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Decision Fusion in a Wireless Sensor Network with a Large
Number of Sensors

Ruixin Niu, Pramod K. Varshney Michael Moore, Dale Klamer
Syracuse University ALPHATECH, Inc.

EECS, 121 Link Hall 4445 Eastgate Mall
Syracuse, NY 13244 San Diego, CA 92121

USA USA
frniu, varshneyg@ecs.syr.edu fmichael.moore, dklamerg@alphatech.com

Abstract – For a wireless sensor network (WSN) with a large
number of sensors, a decision fusion rule using the total number
of detections reported by local sensors for hypothesis testing, is
proposed and studied. Based on a signal attenuation model where
the received signal power decays as the distance from the target
increases, the system level detection performance, namely proba-
bilities of detection and false alarms, are derived and calculated.
Without the knowledge of local sensors’ performances and at low
signal to noise ratio (SNR), this fusion rule can still achieve very
good system level detection performance if the number of sensors
is sufficiently large. The problem of designing an optimum local
sensor level threshold is investigated. For various system parame-
ters, the optimal thresholds are found numerically. Guidelines on
selecting the optimal local threshold have been presented.

Keywords: Wireless sensor networks, distributed detection, de-
cision fusion, signal attenuation model.

1 Introduction

Wireless sensor networks (WSN) have gained much atten-
tion recently. Usually a WSN consists of a large number
of low-cost and low-energy sensors, which are deployed in
the environment to collect observations and pre-process the
observations. Each sensor node has its own communication
capability to communicate with other sensor nodes or the
central node (fusion center) via a wireless channel. Nor-
mally, there is a fusion center that fuses data from sensors
and forms a global situational assessment. Due to their high
flexibility, surveillance coverage, robustness and cost effec-
tiveness, WSNs are very suitable for battlefield surveillance
and environment monitoring.

One of the most important tasks a WSN needs to per-
form is target detection, typically in a distributed man-
ner. There are already numerous papers in the literature
on the conventional distributed detection (decision fusion)
problem. In [1, 2], optimum fusion rules have been ob-
tained under the conditional independence assumption. De-
cision fusion with correlated observations has been studied
in [3, 4, 5, 6]. There also exist many papers dedicated to
the problem of distributed detection with constrained sys-
tem resources [7, 8, 9, 10, 11, 12, 13]. Specifically, these
papers have proposed solutions to optimal bit allocation (or
sensor selection) given a constraint on the total amount of
communications.

However, most of these results are based on the assump-
tion that the local sensors’ performances are known. For a
dynamic target and passive sensors, it is very hard to esti-
mate local sensors’ performances via experiments because
these performances are time-varying as the target moves.
Even if the local sensors can somehow estimate their de-
tection performances in real time, it will be very expensive
to transmit them to the fusion center. For a WSN with a
very large number of inexpensive sensors, it is important to
limit the communication within the WSN to save precious
system resources (both energy and bandwidth). Hence, the
knowledge of the local sensors’ performances can not be
taken for granted in a WSN and a fusion rule that does not
require local sensors’ performances is highly preferable.

In this paper, we propose a fusion rule that uses the total
number of detections (“1”s) transmitted from local sensors
as the statistic. Based on the assumption that the signal
power decays as a function of the distance from the target,
we will analyze this detector’s performance at the system
(fusion center) level. In addition, we will give guidelines
on how to choose an optimum threshold at the local sensor
to maximize system level probability of detection.

In Section 2, basic assumptions of the WSN are made
and the signal attenuation model is provided. In Section 3,
the fusion rule based on the total number of local detections
is proposed. Analytical methods to derive and calculate the
system level detection performance are presented in Sec-
tion 4. In addition, the asymptotic detection performance
is studied. Simulation results are also provided to confirm
our analyses. The problem of designing an optimum local
sensor level threshold is investigated in Section 5. There,
the optimum thresholds for varying system parameters are
found numerically. Conclusions and some suggestions for
future work are discussed in Section 6.

2 Problem Formulation

As shown in Fig. 1, a total of N sensors are randomly de-
ployed in the region of interest (ROI), which is a square
with area a2. The locations of sensors are unknown to the
WSN, but it is assumed that they are i.i.d. and follow a
uniform distribution in the ROI:

f(xi; yi) =
1

a2
(�

a

2
� xi; yi �

a

2
) (1)



for i = 1; � � � ; N , where (xi; yi) are the coordinates of
sensor i.
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Fig. 1: A sensor deployment example.

We assume that noises at local sensors are i.i.d and follow
the standard Gaussian distribution:

ni � N (0; 1) (2)

For a local sensor i, the binary hypothesis testing problem
is:

H1 : si = ai + ni

H0 : si = ni (3)

where si is the received signal, and ai is the signal ampli-
tude.

We assume that the signal power emitted by the target de-
cays as the distance from the target increases. An isotropic
signal power attenuation model is adopted here:

a2i =
P0

1 + �dni
(4)

or equivalently,

ai =

s
P0

1 + �dni
(5)

where P0 is the signal power emitted by the target at dis-
tance zero, di is the distance between the target and local
sensor i:

di =
p

(xi � xt)2 + (yi � yt)2 (6)

and (xt; yt) are the coordinates of the target. n is the sig-
nal decay exponent and takes values between 2 and 3. �

is an adjustable constant. Note that the signal attenuation
model can be easily extended to 3-dimensional problems.
Our attenuation model is similar to that used in [14]. The
difference is that in the denominator of Eq. (4), instead of
dni , we use 1 + �dni . By doing so, our model is valid even
if the distance di is close to or equal to 0. When di is large
(�dni � 1), the difference between these two models is
negligible.

Because the noise has unit variance, it is evident that the
SNR at local sensor i is

snri = a2i =
P0

1 + �dni
(7)

We define the SNR at distance zero as

SNR0 = 10 log10(P0) (8)

Assume that all the local sensors use the same thresh-
old � to make a decision, or equivalently make a two-level
quantization. The threshold � and the false alarm rate pfa
satisfy the following relationship:

pfa =

Z
1

�

1
p
2�

e�
t2

2 dt

= Q(�) (9)

or
� = Q�1(pfa) (10)

where Q(�) is the complementary distribution function of
the standard Gaussian, i.e.,

Q(x) =

Z
1

x

1
p
2�

e�
t2

2 dt

The probability of detection at local sensor i is

pdi =

Z
1

�

1
p
2�

e�
(t�ai)

2

2 dt

= Q

 
� �

s
P0

1 + �dni

!
(11)

3 Decision Fusion

We denote the binary data from local sensor i as I i =
f0; 1g. Ii takes the value 1 when there is a detection; other-
wise, it takes 0. The data from all the sensors are denoted as
I = fIi; i = 1; � � � ; Ng. After collecting data I, the fu-
sion center makes a final decision about a target’s presence
or absence.

We know the optimal decision fusion rule is the Chair-
Varshney fusion rule [1], and its statistic is:

�1 =

NX
i=1

�
Ii ln

pdi
pfai

+ (1� Ii) ln
1� pdi
1� pfai

�
(12)

The probability of false alarm at each sensor is known
(pfai = pfa) from (9), as long as we know the threshold
� . However, at each sensor, it is very difficult to calculate
pdi since according to (11), pdi is decided by each sensor’s
distance to the target and the amplitude of the target’s sig-
nal. An alternative scheme is that each sensor transmits raw
data si to the fusion center, and the fusion center will make
a decision based on these raw measurements. However, the
transmission of raw data will be very expensive especially
for a typical WSN with very limited energy and bandwidth.
Therefore, it is desirable to transmit only binary data to the
fusion center. Without the knowledge of pdis, the fusion
center is forced to treat every sensor equally. An intuitive



choice is to use the total number of “1”s as a statistic since
the information about which sensor reports a “1” is of little
use to the fusion center.

If we set pdi = pd and pfi = pf in (12) and assume that
pd > pfa, the statistic �1 in (12) can be simplified as

�2 =

NX
i=1

Ii (13)

This result coincides with our intuition. The fusion rule at
the fusion center is therefore:

�2 =
NX
i=1

Ii

H1

?
H0

T (14)

So the hypothesis testing problem is to first count the num-
ber of detections made by local sensors and then compare
it with a threshold T .

4 Performance Analysis

In this section, the system performances, namely the prob-
ability of false alarm Pfa and probability of detection Pd at
the fusion center will be derived.

4.1 Calculation of Pfa

At the fusion center level, the probability of false alarm Pfa

is

Pfa = Prf�2 =

NX
i=1

Ii � T jH0g (15)

Obviously, under hypothesis H0, the total number of detec-
tions �2 =

PN

i=1 Ii follows a Binomial (N , pfa) distribu-
tion. Therefore, for a given threshold T , the false alarm rate
can be calculated as the following:

Pfa =
NX
i=T

�
N

i

�
pifa(1� pfa)

N�i (16)

When N is large enough, Pfa or Eq. (16) can be calculated
by using Laplace-DeMoivre approximation [15]:

Pfa ' Q

 
T �Npfap
Npfa(1� pfa)

!
(17)

4.2 Calculation of Pd

To obtain the ROC curve, for a given T , we also need the
correspondingPd value. Because of the nature of this prob-
lem, different local sensors will have different pdi , which
is a function of di as shown in (11). Therefore, under hy-
pothesis H1, the total number of detections (�2) no longer
follows a Binomial distribution. It is very difficult to derive
an analytical expression for the distribution of �2. Instead,
we will obtain the Pd either through approximation by us-
ing Central Limit Theorem (CLT) or through simulation.

We know that Ii follows a Bernoulli distribution with
pdi as its probability of success. Because fI1; � � � ; INg are
mutually independent, when N is large enough, according

to CLT [15], the distribution function of �2 approaches a
Gaussian distribution with mean � and variance � 2, where

� = Ef�2g

=
NX
i=1

EfIig

=

NX
i=1

pdi (18)

and

�2 = varf�2g

=
NX
i=1

varfIig

=

NX
i=1

pdi(1� pdi) (19)

Remember that pdi is a function of [xi; yi; xt; yt]0. When
N is large, the summation in (18) can be approximated by:

�(xt; yt) =

NX
i=1

pdi(xi; yi; xt; yt)

'
NX
i=1

Efpdi(xi; yi; xt; yt)g

= N �pd(xt; yt) (20)

where

�pd(xt; yt) =
1

a2

Z a

2

�
a

2

Z a

2

�
a

2

pd(x; y; xt; yt)dxdy (21)

and

pd(x; y; xt; yt) = (22)

Q

 
� �

s
P0

1 + � ((x� xt)2 + (y � yt)2)
n

2

!

Similarly,

�2(xt; yt) ' N ��2(xt; yt)

=
N

a2

Z a
2

�
a
2

Z a
2

�
a
2

(1� pd(x; y; xt; yt))

�pd(x; y; xt; yt)dxdy (23)

Therefore,

Pd(xt; yt) = Prf�2 � Tg

' Q

�
T � �(xt; yt)

�(xt; yt)

�
(24)

Assuming that the target’s location follows a uniform dis-
tribution within the ROI, the average Pd is

Pd =
1

a2

Z a
2

�
a
2

Z a
2

�
a
2

Pd(xt; yt)dxtdyt (25)



We can make some reasonable assumptions to further
simplify the calculation. We assume that the ROI is very
large and the signal power of the target decays very fast as
the distance increases (� is large). Based on these assump-
tions, only within a very small fraction of the ROI, which is
the area surrounding the target, the received signal power is
significantly larger than 0. Therefore, by ignoring the bor-
der effect of the ROI, we can approximately take �pd(xt; yt)
as invariant to xt and yt:

�pd(xt; yt) ' �pd(0; 0) (26)

=
1

a2

Z a

2

�
a

2

Z a

2

�
a

2

pd(x; y; 0; 0)dxdy

where

pd(x; y; 0; 0) = Q

 
� �

s
P0

1 + � (x2 + y2)
n
2

!
(27)

The integration in (27) can be divided into two parts: one is
the integration over a circle with radius a

2
, and the other is

over the rest of the area of the ROI. Part one is much easier
if the integration is performed in polar coordinates:

�pd =
1

a2

Z 2�

0

Z a

2

0

Q

 
� �

r
P0

1 + �rn

!
rdrd�

+
1

a2
(a2 �

�a2

4
)pfa (28)

=
2�

a2

Z a
2

0

Q

 
� �

r
P0

1 + �rn

!
rdr + (1�

�

4
)pfa

Note that when di is large,

Q

 
� �

s
P0

1 + �dni

!
' Q(�)

= pfa (29)

This fact has been used in the derivation of (28). Similarly,

��2 =
2�

a2

Z a
2

0

 
1�Q

 
� �

r
P0

1 + �rn

!!
(30)

� Q

 
� �

r
P0

1 + �rn

!
rdr

+ (1�
�

4
)pfa(1� pfa)

Hence, the system level Pd is

Pd = Q

�
T �N �pdp

N ��2

�
(31)

4.3 Evaluation of System Performance via
Simulations

The system level Pd and Pfa can also be estimated by sim-
ulations. In Figs. 2 and 3, the receiver operative charac-
teristic (ROC) curve obtained by using approximations in

Section 4.1 and 4.2 and that obtained by simulations are
plotted. The simulation results are based on 105 runs. From
Figs. 2 and 3, it is clear that the results by using approxima-
tions are very close to those obtained by simulations. Note
that as discussed in Section 4.2, the border effect of the ROI
is ignored in both the calculation and the simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

Simulation (P
0
=100)

Approximation (P
0
=100)

Simulation (P
0
=500)

Approximation (P
0
=500)

Simulation (P
0
=1000)

Approximation (P
0
=1000)
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4.4 Asymptotic Analysis

Assume that the system level threshold is in the form of
T = �N . From (17), we have

Pfa = Q

 
(� � pfa)

p
Np

pfa(1� pfa)

!
(32)

Similarly, from (31), we have

Pd = Q

 
(� � �pd)

p
N

p
��2

!
(33)



Therefore, when N ! 1, if � < pfa, Pfa = Pd =
Q(�1) = 1; if pfa < � < �pd, Pfa = Q(1) = 0 and
Pd = Q(�1) = 1; if � > �pd, Pfa = Pd = Q(1) = 0.
As a result, as long as � takes a value between pfa and �pd,
as the sensor number N goes to 1, the WSN’s detection
performance will be perfect with Pd = 1 and Pfa = 0.

In Figs. 4 and 5, Pd and Pfa as functions of the total
number of sensors N are plotted. It is clear that the Pd

converges to 1 as N increases and Pfa converges to 0. In
this example, we set � such that � =

pfa+ �pd
2

. From Figs.
4 and 5, the asymptotic results also show that when there
are enough sensors in the ROI (N is large), even though the
SNR0 is small, the system can still achieve a very good
detection performance.
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5 Determination of the Threshold for Local
Sensors

In the above sections, we have assumed that the threshold
� (or equivalently pfa) is given. However, this is a param-

eter that can be designed to achieve a better system level
performance.

Assume that we are using a Neyman-Pearson detector at
the fusion center. From (17), for a given system level P fa,
we have

T = Q�1(Pfa)
q
Npfa(1� pfa) +Npfa (34)

Substituting (34) into (31), it follows that

Pd = Q

 
Q�1(Pfa)

p
pfa(1� pfa) +

p
N(pfa � �pd)p

��2

!
(35)

From (9), (28) and (30), it is clear that pfa, �pd and ��2 are
functions of the local sensor threshold � . Therefore, Pd is a
function of � :

Pd(�) = Q(C(�)) (36)

where

C(�) =
Q�1(Pfa)

p
pfa(1� pfa) +

p
N(pfa � �pd)p

��2
(37)

The optimum � can be found by maximizing Pd(�) with
respect to � or by minimizing C(�) with respect to � , since
Q(x) is a monotone decreasing function of x. The opti-
mization problem is therefore:

min
�

C(�) (38)

In Fig. 6, for Pfa = 0:01, C(�) and Pd(�) are plotted.
As we can see, there exists an optimal � (0:24) that max-
imizes the system level Pd. By employing this optimum
�opt, a significant improvement in Pd can be achieved.
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Fig. 6: C(�) and Pd(�). N = 1000, n = 2, a = 100,
� = 200, SNR0 = 30dB, and Pfa = 0:01.

�opt as a function of system level Pfa is shown in Fig. 7.
As Pfa increases, the optimal �opt decreases, meaning that
at the local sensors the corresponding pfa increases. There-
fore, a system level detector with higher Pfa can tolerate a
higher pfa at the local sensor level.
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In Fig. 8, �opt as a function of SNR0 is shown. As
SNR0 increases, the optimal �opt increases. This is be-
cause with a stronger target signal, the local sensors can
still detect the signal even with a higher threshold. From
Fig. 9, it is clear that when the total number of sensors N
is large, a lower � gives better system level performance.

According to these results, it is clear that if the pre-
specified system level Pfa is high, SNR0 is low, and N

is large, a lower � should be chosen; otherwise, we should
adopt a higher threshold � at the local sensor.
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6 Conclusions and Discussion

In this paper, we have proposed a decision fusion rule based
on the total number of detections made by local sensors, for
a WSN with a large number of sensors. Assuming that the
received signal power is inversely proportional to a poly-
nomial function of the distance from the target, we have
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Fig. 9: Optimal �opt and its corresponding pfa as functions
of N . SNR0 = 30dB, n = 2, a = 100, � = 200, and
Pfa = 0:001.

derived and calculated the system-level probabilities of de-
tection and false alarms. Our analysis shows that even at
very low SNR, this fusion rule can achieve very good sys-
tem level detection performance given that there are a suf-
ficiently large number of sensors deployed in the ROI. The
number of sensors needed for a pre-specified system level
performance can be easily calculated based on our formu-
las.

We have shown that an optimum threshold at the local
sensor can be found to maximize the system-level detection
performance. The optimal thresholds are calculated numer-
ically for various system parameters. If the pre-specified
system level Pfa is high, SNR0 is low, and N is large,
a lower local threshold � should be chosen; otherwise, a
higher � should be employed to achieve a better perfor-
mance.

In this paper, the total number of sensors N is assumed
known. In the future, this assumption will be relaxed and
the case where N is a random variable, e.g. a Poisson ran-
dom variable, will be investigated.
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