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ABSTRACT 

 

The medical device industry is still seeking answers to the mechanically-assisted corrosion 

(MAC) problem, which becomes increasingly important due to modularity in design. MAC 

manifests in various forms, some of which are fretting corrosion, crevice corrosion and stress 

corrosion. Several studies have been conducted to understand the causes and the factors that 

affect fretting corrosion. Some of the factors are the applied load, surface potential, oxide 

film characteristics and solution chemistry near the interface. Surface properties such as 

surface roughness determine the topography of the surface and the nature of asperity-asperity 

contact, which is a factor that would determine the mechanically assisted corrosion behavior 

of the interface, like the stem-neck and head-neck taper junctions in modular hip replacement 

devices. This study aims to understand the correlation between surface roughness of 316L 

stainless steel samples and fretting corrosion behavior using a variable load pin-on-disc test. 

It was found that the smoother surfaces are associated with lower fretting currents.  However, 

smoother surfaces also created the conditions for fretting initiated crevice corrosion to occur 

more readily. Fretting corrosion regimes and the severity are thus dependent upon the surface 

roughness. A possible explanation could be due to the inverse relationship between the 

interasperity distance parameter, Δ, and fretting currents. The coefficient of friction between 

the two surfaces in contact however remained unaffected by surface roughness, but decreased 

with increasing load.  Smoother surfaces, while lowering fretting corrosion reactions can 

enhance crevice corrosion reactions in 316L stainless steel interfaces. 
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1. INTRODUCTION AND LITERATURE SURVEY 

  

 Orthopedic devices such as bone plates, screws, intramedullary nails as well as joint 

replacement systems are mainly designed using alloys such as stainless steel (316LSS), 

cobalt-chromium alloys (CoCrMo) and titanium alloys (Ti6Al4V, TiAlNb). The primary 

reason behind this is their mechanical properties pertaining to load-bearing and modulus as 

well as their corrosion resistance. Current designs of metallic medical devices often have 

multiple metal-on-metal contacts (eg: head-neck taper, neck-stem taper, screw-countersink). 

Along with modifications in design, various metal-metal combinations are also used in 

different components depending on the application and other design factors. 

However there are instances of failure in these systems, often before the expected 

lifetime of the device. Failure of the device leads to loss of load bearing ability, instability or 

loosening of the implant and deterioration of the joint. This is manifested in the form of 

physiological indications such as pain in the joint, inflammation, loss of bone tissue or 

osteolysis and pseudotumors, to name a few. Such failure of the device necessitates a 

revision surgery, where the failed device is replaced by a new device. Studying retrieved 

implants has revealed corrosion and wear of many device surfaces to be one of the main 

causes [1]–[7]. Such corrosion can be the result of mechanical and electrochemical 

interactions between the different components of these systems and hence the problem of 

mechanically assisted corrosion (MAC) needs to be better understood. 

MAC can occur in various forms depending on the primary cause which includes but 

is not limited to tribocorrosion of bearing surfaces, rubbing of device against bone tissue, etc. 

However the consequence of MAC may be detrimental to the performance and structure of 
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the device, and often leads to mechanical failure, corrosion by-products in the biological 

environment and wear debris among others. One of the forms of MAC is fretting corrosion, 

where micromotion (<100 µm) between interfacing surfaces can lead to development of 

electrochemical conditions leading to breakdown of the oxide films on the surfaces of the 

alloys. Such breakdown promotes the oxidation of the metallic surface and can lead to 

increased corrosion before repassivation can restore the oxide film.  

Some factors affecting fretting corrosion include interfacial load, surface potentials, 

oxide film characteristics, solution chemistry in the vicinity and surface characteristics as 

well as the constituent materials. Surfaces in contact have asperities, which determine the 

actual area of contact affecting corrosion at the interface as opposed to the nominal area of 

contact. Crevices formed at taper junctions, for example, result due to tight fits and short 

interfacial distances between surfaces and can lead to accumulation of ionic species, 

changing pH and may affect the potential at the surfaces. 

 Corrosion resistance of metallic biomaterials is attributed to the presence of a 

passivating nanometer-scale oxide film on the surfaces of these alloys that limits 

susceptibility to corrosive attack in the human body. However, stainless steel was 

acknowledged as having lower corrosion resistance than cobalt-chromium and titanium 

alloys and as being more prone to pitting attacks [8]. Even so, stainless steel is still widely 

used in fracture fixation devices and surgical instruments due to its relative advantages such 

as ease of availability, strength, elastic modulus and low cost. 

 There are several reasons for studying the corrosion behavior of stainless steel. 

Savarino et al., in 2008 concluded that a high level of chromium and nickel ions was found in 

the serum of patients with malfunctioning stainless steel plates [9]. Jones et al., in 2001 
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evaluated the relevance and clinical significance of periosteal reaction and osteolysis in 

patients with an implanted intramedullary nail. They concluded that the presence of corrosion 

products and high chromium ion levels in the serum is a major factor in the osteolysis and is 

an indicator of corrosive wear of the device [10]. The presence of corrosion by-products is 

sometimes accompanied by the mechanical failure of the implanted devices, increasing the 

need for revision surgeries. There are several other retrieval analyses that support these 

findings and make mechanically assisted corrosion a major reason for device failure in vivo 

[11]–[15]. 

 Mechanically assisted corrosion (MAC) is typically initiated by a mechanical event 

such as loading or oxide abrasion or a combination of the two. A major form of MAC is 

fretting corrosion, where mechanical fretting or micromotion (<100 µm displacement) leads 

to the abrasion of the passivating oxide film on the alloys surface, thus exposing the 

underlying metal to corrosive conditions. Usually, if the surface is in a passivating 

environment (pH and surface potential is within passivating range) the oxide film is reformed 

within milliseconds. However, with increasing modularity in designs, crevice-like geometries 

are created at the head-neck and stem-stem conical taper junctions. In these highly restrictive 

regions, the effects of loading, solution chemistry and motion take on more importance. 

Fretting corrosion attack is highly localized and is dependent upon the contact area and 

interfacial motion within that area [16]. 

 For all orthopedic alloys such as CoCrMo or Ti6Al4V or 316LSS, mechanical 

fretting leads to oxide fracture. Walczak et al hypothesized that repassivation takes place 

almost instantaneously, however for stainless steel, the oxide formed after fretting is usually 

FeO instead of Cr2O3. They concluded that FeO being less stable and less robust than Cr2O3, 
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does not protect the surface as well. Thus, repassivation of 316LSS surfaces does little to 

mitigate the damage caused by mechanical fretting [15]. The reformation of the oxide film is 

also accompanied by a charge transfer, along with release of cations from the surface. These 

reactions attract the Cl- ions promoting a high concentration of Cl ions in the crevice of taper 

junctions, as hypothesized in previous retrieval studies [12], [17]. A pH gradient is then 

formed (acidic to basic), along with a potential gradient (anodic to cathodic) which creates 

aggressive conditions within the crevice. When the potential at the surface enters the 

transpassive region, the passivating oxide layer may or may not be present. With increasing 

surface potentials, the surface becomes vulnerable to oxide film dissolution due to pitting 

attack. 

 The restricted geometries prevent the flushing and replenishment of solution from 

outside, thus creating a highly acidic environment which further promotes corrosion. This 

correlation between fretting corrosion and crevice corrosion has been corroborated in 

previous literature [14], [16], [18], [19]. Pitting attack has been observed in all orthopedic 

alloys in vivo [20], [21], but more so in stainless steel [15], [16]. It is a form of highly 

localized corrosion, leading to the dissolution of the oxide film and formation of very small 

holes in the surface of the alloy. Depassivation of a small area leads to development of 

anodic potential in the small area and a comparatively large cathodic region which leads to 

aggressive corrosion just under the depassivated region, forming a pit. If the pit grows fairly 

large in size, surrounding solution can get entrapped within emulating crevice conditions.  

 Some factors that are thought to affect fretting corrosion and crevice corrosion are 

material combinations [12], [17], [22], surface potential [23], [24], applied normal load at the 

interface [22] and surface properties like topography, coatings and chemistry. In order to 
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improve the corrosion resistance of orthopedic devices, surface coatings and treatments have 

been explored. Hashemi et al in 2011 concluded that nitriding the 316L stainless steel at 

570°C with prior shot peening enhances the hardness and corrosion resistance of the 

substrates. Shot peening is a form of surface treatment that introduces residual stresses 

surface layers and assists the formation of hard phases [25].  

 In 2014, Chang et al explored the benefits of CuAlO2 coatings for improving 

mechanical and electrochemical properties of 316L stainless steel. They found that these 

coatings enhanced the hardness by 46% with a 200 nm think CuAlO2 film. Along with this, 

the film also raised the Ecorr that is the potential at which corrosion is initiated, to -0.24V vs. a 

saturated calomel electrode (SCE) as reference in Ringer’s solution from -0.49V vs. SCE for 

bare 316L stainless steel substrates. The icorr was also improved by two orders of magnitude. 

Thus a marked improvement can be attained by coating CuAlO2 on stainless steel, enhancing 

their corrosion resistance and mechanical properties [26]. Similar coatings and surface 

treatments are being explored and developed specifically for 316L stainless steel to enhance 

surface properties and mitigate  corrosion [27]–[31]. 

 There is, however, a lack of understanding of how surface roughness and topography 

influences the corrosion behavior of stainless steel or vice versa. Although surface roughness 

is understood to be a factor in determining how a surface would behave under corroding 

conditions, the exact correlation between the roughness and corrosion behavior is not 

understood well. Conradi et al created a composite coating using silica nanoparticles in an 

epoxy resin matrix which was proven to improve the hardness and corrosion resistance of the 

surface. They proposed that the increased surface roughness coupled with enhanced 

hydrophobicity of the epoxy coating lead to the improvement in corrosion resistance [31]. 
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 Swaminathan and Gilbert [22] studied the interaction of electrochemical and 

mechanical factors that describe fretting corrosion using the following equation: 

  𝐼𝑓𝑖𝑙𝑚 = 2 
ρnF

𝑀𝑤
 
𝑉𝑛𝑜𝑚

∆
 
𝑑𝛿

𝑑𝑡
= 4 

ρnF

𝑀𝑤
 
𝑉𝑛𝑜𝑚

∆
 𝑑υ              (Eqn. 1.1) 

The interasperity distance, denoted by Δ, is the average distance between individual 

asperities within the area of contact in the sliding direction. The fretting current Ifilm is 

calculated based on the oxide properties such as the oxide density (ρ), valence state of cation 

(n) and molecular weight (Mw), the sliding distance (d), frequency of fretting (υ) and the 

nominal volume of oxide abraded (Vnom). Thus fretting corrosion is understood to be a 

function of the material combination, the abrasion rate which varies with the applied load as 

well as the magnitude and frequency of micromotion, the repassivation rate of the oxide at 

the prevalent surface potential and the surface topography of the surfaces in contact. 

In order to gain a better understanding of the factors affecting fretting corrosion in 

orthopedic alloys, in particular 316L stainless steel, the present study focuses on the effects 

of the roughness of the surfaces in contact as well as different material combinations. The 

fretting regimes and mechanisms as well as electrochemical and mechanical parameters 

associated with fretting corrosion were studied using a pin-on-disk test system, developed in-

house. The goals of the study were to determine if changes in surface roughness had an effect 

on the corrosion of the 316L stainless steel surfaces in contact. The mechanical and 

electrochemical parameters associated with corrosion of the surfaces in contact were 

determined by a pin-on-disk test system developed previously. 

 In this study, the surface roughness of the 316L stainless steel couples are modified to 

achieve different Ra values. Modifying the surface roughness would modify the surface 
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topography since the roughness is essentially a quantitative description of the topography. 

The surface topography is interconnected with surface energy and in turn, is a determinant of 

the interactions a surface will have with its surroundings. Interaction with the encompassing 

solution as well as the ions, proteins, cells in the solution is dependent on the surface energy 

and indirectly, on the surface topography and roughness. There are examples in the literature 

that demonstrate these ideas [32]–[35]. It is essential, therefore, to understand the correlation 

between surface roughness and fretting corrosion behavior. The fretting regimes as outlined 

by Vingsbo and Soderberg in 1988 observed during individual fretting experiments are also 

described [36]. 

 How micromotion affects surface topography and modifies the roughness would, in 

turn, determine the interaction of the surface with the surrounding. It is also important to note 

how the fretting corrosion behavior changes with different surface roughness. The 

interactions between a rough surface and a smooth surface or that between two rough 

surfaces, for example, would be different from each other. Two rough surfaces would 

demonstrate higher friction and possibly more wear than the interaction between a rough and 

smooth surface. The compliance of the surfaces would also affect these interactions, that is, 

hard surfaces might slide more easily than elastic surfaces or vice versa. In this way, 

interactions of different topographies will vary which can affect the electrochemical and 

mechanical characteristics. 
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2. GOALS AND HYPOTHESES 

The specific goal of this study and the underlying hypotheses are as follows: 

1. To determine the effects of surface roughness of 316L stainless steel couples on the 

overall fretting corrosion behavior, including fretting regimes and mechanisms. 

Hypotheses: 

 Surface roughness affects the crevice geometry which affects fretting corrosion 

reactions and the mechanisms of fretting 

 Tighter crevices from smoother topography may entrap surrounding solution and 

create more aggressive conditions that promote corrosion and might lead to 

pitting of the surface. 

 Asperities in contact and the distances between individual asperities affect the 

distribution of loads and development of contact stresses. Asperities placed 

closer to each other give rise to higher fretting currents and accelerate fretting 

corrosion. 
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3. SURFACE ROUGHNESS STUDIES 

3.1 Introduction: 

 The presence of an oxide film on the surface of passivating metals kinetically slows 

the corrosion of the substrate. Hence, it is reasonable to assume that the properties of the 

surface have a significant effect on the corrosion of the underlying metal.  One might say that 

the surface determines how the entire device would perform in vivo, under varying 

conditions. The physical, morphological and chemical properties of the surface determine 

how the metal reacts to corroding conditions, or to physical stimuli like abrasion and loading 

which are the triggers for fretting corrosion. 

 Some of these factors are oxide thickness, oxide composition, surface potential and 

surface roughness. In this study, the surface roughness is explored as a factor in fretting 

corrosion and how surfaces with different surface roughness values will corrode. Surface 

roughness affects the interaction of the surface with interfacing surfaces, alters the local 

crevice geometry and the adherence of proteins, cells and ions that may be present at the 

interface. The roughness of surfaces in contact may also affect the interfacial friction, thus 

impacting the relative motion of surfaces in contact as well as wear and corrosion resulting 

from the motion.  

 Fretting between interfaces is influenced by the actual area in contact, depending on 

the individual asperities on a surface corresponding to the asperities on the interfacing 

surface. Rougher surfaces may or may not have more asperities but the volume confined by 

consecutive asperities will be larger when compared with a smooth surface. The solution 

chemistry resulting from smaller crevices may promote crevice corrosion.  In terms of 
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nominal contact area vs. the actual area in contact, the area in contact will depend on the area 

at the peak of each asperity and the overall summation of all asperities on a surface. The 

smoothness of a surface may be a factor of how sharp the asperities are and this will change 

the surface area available. 

 The results of pin-on-disk tests on 316L stainless steel couples with different surface 

roughness values are presented here, followed by a discussion on their implications. An 

analysis is carried out to determine the dependence of the fretting currents, coefficient of 

friction and fretting regimes on surface roughness.  Scanning Electron Microscopy (SEM)  

images are obtained in secondary and backscattered electron modes prior to and post-test to 

visualize the fretting area and fretting scars caused on the surface, and to find a correlation 

between surface roughness and fretting damage. Surface roughness was measured prior to 

testing using contact mode Atomic Force Microscopy (AFM). 
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3.2 Materials and Methods:  

 The samples tested were 316L stainless steel (ASTM F138) discs (35 mm diameter) 

and cone shaped flat bottomed pins (interfacing surface diameter nominally: 0.5 mm to 1 

mm). Each test surface (disc and pin) was sanded by hand to different grits, using emory 

paper of 240, 320 and 600 grit. After polishing, the samples were cleaned with ethanol and 

DI water to get rid of any particulates from the sanding where the scratches were aligned in a 

single direction. Only the test area along with some surrounding area was exposed, 

approximately 0.079 cm2, while the rest of the surface was covered using an acrylic coating. 

This was done in order to have uniform test areas for every trial at all the grit levels. Three 

trials were performed at each grit level. Pre-test imaging was done using SEM to determine 

the area exposed for fretting as well as to visualize the surface topography prior to fretting. 

The following diagram is a schematic of the test system used:  

 

Fig 1: Schematic of Pin-On-Disc (POD) test system comprised of mechanical and 

electrochemical components [adapted from Swaminathan & Gilbert, 2012] 
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 The above system combines components for both electrochemical and mechanical 

characterization. The electrochemical cell is mounted rigidly as shown on a linear X-Y stage 

(Newport Inc., USA) to which the sliding motion of 50 µm at 1.25 Hz is applied as a sine 

wave generated by a waveform generator, amplified using a piezoelectric amplifier and 

supplied to a piezoelectric actuator (Piezo-Jenna System, Germany). The actuator is able to 

apply consistent and accurate motion of up to 140 µm to the stage, which is required to 

simulate fretting micromotion. This motion is measured using a direct variable reluctance 

transducer (DVRT, Microstrain Inc., USA). This is a highly sensitive device with a 

resolution of ±4 m to measure the relative motion of the cylindrical portion of the pin with 

respect to the base of the cell. 

 The normal load between the pin and disc is measured using a six-axis load cell 

(MINI 45 F/T six axis load cell, ATI Measurement Inc., USA) which is mounted rigidly on 

the Z-stage and holds the sample pin. It measures the tangential and normal loads produced 

as a result of loading and motion. The pin-and-disc configuration is loaded manually using a 

micrometer screw by the movement of the pin along the Z-axis by the Z-stage actuator. The 

forces developed as a result of fretting such as normal force, interfacial tangential force and 

other moments developed at the pin-and-disc interface must be tracked accurately to 

determine the interfacial conditions. These conditions vary depending upon the solution 

conditions and changes in the interfacing surfaces. These measurements are useful in 

calculating the nominal contact stress, work done during fretting cycles and to ascertain the 

fretting regimes prevalent during different stages in the fretting test. 

 The electrochemical cell uses a three-electrode system with the sample disc and pin 

comprising of the working electrode, a carbon counter electrode and an Ag/AgCl reference 
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electrode. 60 mL of Phosphate buffered saline (PBS) at pH=7.4 and room temperature is used 

as the solution. In order to ensure electrical isolation of the sample, the cell is made of delrin 

and is designed to secure the isolation of the sample disc and pin from the mechanical 

system. The pin and disc are electrically connected with a wire to ensure connectivity even 

when they are not in physical contact. The tests are performed under potentiostatic conditions 

at 0 mV vs. Ag/AgCl reference. The potentiostat (Solartron 1280C Potentiostat/Frequency 

Response Analyzer, Solartron Analytical Inc., USA) is used to apply the potentiostatic 

conditions and to measure the currents arising during the fretting period. Data acquisition and 

analysis is conducted using an independent data acquisition card and a software (CorrWare 

2.0/CorrView 2.0, Scribner Associates). 

 The experimental design involved varying the applied normal load between the pin 

and disc from 0.5 N to 30 N. The pin and disc were set up such that the grit lines on the 

surface of the pin were aligned perpendicular to those on the surface of the disc. Prior to 

testing a rest period of 15 min was allowed with no physical contact between the pin and disc 

to allow the surface potential to settle around 0 mV vs. Ag/AgCl. Sliding motion along X-

axis of 50 µm amplitude at a fretting frequency 1.25 Hz was applied at each load for a period 

of 60 sec followed by a recovery period to allow the currents to return to baseline, which is 

the current value prior to fretting.  

 The raw data was collected and collated using CorrWare for the electrochemical 

parameters and a custom written NI LabVIEW virtual instrument for the mechanical 

parameters. The NI LabVIEW program window displays plots of: normal load applied 

between pin and disc by load cell, tangential forces resulting from the normal load applied, a 

plot representing the interfacial co-efficient of friction (COF), piezoelectric actuator input to 
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the stage in terms of voltage and the displacement measured by the DVRT. From the data 

collected using this program the following parameters and graphs are calculated: COF vs. 

normal load, work energy vs. nominal contact stress. Work energy is calculated from fretting 

loops as the hysteresis energy under tangential force-displacement plots. Nominal contact 

stress is calculated using applied normal force as measured and fretted area measured at the 

end of each test. The experimental parameters such as the voltage and area exposed is entered 

into the system by the potentiostat using the CorrWare program. The CorrWare program 

displays plots of current, voltage, impedance, etc. as they are measured by the potentiostat. 

Data is analyzed to generate the following plots: average fretting current vs. load applied, 

average current density vs. nominal contact stress, average current density vs. work done. 

 An important aspect of this study involved the correlation of interasperity distance, 

denoted by Δ, and the fretting currents generated during the test. In order to calculate Δ, 

characteristics of the oxide film such as the molecular weight, density, valence state (or 

charge per cation) need to be calculated. To do so, the major alloying elements and their 

weight fractions are determined, the elements that contribute less than 3% by weight are not 

considered. Elements such as Fe (63%), Cr (18%), Ni (14%) and Mo (3%) are considered as 

the major contributors to the oxide film on 316L stainless steel. The most prevalent form of 

oxide is then used to calculate the required oxide parameters. 
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Table 1: Calculation of weight fraction of major elements in 316L stainless steel. Other 

alloying elements such as P, Mn, Si, C are not considered in this calculation since their 

weight fraction is lower than 3%. 

From these elements, the most prevalent form their oxides are used to calculate individual 

characterisitics as follows: 

Element 
Major form of 

oxide 

Mol weight 

(g/mol) 

Density 

(g/cm3) 
Valence, n 

Fe FeO 71.844 5.24 2 

Cr Cr2O3 152 5.22 3 

Ni NiO 74.63 6.67 2 

Mo MoO3 143.94 4.69 6 

Table 2: Properties of major alloying elements present in 316L stainless steel. The most 

commonly found oxide forms of these elements are considered for the calculation. 

To determine the values for the 316L stainless steel passivating oxide, above values are used. 

 

 

 

Element 
Atomic Wt. 

(g/mol) 

Weight 

Fraction (%) 

Wt. Fraction of 

Alloying Element 
Mole 

Mole 

Fractions 

Fe 55.845 63 0.63 0.0113 0.5717 

Cr 51.999 18 0.18 0.00346 0.1754 

Ni 58.6924 14 0.14 0.00238 0.1209 

Mo 96 3 0.25 0.00260 0.1320 

  100.8145 Total moles: 0.019732314  



16 
 

Oxide 

present 

Density 

(g/cm3) 

Mw 

(g/mol) 
Valence, n 

FeO 5.24 71.844 2 

Cr2O3 5.22 151.99 3 

NiO 6.67 74.628 2 

MoO3 4.69 143.94 6 

Alloy oxide 4.878901 82.4236 2.70332713 

Table 3: Calculation of alloy oxide characteristics from alloying element oxide values. 

Molecular weight, density and valence are determined by adding the product of individual 

oxide values and the weight fraction of the element. In the case of Cr2O3, the product of the 

weight fraction of Cr and the molecular weight, density and valence is divided by 2 since two 

atoms of Cr/molecule of oxide are present. 

These averaged values then determine the charge per volume of oxide present as follows: 

   𝐶ℎ𝑎𝑟𝑔𝑒 𝑝𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑜𝑥𝑖𝑑𝑒 =
𝜌∗𝑛∗𝐹

𝑀𝑤
                             (Eqn. 2.1) 

Where, Mw= Molecular weight of oxide 

 ρ= density of oxide 

 n= valence of oxide 

 F= Faraday’s constant= 96500 Coulombs 

The charge per volume of oxide is an important parameter in the calculation of Δ. The 

amount of oxide abraded and formed due to repassivation is a determinant of the currents 

generated during fretting corrosion. 

 The surface roughness parameters, Ra and Rq (nm) were measured for 316L stainless 

steel surfaces polished with 240, 320 and 600 grit paper. Contact mode Atomic Force 

Microcopy (AFM) was used to do so, and the samples to be used for measurement were 
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specially prepared to be thinner than 4 mm and have a diameter lower than 10 mm. Three 

images were obtained per sample, with an area of 25 x 25 µm; all three images were obtained 

from the central portion of the coupon. The two parameters measured represent the surface 

roughness in different ways: Ra is the arithmetic average of absolute height values and Rq is 

the root-mean-squared value of absolute height values. Thus, three values for each were 

acquired and one-way ANOVA was carried out to test the difference in the roughness. 

    𝑅𝑎(𝑛𝑚) =
1

𝑛
 ∑ |Zi –  Zavg|𝑛

𝑖=1    (Eqn. 2.2) 

    𝑅𝑞(𝑛𝑚) =  √
1

𝑛
∑ |Zi –  Zavg|2𝑛

𝑖=1    (Eqn. 2.3) 

where, n = number of data points acquired within desired area 

 Zi = individual height values of asperities on surface of interest 

 Zavg = average height value for all asperities on surface of interest 

 Finally, images of the pre-test and post-test surfaces were obtained using Scanning 

Electron Microscopy (SEM) in secondary electron and backscattered electron mode to 

characterize the fretting scars and fretted area.  ImageJ, an imaging software, was used to 

measure the actual fretted area which was necessary to determine the work done and contact 

stress at each load applied. It is important to note that only the final fretted area, measured at 

the end of each test, is used to make area estimates, for example, in calculating nominal 

contact stress or the work done or energy dissipated during fretting. Surface morphology and 

its changes due to fretting corrosion and wear were observed, as was pitting and plastic 

deformation and their extent. Statistical analysis was conducted using two-way ANOVA, 

with the surface roughness and the applied load as factors, to determine the dependence of 
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fretting currents and coefficient of friction on the roughness of the surfaces in contact. 

Results with p < 0.05 was considered as significant.  



19 
 

3.3 Results: 

 In this section, the results of the POD tests on 316L Stainless steel couples at different 

surface roughness levels are described. 

3.3.1 Fretting current data and analysis: 

 Fig. 2 shows the typical currents measured during a fretting corrosion test, in this 

case, for the first set of loads in a trial of a 240 grit test sample. Note the different current 

levels in the plot. The initial portion of the graph is the baseline current prior to the fretting. 

Another important observation is the different recovery periods after each fretting cycle.  

 

 

 

 

 

 

 

 

Fig 2: (Raw data) Plot of current density vs. time as displayed in CorrWare. Initial flat 

portion of the graph is the baseline current density, before fretting. Each current excursion 

the elevated current produced during fretting at increasing normal loads, beginning with 0.5N 

and going up to 8N. 

 Fig. 3 shows the fretting current excursions seen for a single load during a fretting 

test. This current rise is typical for all orthopedic alloys at most loads, although the 
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magnitude of the currents varies depending on the mechanical and electrochemical 

conditions prevalent. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: (Raw data) Typical current vs. time graph for a single fretting period for a 316L 

Stainless steel pin and disc couple. Fretting time is approximately 60 sec followed by a rest 

period to allow the current to attain baseline value. Also the inset shows two individual 

cycles of fretting for the entire fretting period shown here. 

 

 In Fig. 3, the fretting corrosion at load 4 N for a sample at 240 grit is shown. The 

graph is comprised of three separate parts. The first part is the baseline current prior to 

fretting, which in this case starts around 1810 sec. The second portion is the elevated current, 

which is approximately 45 to 65 nA in this graph. The individual current values recorded at 

each point are averaged over the entire fretted period for a particular load to obtain an 

average current value. The third part of the graph is the recovery to baseline current post 

fretting. The difference of the combined average of the two baseline values (before and after 

fretting) and the average elevated current value is the average fretting current at that 

particular load. 
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Fig 4: Average fretting current vs. average load for 316L stainless steel pin and disc couples 

for V= 0 mV vs. Ag/AgCl. Plots for 240, 320 and 600 grit trials are displayed. The currents 

measured over fretting period are divided into windows based on loads 2 N apart from 0.5 N 

to 30 N. Data were averaged over each window to obtain the average current at each average 

load. Average currents: (a) 4 µA at 240 grit (b) 3 µA at 320 grit (c) 1 µA at 600 grit. 

 

 Fretting currents are dependent upon surface roughness with smoother surfaces 

producing lower fretting currents. This can be seen in Fig. 4 where the average fretting 

current at each grit level is plotted against the average normal load applied. The current 

values remain more or less constant over the range of loads at a particular surface roughness. 

As seen here the smoother surface, that is the surface polished with 600 grit paper, 

demonstrated statistically significant lower fretting currents than the rougher surfaces (240 

and 320 grit) (p<0.005). The currents generated also vary with applied load and showed a 

significant dependence on the load (p<0.05). Currents increase with increasing load up to a 

peak value, after which the currents drop with increasing load. 

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

8.00E-06

9.00E-06

0 5 10 15 20 25 30

A
vg

. F
re

tt
in

g 
C

u
rr

en
t 

(A
)

Avg. Load (N)

240 Grit 320 Grit 600 Grit



22 
 

 In some cases (see Fig 5), prolonged crevice initiated corrosion is observed. This 

form of corrosion continues after ending of the fretting action, which indicates continuing 

crevice corrosion as described previously in chapter 1. The minimum normal load at which 

prolonged crevice corrosion after the end of fretting motion is observed is the onset load for 

the continued corrosion.  

 

Fig 5: (Raw data) Typical current vs. time graph demonstrating a continuation of corrosion 

reactions after a single fretting period for a 316L stainless steel pin and disc couple. Fretting 

time is approximately 60 sec followed by a recovery period to allow the current to return to 

the baseline value. Return to baseline is delayed in this case due to continued corrosion at the 

interface in spite of no fretting motion.  

 

 From Fig. 6(a), 6(b) and 6(c), it was observed that the onset load for fretting initiated 

crevice corrosion varied with the surface roughness of the samples. The onset load for 

rougher surfaces (240 and 320 grit) was higher (4 N in both cases) whereas for the smoother 

surface (600 grit) the onset load was lower (1 N). The return to baseline also took longer in 

the case of the smoother surface, around 80 sec in 600 grit samples compared to around 35 
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sec in 240 and 320 grit samples. Similar results were seen for all the trials at all grit levels. 

Thus, fretting leads to more aggressive crevice corrosion in smoother surfaces and this occurs 

at lower loads for smoother surfaces. 

 

Fig 6: Fretting current density graphs for each grit level for the first 4 loads (0.5 N, 1 N, 2 N 

and 4 N) to demonstrate fretting initiated crevice corrosion (*). Current magnitude is lower 

for 600 grit and the crevice corrosion more prolonged. Onset loads: (a) 4 N for 240 grit (b) 4 

N for 320 grit (c) 1 N for 600 grit 
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3.3.2 Work done and fretting regimes 

Fig 7: Fretting loops corresponding to 5 different loads for pin and disc couples at (a) 240 

grit (b) 320 grit and (c) 600 grit. The tangential force data measured at a certain load over the 

entire fretting period for that load is plotted against the pin displacement measured from the 

starting point of the pin at the beginning of fretting. 

  

 Figure 7(a), 7(b) and 7(c) are representative plots of fretting loops obtained by 

plotting tangential force at individual loads against the displacement of the pin relative to the 

disc at that load during fretting to obtain hysteresis loops. The area enclosed within any 

individual loop is the amount of energy dissipated or the work done for conversion of 

mechanical energy into electrochemical and other forms of dissipative energy (like heat). 

(c) 

(b) (a) 
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From these loops it is seen that at low normal loads the pin is able to cover a full range of 

motion (50 µm displacement), performing a full slip regime. The amount of work done is low 

due to the low applied load. As the load increases, the range of motion is restricted due to 

sticking of the pin, demonstrating the stick-and-slip or partial slip regime. For smoother 

surfaces (320 and 600 grit) at high loads, the pin is seen to be stuck and is unable to displace, 

instead the surfaces undergo elastic deformation and hence minimal work is done.  

  

 

 

 

 

 

 

 

Fig 8: Average work done vs. nominal contact stress for 316L stainless steel pin and disc 

couples. Plots for 240, 320 and 600 grit trials are displayed. The three fretting regimes seen 

in the above plot are [1] full slip [2] partial slip and [3] complete stick. Mean and SD n=3. 

 Fig. 8 summarizes the fretting regimes observed as well as the amount of work done 

in each regime. It is seen that during full slip (region 1, Fig. 8), the work done increases with 

increasing nominal contact stress (load divided by fretted area measured at the end of the 

test) which is also evidenced by the area enclosed within corresponding fretting loops. The 

work done reaches a maximum value during the partial slip regime (region 2, Fig. 8) and then 

starts to decline as seen in the complete stick regime (region 3, Fig. 8). The fretting loops at 
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higher loads for 600 grit are therefore thinner showing minimal or no slip displacement. 

There is no significant dependence of the work done on the grit level of the sample surfaces 

at lower loads, however for higher loads, the work done is much lower for smooth surfaces. 

3.3.3 Correlation of mechanical and electrochemical components 

 During fretting the energy dissipated can be attributed to the mechanical work done 

and the electrochemical currents generated. 

 

 

 

 

 

 

 

 

 

Fig 9: Average current density vs. average work done for 316LSS samples with roughness 

240 grit, 320 grit and 600 grit. Note the linear relation between current density and work 

done, which correspond to electrochemical energy and mechanical energy respectively. Mean 

and SD n=3 

  

 Fig. 9 shows the linear relationship between the electrochemical work done, denoted 

by current density (A/cm2) and mechanical work done, denoted by the energy dissipated in a 

cycle of fretting(N-cm). The linear relationship shows a proportionality between mechanical 

work and electrochemical currents, which is also seen in the hysteresis loops shown earlier. 
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3.3.4 Co-efficient of friction (COF) 

 

Fig 10: Average coefficient of friction vs. average load applied. To obtain this plot, the co-

efficient of friction was calculated from a plot of COF vs. time. The data was divided into 

windows based on loads 2 N apart and averaged over this window. This average is plotted 

against average load. Mean and SD n=3. 

 The co-efficient of friction between two interfacing surfaces was between 0.3 and 0.4 

and is a property of the material itself. From Fig. 10, it is evident that the COF of 316L 

stainless steel couples is not dependent on surface roughness, that is, the co-efficient of 

friction remained unchanged with change in surface roughness. Two-way ANOVA showed 

no statistically significant difference in the coefficients of friction based on the surface 

roughness. However, the coefficient of friction varied with increasing load (p<0.005). 
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3.3.5 Fretting corrosion equation and surface roughness 

 As explained in chapter 2, fretting currents can be described by the factors affecting 

fretting behavior such as oxide characteristics and the inter-asperity distance, Δ. Changing 

the surface roughness is hypothesized to change the distance between consecutive asperities 

in contact in an interface and thus a study of how the interasperity distance changes with 

surface roughness and normal load is presented in the following graph: 

 

Fig 11: Average interasperity distance vs. average load. To obtain this plot, the interasperity 

distance for each data point was collected. The data was divided into windows based on loads 

2 N apart and averaged over this window. This average is plotted against average load. Mean 

and SD n=3. 

 

 From Figure 11, it is seen that the inter-asperity distance decreases with the load 

applied, which is expected. However, there is a high degree of variation in the interasperity 

distance parameter as seen from the standard deviation values.  
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Fig. 12: Average fretting current vs. average interasperity distance. Note that the initial data 

points for 240 grit correspond to high fretting currents. Smoother surfaces (320 grit and 600 

grit) are more distributed over a wider range of interasperity distances. Mean and SD n=3. 

 The fretting currents generated in the oxide film and the average interasperity 

distance on the surface are inversely related to each other, which can be seen in Fig. 12. The 

higher fretting currents seen for the rough surface (240 grit) corresponds to lower 

interasperity distance, Δ, and the smoother surfaces (320 grit and 600 grit) correspond to 

higher interasperity distance. There is a significant difference between the different surfaces 

in terms of Δ (p<0.005). Hence, the interasperity distance parameter changes with the 

roughness of the surface, it is higher for rough surfaces and lower for smoother surfaces. 
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3.3.6 Fretted area measurement 

 Fretted area is the measured area on the sample surface that displays fretting scars, 

which is measured at the end of each fretting experiment. It gives an indication of the actual 

area of contact instead of the nominal area of contact. 

 

 

 

 

 

 

 

 

 

 

Fig. 13: Average fretted area for samples of 240 grit, 320 grit and 600 grit. Fretted area 

measured post fretting using SEM images and ImageJ. Mean and SD n=3 

 Fig 13 shows the average fretted area of all samples tested, at 240 grit, 320 grit and 

600 grit. Each sample was tested with an exposed area of around 0.08717 cm2. The largest 

average fretted area corresponds to 320 grit, 0.00732 cm2. However, there is no significant 

difference between the average fretted area for different roughness (p<0.5). 
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3.3.7 AFM measurements 

 The following roughness values were determined for the 240, 320 and 600 grit 

surfaces using contact mode AFM, as described in chapter 2. 

Table 4: Surface roughness parameters measured using Eqns. 2.2 and 2.3 for 316LSS 

coupons using AFM in contact mode. Measurements were obtained from the height images 

captured for an area of 25 x 25 µm. Roughness parameters corroborate the increasing 

smoothness of the surface with increasing grit level. Mean, SD for n=3. 

 

 The AFM allows imaging of the surface, using which the topography of the surface 

can be visualized. Figures 14, 15 and 16 correspond to 316L stainless steel coupons polished 

with 240, 320 and 600 grit paper respectively. Note the differences in the width of the 

scratches on the surface, which give rise to the difference in topography and roughness of the 

surfaces. All images denote an area on 25 x 25 µm in the central region of the coupons. 

 

 

 

 

 

 

 

 

Fig 14: AFM images denoting height and deflection measurements of 316L stainless steel 

240 grit surface. 

Surface roughness grit Ra (nm) Rq (nm) 

240 209.68 ± 20.99 262.85 ± 37.23 

320 151.44 ± 10.39 193.39 ± 4.43 

600 79.4 ± 14.29 104.71 ± 20.92 
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Fig 15: AFM images denoting height and deflection measurements of 316L stainless steel 

320 grit surface. 

 

 

 

 

 

 

 

 

 

 

Fig 16: AFM images denoting height and deflection measurements of 316L stainless steel 

600 grit surface. 

3.3.8 SEM images 

 Visualization of the sample surfaces prior to and post testing is essential for putting 

the results into perspective. SEM imaging was done using both the secondary electron mode 
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as well as the backscatter mode to determine the true nominal area of contact and to capture 

the nature of the damage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 17: Secondary electron SEM micrographs of (a) pin and (b) disc with 600 grit surface 

roughness post test (c) low magnification image of pin showing actual area of contact 

(marked). Note the actual area of contact displaying fretting scars and the deposition adjacent 

to fretted area. 

 Figures 17 (a) and 17 (b) show the superimposable fretted area on a pin-disc couple. 

Note the perpendicularity of the grit lines on the pin and disc surface. The regions in contact 

on both are mirror images demonstrating that only the area in contact with the interfacing 

(c) 

(a) (b) 
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surface undergoes scarring. In Fig. 17 (c) the actual fretted area is visible as opposed to the 

entire area of the pin which is interfacing with the disc. Thus, the area in contact can be 

thought of as discrete asperities in contact rather than an entire surface. Imaging revealed the 

presence of oxides and salts on and near the fretted area, which are by-products of the 

reduction and oxidation reactions at the surface, as well as fretting scars. 
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Fig 18: Secondary electron SEM micrographs of (a) 240 grit disc (b) 600 grit disc (c) 

magnified region of disc in (a) and (d) magnified image of disc in (b). Note the pitting in (c) 

and (d) (circled in black). 

(a) (b) 

(c) (d) 
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 Fig. 18 consists of representative images showing evidence of pitting observed in all 

of the samples tested reflecting the ongoing crevice corrosion after fretting stopped. 

Although pitting was observed in every sample tested, it occurred to a greater degree in the 

smoother surface (600 grit) than in the rougher surface which is consistent with the recovery 

current measurements described earlier. Evidence of plastic deformation is also visible in the 

SEM micrographs, and there seems to be more surface damage on the smoother surface than 

on the rough surface. 

Fig 19: Backscattered electron SEM micrographs of (a) 240 grit disc (b) 320 grit disc (c) 600 

grit disc post-test. Note the ‘halo’ of the pin on disc surface. 

 

(a) (b) 

(c) 
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 Figure 19 (a), 16 (b) and 16 (c) show backscattered images of sample discs of 240 

grit, 320 grit and 600 grit respectively. The ‘halo’ seen in these images are due to the 

oxidation and reduction reactions that occur during corrosion, causing deposition of ions and 

salts as well as loss of metal into the surrounding fluid. 
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3.4 Discussion 

 

 Fretting corrosion and its mechanisms have been explored in several studies from 

different perspectives [11], [32], [37]–[39]. There is still a need to understand how the 

surface roughness affects the fretting corrosion behavior of devices and vice versa. This 

study was undertaken in order to investigate the effects of surface roughness on the fretting 

crevice corrosion response of 316LSS. This study also looked at the role of nominal contact 

stress on the fretting corrosion and fretting initiated crevice corrosion. The effects of 

changing normal load between surfaces has been studied previously [19], [22] and is 

corroborated with this study. The results show how the currents generated with increasing 

load showed an initial rise, followed by a gradual decrease. Viswanathan and Gilbert in 

2012 conducted a study to study the effects of applied normal load on fretting corrosion 

behavior and found similar behavior in CoCrMo/Ti6Al4V, Ti6Al4V/Ti6Al4V and 

CoCrMo/CoCrMo combinations. The study attributed this behavior to the changes in 

contact stresses developed as a result of the load, where initially the contact stresses do not 

enough oxide fracture to generate high enough currents but increasing loads induce higher 

stresses causing more damage, and hence, higher currents. At higher loads, however, 

sticking of the pin and disc hinder the sliding and the abrasion of the oxide layer, leading to 

a gradual decline in the currents. 

 In this study, surfaces of the stainless steel couples tested were polished to different 

roughness values and subjected to a pin-on-disk fretting corrosion test where the normal 

load was increased in steps and a 50 µm cyclic micromotion was induced. Fretting currents 

were measured during and in between subsequent fretting cycles. It was seen that the 

average fretting current changed significantly with the surface roughness (p<0.05) with 
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lower currents seen at lower roughness. However, the crevice corrosion induced by fretting 

corrosion after the fretting motion was stopped, was more prolonged and had a lower onset 

load at lower roughness. This study found that the interfacial friction seems to be unaffected 

by the roughness. Rougher surfaces, or surfaces with a higher value of roughness parameter 

Ra, offers more frictional resistance than a smooth surface, for example, the resistance 

offered by sandpaper is higher than that by glass. This does not seem to be the case during 

fretting corrosion. In this test, this behavior may be because of the perpendicular orientation 

of the grit lines on opposing surfaces or because the fretting caused damage to the surface 

and diminished the overall effects of roughness. 

 Another possible explanation for this phenomenon is the difference between the 

actual area in contact and the nominal area in contact at the interface. It is hypothesized that 

the area in contact can be considered as a set of individual asperities in contact and 

undergoing fretting. Thus, there is a correlation between the average distance between these 

asperities, called the interasperity distance and denoted by Δ, and the fretting currents that 

arise as a result of the corrosion [22], they are inversely related and this is seen in Fig. 11. 

The values of Δ for surfaces of different roughness is not statistically significant, as seen in 

the results. The calculated Δ is a function of the measured nominal area post fretting, which 

was measured using SEM images and the ImageJ software in this study. It is worthwhile to 

note that the fretted area measured in this way, does not take into account the peaks and 

troughs that are bound to be present on the surface. How the fretting motion and corrosion 

reactions contribute to the wear and the destruction of the scratches on the surface that 

contribute to the roughness and the actual area of contact is a subject for further study. 
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 From the images obtained using the AFM, the surface topographies can be seen prior 

to fretting. There is a marked difference in the distances between subsequent scratches on 

the surfaces of different roughness, which explains the difference in the way the surfaces 

interact to give rise to fretting corrosion behavior. At the same time, investigation of the 

changes wrought by the fretting corrosion has not been conducted as part of this study. 

Interactions between interfacing surfaces can be expected to cause wearing down of the 

peaks seen from the images, which would modify the topography and change the surface 

area in contact. Acquiring images from different samples, all prepared in an identical 

manner, will be more descriptive of the surface topography; however, since the polishing is 

manual, there can be noticeable difference among different samples obtained thus. Several 

factors such as applied pressure, direction of polishing as well as the characteristics of the 

grit paper used will have a bearing upon the final surface obtained. 

 Further investigation of how different topographies can be used to mitigate fretting 

corrosion behavior is required. A possible direction could be to explore the creation of 

smooth undulations on the surface of the device. This would enforce smoother surfaces, 

with asperities set a larger distance apart thus reducing the average fretting current. 

However, it is important to note the consequences of the modification of the surface 

topography on the interfacial friction and the formation of crevice conditions within the 

topography. Surface roughness which is a quantification of the topography is an excellent 

tool to study the effects of changing the topography at a micro or even nano-scale. 

Consideration must also be given to the alignment of the grit lines on the surfaces. This 

study was conducted using perpendicular alignment of grit lines on the pin and disk surface. 

Transverse or parallel alignment would impact the interaction of the surfaces as well as the 
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effective roughness of the surfaces. Formation of crevices within the interface and their 

geometry and shape is dependent on the surface topography. Further investigation should be 

made in this direction as well. 

 While considering modifications for the surface the interfacial friction is another vital 

factor that has direct bearing on the fretting behavior as well as oxide abrasion. Completely 

eliminating the friction is one way of eliminating the possibility of oxide abrasion. However 

this is not practically achievable, even with tight fitting modular parts. It might be 

worthwhile to explore the possibility of creating surfaces that are unable to slide easily 

against each other, thus creating a sticky interface. In order to account for the bending of the 

device due to applied loads and to maintain compliance matching with the native tissue, the 

material needs to be compliant enough to convey the natural motion joints undergo during 

routine activities. Hence sticky-compliance might be a viable alternative to eliminating 

friction by creating tight fitted modular parts. 

 There are efforts being made elsewhere to study the surface of orthopedic devices and 

to investigate the improvement in corrosion resistance of these devices by use of coatings 

and surface treatments that modify the roughness of the surface [40]–[42]. These studies 

focus on the changes in roughness brought on by corrosion reactions at the surface or by 

surface treatments and coatings. The unique feature of this study is the investigation of the 

effects of changing roughness on fretting corrosion behavior of 316LSS alloy. This study 

provides insight into the possible mechanisms by which roughness influences corrosion. The 

next step would be to investigate how the corrosion reactions modify the area in contact to 

either change its morphology and topography or to modify the effect it has on further 

fretting corrosion behavior of the surface. 
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3.5 Conclusion 

 

 The primary conclusions that can be made from this study are: 

a. Interfacial co-efficient of friction is not a function of the surface roughness. 

b. Fretting corrosion behavior is dependent on the surface roughness and the topography of 

the surfaces interfacing with each other. 

c. Fretting currents are dependent on the surface roughness and topography. Higher fretting 

currents are generated for rougher surfaces and vice versa. 

d. Fretting-initiated crevice corrosion was observed in all couples, irrespective of surface 

roughness. However lower onset loads and more prolonged crevice corrosion was 

observed for smoother surfaces. 

 The fretted area is an important factor throughout a fretting corrosion experiment. 

Fretting at the surface brings about degradation of the scratches induced in the surface 

during surface preparation, and this in turn continuously changes the area available for 

contact throughout the experiment. 

  



42 
 

4. SUMMARY 

 

 Fretting corrosion, a form of mechanically-assisted corrosion, is a problem faced by 

the medical device industry. It is a form of corrosion brought about by micromotion of two 

surfaces in close contact, which leads to abrasion of the oxide film on the surface of 

orthopedic alloys. The consequences of fretting corrosion include, but are not limited to, 

fracture of the passivating oxide film, corrosion of underlying substrate, wear and debris 

generation, all of which ultimately lead to the failure of the device, necessitating revision 

surgery. 

 Studies have been conducted to determine the factors that cause and aggravate 

fretting corrosion conditions in vivo. Some of these factors are the applied load at the 

interface, potential of the surfaces in contact and solution chemistry. This study focuses on 

surface roughness as a factor affecting fretting corrosion behavior of 316L stainless steel 

alloy. Variable load pin-on-disc fretting tests are conducted under potentiostatic conditions 

and physiological pH to determine the fretting currents generated at the surfaces of a pin and 

disc, and how these currents vary with roughness. The pins and discs were sanded to create 

surfaces with roughness of 240 grit, 320 grit and 600 grit, 240 grit being the roughest. 

 It was found that fretting currents are highest for 240 grit and lowest for 600 grit. The 

dependence of fretting currents on roughness is statistically significant (p<0.005). The work 

done during fretting varies with the nominal contact stress, demonstrating the fretting 

regimes of full slip, partial slip and full stick. Fretting initiated crevice corrosion is also 

observed in all samples, with 600 grit samples showing lowest onset loads (around 1 N). The 

crevice corrosion was more prolonged and recovery currents were higher relative to fretting 
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currents for 600 grit. Coefficient of friction is not a function of surface roughness and neither 

is the interasperity distance. There is, however, an inverse relation between interasperity 

distance and fretting currents. 

 This study provided significant insight into the correlation between surface roughness 

and fretting corrosion behavior. Further study of the effects of corrosion reactions on the 

change in roughness during a fretting corrosion test is forthcoming. Another topic for further 

study is the influence of surface topography on fretting corrosion parameters, like fretting 

currents, interasperity distance, contact stresses and so on. 
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5. APPENDIX 

The following figure is a screenshot of the NI LabVIEW program used in the data collection. 

 

 

  

 

 

 

 

 

 

 

Fig 20: NI LabVIEW program window for mechanical data collection. The plots in the left 

window show normal load (green), co-efficient of friction (yellow).The plots in the right 

window show piezoelectric input to the stage (red) and DVRT measurement (white). 
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The following figure is a screenshot of the CorrWare window, showing the experimental 

setup and the electrochemical cell setup. 

 

 

 

 

 

 

 

 

 

Fig 21: Screenshot of experimental setup in CorrWare. Experiment is divided into three 

sections, based on applied normal load: (a) 0.5N-8N (b) 10N-16N (c) 18N-30N.  

During each section, current is measured during fretting for each load level. Prior to the 

experiment, the electrochemical cell is set up with the exposed surface area, reference 

electrode used and so on. 
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The test system described earlier was designed and developed in-house, as shown in Fig. 19. 

It is a custom built equipment for performing pin-on-disc fretting corrosion tests, and has the 

capability to house samples of varying diameters (20 mm to 35 mm discs). The linear X-Y 

stage and the electrochemical chamber is mounted on a think aluminum base for additional 

support. 

 

 

 

 

 

 

 

 

 

 

Fig 22: Image of pin-on-disc fretting test system. Some of the primary components are 

labelled in red. Inset shows the inside of the electrochemical cell with the sample pin and 

disc as well as the DVRT.  
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Figures 23 (a)-(i) show the individual fretting loops displaying tangential force vs. 

displacement for all samples tested. Each figure shows loops corresponding to five loads for 

which data was recorded. 

                         

 

 

 

Fig 23 (a): Fretting loops 240 grit Test 1 
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Fig 23 (c): Fretting loops 240 grit Test 3 

-15

-10

-5

0

5

10

15

-200 -100 0 100 200 300

Ta
n

ge
n

ti
al

 F
o

rc
e

Displacement (um)

0.35

1.53

8.59

14.97

22.36

Fig 23 (b): Fretting loops 240 grit Test 2 
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Fig 23 (d): Fretting loops 320 grit Test 1 



48 
 

  

-15

-10

-5

0

5

10

15

-40 -20 0 20 40

Ta
n

ge
n

ti
al

 F
o

rc
e

Displacement (um)

0.287

4.857

10.069

19.656

29.881

Fig 23 (h): Fretting loops 600 grit Test 2 Fig 23 (g): Fretting loops 600 grit Test 1 
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Fig 23 (i): Fretting loops 600 grit Test 3 

Fig 23 (e): Fretting loops 320 grit Test 2 
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Fig 23 (f): Fretting loops 320 grit Test 3 



49 
 

Figures 24 (a)-(c) show the fretting current results for individual trials plotted against applied 

normal load. The high standard deviations are explained by the cyclic nature of the current as 

well as the noise generated in the system during the test. 
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Fig 24 (a): Avg. current vs. avg. load for 240 

grit samples (n=3) 
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Fig 24 (b): Avg. current vs. avg. load for 320 

grit samples (n=3) 
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Fig 24 (c): Avg. current vs. avg. load for 600 

grit samples (n=3) 
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