characteristics, zj 

and an error term to account for the many unobservable factors (e.g., mood) that affect an individual’s 

cognitive processing of information, as follows:12  

(5)  ),,( f
ijjij

ss
ij zxf επ =     

Since πij
s
 is observed if RCij=0 and is latent otherwise, πij

s can be modeled as a selection model 

where the outcome equation is shown in (5) and the selection equation specifies the factors that affect 

whether an individual receives and believes the DMC forecast.13 Household characteristics such as 

ownership of a radio and education, and village characteristics such as nearness to major roads 

                                                 
12 Note that the s superscript on f accounts for the possibility that above and below normal precipitation expectations are 
formulated in slightly different manners.  We will exploit this difference in the estimation. 
13 In this case, a selection bias model is justified because receipt and confidence in the DMC forecast is non-random and 
because unobserved elements of the error term in equation (5) also influence who receives the forecast (e.g., family ties 
to extension agents, friends with radios, etc.). 
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importantly determine whether an individual receives and believes the DMC forecasts. Thus, the 

selection equation is given by 

(6)  ),,( p
ijjijij zxpRC ε=     

Correcting the outcome equation in (5) for this selection bias yields parameter estimates that 

can be used to estimate s
ijπ̂  for those receiving and believing the DMC forecast, thereby recovering 

their prior beliefs. With these priors in hand, the updating equation in (5) and the mean updating weight 

can be estimated directly. 

 

Indirect Approach: Whereas the direct approach recovers unobservable priors directly, the indirect 

approach involves an implicit formulation of πij
s.  This reduced-form approach does not permit direct 

estimation of the updating equation in (4), but allows for a broader investigation into the factors that 

affect the belief updating process. Since the updating weight in (4) cannot be estimated directly in this 

approach, δij must also be defined implicitly. There are several factors that presumably affect δij. 

Specifically, individual and village characteristics influence an individual’s disposition to assimilate the 

DMC’s forecasts by updating her priors, suggesting that the updating weight can be written as the 

following function  

(7)  ),,,( h
ijijjijij RCzxh εδ =     

After controlling for individual and village characteristics, which affect both the formulation of 

πij
s as shown in (5) and δij as shown in (7), the indirect approach seeks to ascertain whether dij|DMC

s is 

smaller for an individual m who received and believed the external forecast (RCmj=1) than for an 

individual n who did not (RCnj=0). More formally,  

(8)  
*

( , , , )

( ( , , ), ( , , , ), , )

( , , , )

s s s
ij ij ij ijij DMC

s s f h
j jij ijij ij ij ij ij

s
jij ij ij

d g RC

g f x z h x z RC RC

g x z RC

π δ υ

ε ε υ

υ

=

=

=

    

As presented thus far, dij|DMC
s can be positive or negative, depending on whether the DMC 

forecast is more or less favorable than individual i’s observed forecast. This raises the question: might 

pastoralists systematically react differently to bad news than to good, just like the financial analysts of 

Wall Street (see Easterwood and Nutt 1999)?  In addressing this question, we will refer to the DMC 

forecast as ‘pessimistic’ if it assigns greater likelihood to below normal seasonal rainfall than recipients 

had previously believed (πij
B<πDMC,j

B) or that above normal seasonal rainfall is less likely (πij
A>πDMC,j

A). 
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We hypothesize that, once received, the DMC forecast should have two important dimensions relevant 

to the updating process: magnitude (i.e., distance from prior) and sign (i.e., whether it is ‘good’ or ‘bad’).  

To account explicitly for potential asymmetries in updating, equation (8) can be modified as  

(9)  ,( , , , ( ), ),s s s
jij ij DMC j ij ijij DMCd h x z RC d RC ε−= ×  

where 

(9a)  

( )

( )
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where n-DMC,j is the number of individuals in village j who did not receive and believe the DMC forecast, 

and s
j,DMCd − is the difference between the traditional forecast-based climate consensus in village j (i.e., 

uninfluenced by the DMC forecast) and the DMC forecast for village j. As defined in (9a), 0ds
j,DMC >−  

implies that the DMC forecast represents ‘good news’ to those who receive it and this interpretation 

holds whether s=A or s=B.14 The interaction term )( , ij
s

jDMC RCd × therefore picks up whether those 

receiving the DMC forecast consider it ‘good’ or ‘bad’ news, as well as how ‘good’ or ‘bad’ this forecast 

is relative to the traditional forecast-based village consensus. This interaction term effectively proxies 

for the interaction term in (4), with the added advantage of allowing the effect of the DMC forecast on 

the updating process to be decomposed into a sign effect and a magnitude effect.  

 

IV. Data and Estimation Results 

A. Data       

The data used in this paper were collected as part of the broader Pastoral Risk Management (PARIMA) 

project of the USAID Global Livestock Collaborative Research Support Program. Approximately 30 

households in each of 10 villages were surveyed, four in southern Ethiopia (Dida Hara (DH), Dillo 

(DI), Finchawa (FI), Wachile (WA)) and six in northern Kenya (Dirib Gumbo (DG), Kargi (KA), 

Logologo (LL), Ngambo (NG), North Horr (NH), and Suguta Marmar (SM)). Climate-focused surveys 

were conducted in March 2001 immediately prior to the long rains season, which typically begin late in 

March and continue through May. A few of our Kenyan sites (KA, NH) had experienced rare, early 
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(furmat) rains in January and February 2001 that seem to have induced unusual optimism about the 

upcoming rains, as manifest in unconditional subjective probability distributions that weighted above 

normal or normal rainfall much more heavily than other sites.  

During the pre-rains survey, enumerators asked household heads whether they had heard 

forecasts of the upcoming season’s rainfall patterns, the source(s) of such forecasts heard, their 

confidence in the forecast information, past use of forecast information, etc.  A previous round of 

surveys among these households had gathered information on ownership of radios, educational 

attainment and other household-specific characteristics that may matter to an individual’s priors, her 

updating of climate beliefs or both.  Together, the information from these different modules allows us 

to establish who received computer-based DMC climate forecast information and who expressed 

confidence in that information.15   

The survey also included a novel elicitation of respondents’ subjective probability distribution 

over the upcoming climate state. Household heads were given 12 stones and asked to distribute them 

into three piles, each pile representing a different state (again, s={A, N, B}), with the number of stones 

in each pile representing the individual’s prediction about the likelihood that precipitation in the coming 

long rains season would be above normal (s=A), normal (s=N) or below normal (s=B). Despite the 

common belief that relatively uneducated populations such as these relate mostly to deterministic 

forecasts and are not able to conceptualize probabilistic forecasts, only 16 of 244 households offered 

degenerative forecasts in which all 12 stones were placed in a single pile. Interestingly, all of these 

degenerative forecasts suggested extreme optimism (i.e., (A, N, B)=(100%, 0%, 0%)), and 11 of these 

16 were from North Horr, a village that experienced the unusual furmat rains before the survey was 

conducted. Before the climate survey was fielded, the DMC issued its own trinomial probabilistic 

forecast for this rainy season for both northern Kenya (πDMC,j
A=25%, πDMC,j

N=40%, πDMC,j
B=35% for all 

villages j in Kenya) and southern Ethiopia (πDMC,j
A=35%, πDMC,j

N=40%, πDMC,j
B=25% for all villages j in 

Ethiopia).16  A map of these forecasts is shown in Figure 1.  

                                                                                                                                                                  
14 Given a multimodal trinomial forecast (i.e., πDMC

A>πDMC
N

 and πDMC
B>πDMC

N), this formulation would indicate that the 
external forecast is simultaneously received as ‘good’ and ‘bad’. As with most climate forecasts, the external forecast 
and ‘climate consensus’ used in this paper is unimodal so this hypothetical problem is irrelevant. 
15  The post-rains survey asked the same households if they believe the forecasts to have been accurate.  Ex post 
expressions of accuracy were very strongly correlated with ex ante expressions of confidence. The ex ante confidence 
measure thus seems to capture the strength of respondent’s belief in the new forecast information. 
16 The DMC did not issue country specific forecasts.  As it happens, the dividing line between DMC forecast regions IV 
and V lay in northern Kenya, to the north of our Kenyan sites and to the south of our Ethiopian sites. 
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Because 2001 was not expected to be an ‘extreme climate’ year as would be the case under El 

Nino conditions, these forecasts appear somewhat vague.17 Furthermore, these forecasts cover broad 

regions and project over the entire long rains season. These temporal and spatial averages are therefore 

not intended to capture microvariability of rainfall patterns. That the DMC forecasts for 2001 did not 

communicate any appreciable likelihood of extreme conditions and were necessarily temporal and 

spatial generalizations would seem to suggest that the ‘extremeness’ of the information was low, making 

a measurable updating effect unlikely (Griffin and Tversky 1992, Tversky and Kahneman 1974). On the 

other hand, the ambiguity of the forecast likely amplifies cognitive biases in the processing of this 

information (Griffin and Tversky 1992, Keren 1987).   

After cleaning the data and matching baseline households to households represented in the 

climate survey, we have data on 244 households, of which 37 received and 30 both received and 

expressed some confidence in the DMC forecast. That so few received the forecast seems to be partly 

due to the forecasts being broadcast in Swahili and Amharic, the national languages of Kenya and 

Ethiopia, respectively, that are not understood by many pastoralists without formal education since 

their vernaculars have different linguistic roots. This feature of the DMC forecast implies that this 

section’s analysis tests the updating effect conditional upon external forecasts being broadcast in 

national languages.  

 

B.  Econometric Approaches & Issues 

Direct Approach: To implement the direct approach, we proceed in two steps. First, we recover the 

priors, πij
s, of those who receive and believe the DMC forecast using a selection model following 

Heckman’s method. Second, we use these estimated priors along with the observed priors of the 

remaining respondents to estimate directly the differenced updating equation in (4).  

 In the outcome equation of the selection model (equation (5)), the vector of individual 

characteristics, xij, includes truly individual variables such as gender (MALE=1 if male, 0 if female), 

education (EDU=years of formal education) and age (AGE in years, as well as AGE2), plus household 

characteristics such as whether the household cultivates seasonal crops (CULT=1 if cultivates, 0 

otherwise),18 how many tropical livestock units (TLU)19 are owned by the household and whether the 

                                                 
17 By construction, the naïve trinomial forecast is (33, 33, 33), i.e., not radically different from what DMC broadcast. 
18 The cultivation dummy variable is based on the dichotomous observation of whether the household ever cultivated 
crops over the year prior or year following the 2001 long rains we study.   The results are invariant to including only 
cultivation prior to the long rains of 2001, thereby obviating the potential endogeneity of cultivation after the start of the 
2001 long rains to respondents’ climate beliefs.   
19 One TLU equals 0.7 camels, 1 cattle, or 10 goats or sheep.  This is a standard aggregation method. 
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household owns a radio (RADIO=1 if owns radio, 0 otherwise). The vector of village characteristics, zj, 

includes a dummy variable for Kargi and North Horr, which experienced the atypical furmat rains that 

seem to have induced unusual optimism about the coming rainy season (FURMAT=1 if in KA or NH, 

0 otherwise) and whether it is within ten kilometers from a main road (ROAD=1 if near road, 0 

otherwise). The resulting specification for the outcome equation is  

(10)  
ij

f
jjijijij

ijijijij
s
ij

ROADFURMATRADIOTLUCULT

AGEAGEEDUMALE

εβββββ

βββββπ

++++++

++++=

98765

2
43210  

The selection equation involves the same explanatory variables as the outcome equation in (10), but 

replaces FURMAT with a Kenyan dummy variable (KENYA=1 if the village is in Kenya, 0 if in 

Ethiopia) as follows:  

(11)   
ijjjijijij

ijijijijij

pROADKENYARADIOTLUCULT

AGEAGEEDUMALERC

εγγγγγ

γγγγγ

++++++

++++=
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where the receipt and confidence variable (RCij) is calculated as a dummy variable that equals 1 if the 

individual received and expresses at least some confidence in the DMC forecast and 0 otherwise.20 

Following Heckman’s technique this selection equation is estimated as a Probit model. 

 Once corrected for possible selection bias, the estimated coefficients of the outcome equation 

in (10) can be used to estimate s
ijπ̂  for those whose priors are unobservable (RCij=1). The updating 

equation in (4) can then be directly estimated as 

(12)  | 1 2
s s s s
ij DMC ij ij ij ijd d d RCδ δ ε= + +  

where dij
s= dij|DMC

s =(πij
s-πDMC,j

s) if RCij=0, and dij
s= ( s

ijπ̂ -πDMC,j
s) and dij|DMC

s=(πij|DMC
s-πDMC,j

s) if RCij=1. 

The coefficient δ2 is an estimate of the mean updating weight for the households surveyed that received 

and believe the DMC forecast. Referring to the updating equation in (4), the null hypotheses of interest 

here are 

  H1o: δ1=1   H1A: δ1≠1   

  H2o: δ2=0   H2A: δ2<0   

  H3o: δ2=-1   H3A: δ2≠-1   

The H1 null merely reflects the identity between prior and posterior beliefs in the absence of any 

updating.  H2 and H3 are our focus, with rejection of the H2 null indicating that updating indeed 

                                                 
20 Those who received the DMC forecast were asked whether they had no confidence, some confidence or high 
confidence in these forecasts. In creating the RCij dummy variable, all forecast recipients who expressed some or high 
confidence were assigned RCij=1. Recipients expressing no confidence in the forecast were assigned RCij=0. 
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occurs and failure to reject the H3 null indicating consistency with a model of complete, immediate 

updating, wherein the external forecast is accepted as an objective probability. 

 There are three econometric issues to address before estimating the selection bias model and 

updating equation of the direct approach. 21 First, the dependent variables in the updating equation in 

(12) have distinctly discrete properties. There are only two relevant DMC forecasts given the 

geographic coverage of the survey data, one for northern Kenya (πDMC,K
A=25%, πDMC,K

B=35%) and 

another for southern Ethiopia (πDMC,E
A=35%, πDMC,E

B=25%). Furthermore, individual predictions about 

states A, N, and B were solicited using 12 stones and the resulting probabilities are therefore measured 

in increments of 1/12=8.33%. Since there are two different DMC forecasts for each state, there are 24 

possible values for dij
s for s={A, B}. Because the observed frequency is zero for several possible values, 

dij
s actually takes on less than 24 values in our data. Estimation will thus allow for heteroscedasticity to 

account for the discrete nature of the dependent variables and for the effect this discreteness has on the 

variance of the errors.22   

 Secondly, dij
s is potentially doubly-censored. Theoretically, dij

s is lower-censored at (-πDMC,j
s) and 

upper-censored at (1-πDMC,j
s).  Estimation of the updating equation in (12) could account for this 

censored data using Tobit estimation, but this would require an assumption about the distribution of 

the residuals. An additional problem with applying Tobit techniques in the present context is that 

heteroscedasticity can only be introduced structurally (i.e., one must specify a conditional variance 

equation). Due to the complex form of the heteroscedasticity introduced by the discreteness of the 

dependent variables, a less restricted correction for heteroscedasticity (e.g., White 1980) is preferable. 

Whether the benefits outweigh these limitations of Tobit estimation depends on the degree of 

                                                 
21 The possible endogeneity of RCij is another possible issue. Based on our discussions with respondents, we doubt this 
is a serious problem with our data. Specifically, there is little evidence that the pastoralists included in our survey 
actively sought the DMC forecast, which would be the obvious source of endogeneity bias. We nonetheless 
experimented with a proxy for RCij to address the problem, but the proxy was so poor that it introduced measurement 
error problems that were more serious than the potential endogeneity problem it aimed to remedy. Although 
uninformative, these results are available from the authors by request.  
 Also note that it is reasonable to assume that an individual’s propensity to update given that she receives the 
DMC forecast is state-dependent. It is reasonable, however, to expect that the random error terms in the s=B and s=A 
equations are correlated. This type of link between equations normally justifies the use of Seemingly Unrelated 
Regression (SUR) techniques in order to improve estimation efficiency.  We believe the efficiency gains over OLS 
estimation are modest since the independent variables are nearly identical. Although efficiency gains could be greater in 
the nonlinear censored regression model, we believe this potential gain is still limited and choose not to use 
simultaneous Tobit methods. 
22 This discreteness is analogous to employment data collected by surveys in which most respondents’ predictably claim 
to work 15, 20, 30, or 40 hours per week. In such cases, the variance at these values is likely inflated relative to 
neighboring integers (e.g., 39). The typical remedy for discrete properties like this is correcting standard errors for the 
inherent heteroscedasticity. We are indebted to J.S. Butler for this analogy.   
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censoring. The degree of censoring on dij
s,23 while modest, persuades us to estimate the updating 

equation in (12) using both OLS and Tobit techniques. 

 Lastly, because our estimation approach effectively involves three equations ((10), (11), and 

(12)), the estimated standard errors in the updating equation in (12) are potentially misleading. We 

bootstrap the standard errors to remedy this problem. We likewise use bootstrapping to compute bias 

reduction estimates of the coefficients in (12).  

 

Indirect Approach: The reduced-form indirect approach is less elegant, but less restrictive. The 

intuition of this approach (see equation (9)) is relatively simple: after controlling for relevant household 

and village characteristics, systematic updating implies that the distance between an individual’s 

observed rainfall prediction and that of the DMC should be smaller for those receiving and believing 

the DMC forecast. The household and village vectors here are similar to those in the selection and 

outcome equations ((11) and (10), respectively) of the direct approach. We specify equation (9) of the 

indirect approach as: 

 (13)  
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where GOODij
s is the interaction variable )( , ij

s
jDMC RCd ×− defined in (9a), which proxies for how 

‘good’ or ‘bad’ the DMC forecast was considered by those in village j who received and believed it, and  
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Note that this specification hinges on dij
s being measured as an absolute value. Without the absolute 

value operator, the interaction term may simply capture cross-village differences in mean rainfall beliefs 

since the DMC issued only two different forecasts for our study area. With the absolute value operator, 

this interaction term can effectively isolate updating asymmetries.  In (13), s={A, B} and εs
ij is a random 

error term with εA≠εB
 and σAB=Cov(εA

,εB) ≠0.  

 Since |dij
A|=|dij

B|=0 indicates that individual i in village j has climate beliefs that correspond 

perfectly to the DMC forecast, a negative coefficient on an explanatory variable in (13) indicates that an 

individual’s rainfall belief converges to the DMC forecast as the variable increases. The coefficients of 

primary interest are β9, β10, and β11. β9 is an indirect updating coefficient indicating whether those 

                                                 
23 5 (52) and 16 (0) observations are lower- and upper-censored, respectively, for s=A (s=B). 
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receiving and believing the DMC forecast update their climate priors in response to receiving and 

having confidence in the external forecast irrespective of the direction and distance between the 

external and local prior forecast. β9<0 would imply that, controlling for other factors, forecast 

recipients indeed update their beliefs in the direction of the DMC forecasts. β10 indicates whether 

forecast recipients assimilate good forecasts differently than bad ones. With GOODij
s defined in (9a), 

β10<0 would imply that good forecasts are assimilated more readily than bad ones. Finally, β11 is a 

switching coefficient that allows GOODij
s to have a different slope in the positive domain than in the 

negative domain. Thus, β10+β11 is the total updating effect of GOODij
s when this variable is positive, 

and β10 is the total updating effect of GOODij
s
 when it is negative. Relevant null hypotheses for these 

coefficients are therefore 

  H4o: β9=0   H4A: β9<0   

  H5o: β10=0   H5A: β10>0  

  H6o: β10+ β11=0  H6A: β10+ β11<0 

  H7o: β9=0 and β10+β11=-1 H7A: β9≠0 or β10+β11≠-1   

Rejection of the H4, H5 and H6 null indicates that updating occurs in response to external forecast 

information. Rejection of the H5 (H6) null indicates that pastoralists update in response to pessimistic 

(optimistic) external forecasts. Rejection of the H6 null suggests that updating asymmetrically favors 

good news over bad. Failure to reject the H7 null would signal that optimistic forecasts are accepted as 

objective probabilities.  

 A further insight into pastoralists’ cognitive processing of information can be gleaned from β8, 

the coefficient on FURMAT. The early atypical furmat rains in two of the Kenyan villages may have 

induced significant optimism. Among respondents who experienced furmat rains, forecasts recipients 

offered extreme optimistic (degenerative) forecasts with the same frequency as their less informed 

neighbors, suggesting that these cognitive effects may indeed dominate any updating that might 

otherwise occur. In this specification, this can be tested with the hypothesis:  

  H8o: β8=0   H8A: β8>0  for s=A 

Interpreting the result of this null requires an understanding of the historical correlation between furmat 

rains and the long rains, which we explore in the next section. Rejection of the H8 null when the 

correlation between the furmat and long rains is significantly positive would suggest that any induced 

optimism is justified. In such a case pastoralists may be sequentially updating their beliefs, first, in 

response to the signal provided by the furmat rains and, second, to the DMC forecast. Rejection of this 

null when there is no statistical correlation, or when there is a significantly negative correlation, would 

suggest that pastoralists are systematically (over-)optimistic in their interpretation of furmat rains.  
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 The remaining variables in (13) control for other factors that may affect an individual’s 

processing of information and formulation of expectations. None of the individual or village 

characteristics are interacted with RCij, therefore corresponding coefficients do not represent marginal 

effects on the processing of the DMC forecast. Rather, these coefficients indicate how individual and 

household characteristics affect the proximity of an individual’s priors to the DMC forecast. Gender, 

education and age may affect how an individual predicts seasonal precipitation as discussed in the 

previous section. Once a household that cultivates makes production decisions it cannot move its crops 

to areas with more rainfall if its climate expectations turn out to be wrong. A purely pastoralist 

household, on the other hand, can and does move its animals if rainfall is lower than expected. Hence, 

as discussed in section III, accurate precipitation predictions are relatively more valuable to households 

that cultivate, and one would expect such households to formulate their beliefs relatively more carefully. 

β4 should therefore be negative.  

 Since the herd size held by a household is a strong correlate of wealth and wealthy households 

are better able to cope with climate shocks, one might expect such households to care relatively less 

about accurate rainfall predictions. Furthermore, households with more livestock are likely to be more 

pastoralism-oriented and thus more mobile in responding to rainfall shortages, a further reason to 

expect β5>0. Conversely, there are legitimate reasons to expect β5<0. Wealth may be correlated with 

latent characteristics that affect cognitive processing of information. Wealthy households could be 

wealthy precisely because they are, on average, relatively good at assessing and strategically responding 

to information. Wealthy households may also have access to broader networks of information. A priori 

expectations on the TLU coefficients are therefore ambiguous. 

 The village variable KENYA is expected to improve individuals’ forecast accuracy. Relative to 

Ethiopia, Kenya has better infrastructure, including education and health care, which may help 

individuals formulate more accurate rainfall predictions. Because Kenya has better infrastructure, access 

to DMC forecasts may be easier. We therefore expect this variable to affect RCij more directly than 

|dij
s|.  

 The econometric issues involved with the indirect approach are comparable to those of the 

direct approach that were previously discussed.24 As before, the dependent variables in (13) has 

distinctly discrete properties. Indeed, in our data |dij
A| and |dij

B| take on only 17 and 14 different 

values, respectively. We therefore allow for heteroscedasticity in estimating equation (13). Secondly, 

                                                 
24 Moreover, the previous footnote about SUR is also relevant for the indirect approach. Since GOODij

s is the only 
variable that distinguishes s=A from s=B in equation (13) and SUR efficiency gains are zero when independent 
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|dij
s| is potentially lower-censored at 0 and upper-censored at (1-πDMC,j

s).25 Very few of our observations 

on |dij
s| are actually censored, however, which makes the benefits to Tobit estimation trivial compared 

to its limitations. We therefore choose to use standard OLS techniques when estimating equation (13). 

We bootstrap to compute bias reduction estimates of the coefficients in (13).  

 

C.  Results 

The estimates of the selection model and the direct updating equation are reported in Table 1. The 

selection equation has (1-RCij) as the dependent variable since it is those with RCij=1 for whom prior 

beliefs are unobserved.  In recognition of possible censored data problems – although the degree of 

censoring is not extreme – we estimate the updating equation using both OLS and Tobit26 techniques. 

These results, shown in Table 2, indicate strong updating of seasonal rainfall expectations. For both the 

above and below normal forecast probabilities, the point estimates on δ1 are mechanically constrained 

at a value of 1.0, so one cannot reject the null that δ1=1 at any reasonable significance level.  Of greater 

interest, the estimated coefficients on (d x RC) are negative for both above and below normal states. 

These coefficients are significantly less than -1.0 for both states and for both OLS and Tobit 

estimation, suggesting that pastoralists may even ‘over-adjust’ their expectations in response to the 

DMC forecast. We easily reject the null hypothesis of perfect updating at the five percent level in favor 

of an over-adjusting alternative.  In spite of ubiquitous access to and confidence in indigenous climate 

forecasting traditions, and despite widespread illiteracy and unfamiliarity with computer-based 

technologies, east African pastoralists appear to update their climate beliefs strongly in response to 

modern forecasts disseminated from the regional Drought Monitoring Centre. This result is particularly 

striking given that the DMC forecast to which these pastoralists apparently respond seems rather 

ambiguous and are at very coarse spatiotemporal scale.  

In contrast to the direct estimation approach, which estimates unconditional priors for those 

receiving and believing the DMC forecast using a selection bias model, the indirect approach relies on a 

computed ‘community consensus’ as described in the preceding section. Before reporting the results of 

the indirect estimation approach and to facilitate the interpretation of these results, it is helpful to 

                                                                                                                                                                  
variables are identical, the efficiency gain of SUR estimation vis-à-vis OLS would therefore be negligible. We therefore 
choose not to employ simultaneous estimation techniques.  
25 When πij

s=0, |dij
s|=πDMC,j

s, but since πDMC,j
s< 1-πDMC,j

s for all s (recall πDMC,j
s<50% for all s) and the difference is 

measured as an absolute value, πDMC,j
s cannot be a censoring point. 

26 Estimating the updating equation as a Tobit model requires an assumption about the distribution of the residuals 
(assumed to be normally distributed in this case), and heterosceadasticity must be modeled as structural, in this case 
using a multiplicative form, σi = σeγ’zi , where zi included ROAD, TLU, EDU, and KENYA. We found the parameter 
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discuss explicitly these community consensus measures and the GOODij
s variable that they construct in 

conjunction with the village-specific DMC forecast and RCij variable (recall equations (9) and (9a)). 

Table 3 reports these village-level variables along with the percent receiving and believing the DMC 

forecast. Note the geographic unevenness of receipt and confidence in the DMC forecast. Table 3 also 

shows that while the estimated community consensus varies considerably between villages across both 

above normal (A) and below normal (B) states, the standard errors of these estimated means suggest 

that respondents with RCij=0 offered similar forecasts.  The precision of these estimates, which 

indicates that the forecasts of respondents with RCij=0 are clustered closely together within each village, 

seems to validate both the existence of a community consensus and the approximation of this 

consensus using the mean village forecast conditional on RCij=0. The final two columns in Table 3 

indicate that the DMC forecast for s=B was uniformly received as bad news. Consequently, we can 

only estimate the switching coefficient on GOOD[+]
ij
s for s=A. Note that in Wachille for s=A (8 

respondents with RCij=1) and Dirib Gumbo for s=A,B (1 respondent with RCij=1) this external 

forecast was essentially neutral (i.e., it mimicked the corresponding community consensus).  

The results from the indirect approach, reported in Table 4, reinforce the findings of the direct 

approach and provide an additional insight concerning asymmetric updating. The coefficient estimate 

on the furmat dummy variable is positive and significant for s=A. 27  Having rejected the null that this 

coefficient is zero, we must first estimate the correlation between furmat and long rains before 

interpreting this result. Using monthly rainfall data for North Horr (1977-2001) – a period that includes 

seven furmat episodes – a simple univariate regression of long rains as a function of furmat rains yields a 

statistically insignificant correlation of -0.28 (std. error = 0.38). Thus, atypical furmat rains, while 

increasing available forage, appear to communicate no meaningful information about the rainfall of the 

subsequent long rains season and certainly not information that the long rains are likely to be greater in 

volume. This, combined with the significant and positive coefficient on FURMAT, suggests that 

pastoralists who experienced furmat rains were not updating in response to an additional, natural signal 

received in the form of early rains. Rather, they may have optimistically interpreted a statistically 

                                                                                                                                                                  
estimates under the Tobit model to be sensitive to assumptions about the underlying error distribution and the 
specification of the conditional variance equation.  So we place greater confidence in the OLS results.  
27 Since the dependent variable in the indirect approach is the absolute value of dij

s, one cannot in fact tell whether a 
positive coefficient indicates optimism, pessimism, or simply a mixture of extreme deviations from the DMC forecast. 
To settle the matter, we conducted an additional regression of the indirect approach specification where the dependent 
variable was dij

s, instead of its absolute value. From this estimation it is clear that the coefficient on the furmat dummy 
in Table 5 indeed implies optimism, not pessimism.  
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uninformative signal.28 Alternatively, instead of offering an estimate of their rainfall beliefs, they may 

have offered an estimate of the probability their utility from rainfall would be above or below normal. 

In either case, the pastoralists who observed furmat rains seem to be more optimistic than those who 

did not. This relative optimism may be very well justified as furmat rains guarantee better pasture in the 

near term, thereby decreasing the likelihood of catastrophic livestock mortality and household welfare 

losses. With their systematic optimism, these pastoralists seem to share certain cognitive biases with 

financial analysts and stockbrokers worldwide (Easterwood and Nutt 1999, Hirshleifer and Shumway 

2003).  

Those who receive and have confidence in external forecasts indeed appear to update their 

priors in the direction of the DMC prediction when it places a higher probability on a more desirable 

outcome than did the subject’s prior beliefs. The estimated coefficients on GOOD are uniformly 

negative and significant. Recall that the GOOD variable in the indirect method permits identification of 

asymmetries of the updating process introduced by whether the DMC forecast was received as good or 

bad news.  We find consistent evidence against the null of symmetric updating and in favor of the 

alternate hypothesis that pastoralists assimilate relatively good forecasts about the most desirable state 

of nature (above normal rainfall) more completely than relatively bad forecasts or even relatively good 

ones about the least desired state of nature (below normal rainfall). Because the information contained 

in the DMC forecast is non-rival, it is possible, even probable, that those receiving the forecast share 

this information with their neighbors, in which case s
j,DMCd −  would be underestimated and the GOOD 

variable would be uniformly understated. There is thus good reason to believe that the asymmetric 

updating effect is actually stronger than we have estimated it to be. In short, climate forecast 

information seems to have both sign and magnitude effects on respondents’ belief updating processes.   

A few other results from Table 6 warrant comment.  First, age does not appear to matter to 

one’s updating patterns once one controls for the likelihood of receiving and having confidence in 

external forecasts, which is affected by age, as shown in Table 1. Perhaps surprisingly, livestock wealth 

appears uncorrelated with updating patterns.  Wealth may not be attributable to more skillful 

management of information, in which case we would expect to find a significant, negative correlation 

between the updating distance measure and wealth.  Finally, respondents who cultivate crops evince 

subjective climate probabilities that are considerably closer to those of the DMC than do pure 

pastoralists. This may be partly due to both cultivation and meteorological stations being more 

                                                 
28 These pastoralists can hardly be blamed for perceiving a correlation where none exists as this is one of the most 
robust flaws in human reasoning (Nisbett and Ross 1980). 
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prevalent in relatively wet areas (Smith, et al. 2001). This is consistent with other evidence that climate 

forecasting is perhaps better suited to crop producers than extensive livestock herders in the developing 

world (Luseno, et al. 2003).  

 

V.   Conclusion 

In a world of considerable temporal uncertainty, economic performance – indeed, mere survival in 

environments as harsh as the rangelands of the Horn of Africa – often depends considerably on the 

magnitude and speed with which decision-takers update prior beliefs in response to relevant new 

information.  As efforts accelerate to disseminate computer generated climate forecasts in the Horn of 

Africa and other regions of the developing world subject to frequent, severe climate shocks, questions 

of how such forecasts might contribute to poverty alleviation grow rapidly in importance. Widespread 

optimism about climate forecasting’s potential as a development tool implicitly depends, however, on 

previously untested assumptions that intended beneficiaries both receive and have confidence in 

external forecasts, and that they update prior beliefs in response to this information.  Yet in cultures 

that have long used indigenous forecasting methods and where access to modern media and familiarity 

with computer-based technologies are limited, one might suspect that new forecasts generated and 

disseminated by outsiders using incomprehensible computer models may not readily gain the 

acceptance necessary to induce behavioral change.  

 This paper presents the first direct study of these issues, exploring how the subjective rainfall 

probability distributions of poor pastoralists in southern Ethiopia and northern Kenya change in 

response to receipt of modern, computer-generated climate forecasts.  Limited access to modern media 

(e.g., radio, television, newspapers) and the existence of a suite of established, indigenous forecasting 

methods accessed by virtually all pastoralists leave little space for adoption of external climate forecasts 

among east African herders.  Only 13.7 percent of our respondents both received and expressed 

confidence in computer-based climate forecasts, although one might reasonably predict greater future 

use as radio availability increases and this information becomes more familiar. 

 Perhaps the trickier question is whether those who receive external climate forecast information 

really use it.  Somewhat surprisingly, we find that, on average, those receiving and believing computer-

based forecasts vigorously update their above normal seasonal rainfall expectations in the direction of 

the modern forecast.  Under some specifications, one cannot even reject the null that they adopt the 

external climate forecast completely, as an objective probability, or even “overshoot” in their 

adjustment.  An asymmetry is apparent in pastoralists’ response being especially strong when the 
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external forecasts suggest a greater likelihood of a favorable (wetter) season or, to a slightly lesser 

degree, a lower likelihood of an unfavorable (drier) season than they had previously believed.  

Furthermore, those in locations where they have recently observed unusual early rains, which are 

historically uncorrelated with the more important long rains, formulate relatively more optimistic 

(higher) expectations for continued above normal rainfall. These results suggest a systematic optimism 

manifest in updating processes that differ according to the direction in which one is led to revise prior 

beliefs.  East African pastoralists appear remarkably similar to financial analysts on Wall Street in their 

tendency to overreact to good news, underreact to bad news and to interpret genuinely ambiguous 

information optimistically (Easterwood and Nutt 1999). These general findings are robust to a variety 

of different estimation methods meant to address various econometric complications.   

 Our conclusion that pastoralists update their climate expectations, albeit with a cognitive bias 

towards optimism, suggests that these same pastoralists appear to place little value on modern climate 

forecasts (Luseno, et al. 2003) not because they are unable to process the information and adjust their 

expectations accordingly, but precisely because they have at their disposal ex post options for responding 

to climate shocks. Once new information is in hand, in the form of the DMC forecast for example, 

updating beliefs is costless. Thus, even pastoralists who seemingly have no intention of using the 

information to formulate better livelihood strategies, update their expectations accordingly. Even if not 

directly beneficial, updating is difficult to resist, as is doing so optimistically.   
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Figure 1 DMC forecast for the ‘long rains’ season (March-May) 2001 
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Table 1 Selection model results estimated using Heckman’s technique (dependent variables in outcome 
equation measured as a percentage; Standard errors in parentheses; * (**) indicates statistical 
significance at the 10% (5%) level.) 

Dependent Variable
Intercept 1.10 31.54 * 42.87 **

(0.868) (19.6) (18.6)

Male {0,1} -0.081 3.43 -5.11 **

(0.278) (3.51) (2.73)

Education (yrs) -0.13 ** -1.34 0.23
(0.044) (2.29) (1.50)

Age  0.047 -0.42 -0.18
(0.037) (0.737) (0.674)

Age2 (÷100) -0.049 0.19 0.27
(0.038) (0.701) (0.607)

Cultivation {0,1} 0.49 * 9.00 * -1.46
(0.263) (5.48) (3.93)

Livestock (TLU) -0.004 -0.13 * 0.16 **
(0.006) (0.081) (0.063)

Radio {0,1} -0.36 11.78 ** 0.79

(0.285) (6.35) (4.75)
Furmat {0,1} 30.16 ** -16.51 **

(5.51) (4.26)
Kenya {0,1} -0.17

(0.286)
Road {0,1} -0.98 ** 5.52 -19.51 **

(0.328) (8.07) (5.70)
Lambda 12.35 -2.57

(34.5) (24.0)

Rsq 0.22 0.25
N 244 214 214

Outcome EquationSelection Equation
s=A s=B

πBπA(1 - RC)
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Variable

% Censored (lower; upper)

dij
s 1.00 ** 1.04 ** 1.00 ** 1.00 **

(1.59E-17) (0.064) (1.52E-17) (0.005)

dij
s x (RCij)  -1.72 ** -1.83 ** -1.31 ** -1.27 **

(0.185) (0.073) (0.035) (0.005)

Adj-R2 0.85 0.95
Breusch-Pagan (d.f.=1) 108.6 763.2

† Coefficients are bootstrap-bias reduction estimates and standard errors are bootstrapped. 

(19% ; 0)

Above normal rainfall forecast Below normal rainfall forecast

TobitOLS†TobitOLS†

(0 ; 6%)

 
 

 

Table 2 Coefficients for the direct approach to estimating the updating equation with 
heteroskedasticity-consistent standard errors (dependent variable, dij/DMC

s, measured as a percentage; 
Standard errors in parentheses; * (**) indicates statistical significance at the 10% (5%) level.) 
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 % RCij=1 s=A s=B
ETHIOPIA

Dida Hara 0% 26.4 (2.1) 22.5 (3.0) 8.6 -2.5
Dillo 0% 14.7 (0.8) 57.1 (2.0) 20.3 32.1
Finchawa 4% 20.8 (1.7) 6.6 (0.7) 14.2 -18.4
Wachile 30% 35.1 (5.5) 12.7 (2.6) -0.1 -12.3

KENYA
Dirib Gumbo 4% 25.3 (3.1) 35.0 (3.8) -0.3 0.0
Kargi 5% 34.1 (5.8) 27.7 (4.9) -9.1 -7.3
Logologo 27% 12.0 (1.3) 22.9 (3.1) 13.0 -12.1
Ngambo 22% 47.0 (4.0) 14.8 (2.0) -22.0 -20.2
North Horr 8% 57.3 (7.8) 12.3 (3.1) -32.3 -22.7
Suguta Marmar 23% 60.8 (5.7) 12.7 (3.9) -35.8 -22.3

number receiving the DMC forecast as 'good' news 7 0
number receiving the DMC forecast as 'bad' news 23 29

GOODij
s for RCij=1

Of respondents with RCij=1:

Forecast of Above normal 
rainfall (s=A)

Forecast of Below normal 
rainfall (s=B)

Communmity Consensus (%)      (std.error)

Table 3 Percent receiving and believing the DMC forecast, and ‘Community Consensus’ and 
GOODij

s calculations by village. 
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Table 4 OLS bootstrap-bias reduction coefficients for the indirect approach with heteroskedasticity-
consistent standard errors (dependent variable is |dij/DMC

s|, measured as a percentage; Standard errors in 
parentheses; * (**) indicates statistical significance at the 10% (5%) level.) 

% Censored (lower; upper)

Intercept 23.2 ** 22.2 **
(10.0) (7.6)

Male {0,1} 2.66 -0.76
(2.3) (1.7)

Age  -0.33 -0.18
(0.35) (0.31)

Age2 (÷100) 0.34 0.25
(0.31) (0.29)

Cultivation {0,1} -1.10 -0.81
(2.3) (1.7)

Livestock (TLU) -0.010 -0.016
(0.086) (0.086)

Livestock2 (÷100) 0.002 0.030
(0.049) (0.046)

Kenya {0,1} 2.93 -0.58
(2.3) (1.7)

Furmat {0,1} 10.4 ** 2.5
(5.0) (2.7)

RCij 9.9 * -7.3

(5.7) (8.7)

GOODij
s -0.41 * -0.69 *

(0.22) (0.49)

GOOD[+]
ij
s -0.99 *

(0.61)

Breusch-Pagan (d.f.=11,10) 152 13.2

Below normal rainfall forecast

(6%; 0)

Above normal rainfall forecast

(2%; 0)
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