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Pierre Le Doussal !, M. Cristina Marchetti 2, Kay Jo6rg Wiese !

! CNRS-Laboratoire de Physique Théorique de I'Ecole NoenSlpérieure, 24 rue Lhomond, 75005 Paris, France
2 Physics Department, Syracuse University, Syracuse NY4]1328A.

(Dated: February 2, 2008)

We study a model of two layers, each consisting af-dimensional elastic object driven over a random
substrate, and mutually interacting through a viscous laogip For this model, the mean-field theory (i.e. a
fully connected model) predicts a transition from elastpidning to hysteretic plastic depinning as disorder
or viscous coupling is increased. A functional RG analybisnws that any small inter-layer viscous coupling
destablizes the standard (decoupled) elastic depinnirgg fisied point ford < 4, while ford > 4 most aspects
of the mean-field theory are recovered. A one-loop study atzevo velocity indicates, faf < 4, coexistence
of a moving state and a pinned state below the elastic demjrthreshold, with hysteretic plastic depinning for
periodic and non-periodic driven layers. A 2-loop analydiguasi-statics unveils the possibility of more subtle
effects, including a new universality class for non-peigaabjects. We also study the modeldn= 0, i.e. two
coupled particles, and show that hysteresis does not alevagtsas the periodic steady state with coupled layers
can be dynamically unstable. It is also proved that stableqa configurations remain dynamically stable in
presence of a viscous coupling in any dimensionMoreover, the layer model for periodic objects is stable
to an infinitesimal commensurate density coupling. Our walréws that a careful study of attractors in phase
space and their basin of attraction is necessary to obtaimatinclusion for dimensiong = 1, 2, 3.

I. INTRODUCTION remain open: At zero temperaturE & 0) the elastic model
exhibits a nonequilibrium phase transition from a pinned to
A. Overview a sliding state at a critical valug. of the driving force, first

. o : studied in the context of charge density waves [11, 12].tStar
Nonequilibrium transitions from stuck to moving states un-ing from mean-field theoryl [13], an analogy with standard

derlie the physics of a wide range of phenomena [1], from

fracture and earthquake rupturel[2.13, 4] to flux flow in type-| critical phenomena was developed, with the medium’s mean
.velocityv acting as the order parameter, and a diverging corre-

superconductors [5] 6] and sliding of charge density waves i lation length [ 18]. A functional extension of usual RG was

metals [[7/B[ 19 10]. The rich collective nonequilibrium dy- developed to treat quenched disorder and obtain the rough-

namics of this broad range of phenomena can be modeled as . T
. . . ness and dynamical exponents at the threshold 0% to
an extended medium driven over quenched disorder. One can

distinguish two main classes depending on whether the des 100P accuracyl[14, 15]. Extensions at non-zerempha-

scription allows or not for plastic deformations of the medi Sized the differences with standard critical phenom IL6
p P . ; . was shown that a two-loop Functional RG (FRG) approach is
Within each class one may restrict to microscopic overdampe

) i S necessary to fully describe the difference between statids
dynamics or allow for more complicated, e.g. inertial, efée

— 0t i-stati inni .
The first class of models, overdampaldsticmedia pulled h 0" quast-static de_pmnmﬂl_[[ll@lg] gto reh sat
by an applied forcg, has been studied extensively. By defini- isfactory agreement with numerical simulations [20, 23, 22

tion, the driven medium can be deformed by disorder butis no#)niversality classes were identified, which are distingat
allowed to tear, and topological defects are excluded, tiye o or example, by the range of interactions or by the periaglici

degrees of freedom being elastic deformations. The anastio(or nonperiodicity) of the pinning forces. A key feature bét

of applicability of this model to realistic situations islistie- overdamped elastic model s that for one component displace

bated in the static cas¢ & 0), and even more so in the driven mentsN = 1, i.e. interfaces, the sliding state is unique, the
dynamics. The general expéctation is that such a modelis re})(f) curve s single-valued, and no hysteresis can occur in the

. : moving state ab > 0. This property, based on Middleton’s
evantto describe real systems in some range of lengthsealesy, o oy 5 which also leads to simplificatiohs|[18] in the
range which becomes broad (and potentially infinite, depen RG descripfion folV = 1is not expected to hold fa¥ > 1
ing on space dimension) in weak-disorder, strong-elagtici As a result, the understanding of the > 1 depinning traﬁ-

situations. Indeed one may conceive that, even if topolog- ... f i latti i< sill o
ical defects can be generated by the competition of elasticgltlon. or €.g.ines ﬁt\[’?ﬁft]eéaggceé’ IShSt' not Sﬁﬂs ory
ity, disorder and drive, they may remain bounded, and con- espite some attem ]. Furthermore, therese-a s

fined to shorter scales and thus unimportant for the effectivOnd type of universality classes for depinning (e.g. anegne

large-scale description. This is known to happen in the Statdepmnlng) which does not obey the so-called statistida

ics e.q. for interfaces in random ferromaanets. Even Whesymmetry (or rotation symmetry) and where non-linear terms
» €.0. 9 ' "€ ecome relevant (e.g. Kardar-Parisi-Zhang (KPZ) like 8rm
topological defects are relevant at large scale, the eldsti

o . [27]. Despite efforts[28, 29], a complete theory for thiassd
scription may still apply at shorter scales. Hence the over-: still lacking, and even the value of the upper critical dim

damped elastic model is a necessary first step to understai

the collective dvnamics in more complex situations. Marny re 20" is a matter of debate. The question of non-linear terms
y . P : v may be of importance to experiments of contact line depipnin
sults were obtained for this model, although some questions


http://arXiv.org/abs/0801.0137v1

2

and cracks [30, 31, B2]. Away from depinning, well into the plex dynamics of many other dissipative systems, including
uniformly sliding state at > 0, it was found that the dynam- vortex arrays in type-Il superconductors. Lorentz micogpsc

ics can be surprisingly rich [33], especially fof > 1 com-  images of driven vortex arrays in irradiated thin films of Nio
ponent periodic objects_[34, 35]. New terms can be generatelium show vortex rivers flowing past each other at the bound-
in the equation of motion, a linear convective term, a staticaries of pinned regions of the lattide [53]. Scanning tuimuel
random-force term, and a host of possible non-linear, KPZmicroscopy, which can resolve individual vortices at hignd
type terms@b@ﬂ@ﬂm 43| 44]. Bor> 1,  sity, also reveals the evolution of the vortex dynamics with
a distinct, “moving glass” fixed point was found in the FRG, disorder strength [64]. There too, there are edge contami-
with persistence of transverse order and transverse gjnninnation effects, and they may be responsible for the coexis-
leading to the prediction of a moving Bragg-glass and a movtence of a metastable disordered phase and a stable ordered
ing smectic state [38, 42,143]. In both states the flow is orgaphasel[65, €6]. It is clear that more work is needed to under-
nized in static-like channels, in a layered fashion. Extams  stand the rich dynamics of driven systems in experiments.

to correlated disorder was studied, and a moving Bose-glass it yas ubiquitously found in numerical studies of interact-

state predicted [45. 46]. Although clear evidence of thése e ing particles driven on a random substratelat= 0 (away
fects were found in numerics and .expenme [44], N0 SYSfrom the weak-disorder limit) that near the onset of meatt sli
tematic study of f|n|t_e-S|ze corrections was made. Since thqang the motion occurs along filamentary channels or riveas th
simultaneous analytical treatment of all the terms allobed 1 getermined by the spatial disorder of the random medium.
symmetry W't'” a FRG approach is a problem of formidablegchy channels are preferentially aligned along the dacti
complexity [43], even a fully consistent theory of the elas-of mean motion, but can exhibit large transverse excursions
tic flow at large velocity is still lacking. Hence the questio At higher mean-flow rates the rivers coalesce into a more
of which moving state is stable in the thermodynamic limit conerent structure that eventually results in a uniform flow
is still open. Finally, once the elastic system is undemfoo Hence the plastic flow takes, at a qualitative level, a vari-
one may hope to construct arguments for or against stabilitgt, of forms with increasing correlations: (i) filamentarl

of the elastic flow to defects. These however are even morgiih 4 single well-defined channel or several uncoupled €han
delicate than in the statics, where the stability of the Brag pg|s [52 [ 68, 6d, 70] to coupled or synchronized chan-
glass was debated, and the vz_;tlld_|ty of the driven elasticehod pe|s 1o a layered smectic type structure to a moving lattice
has only been assessed qUQ“tat'VéE @JZB@? 48]. Hencghich may or not still contain frozen or moving dislocations
as one can see, despite being well studied, the over_damp@ 138,139 41 42, 43, 44]. While one may hope that at large
elastic model is still far from being understood. Extensitm  ye|ocity, where the effective disorder is smaller, the flaw i
include inertial effects and stress overshédtave also been  cioser to the one described by an elastic model, it is cleir th
considered [49], but much work remains to be done. one needs to take into account plastic deformations to idbescr
these various regimes.

There are many experimental situations where the elastic . _ .
medium model seems insufficient and one needs to take intp | N€ theoretical understanding of the dynamics of such plas-

account plastic deformations, as e.g. topological defects tic systems_ is much less developed than that Qf driven elgsti
the medium. In a wide class of experiments strong disorde'Ene‘d_'a' It is not even clear how to characterize the various
yields large deformations of the driven medium that makg©Ving states which are observed by some order parameter,
a strictly elastic model of the extended structure inapplic 2nd to properly define steady states and their large-size lim
ble [50 [5p[§3]. In contrast, the medium tears as topoQne can measure the distribution of time-averaged vesciti
logical defects are constantly generated and healed byithe i £(v) 0f the individual particles. A non-triviaP(v) exists for
terplay of drive, disorder and interactio[ 54 instance in the filamentary regime where some particle seem
) ’@]_ At slow average flow rates the dynamics neapermamently plnneql whﬂe_others are moving al(_)ng channe]s.
depinning is spatially and temporally inhomogeneous, withn _small systems ywth periodic boundary cond|t|on§ a peri-
coexistence of pinned and sliding degrees of freedom. Th@JiC steady state is observed near the threshold with a non-
depinning transition may become discontinuous (first grder tr|V|aI_ P_(v). Whether this feature persists in the infinite sys-
possibly with a macroscopic hysteresis and switching bewe €M limit, and how it depends e.g. on the geometry and aspect
pinned and sliding states [61.162]. Experiments on chargéat'o of the.sample, is not known. As was recently pointed
density waves show that varying the temperature leads to @t [67], it is fruitful to apply tools and ideas from the the-
transition from continuous depinning to hysteretic depign  ©Y ©f dynamical systems and chaos. It was found that upon
with sharp switching between pinned and sliding St_[61]|ncreasmgf, thg system. under_gpes a transition from periodic
Whether such phase slip effects occur in the bulk or only af© & fully chaotic flow with positive Lyapunov exponents and
the contacts [63], remains to be clarified. Related slipotdfe 2 non-trivial attractor. The dimension of this attractohieh

or plastic behavior have been proposed to explain the coni$ 10W. May also provide a tool to characterize the phases of
plastic flow. These ideas remain to be explored, in particula

whether the elastic flow could exhibit some chaotic regime.
At larger drive, P(v) becomes more peaked around a single
1 Note that in the mean-field limit the stress-overshoot madelthe model velocity and some degree of spatial coherence in the phase

studied here (see below) are identical, aside from the fattin the crack ~ @CCross the layers may ‘_’mses- Whetﬁéf)) _e\/_entua”y be-
model nonperiodic disorder has been considered. comes a delta function in the large-size limit, and whether
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the phase-coherence lengths diverge or not, has not been sywimplified version of plastic flow, for instance there are no
temetically studied numerically. There has been sometsffor convective terms in the equation of motion, it is motivatgd b
to use numerical simulations to correlate the spatial amd te the moving smectic phase in driven vortex lattices mentione
poral structure of the dynamics with the shape of the macroabove. It incorporates elastic responses to compresdgi@aal
scopic responsé [60], for instance the IV characteristies d formations and allows for local slips of neighboring degret

to flux flow in a type-Il superconductors. A number of mean-freedom due to shear deformations. Itis also relevant terexp
field models of driven extended systems with locally underiments on driven superconducting vortices in narrow chinne
damped relaxation or phase slips have been proposed in tleed other controlled geometriés[89} 90,/91,92, 93]. One pos
literature [71[ 72, 73, 74, 75,176,177, 78] 79, 80]. Whether orsible realization is a a layered (e.g. high) superconductor
not these dynamical models exhibit truly collective bebavi when the vortices are aligned with the magnetic field within
and universality in finite dimensions remains an open questhe Cu2O, ab-plane layers and move along these layers under
tion which motivated this work, as discussed below. A modela c-axis current. In the limit where the intrinsic pinning po-
which attempts to describe filamentary flow away from meartential from theCu,O planes is strong compared to the weak

field was proposed in_[82]. isotropic disorder from point impurities, the vortex dynam
ics may be modeled in terms @fi elastic layers or “chan-
B. Layered Model nels” coupled viscously along theaxis. The fact that only

the viscous coupling between layers is retained makes i€ mor
Given the difficulty in describing topological defects, asi  tractable. It is expected to be valid in situations where the
pler approach consists in considering layers such that-defocommensurate density-density interlayer interactiomgisd
mations within a layer are only elastic. Since the relatige d in Ref. [76] , which couples the displacements in each layer,
placements between layers can be arbitrarily large, lae#r  can be neglected. The general case can be defined as fol-
plastic deformations are allowed. Whether they occur or nofows: Consider al = d + d.-dimensional medium com-
depend on the interaction between the layers. This approagibsed of elastid, -dimensional channels coupled via viscous
was successful to treat disorder in the statics, wheredttea interactions in the remaining, directions. The medium is
solvable limits for e.g. the Bragg glass phdse [83, 84], the d driven by a uniform forcef applied along one of the direc-
coupling transition for magnetically coupled supercottdte  tions in thed;-dimensional channels. Here we only consider
[@]. Itis also studied to describe interacting quantuntesys  the dynamics of a scalar displacement field,r 1 ,¢) de-
such as the sliding Luttinger liquid [86]. Recently a simila scribing deformations in the direction of the driving forae
strategy was ﬁlied to describe plastic flow and depinningositionr = (rj,r1), with r, v andr, vectors ind, d
(see Refs.[[87, 88] for a review), and coupling phenomenandd, dimensions, respectively. To index the channels one
in the driven dynamics [76]. There it is even more naturaldiscretizes spatial coordinates in the direction normahto
since the flow naturally tends to be along layers (which can bgayers ¢, — r,,, wherer,, denotes the-th layer) and let
channels) in the direction of the applied force. In one \@rsi r| = 2. The dynamics of the displacement(z,t) of each
of the model, introduced by one of us and collaborators, thelegree of freedom is governed by the equation,
layers are onlyiscouslycoupled in at least one of the direc-
tions transverse to the mean motion. Although this is a much

M
YOrun(z) = // K(z - II)(Un (z) — un(II» + Z N, [ (T) = Un(T)] + f + Fo(un(z), ) (1.1)
r n=1

This is theM-layer model. Among the various universality As a result, the pinning force contains periodic components
classes of disorder, the one of most interest here is th@rand at all reciprocal lattice vector5|[5,194]. In the bare modet o

periodic class where the pinning force has the form: can retain the lowest Fourier components only, since aslls we
; ; known from FRG studies of statics and depinning, all Fourier
Ey(un, ) = hy,Y (un(z) — By,) (1.2)  components are generated by coarse-graining and should be

included to describe the properly renormalized disorder co

are independent random variables distributed with prdisabi "€lator. Such a correlator develops cusp-like singuésiat
p(hi) ands? are random phases uniformly and independentl))a‘rge scales that_cor_ltrol the dynamlcs_. The other type ofdis
distributed in[0, 1). This models the dynamics of driven pe- der, the non-periodic or random-manifold class, which at th

riodic media, such as vortex lattices, charge density wares glastic depinning was shown to give rise to a_single unitersa
Wigner crystals. In these systems substrate impuritiepleou ity class encompassing both random bond (i.e. short-rgnged

to the density of the lattice which, in the absence of in-taye ?‘”d random field (i.e. long-ranged) disorder, will also heist
topological defects, has the periodicity of the orderetidat

with Y (u) a periodic function. The pinning strengtihg,

ied. This is done by choosing a non-periodic correlator for
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the random force$), (u, z). Physical realizations are less ob- pled elastic quasi-static depinning. The analysis givéag
vious since the above velocity coupling is localinspace correction as compared to one loop in the non-periodic class
only while a realistic coupling e.g. between two directetypo i.e. random manifolds, with a new universality class forspla
mers would also depend on the field Two possible realiza- tic depinning whose exponent is computed in Sectibn 1V B.
tions are: (i) manifolds with internal disorder, as studied The analysis in the periodic case is quite subtle and predent
Ref. [95,[96]. (i) periodic systems for which the corretati  in SectiofIV Q. Finally, to get a better understanding of-pos
length of the disorder; is small compared to the lattice spac- sible behaviors and of the connection between dynamical hys
ing a. Then the two scales for pinning, the Larkin lendth,  teresis and attractors in phase space in simpler cases,eye st
and R, for the decay of translational order, can be very dif-in Section[\} twod = 0 toy models of two viscously cou-
ferent, and it is known that for scalés. < L < R, allhar-  pled particles on, respectively, a smooth (SedfionV A) and a
monics of the disorder correlator are important and theesyst discontinuous (Sectidn VIB) force landscape. Finally, in-Se
behaves effectively as a random manifold within this ranfge otion[V.C the main results are summarized, and extensions and
scales[[5/ 35, 97]. Hence, below we also consider the norfuture directions discussed. In particular it is proved tha
periodic or random-manifold model and discuss the differensmall interlayer commensurate coupling is irrelevant girte
behaviors in the two cases. ning. Since such a term is always present in real systenss, thi
shows that the viscous model is consistent. The Appendices
) ) contain the details of the two-loop calculation and a prbaft
C. Aim and outline of the paper: Two-layer model stable static configurations where decoupled layers ae- ind

The layered modelTT. 1) with viscous couplings was proposeBendently pinned remain dynamically stable in presendeef t

as a generic coarse-grained model representative of acrflass'ntﬁgtlaysern\gscgg?ncgl:ﬁgntg'O_Ia er model studied here. and
dissipative driven systems with strong disorder that encom_. not;tionsWWe Iconsidervzhe gverdamped (ijyrlwamics O’f WO
passesl mgny. ?]f the mo?gllscj CﬁnS'dereg ";]the “teratu(;?' 4g(yers couplled by a viscous coupling in a random poten-
was solved within mean-field theory and shown to predict &; ) . :
qualitative change from continuous to discontinuous arsd hy clglrﬁpE:ﬁgnlta}()\/fer—lsl?r:jiiﬁzté(;;):asr:??eﬁfir ar;]e;?;g%(;:gtg done—
teretic dynamics as a function of disorder strength, ceersis wi fori — 1,2, orii , to indicate explicitly t,he dependence
with experimental observations in a variety of systems.[80] oﬁ’time ;he’ e’ uatif)’;l of motion of one laver is
It has also been studied numerically in finite dimensiong Th : q y
numerical studies show evidence of hysteresis in 2+1 dimen-_ ., .9 .1 2 1 1,1

. > . : = - F 1.3
sions above a critical value of the interlayer coupling. Hys 0%t = "0 (= g ) + €V + F () 4, (1.3)
terefls vr\]/as notl clearly e(;mljentah%wbevler, in llr:'l d'r]mens'()lgﬁlhere% is the in-layer friction coefficient. Hence, in addition
nor for the two-layer model studied below, although it couldy, ¢|agtic intra-layer restoring forces (elastic coeffitig and

also_ not be conclusively ruled out on the basis of finite-sizgy, quenched random pinning force, one layer is also pulled
scaling ]' _ . _ by the other layer through a velocity (or viscous) couplipg
The aim of this paper is to go beyong the mean-field treatijere we focus on the case of uncorrelated disorder in each

ment of modell(L]1) and explore using functional RG whethefjayer, and denote the second cumulant of the pinning forces
hysteretic dynamics also occurs and whether universal fea;

tures emerge in low dimensions where one usually does not

expect '_[he.mean-fleld approximation to be accurate. Since Filz, o) Fi (@, ) = 6964z — ') Ao(u— ') . (1.4)
generalization td/ layersis straightforward and not expected

to bring important qualitative changes, we study in detailThe equation of motion for the system of two layers driven by
the technically simpler case of two viscously coupled layer gn external force can then be written as:

M = 2. We start by recalling in Sectidnlll the main fea-

tures of the mean-field solution so as to provide a basis for/ vy, v, d (uy,\ _ o2 ul N FYz,ul,) + f
comparison. In Sectidi ]Il we study thg = 2 model first Yo 22 ) At \u2, ) ~ € 2’ F2(z,u2) + f )
by direct perturbation theory and next using 1-loop FRG. We ’ ’

prove that the elastic single-layer (i.e. decoupled lagj@gsi-  The bare values for the friction matrix are

statico = 0" depinning fixed point ilways unstablé¢o a

small viscous inter-layer coupling. A partial one-loop lgna Y11 = Yoz = Y0 + Mo (1.6)
sis atv > 0 shows the generic co-existence of a pinned and a 2 = —1 . (1.7)
moving state below the single-layer depinning thresholte T

resultingv(f) curves show similarities with the mean-field

ones, and in some regimes the agreement can even be made . MEAN-FIELD THEORY

quantitative. We estimate the velocity at which thev(f)

curve becomes vertical (and a jump may occur in the fixedlo set up the mean-field theory for the multi-layered model,
force ensemble). A key feature of the one-loop study is thait is convenient to discretize space in both the transvemse a
the inter-layer viscous coupling is not correctedoy disor-  longitudinal directions, using integer vectdisn for thed -
der. To determine whether this is maintained to higher grdedimensional intra-layer index. The local displacemenhglo
we carry in SectioR IV the FRG to two loops, near the uncou-+the direction of motion at timeis w}(¢), withi = 1,..., M
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the layerindexand =1, ..., N labeling the degrees of free- and depends on time and phasenly through the combina-
dom within each layer. Its dynamics is governed by the equation & = (¢t — v/8; h). This will allow us to carry out the
tion (in this section we drop the subscript bn the bare fric-  average ovef by averaging over time.
tions), We display below the solution for a parabolic scalloped pin-
‘ . ‘ _ ‘ ning potential, corresponding to a piecewise linear pignin
~Yip(t) = Z Ko [us, () — up(t)] + Z izt (t) — wy(t)] force with jJumps of sizé at the boundaries of each period,
m J

1
+f + B (uy(t) = 57) (2.1) Y=ntz-u n<usntl, (29

whereY (u) = Y (u + n) is a periodic function and,,, and ~ With » an integer. The mean-field equatidn {2.5) is for-
n;; have constant values andr, respectively, for nearest- Mally identical to the mean-field equation for a purely stast
neighbor pairs and vanish otherwise. The random pinnindgnedium, with friction coefficient’ = v + » and an effective
strengthsh are chosen independently with probability dis- drive /* = f + nuv. The solution of the mean-field equation

tribution p(h?%) and the random phasgs are distributed uni- for a scalloped pinning potential amd= 0 was obtained by
formly and independently ifo, 1). Narayan and Fisher [14] and is easily adapted to our case. The

solution for finiten is described in Ref[ [80, 88] and will be
summarized here for completeness.

The pinning force has a jump discontinuityat the end of
One mean-field approximation is obtained by assuming thagach period. The displacemehts continuous across neigh-
all sites are coupled with uniform strength, both withinteac boring periods, but the local velocityhas jumps of sizé/TI"
layer and across the layers, i.&,, = ¢/N for all ¢ andm  att; + n/v. The solution of EqL(2]8) fot;(5) + n/v <t <
andn;; = n/M for all i and;j. The mean displacement and ;(3) + (n+1)/vis

velocity are given by B
ﬁ:Ae*M_Fh(ﬂ ) + F+h(n+1/2) cv (2.10)

1 , A a2’
u(t) = —— o(t 2.2
w(t) NM ;;W( ) (2:2) whereX = (¢ + h)/T" andt;(0) is the “jump time”. The

A. Fully connected mean-field theory

1 y cons.tgntA(ﬁ) and the jump time ;(3) are determined by
V=57 DO () (2.3)  requiring
4 i

wt=t;+n/v)=n+0, (2.12)
and we look for solutions moving with a uniform velocity so S _
that (up to a choice of the origin of time) it=ts+m+Dfv)=n+1+5. (2.12)
It is important to appreciate a crucial difference betwden t
u(t) = vt . (2.4)  mean-field theory of the purely viscous model £ 0, or
i i d; = 0) discussed in Ref 8] and the mean-field theory
Since the displacements are coupled only through the meagt the model considered here that includes additionalielast
fields, they can be indexed by their disorder parameters coyplings within the channels. In the purely viscous case,
andh, rather than by_the spat|al_ 'n(.j'CéSZ' e, up(t) =  each degree of freedom is coupled only to the local veloci-
u(t; 5, h). The mean-field dynamics is governed by the equasjes (which exert an additional effective driving force)iaran
tion slide with its own period. In contrast, whens 0 each de-
v _ gree of freedom couples to the average displacements via a
(v +n)ilt; 5, h) = c(vt - u) /Y (u—pF) (2.5) spring-type interaction that forces all periods to be theea

that must be solved with the self-consistency condition thaindependent of.

determines the mean field, After inserting A and ¢; obtained from the solution of
Eqgs. [2Z.11) and(2.12) in EJ.(2]10), it is straightforwand t
(u(t; B,h) —vt)gn =0, (2.6) impose the self-consistency condition as
t.lJr%
where(...)s. = fol dp [ dh...p(h) denotes the average over <ﬁ(t—ﬁ/v; h)> _ v</ dt a(t — B/v: h)> —0.
disorder. Bh tr+n h
The long-time steady-state solution to g, {2.5) can be writ (2.13)
ten as This yields an implicit solution for the mean velocity as
u(t; B,h) = vt + @, (2.7) F(v) = f(v) +nv = fe+Tv[1 - M(c)]
. h? 1

(Y+n)i=—ci+ f—yo+hY(@+vt—0), (2.8) with . the threshold force for the onset of uniform sliding,

to be solved with the conditiofi) 5., = 0. Itis apparentfrom B h? 215
Eq. (2.8) thati is a periodic function of time with periot)/v fe= <2(c +h) >h ’ (2.15)
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FIG. 2.1: The mean-field velocity( f) as a function off near thresh-

old, as given by Eq[{2.17). The slope of the linear functiexies £, 2.2: Phase diagram obtained from the fully-connectedmm

atn = nc(c) and is negative fon > 7.(c). field solution forp(h) = 6(h — 1), fory = 1 andc = 1, corre-
sponding ton. = 3. There is a critical point atr., f.) separating
continuous from discontinuous depinning.

and

h? n =3
M) = {—) 2.16 vl ~N=
(c) (c+h)2/n ( ) . K
The threshold force depends only on the elastic coupling
but not on the viscous coupling This follows because in i
mean field the viscous coupling becomes effective only when 0201
the system is moving as a whole, while away from mean field i
one expects additional fluctuation effects. 0.15/-
Near threshold the term on the second line of Eq. (2.14) a
gives contributions of order e~!/* and can be neglected. It

s then easy to invert EQ_(ZJ14) to obtaify), with the result
(f — fo)Pur 0.05] |
v(f) ~ (2.17) , .
D o ; ; ,
%o o1 < 02 fog>08 ‘o‘4f
The mean velocity vanishes linearly fgr — fI , with a : . fC ) fc‘ fc ] _

MF exponentdyr = 1 which is generic for discontinuous
pinning forces([14]. Whemn = 0 the slope of the linear curve FIG. 2.3: Typical velocity-force curves obtained from thely-
is always positive a8/ (c) < 1. The slope diverges, however, connected mean-field solution fe(h) = 6(h — 1), ¢ = 1 and
at a critical value ofj, n. = 3. Forn = 0 (dashed curve) angl = 1 (solid line) the system
depins continuously af.. At n = n. = 3 (dotted line) the slope di-
1 verges at threshold. For= 12 (solid line) the velocity-force curve
ne(e) =y [m - 1} ) (2.18) s multivalued. This corresponds to a hysteretic depintiagsition
as the system depins #t when the force is ramped up from zero
and becomes negative fgr> 7., as shown in Fig_2l1. For and repins at the lower valug™ when the force is ramped down
. : . A from the sliding state.
n > n.(c) the velocity curve is multivalued, yielding hys-
teretic behavior.
The phase diagram and typical velocity-force curves are

shown in FigsL 212 and 2.3 for(h) = 6(h — ho). The finite  transition fory < 7. is in the same universality class as the

long-time elasticity { # 0) guarantees that the behaviofis  gepinning of an elastic medium & 0) [13].
dependent of the shape of the pinning-force distribution.

The phase diagram fai(h) = e~" was shown in[[80] and has
the same form as the one shown here. The ppjntf.) is
atricritical point separating single-valued from multi-valued
velocity curves. Fon < 7., a continuous depinning transition
at f. separates a pinned state from a sliding state witlque
velocity. A question addressed below is whetheremains
non-zero in finite dimension and if so, whether the depinning Forn > 7. the mean velocity has a jump discontinuity. The

In our mean-field example, the linear response diverges at
ne. asv(n = n.) ~ 1/In(f — f.). Forn > n. the solution
is multivalued. In this case when the force is ramped up from
zero the system depins #& = f.. When the force is de-
creased from a value aboyk the system gets stuck at the
lower valuef~, yielding hysteretia( f) curves.



valuew, of this jump is given by the solution of v(y+n) A
9f(v) _
( 81} )v:uc =0 ’ (219)

where f(v) is given by Eq.[(2.74). An explicit solution for
the jumpuv, can be obtained for the case of a sharp disorder
distributionp(h) = d(h—ho). In this case the conditioR (2119)
for the jump becomes

n—n.  (Av)?

~(f-£)P

=3 . (2.20)
Y+n 4sinh“(\/(2v))
Forn > ~,n. this gives fe f+nv
¢+ ho n FIG. 2.4: The mean velocitfty + n)v plotted as a function of" =
Ve ™ : (2.21) f+nv. Whenf+nuv is used as the independent variable, the velocity-
2030\ v+ e

force characteristic has the same functional form as thatsifgle
elastic layer that depins at a threshgidwith v ~ (f — f.)? and

Finally, we note that the mean-field theory for a smooth peri B<1asf '

odic pinning potential gives qualitatively the same phdse d
gram, although with mean-field exponeéhir = 1/2.

The fully connected mean-field theory discussed here for
the layered visco-elastic model is formally identical t@ th layers are decoupled, with = v and F = f. The

mean-field limit of a model of crack propagation with stress, | .itv-force curves of one decoupled laver has been
[71, [72, 98], aly, i, iﬁff Y

overshoot studied by Schwarz_ and Fis , Alstydied in details! [ 416,145, 00]. Each layer is
though the crack model contains random force disorder Nbinned withv = 0 for f < f.. It depins atf = f, and

stead of the periodic disorder considered herel[87, 88]. slides for f > f. with mean velocityoa(f) = G(f)/,

. . o andG(f) ~ (f — fo)P asf — fHandB < 1 a criti-
B. Self-consistent single-layer approximation cal exponent that depends only on the system’s dimension-
ality. It is clear from the form of Eq[{2.23) that the velggit

An alternative, "partial” mean-field approximation treatsly {)orce characteristic of the coupled layers has the same func

one direction of space using mean field, and reduces the pro
lem to an effective single-layer model. It is obtained by
assuming uniform, i.e. infinite-range couplings of stréngt
n;; = n/M across the layers for each in-layer site The
corresponding mean field is given by

lonal form as that of an individual layer, with the replacar
f — F,ieu(F) = G(F)/T. A sketch of this velocity-
force characteristic is shown in Fig._2.4. The velocityet®r
characteristio(f) of the coupled layers can then be obtained
simply by performing a shift in the independent variable in

1 g the known result for a single layer. The result is shown in

ve =77 D (). (222)  Fig.[ZB. Near threshold(f) ~ (f + no — £.)°, with
i f=1-(4—d)/6+0[(4—d))?] < 1andv(f) will be mul-

In the thermodynamic limit of an infinite number of layers, tivalued for every finite value of, yielding a hysteretic depin-

assuming the system is self-averaging, the mean fietill ~ Ning transition|[80]. The hysteresis for any> 0, for d < 4,
not depend o and this label can be dropped. The mean-fielgobtained here in the approximation of a global transverse co
dynamics is then described by the equation pling, will be confirmed below within a one-loop FRG analy-
sis which incorporates inter-layer fluctuations negletiexcb.
iy i i In both cases it is a consequence of the non-trivial renermal
+ t) = Ko [ug, (t) — up(t L i . .
O+ midi(t) ; ot (8) = (1) ization ofy within a single layer, responsible for < 1 and

F b BY () — 51, (2.23) z > 2 for elastic depinning.

} As pointed out in Ref.[80], the self-consistent singleeiay
which must be solved with the conditiqi)s , = v. Itis  approximation, with uniform couplings across the layess, i
illuminating to rewrite Eq.[(2.23) by replacing the dis@@t-  equivalent to a model of charge density waves (CDWs) that
layer index? by the original continuum variable, incorporates the coupling of the CDW to normal carriers via

i ; ; ; ; the addition of a global velocity coupling to the equation of
(v )iy, = CVQUz.,t +fHnu+h Y (uy, —B;), (2.24)  motion for the phas@EHﬁOZ],

to be solved with the self-consistency conditigny_, i’ , = Finally, another “partial” mean-field theory is obtained by
v. It is apparent that Eq[{2.P4) describes the dynamics ofssuming uniform couplings of strenghfy,,, = K/N for ev-

M identical elastic layers coupled only through the mearery, m within each layer. This model will be discussed else-
field v. Each layer is a dissipative elastic medium of friction Where. The two-particle toy model described in Section V
I = v+ 7, driven by a forceF = f + nv. Forn = (0  corresponds to th& = 0 limit of this mean-field theory.



vly+n) A A. Perturbation theory and length scales

Consider model{1]5) driven by a forgeand assume that it
reaches a time-translational invariant steady state (atb.
periodic boundary conditions for each layer). There are two
modes:

ut = +u?)/2 , u =l —u?. (3.1)

For a system of finite sizé, because of fluctuations in the
pinning force, the velocity in each layer will be different.
However this effect should disappear in the infinitdimit,

and can be supressed using appropriate boundary conditions
Hence we define to be the velocity of the center of mass

v = 4, perform the shift to the comoving frame,

FIG. 2.5: The velocity-force curve for finitgcan be obtained fro the
single-layer curve of Fig. 214 correspondingrto= 0 (dashed line)
by a change of the independent variable. Sifice 1, the resulting
v(f) will be multivalued for any finite;.

ut =t + 4t (3.2)

[Ill. FUNCTIONAL RG TO ONE LOOP
and immediately drop the hat. We can now write the dynam-
To go beyond mean field we now develop a Functional RGcal action associated to the resulting equation of moti@n (
approach. (I.3) shifted):

s M) 4

Slu, u] = Tt 11 712 | &
o, /z,t (@t) [(7?2 V) de
1

The subscrip0 indicates that these are quantities for the bare Writing S = Sy + Sine WhereS;,, contains only the dis-
model (and it is often dropped in the following). The matrix order, i.e. the second line ih(B.3), the effective acfign] of
of friction coefficients is diagonalin the badis (3.1) anddee  the system can be computed perturbatively in the disorder:
note the frictions associated to the center of mass andvelat
i ) i i 1 s
motion as Do, @) = Sofut, @ + (Staelus @) s + 5 (Sinelot, W2, + -

Y+ =711 tv12 , Y- = Y11 M2 - (3.4) (3.8
" o 12 o 12 In the average ovef, only 1-particle irreducible (1PI) di-

The bare values arg? = ~y andy® = v + 219. The bare agrams (i.e.. conta!ninglloops) are kept._ The quadratic part
response functions, i.e. those in the absence of disoesat; r  of the effective action yields the exact disorder-averaged
sponse and correlation functions:

RY. .= <ul I > 3.5
kit RE=k0/ (3:5) ij 82T [u, ]
R = —— (3.9)
A sut ,, ou’ i
—qt’ qt lu=u=0
—tk2/7+ e—tkz/'y, _ .. . . 621—‘[11, ’l~1/]
R =R2 = 0(t) | S 3.6 il =CY =Rk R, 2
koot kot ( ) 2’}/+ + 277 ( ) UgtW_ g q,t—t q,t—t1 " Vq,t—t2 6ﬁ]ﬁqt16ﬂ’f}t2 i
—tk? —th?/y_ . - . .
R12 =R = 0(t) et/ _¢© o _ (3.7) Both functions are symmetric ifyj and inqg. The effective
* ot 294 2 action has a complicated form but contains terms similar to

those in the above actioh (B.3) with renormalized (i.e. “cor
The case of a single layer is reproduced upon setjjng 0, rected”) values for the friction matriy;;, and the second cu-
or equivalentlyy_ = ~, (thenR}] — Ry, the standard mulant of disorderA(u). The elastic term is unrenormalized
single-layer response function, aﬂdﬁ —0). (i.e. the zero frequency part of thie, term inT" is the same as
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in Sp) thanks to the statistical tilt symmetfywhich holds in-  scaleL., A”(0%) is strictly positive). The intra-layer fric-
dependently in each layer. Other terms are generated imrpert tion 11 < 7Y, = 70 + 1o remains finite and non-zero
bation theory, such as higher disorder cumulants, higkeer fr for ¢ > 4 (where the above integral converge at smll
guency corrections to the self energy or non-linear termob su while for d < 4 it becomes dependent on the system size
as [ u(0yu)?. In each case their relevance should be assesseld, v11 = (yo + n0)(L/L.)*~2, z < 2 being the single-layer

~
~

carefully. These terms are usually irrelevant néar 4. A
simplifying feature is that the coupling between the layiers
purely dynamical. Therefore the static part of the theomy. (i

dynamical exponent for elastic depinningdn< 4. Sinceyi,
is uncorrected (it is negative) and; is reduced, it is clear
that the friction coefficient of the center of mass of the sgst

the O-frequency part of the effective action) consists a tw v, = 11 + 12 may become negative at some scale, denoted
decoupled static layers. This implies, among others, that nL,,;. When this occurs the fixed point of elastic quasi-static
outer-diagonal elements of the disorder correlator areigen depinning becomes unstable (and inconsistent). @lays
ated in perturbation theory. occurs ford < 4, but only forng larger than a critical valug,

Let us now examine perturbation theory and power countfor d > 4. The qualitative picture is then as follows:

ing. The effective action contains the term:

[ Yk . Fer-wotdrw) (10)

whered f(v) contains all corrections due to disorder. On av-
erage these are the same for each layer, and depend on

The equation of motion is obtained from the conditibr= 0
equivalent to{u,;) = 0 (in shifted variables). Froni. (3.8) one
finds that to lowest order i (i.e. to one loop) the corrections
to friction and force are:

5’712 =0 (311)
oy = —// dr TA”(UT)R}I}. (3.12)
qJO
5f = / / dr A'(vr)R1L | (3.13)
qJO0

where the index is implicit if one studies perturbation theory
on the bare action. The correction to the disortiés of order
A?% and, atv = 0, is identical to the one for a single-layer
model, while at finitev it has a complicated expression (even
in the single-layer case, as givenlin/[16] not displayed hage

is well known, forv = 0%, A(u) acquires a cusp for scales
larger than the Larkin length...

Before obtaining the 1-loop FRG equations let us make(e — mv = f — fe+2v° (771 +7i2) A" (0)
some general qualitative comments on the stability of the 1-

layer elastic quasi-static depinning to the viscous itdger
coupling. The absence of 1-loop correctionsyie implies
that to this ordery;2 = +{, = —ny. Consider quasi-static
depinningy = 0*. Then one finds

1
6711 = —y11A”(07) P

q

(3.14)

where a UV cutoff is implicit everywhere. This is the same
correction as for the single-layer problem (i.e. for= 0
it does not depend orRi2); hence under coarse graining

~11 is reduced compared to its bare value (above the Larkin, From the factorf ¢
q

2 The invariance of the non-linear (i.e. disorder) termsSafinderu?, —
ul, + ¢"(x) for two arbitrary static functiong*(x), ¢ = 1,2, should
persist forT".

(i) d > 4: To lowest order the equation of motion reads:

[K(0 4+ m0) —mo] v = f — fo+ O(v7) (3.15)

K =711/71 =1+ A"(0%) (3.16)

40
q 4

where we denote b§ < x < 1 the usual reduction factor
in friction in the single-layer problem. Elastic quasitgtale-
pinning exists, with velocity
SN el [ (3.17)
K(70 +10) = 1o
until the critical value of the interlayer coupling is reach

K

Mo = Ne = Yo - (3.18)

11—k
Here the reentrant (or hysteretic) branch appears. Thisik g
itatively similar to the mean-field picture. One can relate f
mally (1 — k) — M(c) ~ h2/c* which for small disorder has
the same form a§(3.116), if the elastic coefficient (set toisne
this Section) is restored and one identifi®%(0) — h2. An
interesting question is the nature of the elastic to hystere
transition atn.. Expanding[(3.113) in powers af yields the
equation of motion near the critical point:
1
/ q_6 + 0(1)3)
q

(3.19)

As one can see on Figure B.1, the transition is continuous if
A"(0%) < 0andv ~ /f — f. atthe transitiod. Such a sce-
nario may hold for the non-periodic, random manifold cthss

A series of higher multicritical points should exist, adated

to correlators with leading behaviot"+) (0*)v". For the
periodic scalloped potential = co and the transition exhibits

a jump, or a quasi-jump (inverse logarithm) as in mean-field,
illustrated in Fid 3.2.

—6 one could identifyd = 6 as a critical dimension
for the tricritical point, and find that the term9492u and Bt (0;u)?
both become relevant there. However one should remembeAtt&0) is
irrelevant ind = 6. Whether this modifies the exponents and leads to new
universality class is left for future study

4Ford > 4, if the bare disorder is strong enough(u) develops a cusp,
see Appendix in [103].
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(i) d < 4: the friction coefficient of the center of mass v A
decreases with scale as:
Y+(L) = (o + no)(Le/L)* ™% = ng . (3.20)
It reaches values near zero at a scale
-5
Mo w
Ly=0L, ( ) 3.21
P Yo + Mo ( )

which diverges ag, — 0, and which we term the “plastic
length”. Thus the depinning transition of a system of size '
L < Ly remains similar to the standard (finite-size) elas- o
tic depinning of a single layer, while systems with> L, ‘\:\: f-f
cannot be described by single-layer elastic depinnings It i >
then likely that the system breaks into domains which can de-
pin and move independently. The full collective dynamics at
scalesL > L, however remains to be understood. This insta-
bility of the elastic depinning at finite scale is an effecyted
mean field.

Another important length scale is associated to a non-zero
velocity. For single-layer elastic depinning it is

FIG. 3.1: schematie — f curve corresponding to Eq-(3]19)

2.\
Ly = Ly(y0) := L. <A ”f) . (3.22)
Yov
It is such thatvr = ry, wherer is the time scale diverg-
ing at depinning andy the correlation length of the disorder,
equal to the period (here set to unity) for the simplest CDW
class. Beyond that scale the effect of quenched disorder IG. 3.2: schematie — f curve corresponding to a sharp transition
washed out into an effective thermal noise and the motion is
uncorrelated. Equating the two scales(y,) = L defines a

characteristic velocity scale: where one has definell(u) = S’dAl_EA(u). This result holds
. in the limit of zero velocityy = 0". As is well known, it
JoUpl _ "o e (3.23) results in a non-analytic correlator beyond the Larkin teng
A2ry Yo + Mo ' L.. We note that a non-analyti(u) decreases, while an
below which plastic effects cannot be neglected. The be':jmaIytIC correlator would increase t. We denote
haviour of the system at and beyond that scale still needs to o=A"0%) , &=A"0") (3.25)

be elucidated.
ning is dynamicallyunstable(to one loop) to the viscous cou-

pling we now investigate the phase diagram of the moving o1
phase. Au) =5 {6 —u(l- U)] (3.26)
B. Functional RG for 0 < u < 1, periodically continued to all,, is preserved

_ _ by the FRG flow, withd;6 = 5 — 352. It is realized by
Let us now derive and analyze the FRG equations to 1-100g scalloped potential, or more generally by uncorrelated pe
order at non-zero velocity. For pedagogical purposes, ®e Usogic shocks, and contains the universal fixed point of the

a Wilson scheme i.e. we computéu, i) to one loop using &  random periodic (RP) class: Fer= 4 — d > 0 it flows to

cutoff A; = Ae~! and write RG equations as the cutoff is var- 5% = 2 — zq = ¢/3. Ford = 4 the fixed point is at zero but

ied (i.e. integrating over a shell Usig . —uq<r, /(4 = the slow asymptotic decay~ 1/(31) is universal.

SaA¢f(A;)dl). A method which can handle higher loops, Inserting formula[(316) for the response function and the

based on a non-zero mass scheme, is presented in the n&durier seriesA(u) = Zp e®?mPu A, (over integerp) one

section. Here we restrict to the periodic problem and choosénds the correction:

units such that the period is one. ) )
The standard single-layer result for the correction todiso 5 _ 1 P qa 1 P q 327

. . Y11 =0 3 B} ( ) (3.27)
der upon integration over the shell can be expressed as q L20%y4 ygv 202y y_w
(

o A (u Cou )% A,
m(u)zeA(u)—l[(M)—A(m)} . (329) @ ::‘/0 "“Af/éw))“e :;7(17—21'12?7)71))27

2
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For the scalloped potential familyf (3126}, = (1 — v
5p0)o/(2mp)?, and®(x) reads 0.08|-
1 1 I

O(z) = — (3.28)  o0.06|

2 * [2sinh(z/2)]°

In the sequel, we use the scalloped faniily (8.26) and the forna 04
(3.28). From[(3.27) and (3.28) one obtains the RG equations”

5|1 Al 1 Al 0.021

g
o1 =—omite—yg |——t— + ——— L
. A? . A?
e T R B T
(329) P | P P B P [ | L [ . F

. . 0.02 0.04 0.06 0.08 0.10
and of coursé;y,> = 0. Forv = 07 it reproduces the elastic

depinning RG equatiofyi; := (ze1—2)y11 = —gyn which 0 5 o v(F) curve obtained by integration of the one-loop equa-
at the fixed point yields the dynamical exponent= 2—¢/3. e oA = _ _
_ tionsinthetext,foh =1,6 =1/3(e=1)1m0 =10, =1
One can see from formul&(3]29) that a non-zero velocity
v > 0 tends to cut the flow ofy;;. This is a usual effect in
the case of elastic depinningy(= 0) associated, in that case, , '
to the single length scalk, (vo) defined in[32R). Here there 7+( = °0) = 0. Forv > v. thew(f) curve is well-defined

are a priori two length scales, associated to the two mades and continuous. Far < v there is no moving solution such
andu~. The effect of disorder is washed out only for scalesth@tv(f) has a positive slope. Hence in a fixed-applied-force
larger than both lengths, i.e. if ensemble there is a jump to the pinned phase as the force is

decreased. Av = v, from (3.33) the slope of the(/f)

yrve? JA2>1 | L>LE. (3.30) curveisinfinite. This corresponds to the minimal foye at
which the jump must occurs. By contrast, when the force is
Then the equation reducesdgy;; = — & —A" _—4 The increased in the pinned phase the critical forcgis= febst,
q 11 12 71y 02 .

It corresponds to the maximal force at which the jump upward

- . N . 0N o
difficulty is that ;- are not simply equal td., (v} ) since the in velocity to the moving state must occurAt v — v the

?oj;(éz: glzgglbihagvﬁr??z;chte S'r(]gszysgﬁ?suhpg?gékgosisa&nMengtth isinfinite. This suggests that motion should be cor-
pl): s y " related on all scales, and that this point is very much like a

HY 21 2 H
hence the condition, (1)ve” /A" > 1 may never be fulfilled, o, point where scale invariance holds. An example of a

atanyscale. A more careful analysis, performed below, is thusv(f) curve predicted by the one-loop FRG is given in Eig] 3.3,

required. To estimate the jump velocity,. it is simpler to first study
One notes tha{{3.29) is the derivati =0 = ¢
— 0,0, f with: ) veri1 s a model where the bare valuepf, vy, is already small com-
v ' pared toy_, i.e.vo < 10. Then equation(3.29) can be ap-
~ 1 A2 A2 proximated by:
Of =y116v — —GA} [coth( L) + coth(=—)
4 2v4v 2v_v
(3.31) Oy = o 4+ — AT (3.34)
from which the velocity-force characteristics is obtairaed T+ = 7970 167002 sinhz(AZ;;l ) ) )
v) = Yv — L f : is is integrated into:
f(v) dlo,f (3.32) Th grated
0
In the limitv = 0" one recoversﬁlf”: —3GA7 Which.in- il =00) =7y — %&%H<4A2 > (3.35)
tegrates to— f' = —15A2, the critical force of a single Mo
elastic layer. One notes the general relation, Hiz) - /”” dy [1 B y? }
= —5—
0,1(0) =74 339 povL s
. . . : i =-1 th In{—— 3.36
valid for [ = oo, or for any intermediate scale, if one defines + @ coth(z) +In (sinh(x)) )

a finite-scale curve fof (v) by setting the upper integration

bound tol in (3.32). _ with H(z) ~ In(2z) — 1 at largex and H(z) ~ £ at small
We now study the flow ofy;; which depends on, =

~v11 — no andy_ = v + 2n. We recall that the starting value

isvY, = o + no. If the velocity is large enough, although

decreases upon_ renorr_nahzatl_o_n, the corrections may ble weas In some cases it was observed that the jump can occur betwe éxtremal

enough so that it remains positive, eY?n‘fO{ 4. 1In the lat- values, either due to finite-size effects or due to a dynaniisaability,

ter case, there should always be a critical velogitguch that which is beyond the present description.



2. The critical velocityv,. is hence determined by

2
H( A )_EE, (3.37)
dnove o 1o
which gives the asymptotic behaviour:
mve L (20 a1

VLT exp( 5770) S <1 (3.38)

7oV 1 om0\ ano
cx | — —>1 3.39
el (3%) S 7 (3-39)

Here we have assumedto be scale independent, hence a

reasonable value forltis & = 0* = 2— 2z, = ¢/3+0(€?). At

12

the disorder parameter flows to a universal fixed valtieln
the other limit of small ratioy, /o, the result is very different
from MFT because of the strong renormalisation of the in-
layer friction coefficient, and the threshajd which exists in
mean field is zero fod < 4.

It is also instructive to study the FRG flow fdr= 4 and

d > 4. Ford = 4 + ¢ and a scalloped potential one has
o= 50e—d~, hence one finds at zero velocity; (1) = (yo +
1) exp (=% (1 —e~)) andv4 (1) = v11(1) — no. There is

thus a threshold for the jump in th€ f) curve; it occurs only
for ny > n. with

LU (3.43)

nc:eao/é_l

the fixed point ind = 3, 2, 1 the second regime is the relevant . becomes very small as— 4%. Ford = 4 one hass =

one and gives the value of the critical velocity for largé~o.
To estimate the critical velocity whey /~, is small, one
must first integrate the flow up to scdleat which~ (1) =

kno = k/(k+2)y— andk a number smaller than unity. Within

this scale we can approximate; (1) = (1o +v0)e ", which
yields(n9+70)e =" = (k+1)n. The length scalé " is of

the order of the plastic length,, introduced above. Beyond

that scale one can apply the previous analysis

Y4l = 00) =74 (1) — 50m0

1 A2
onoH | ———— 3.40
2 (4770U€2l1 > - (340

which yields the estimate

mve (k4 1)no 2/e 1
A2 Yo + Mo 4H_1(2/€/5')

Hence we find that the critical velocity vanishesmgs. ~

(3.41)

1/(31), hencey;; = (o +n0)/1'/? and there is no threshold,
n. = 0. The plastic length scale however diverges extremely
fast asL,1 = L. exp((vyo/m0)?) for smalln.

The analysis of this section used that is not corrected.
We now turn to a two-loop analysis to check whether this
holds to higher orders.

IV.  ANALYSIS INCLUDING 2-LOOP
CORRECTIONS

In this Section we compute the corrections which arise at two
loop around the quasi-static elastic depinning transiicthe
single layer atf = f<'s!. The calculation is performed in
the limitv — 0. The FRG flow is discussed separately for
the non-periodic and for the periodic cases. Possible eonse
guences at non-zeroare discussed in each section.

The natural setting for higher-loop calculations is to use a

(10/70)?/ =) in the limit of small viscous coupling, consis- mass as an infrared cutoff. It amounts to adding the force

tent with the estimatd (3.23) for the scale at which pladtic e vectorm?(w(t) —

u;, ,) to the r.h.s of the equation of motion

fects become important. The present 1-loop analysis iteca (I3). It describes two layers both pulled by a spring atach

however that the jump is always non-zéro

to a point at positionu(t) which performs quasi-static for-

It is instructive to compare with the predictions from mean-ward motion. In that setting, it was shown [104] that the éorc
field theory (MFT) recalled in Sectidn IJA. In the regime of correlatorA(u) computed in the FRG is an observable related
large viscous couplingg > 7o, one sees that formula{3]39) to the mean-square center-of-mass fluctuation arae(ngin

is very similar to the mean-field prediction

:(c—l-ho) 21/2
2 3% ’

if one identifiesc + hg — /5 /4. Hence the 1-loop FRG
result, taken in the limit of largeo, is very similar to mean-
field theory (MFT) even foil < 4, with the difference that

NoVe (3.42)

6 Given the assumptiony < 1o the first regime exists only for smait

which is eithere — 0, or if bare disorder is very small until the scale

which controls the jump.
7 One notes that the flow of the disorder correlator, whichasdomplicated
to analyze here, is also cut by velocity at the saakac(ij, Ly ). Hence

above that scale the paramefiecannot be assumed to take its fixed-point

value and instead will decrease to zero. Since the effectputed here
occur below these scales, one expects at most a change ineflaetprs
from taking these effects into account.

each layer. One introduces the rescaled correlator

A(u) = Cym™F2 A(um ™) , (4.1)

whereCy = el = ¢ [ (k* + 1) fore = 4 —d > 0. One
finds thatA (u) converges to a fixed point, and to 1-loop order
it reproduces the Wilson approach.

A. 2-loop FRG equations

The 2-loop FRG flow-equation for the disorder is taken to be
the same as the one derived|inl[18] at the quasi-static depin-
ning transition:

9 A(u) = (€ = 20)A(u) +

—%[(A -4 )
A) &

"(u )

W]



[

3

+%A/(O+)2A"(u) . (4.2)

whered, := —md,,. As explained there, the derivation of
this FRG equation at two loop (especially the last termpseli
on the Middleton theorent [23] which states that if all local
velocities are positive at some time, they remains so at al
times. In the two-layer viscous problem this property does
not hold stritly, as backward motion of one layer is somefime
observed. The present calculation hence assumes that the
effects can be neglected at large scale near the quasi-ctati
pinning, and to this order.

The corrections to the friction coefficients are computed in
AppendiXB. They read:

Y12A7(0F) A" (07) log | 711 T 712
2 Y11 — Y12
de11 = 11 [—A"(O) +A”(0)* + A”(0)A'(0) (3 —1n 2)}

ag Y12 = (4.3)

+3712A/(0+)A/"(0+) log | 1Lt 712
2 Y11 — V12 .
9 FIG. 4.1: Flow ofyy1 and~i2, for e = 1, as a function ofy11 (x-
+7115’(0+)A”’(0+) log |1 — Jiz (4.4) axis) andyi2 (y-axis). The separatrix is the diagonal line (orange)
7121 v+ = y11 + v12 = 0. All physical initial conditions , corresponding

) ) ) _ tovy4 > 0, remain physical. The shaded pink region corresponds to
The calculation was performed in the physical domainunphysical initial conditions; < 0.

~v4,v— > 0. For mainly illustrative purpose, an analytical
continuation was performed to the domain with negative fric

tion coefficients, which yield the absolute values above. We +i log <w> Y126 4.7)
find however that whenever the coefficient of theterms are 36 V11— Y12

non-zero, the sqlution of the flow, obtained below, remains i 9 1, Y11 + Y12 48
the physical region. n2 = 155¢ Fo— (4.8)

It turns out that the two combinationd”(0%) and
A’(0T)A”(0F) which appear in these equations are univer
sal numbers which can be related to the roughness expone
¢ (using derivatives of(4]12) at = 0), independently of the
precise form of the fixed point:

We integrated the flow-equations numerically. The result is
Igﬁ'ven in Fig.[41 fore = 1 and in Fig.[4.2 fore = 4, to
illustrate how the flow changes with Looking carefully, one
sees that starting in the physical regton > 0, the unphysical
regionvy, < 0 is avoided. One also sees that approaches

- -G (3¢ — 3o +2 zero quickly, at least for smadl We now confirm these two

A"(0) = gt ! 5 e+ 0(e) findings analytically. To do so, we change variables to=

. R (1—G)¢ v11+712 andy_ = y11 — 712, see Eq[{1]6). We are interested

A'(0)A®)(0) = #62 +0(e%) . (4.5) inv. ~ 0. There the flow-equations become

1
Here we have defined Opyy = € (—0.009259 log (z—+> € — 0.008768¢ — §> Y-
_ 2 3
¢ =G+ Ge +0(e7) . 4.6) 5, —_ (% + 0.0087686> - . (4.9)
B. Non-periodic problem The second equation has the solution

As was shown in[[18] for a wide range of microscopic dis- y_(b) = ¢~ (1/9F0:008768c)el ) ((5) (4.10)

orders, there is a unique elastic-depinning fixed-poirtza _ _ . .
lated there, and identical at one loop to the random-fielg (RF] N€ solution fory,. is easiest expressed as a functionof
disorder class. At this fixed point one finds = 1/3 and  Instead oft:

=1/(27v/2v) with v = 0.5482228... This yields: (=)
G /( \/_'7) v Yy dyy(v-) elog ( )

=1+ T

S e e 4.11
dy_ 12 + 0.94697¢ (4.11)

2e
) = [ —0.0432087¢% — —
e ( ¢ 9 ) m The ratio

1 2 _
+—log (1 - 7—5) Y112 r(y.) == 1F (r-) (4.12)
54 M1
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Hence within the two-loop analysis, and the stated assump-
tions, one finds a fixed point for the case of non-periodicrdiso
der. The dynamical exponent at this new fixed point deviates
even at leading order infrom the standard elastic depinning
value:

2
Zelastic = 2 — 56 — 0.0432087€2 . (4.18)

Compared to one loop, the two-loop corrections appear sin-
gular, as seen from thia(y- /4 ) factors in the corrections

to friction. As a result their magnitude is drastically enbed
above the plastic length,, from an expected(e?) to an ac-
tualO(¢). The termA’(0T)A”(0F) In(y_ /7, ) inthe correc-
tion toyy2 in Eq. (43) is in effect replaced, upon integration
of the flow, byA”(0). This results in a value fdt — z twice
smaller, to leading order, than the usual elastic fixed point

To summarize, the 1-loop analysis showed thabecomes
very small near the plastic length, and provided a scenario f
scales larger thah,,; which could sustain only a moving state
atv > v.. Although we did not perform the analysis for the
FIG. 4.2: Flow ofyi1 and .2, for e = 4, as a function ofy11  non-periodic case in detail we do not expect a differenceat o
(x-axis) andyi2 (y-axis). The separatrix (orange) is the ling¢ = |oop. The present analysis - in the non-periodic case - shows
71+ mi2 = 0. The pink region corresponds to unphysical initial that additional physics occurs at two loop. It suggests dhat
conditionsy < 0. v = 0T state may still be possible. From the above analysis,
one could surmise that it results in a very abrupt, almost ver
tical v(f) curve (sincey, is found to converge very rapidly
to a very small value) which is not strictly a jump, although
it may look like one in a numerical calculation or an experi-
ment. This “quasi-jump” would occur near the critical force
of the elastic system, at variance with one loop. To confirm or
For all relevant values of (0 < ¢ < 4), there are two solu- infirm this scenario one WOl_JId n_eed to inclu_de the effects of a
tions: = 1 (unstable) and a non-trivial{ < 1) solution non-zerav, and a possible violation of the Middleton theorem
of within the two-loop theory, a challenge left for future work

It also remains to be investigated to which extent the prtesen
analysis can be trusted in the region wherebecomes very
small, i.e. the region wheide(y_ /~.+) becomes of order/e.

i ) We expect that in that region terms suchidsn the equation
which yields: of motion may become important. Such effects are presum-
ably correctly resummed in the two-loop corrections and may
12 4 0.94697¢ : : s .
7> ) (4.15)  explain why~, remains positive. However since the count-
€ ing of order ine becomes unconventional if one follows the
flow further in that region, there is no guarantee that higher
loops may not lead to even more singular terms. In the best-
2012/¢ case scenario only th@(e?) term in [4.18) would be changed
(4.16) by higher-loop corrections. Although the present restilis h
108 at a new depinning universality class with a dynamical ex-

Thus fore small, this fixed point is very attractive. This is the Ponentz = z;, a deeper understanding of the behaviour of
fixed point obtained numerically above. It has the propertythe system in the plastic region seems necessary before a firm

satisfies a closed flow equation as a functior of

S0 ) -

elogr(y-)
4.13
dln~y ( )

12+ 0.94697¢

elogr*

el - LN 4.14
12+ 0.94697¢ (4.14)

" & exp (—

The eigenvalue of the flow close 16 is at leading order

y=—

that~, remains strictly positive. conclusion can be drawn.
From [4.10) we extract the dynamical exponent associated
with ~_: C. Periodic problem

4.17) The case of periodic disorder is also challenging. The guasi
' static depinning fixed point has the forx(u) ~ u(1—u), as

in (3.28) with

Sincevy, =~ r*~~, it has the same dynamical scaling, and the
abovez,aic IS indeed the critical exponent for the dynamics e e
of both modes. c=gtgt (4.19)

Zplastic = 2 — g — 0.008768¢>
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and is expected to maintain that form to any order.iif the vy = n(ty — t2) + f + d(us) (5.2)
system iexactlyat its fixed point, then, sincA”’(07) = 0 at
this fixed point, the flow-equations for thes read In this Section we adopt slightly different notations fontes-

of-mass and difference coordinates:

2 =0 (4.20) o
~ ~ 1 2
dev11 =1 (—U + 02) =-m1(2—-za) (4.21) = 5 (5.3)
2 = —
Zel = 2 — (% + %) . (4.22) T =uUp —uz. (5.4)

) _Inthese coordinates, the equation of motion becomes:
Hence there are no drastic effects of the two-loop corrastio

apart from changing the value of ~;; always decreases as . 1
inpl-loop,'y+ van?shges at some scavle, and t);1e 1-loop analysis y=F=gloly+o/2)+oly—z/2) (6-5)
remains at least qualitatively correct. Hence this confitimes t=alp(y —x/2) — oy +2/2)] , (5.6)
1-loop approach.

It is less obvious to understand the situation where the sysvhere we have defined:
tem is not exactly at its fixed point, but converges to it, i.e. v
A" (0%) ~ e Inserting this behaviour in the above two- T LT (5.7)
loop equations still results in drastic effects, . never .
crossing zero, again due to the logarithmic divergence®f th b= _¢ (5.8)
corrections in that region, as for a non-periodic probletme T g
discontinuous behaviour between a zero and a small non- r_ / (5.9)
zeroA”’(0™) remains to be understood. One scenario which Ty '

would save the agreement with the 1-loop approach is that o _ ) o
other irrelevant operators thax”’ (0*), neglected in the two- For definiteness we consider the family of periodic-forcella
loop treatment of the periodic class, are equally imporat ~ SCapes:

modify the result back td (4.20). More work is clearly needed p1sin(2mu) + pa sin(4ru)

to settle these issues. d(u) = )
\/g—ﬁﬁp%(%@) (1+32p2)
V. TOY MODELS WITH 2 PARTICLES (5.10)
. They are normalized such that if one takps| = 1 (the

Standard choice made in the following) the single-particle
critical depinning force isFs? = =41 (i.e. max(¢(u))
max(—¢(u)) = 1) for any po. It turns out that the single-

of coupled elastic layers it is instructive to study the mode
in d = 0 i.e. a toy model with two particles. This approach
has proved useful for the elastic-depinning problem [10¥], pamonic case is non-generic and one needs to include &t leas
particular in clarifying the information contained in th&& -« qiher harmonics i.po £ 0.

functions. As we show below, a variety of behaviors arises e haye integrated these equations numerically and plotted
already for two viscously coupled particle. Here we focuss yhe yesylting flow in Figd5l1-3.2, ahdb.3 for various val-
on the simplest situation of two particles in a periodic one- o4 of f andps. The center-of-mass coordinagés plotted

dimensional landscape driven by a force, and leave for éutur
work the interesting non-periodic case, as well as driving b
a spring (which is more suitable for comparison with FRG).
The model is thus thé = 0 version of [2.1), with a pinning
force h'Y (u® — 3*); we chooseh! = h? for simplicity. The
random phase can be eliminated by a shift of #hghence

it is sufficient to study the case of two particles in the sam
landscape (up to a change in initial conditions). We firstigtu
smooth disorder, and then a scalloped landstape

A. Smooth potentials

We now study the following model:

yin = (e — 1) + f+ dlur) (5.1)

8 If an additional self-consistency condition is imposedsst models can
also be used to implement a third mean-field approach, disduat the
end of Sectiofi TTA.

%

along the vertical axis, the relative displacemerglong the
horizontal axis.

It is instructive to start with the casg= 0 (¢ = 1) of two
uncoupled particles, given in Fig_5.1. The vertical tréjec
ries along they axis atz = 0 or x = 1 correspond to the two
articles either in the same position or shifted by one erio
s the force is decreased below threshold (right to left)ia pa
of fully-attractive and fully-repulsive fixed points appsan
these axis. The total phase spacefox F:P = 1 is frag-
mented in pinned regions which flow to one of these “pinned-
phase” fixed points, corresponding either to the two paicl
pinned in the same well or pinned in two wells shifted by one
period, depending on the initial condition. Note also theeot
zero-force fixed point which has one attractive and one re-
pulsive direction and corresponds to one particle in a stabl

9 We are grateful to Alan Middleton for clarifying remarks thg the analy-
sis of these flows.



FIG. 5.1: Uncoupled particles below depinning & 0.85, left), at depinning £ = 1, middle) and above depinning’(= 1.2, right);a = 1,
p1 = 1, p2 = 0. We always plotc to the right andy to the top. Separatrices for the different attractive regibelow threshold are drawn in
green.
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FIG. 5.2: Viscously coupled particles & 0.2) below depinning of the uncoupled particlds & 0.6). The anharmonic coefficiept differs
from left to right: po = 0 (left); p. = 0.5 (middle) andp>. = —0.5 (right). p1 = 1. We plot 20 sample trajectories starting frgm= 0, and
equally spaced in.. One sees that fgr. > 0 more trajectories converge towards the unique stableisol@ellow). In the case gf> = 0,
there is a family of periodic solutions, of which we have tddtthree.

equilibrium position at the bottom of one well and the otlmeri above-mentioned zero-force saddle points. Hence one sees
an unstable equilibrium position at a hill top. This fixedqoi clearly that the phase space splits into a pinned region and a
controls the separatrices of the flow. This structure, alwio flowing periodic region. In the case of a pure sipe & 0),
in the absence of a coupling, will persist, with some modifica this region is made of an infinity of neutral periodic tragect
tion, for non-zero;. ries (with zero Lyapunov exponent). In the more generic case
Interesting physics happens when the viscous couplisg p2 # 0, the flowing region contains a single periodic trajec-
increased. The case = 0.2 is shown in Fig[5R. Exactly tory. This trajectory is either attractive (case= 0.5, figure
along the axisc = 0 andx = 1 the equation of motion has in the middle) or repulsive (right part of figure.2, with
not changed and the same attractive pinning fixed points arg, = —0.5). It is easy to prove from the symmetry properties
present forF < FS = 1. However, unbounded motion is of the flow that the Lyapunov exponent is reversed when the
now possible for smaller forceB, < F < F» = 1, and  sign of the force landscape is reversgd) — —¢(u) . In
takes place away from the axis. The force chosen in[Eig. 5.2
is ' = 0.6. On the left figure the casg, = 0 is repre-
sented. One can easily see that it is fully integrable and tha
each trajectory in the central region is exactly periodid an 1°Denoting (¢, f, p1,p2) the solution of the equation of motion
crosses thg = 0, 1 axis at the same. The region where this - for some given but unspecified initial condition, one sekstt
flow occurs is delimited by the separatrices which meet at the * (& —/>p1.p2) = —u'(t,=f,p1,p2), w'(t, fop1,p2) = 1/2 +
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FIG. 5.3: Viscously coupled particlea & 0.2) above ¢ = 0.7, right), at " = F. = 0.522264, middle) and below depinning/{ = 0.35,
left). The anharmonic coefficiept = 0.5. We plot 20 sample trajectories starting frgm= 0, and equally spaced in. For F' = 0.7 (right),
we plot the unique stable solution (yellow). Even for thigaF', one sees the convergence to this stable solution.
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the repulsive case, any particle in the regagparently flow-  the second branch. Inthat case there is a hysteresis asdke fo
ing on the figure eventually gets pinned at some laggafter  is varied adiabatically; this is shown in the right figure.dop
visiting a few cells; the basin of attraction of the flowinggsle ~ decreasing the force from a large value the system follows
has measure zero. This is an example where a non-trivial péhe attractive trajectory in the middle until it disappeat$’.
riodic stationary state exists, but is dynamically ungaldn  and the velocity vanishes. But if the force is increased from
the contrary, in the case, = 0.5 (middle of figureflVA) a  a value smaller thaik,., it can be seen from the left plot on
distinct flowing phase exists, and its properties are dotatha Fig.[5.3 that it first converges to a pinned fixed point alorey th
by a unique attractive periodic trajectory, and e.g. theaye axisxz = 0, 1. Since these fixed points remain attractive up to
velocity is given by the inverse period of this trajectory. F = Ff? = 1, the velocity remains zero until that force and
Finally Fig.[5.3 illustrates how the periodic orbitin thedni  then jumps to the stable moving state.
dle, hence the moving phase, disappears when the force is re-The question of whether a jump exists in the descending
duced belowF, = 0.522265, leaving only a pinned phase for curve can be settled by analyzing how the periodic trajgctor
F < F,. disappears af' = F.. It can be seen from the middle plot on
We can now analyze the resultingf) curve. Thev(f)  Fig.[5.3, that this occurs abruptly, but that the period djes
curve for the pure-sine model is indicated schematically orft /' = F.." as the system spends more and more time near the
the left of Fig.[5.6 and is non-generic, as discussed abovéero-force saddle points. These hence play an importaat rol
In the casep, # 0 there are two branches corresponding toin the transition at” = F,.. A simple argument indicates that
the two steady states, one (labelledcorresponding to the the time spent near these points increases logarithmieallg
trajectory along the: = 0, 1 axis, i.e. the single particle( f) verified by the numerical integration of the flow in Fifs.15.4,
curve, and the second (labellgjicorresponds to the periodic B.5. Hence, although this system exhibits hysteresis in the
orbit near the middle of the figures , which generally has &casep: = 0.5 it does not exhibit a velocity jump along the
higherv(f) curve. If the second is repulsivey = —0.5), descending branch. Note that the critical behaviouF ais
then the trajectory along the = 0, 1 axis is attractive: the different from the single-particle case~ (F — F:P)'/2, due
globalv(f) curve then coincides with the single-particle oneto the zero-force saddle-point mechanism.
and there is no hysteresis (middle of Fig.l5.6). If the sedsnd
attractive p, = 0.5), the Lyapunov exponent of the periodic

trajectories are invertett and the globab(f) curve follows B.  Scalloped potential

Here we consider the two-particle toy model for a piecewise
parabolic (scalloped) potential, corresponding to a piese
linear pinning force with jump discontinuities at the bound

u'(t, f, —p1,p2), andu’(—t, f, —p1, —p2) = —u’(=t, f,p1,p2) =  gries of each period. The equations of motion for the pasitio
1/2—u*(—t, f, —p1,p2). This last property implies that the two leftmost

figures in FigLVA can be deduced by symmetry and that the Lyapu

exponent on the periodic trajectories (which are globathsprved by the

symmetry) are reversed in sign. The pinned fixed points hewemain

attractive and are simply exchanged by this symmetry (tmeynat indi- 0.5 — repulsive forF' > 1 when the flow starts along this line. This is
vidually preserved). again a consequence of the symmetry properties mentiorea athich
11 Note that while the linec = 0, 1 are always attractive in the vicinity of inverts the Lyapunov along a periodic trajectory globaltggerved by the

the pinned fixed points foF" < 1, it becomes — in that case wify = symmetry.
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FIG. 5.4: Velocityv as a function off". The parameters used are
p1=1,p2 =0.5,a=0.2.
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FIG. 5.5: Velocityv as a function of~1/In(F — F¢), with F. =
0.522265. The fit-function isv = 0.0227714 — 0.718327/ In(F —
F.). The linear fit is excellent. A (much worse) fit to a power-law
would give an exponent of about 0.1. The parameters useg ate
1,p2 =0.5a=0.2.

of the particles are

1

vin =n(iz =)+ f+5+n-w (5.11)
1

iy = (g — 2) + [+ g Tm—u (5.12)

forn <wu <n-+1landm < uy < m + 1, with n andm
integers.
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dinates, the equations of motion are

n—+m

2

(5.14)
(5.15)

, 1
W=yt ftgt

v& = —ax + a(n —m)

forme <y< ”*Tm—i—landn—(m—i—l) <z <l4+n—m,
with a given in Eq. [5.J). Our goal is to identify the stable
periodic orbits for this model and calculate the corresjromd
period or its inverse, the mean velocity. The regions in dbor
nate space corresponding to the various periods of ther@nni
potential are shown in Fi§.8.7. Consider a particle thatsta
at pointA with [2(0),y(0)] = (x0, —20/2) in the region of
the pinning potential corresponding ta, m) = (0,0). The
boundaries of this region are defined-by /2 < y < 1+2/2,
for—1 <z <0,andz/2 <y <1-—x/2,for0 <z <1.
This particle will travel across th@, 0) region to pointB in

a timet, (z¢) and then across th@, 1) region to a poinC' in
atimeta(zg), according to

B ro\ ti(wo) B |(t1)]
o) 2 a0

t2(xo) t t

0 (a4 EED) g

The case of a scalloped pinning potential can be studied ana-
lytically since the equations of motion are linear withircka
pinning period, with jump discontinuities in the velocity a
boundaries of the pinning regions shown in [Eig] 5.7.

a. Periodic orbits  We wish to determine the values ©of
that correspond to periodic orbits as defined by the fixedtpoin
.’L‘(tl + tg) = ,T/(,To) =X . (517)

The period of such orbits i + t2 andv = 1/(¢; + t2). Itis
convenient to introduce a new notation:

z1(wo) = e /7 (5.18)
2o (o) = et/ (5.19)

with
v = {7 1n(1/z1z2)] B (5.20)

The dynamics fronfzg, |zo|/2) to (2’, 1 + |z’|/2) can be ex-

Whenn, = 0, the particles are decoupled, and the dynamicsimined analytically since the equations of motion are piece

can be determined exactly. Each particle is pinnedffor
1/2. For f > 1/2there is a unique periodic orbit of period

:'yln(

that diverges linearly ag — (1/2)*. No periodic orbits exist
for f < 1/2 and the system does not exhibit hysteresis.
To consider the casg # 0, we introduce center-of-mass

Ui 1/2) (5.13)

f—1/2

and difference coordinates as in Hg.5.3). In these new-coor

wise linear. Itis determined by

zl(f+%—|x—;|)—|x—;|zi’=f—%, (5.21)
fzo — %zg + %(J'z‘f(za +28)=f— % , (5.22)
with
o = w2028 + 2 (1 — 28) . (5.23)
|o|
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7

FIG. 5.6: Schematie(f) curves corresponding to the three cases discussed in thei}deft: single sine force landscape (ii) middle: the
non-trivial periodic orbit2 is repulsive and the(f) curve is the same as for a single partitlgii): left: the periodic orbit2 is attractive and
thew(f) curve exhibits hysteresis as discussed in the text

f f f

YA v
1.0
n=1
m=1 0.8
c L
n=0 n=1 0.6
m=1 m=0 I
B y=1-x/2 r
y=1+x/, 0.4+
n=0 [
m=0 L
= 0.2+
y==x y=x/2 L
Al
% X 0.0—
0.0

FIG. 5.7: The figure shows the boundaries of the regions wihere . L ) .
relative and center-of-mass velocities of two particles iperiodic /G- 5:8: The velocity-force characteristic obtained byeiting
scalloped potential have jumps. The horizontal and verticardi- Eq. [5.29) fora = 1 (_SOI'd line), correspondl_ng to decoupled lay-
nates are the relative and center-of-mass position of taeasticles, ~ €S:a = 0.5 (dashed line) and = 0.1 (dotted line).

respectively, as defined in EqE_(5.3). The equations fostizght

lines bounding the region correspondingrite= 0, m = 0 are indi- PR
cated in bold. z2(f+1/2) 20129

For any value of: we obtainf(v) from Eq. [5.28), with the
We now look for a periodic solution or fixed point as defined ;gg it Y /() g )

by Eq. (5). Then Eq[{5.23) gives (providegl # 0) 1

=f-1/2. (5.28)

z+z¢
_ La =7 \14+2— |, (5.29)
o] = L2 (5.24) 2(1-2) =
L= 22 where
Substituting this in Eqs[(5.21) arld (5122) we obtain 5 — e~ 1/(20) (5.30)
(A=) tE) Thev(f) curves obtained by inverting EG_(5]29) are shown
alf+1/2) 2(1 — 2928) f-1/2, (529 in Fig.[5.8 for a few values af. These curves resemble those
(1= 28) (22 + 22) obtained in mean-field theory and suggest the possibility of
z(f+1/2) — =2y f—1/2. (5.26) velocity jump. However, before making any conclusions we
12

must study the stability of these periodic orbits. An analyt
These two equations are symmetriczinand z», indicating  solution of Eq.[(5.2P) can be obtained for= 1/2. Fora = 1,
that the solution must satisfyy = 2o = 2. There is a fixed corresponding tey = 0 (decoupled particles);, is undeter-
pointz* of xo where the system undergoes a periodic orbit ofmined. For any:, one recovers the single-particle result given

period1l/v = —21n(z), with in Eq. (5.13). For instance, far, = 0 we obtain
* = z2 = 5.31
e (5.27) 1= (5.31)
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=1 (532) 1

which yields Eq.[(513). :
1.5:

~
.
el

in the preceding paragraph can be examined from the linear |
response to a perturbation of the initial condition. Legtin 1-0f
zo — x5 + 6z, we define a Lyapunov exponeht? i

I
I
1
I
I
I
L . I .
b. Stability. The stability of the periodic solutions found | : i S~
. 1
1
I
I
1
1

o' (z§ + 6x) = x5 + \ox (5.33) 0-5:’ a=0.% ja=0.5

wherez’(zy) is given by the right-hand side of Eq.(5123). We s )

find 0.0
0.0 0.1 0.2 0.3 0.4 05

\

(5.34) FIG. 5.9: The figure shows the Lyapunov expongrats function of
v for a = 0.1 (dotted),a = 0.5 (dashed) and = 1 (solid). For
=1,A=1

B {zHa(a—i— 204+ 2f(1+ z“))}2
CL2f2(1 4 29) + zlte —qgza ]

At the fixed pointz and f are related by Eq[{5.29). Inserting
this into Eq. [5.34), we obtain

more careful systematic study is necessary when increasing
(5.35)  the number of degrees of freedom within these coupled layer
models. It is not clear at this stage whether chaotic atiract

of a. It equals 1 foru = 0 (corresponding tg — oo) and for ~ CO€Xist.

a = 1 (corresponding tgy = 0). For all other values of one

findsA < 1 only for very small, i.e. smallv. This region cor-

responds to the part of the /) curve that has negative slope VL. DISCUSSION

2?1:[ t:ig ?set%lgmﬂigsth;?f irjsoga:blle/ 2\/'vr-|1—irI]: t%%ncl)urfifgvc\)lﬁ:'s We have studied in this paper a model of two (single-
analy . P . o P i componentV = 1) elastic layers driven over a random sub-
itive slope is unstable. This result is somewhat surpriging : : .
: . : . strate and only coupled by a viscous coupling, going be-
view of the results obtained in mean-field theory. However ' ;
as was explained in the previous section. reversing theogian yond mean-field theory. We have extended the functional RG
the force Izndsca e woSId exchange thé attractivg and-rge u pproach which allows to describe the elastic depinning in
. . ascap ) 9 o PWach layer in the absence of an elastic coupling to the case of
sive trajectories and result in th€ f) curve more similar to . : .
; . . . non-zeroy;». We have found that the FRG fixed point which
the one shown in the mean-field section. The special natur&- i lastic depinning i bl bitrardaky
of the two-particle scalloped-force landscape may beedlat escribes elastic depinning s unstable to an arbitraregp
) . viscous coupling beyond a plastic scdlg which diverges
to the absence of zero-force saddle points which played an. ! )
ith a universal exponent ag. — 0. To describe the plas-

important role in the case of the smpoth pote_ntial\l. Notg tha}Iivc physics beyond that scale we have studied the FRG to one
we have not looked for more complicated periodic solutions

loop in the moving state at non-zero velocity. We found that

At 42+ a(l - 2))72
N [ 2(1+29) —az*(1—z) }

which are difficult to rule out. the high-velocity branch of the( /) versusf curve terminates
. ) at a pointv = v, where the slope is infinite. This point corre-
C. Discussion of toy models sponds to a force smaller than the elastic depinning thidsho

We conclude from the previous two sections that a large varihence there is a range of valuesfofvhere a pinned state co-

ety of behaviors can already occur with two viscously codple e_><|sf][s W'thha mong stdaFe. This (:_y r::nr:lcal hygtereSISIIds \;ler
degrees of freedom in a random-force landscape. Understang™!ar to the one found in mean-field theory. One could then
ing their systematics, for instance how one evolves from th onclude that the 1-loop FRG result nicely confirms the main

smooth potential to the scalloped one as more harmonics a gatures of the me.an—fleld theory and_, N a(_jd|t|on, allovesto
included, remains to be done. In each case one must idertf"-‘bl'Sh precise universal results and identify the propegth

tify the periodic trajectories and the attractor, whosacttire ~ SC/€S:

may become more complex if the landscape contains more -lih's concluIS|on m?y,lhqwevr?r, be too hurne_dblas, surpris-
harmonics and more zero-force points. It is clear that an evelNd!Y: Our two-loop calculation shows some possible protse
with this picture. The calculation is based on certain agsum

tions (discussed in SectignllV, i.e. the neglect of violasio
of Middleton’s theorem, the neglect of higher ordersin ire r
12 By contrast to the Lyapunov exponent for a continuous-tiroes fliefined gion of smallm) and more work is Clearly needed to ascertain

in the previous section, this is the Lyapunov exponent ferdiscrete map, 1S lva”dit)_/- HOWGV?I’, as a preliminary step it.indiqatesewn )
hence the transition of stable to unstable occuris\hsrosses unity. universality class in the case of non-periodic objects and i
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the periodic case, a possible breakdown of the 1-loop mcturmodel with viscous coupling only. This model indeed negect
depending on how irrelevant operators are taken into adcourthe competition between plastic inter-layer and elasti@ain
This possible alternative picture is the absence of a dynamiayer couplings, and one should question its range of valid-
cal hysteresis and a nearly vertiedlf) curve near the elastic ity. Since any small realistic interaction between two iifeal
threshold. elastic layers, such as a crystal or a CDW in the absence of in-

In an attempt to understand which effects could be missetfyer topological defects (which we have not included here)
by the mean field and 1-loop approaches, we have solved singenerates some small inter-layer commensurate coupligg, o
ple toy models ind = 0. We found indeed that dynamical should ask whether our model is stable to that. This can be
hysteresis may or may not be present, depending on the rénalyzed by adding a forceg, sin (2mp(ul, —u2,)), with
alization of disorder. Although in all cases considered one> = 1, to the equation of motiofiL(1.5) of layer 1, and its oppo-
finds a periodic trajectory with non-zero velocity which-sur site for layer 2. Such a coupling generates an elastic cogipli
vives below the elastic (uncoupled) threshold, this timjgc ~ at small scale between the layers, and if itis relevant iiGe
may be attractive or repulsive depending on the disordér reasense, at large scales as well. In the latter situation #e el
ization. It remains to be studied in detail how these pragert tic coupling sould dominate the viscous one and one expects
carry to a larger number of degrees of freedom. In any casthat the system is described by elastic depinning. It wasdou
it cannot be assumed that a single attractive periodiccatira in mean-field models that such a coupling is always relevant
exists and a detailed study of such attractors as the nurfiber & the moving phase [79]. If such a result were general, the
particles increases must be done with care before any conclinodel studied here would be somewhat artificial, or describe
sion can be drawn. only a limited range of length scales.

The particle models also show the importance of the zero- It is €asy to compute, to 1-loop accuracy and for anthe
force points in phase space. These are couples of configurBo€ar eigenvalue of an infinitesimal perturbatipn > 0 at
tions in the two layergu!, u2) where all forces vanish. They the unperturbed quasi-static depinning fixed point at 0*
are defined in the statics, hence are independent of the vigtudied here. Afirst (and naive) calculation in the spiritiaf
cous coupling. However it is important to know their dynam-Statics yields:
ical stability in presence of a viscous coupling. It is prdve ~
in AppendiXA that metastable states, i.e. stable statesavhe 0 g1 = [2 - 4772p2A(0)} g1, (6.1)
the energy has a local minimum, remain stable, i.e. dynam-
ically attractive, at non-zero viscous coupling. This m&an whereg; is the dimensionless coupling. This is essentially the
that each pinned state, i.e. blocking configuration for @aeh  result obtained for the problem of a single layer in presence
coupled layer, keeps a non-zero basin of attraction when thef both disorder and a commensurate potential|[105] up to
viscous coupling is increased from zero. In the absence od factor of two which accounts for the fact that the disorder
a viscous coupling, when upon increasifigsuch a pinned exists in both layers, compared to [105]. Inserting the ealf
state becomes unstable, the next configuration is detedmine\(0) = ¢/36 at the 1-loop depinning fixed point implies that
by the no-passing rule and Middleton’s theorem, as the minthis coupling is always relevant neée= 4 which would seem
imum overy of all metastable configurations in the direction to confirm the mean-field conclusion. It also yields a critica
of the force. In the presence of a viscous coupling howeverdimension nead = 2, i.e.4 — d. ~ —18/72 below which the
there is no guarantee that the system will not flow from therecoupling should become irrelevant. This conclusion isectrr
to a periodic orbit, resulting in ajump in th€ f) curve. Thus  for the statics, but incorrect near the depinning threshold
even if the metastable zero-force couples remain attectiv. At depinning at least two new effects should be taken into
they may not be easilgynamically accessibjé.e. their basin  account. First, one sees that the couplinggenerates in
of attraction may shrink and be nearly invisible in a proacedu perturbation theory a correction to the critical force, e¥hi
such as force ramping. These effects, as well as the comamounts to addinthe samdorce —g; cos (2mp(ul, — u2,)),
petition between the zero-force fixed points and the peciodiwith p = 1, to the equation of motior_(1.5) of each layer.
orbits, clearly remain to be studied systematically. These two terms feed into each others and the correct lin-

Itis thus a remaining challenge to understand how the FR@arized RG equation takes the form, to one loop:
can describe the structure of such a complicated phase space ~ ~
with periodic orbits coexisting with pinned fixed points. It O\ [2—4mp?A(0) —27pA’(0T) a1
is probable that the FRG calculation presented here retains \ 9ig2 )~ \ 2apA’(01) 2 —472p2A(0) ) \ 92
only averaged effects and does not adress these issues with (6.2)
sufficient accuracy. One possible geometry to study this in @econd, and most importantly, from the two-loop solution
controlled manner starting with a particle and then extegdi of the standard depinning fixed point [18], we know that
to manifolds is to use the drive by an harmonic well. SinceA(0) does not flow to a fixed point, it always increases as
the coupling between the layers exists only when the systerﬁ\(o) ~ el ~ L¢ . Physically, astatic random forcés gener-
is moving, one needs to go beyond the present calculation angted by the quenched disorder in the limit= 0. This is due
study for instance how the avalanches in the two layers arg) terms in the two-loop beta-function which account for the
correlated. irreversibility of depinning, and is at variance with thatst

In a broader context, one needs to justify why effort shouldcs [110]. At depinning however, a small coupling between
be devoted to clarify the behaviour of this simple two-layerlayers is always irrelevant fat < 4. This can be seen from
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(©.2), sinceA(0) grows while A’(0") converges to @(e)  program blan05-0099-01.
fixed point. It justifies a posteriori the model studied insthi

paper. Of course at larger bare couplings it is likely that a
coupled phase will arise and it would be interesting to studyAPPENDIX A: STABILITY OF ZERO-FORCE

that transitior[11/1]. FIXED POINTS

Let us finish by recalling that one issue in the theory of plas-
tic flow is whether one can ug(v), the distribution of time- | etus call’ a static configuration where the force is zero, i.e.
averaged individual particle velocities, as a meaningfdeo  ri(yi(3), 2) = 0, = 1,2. The equation of motion linearized
parameter in the thermodynamics limit. One could then disgzround the FP is:
tinguish two classes of plastic flow (i) flows with non-trivia
P(v) (e.g. pinned particles coexisting with flowing rivers) (ii) al,\ M ul, A1
flows with peakedP(v) (a delta function in the large-size (u t) - (u ) (A1)
limit) but which cannot be described by a fully elastic the-

2 N8
8N
S

)

ory. The layered model studied here is a tractable example of M = AB = —% < 711}2 _712;[2> (A.2)
class (i) and requires, to exhibit a non-zero depinningsh Vi1 T Y1z \ 771281 it

old, elastic interactions inside the layers. Models foissla A1 (711 712) B— (—H1 0 ) (A.3)
(i) have been studied, where particles interact only thhoaug Y12 711 ) 0 —H, '

hard core interaction [82]. It would be quite interestindital
a tractable model which encompasses both classes and theind we are interested in the Lyapunov exponents, or relax-
possible transitions. ation rates around the zero-force fixed point, i.e the eigen-
values of the matrix\/. We have introduced the Hessian
(H)zar = —V200 + V! (ul, x)5,, in €ach layer, which are
hermitian matrices. They have eigenvalygs,, and eigen-
vectorse; o, (z). In the absence of a coupling between the
layers €12 = 0) the eigenvalues; , are proportional to the
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and in that basis the equation of motion reads:

> ( ST 2 [, 61 0, <x>¢>2.,a;<x>> <qa; <t>) _ (mvm“w@) (A5)

Y12 [, 5.0 () 1,01 () Y11005,04

’ /
0617OL2

since the velocity coupling between layers is local in spdce viscous coupling between layers, the system is pinned.eSinc

becomes non-local in the eigenstates of the two Hessians. v - B - v < 0 for any non-zera, the above property implies
The matrix)M has several interesting properties. Althoughthat the zero-force fixed point remains stable, i.e. all lyragy

it is not Hermitian, sinced and B do not commute, its eigen- exponents remain strictly negative, as the viscous cogpkn

values are real. Indeed consider an eigenstaseich that tween layersy?, < +%, is increased, and_(A.6) implies the

M -v = \v. ThisimpliesB - v = AMA~! - v, hence: bounds

T.Bo=Xol-A71. A.6 i
v v )\ v v ( ) /Lmln < _)\ < /Lmax (A7)

Since B and A are Hermitian (and also real symmetric) ma- - s

trices, v’ - B-vandv’ - A=1 . v are real, henca is real. _

Consider now a bare model such thiit! is strictly posi-  for & model withy;, < 0, and whergunin andimax are the
tive definite with eigenvalues, > 0,7_ > 0,i.e.72, < ~2,. ~ Smallestand largest eigen-values-af.
Then [A.8) implies that the sign of is the same as the sign  These eigenvalues of stability can be obtained exactlygn th
of vT - B - v. Let us consider a stable (i.e. attractive) zero-case wherdZ,; and H, commute. Then one can choose the
force point with alli; o, > 0, henceB is strictly negative same basis in both layets (z) = ¢2..(x). The Lyapunov
definite. In its neighborhood in phase space, in the abseince exponents, i.e. the eigenvalugi @ = \u of (A.3) can then
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be organized in pairs with: 2. 2-loop order: List of diagrams

Y11 (f1,0 + H2.0) T_her_e are seven contri_butions, drawn on figuré B.1. Their con
- 2(v2, — 72,) tribution to-y is symbolically

2 _ 2 4 4~2
+ \/'711(M1.,a Mz,a) ‘Z VYioM1,a 42,0 (A.8)
2(vi1 = i2)
and one checks that as longas = 11 — 712 > 0 a stable  The combinatorial factor i$/8 from the interaction, 4 from
FP remains stable ag, is increased (this holds for the two- the time-ordering of the vertices, and an additional faofdt
particle model considered above). In general one does nder the symmetry of diagrams a, b, e, fand g.

expectH; and H, to commute, since the disorders in the two ~ The diagrams are c_alcu_Ia_te_d adin[18]. When exp_anding the
layers are uncorrelated. For small interlayer couplingeare ~ argument ofA (u;, —u;,,), itis important to keep the index of

Ao =

57:—%x4x2[a+b+c+d+e+f+g] . (B3)

apply second-order perturbation theory: the field. Only diagrams with one disorder on one layer, and
one disorder on the other layer can give rise to a contributio
11 to 12, which will be the new feature found below.
My = —~5 3 |Hl,o (A.9)
i1~ V2

3. Expressions for the diagrams

2

Y12 H1,a H2, 4 . .
T2 Z al_ e |<1v0‘1|2v0‘2>|2+0(712) The first combination is
Y11 az 1,01 H2, a0

, , = -A"(0M)?1} B.4
which always makes the smallest eigenvalue (assumed all pos ate (07)"0 (B4)
itive) get closer to zero, but even in the most dangerous casgs pefore, since the free integration kills the inter-lagem.
when this eigenvalue is near marginal, i8.., > 0 near |, the following we give corrections proportional iq. The

zero, the second-order correction vanishes:as, — 0. jndexi runs over both layers. Integrations over momenta and
Hence there is no mecanism for it to cross zero. This is NOfime are not written.

too surprising since the determinant of the matrix[in_{A.3)
cannot change sign ag, < 77, is increased. Since the b 4c+d=1, ZRli(‘]l,tl)Rll(q27t2)R1i(q1;tS)
eigenvalues remain real (as shown above) they cannot con- p
tinuously change sign. Hence, as above, we conclude that a w [lts — t1] — |ts + t2 — 1] A" (0)A/(0)ic!
stable zero-force fixed-point remains stable. Both the @ize
phase space) of its basin of attraction (pinned phase) and th (B.5)
Lyapunov exponent may decrease with increasing interlayer  _ 1 ZRu(th t1)R1i(qo, t2) Ris(qs, t3)[ts — to|
coupling, but they do not cross zero. 24 ’ ’ ’

Finally note that if e.g.H; has a marginal direction, i.e.
Hy vt =0, thenv = (v!,0) is an eigenvector af/ with zero
eigenvalue. Hence a marginal direction remains marginal.

x A" (0)A'(0)u! (B.6)

f=—2A"(01)A'(0T)14 —2A"(07)% 14 (B.7)
APPENDIX B: 2-LOOP CALCULATIONS Integrating over times yields the diagrams presented in the

In this appendix we derive the FRG equations up to two |00p§ext two subsections. They involve the following non-iivi

using the method of ref[ [18]. All calculations are done at
zero velocity, at the depinning transition. All static qtiaes
like the disorder correlator are the same as for the standa
depinning transition, and we refer to [18] for details. Here
we only calculate the corrections to friction, i.e. corieas to
Y11 andyia.

1. 1-loop order

There are no corrections tp, at 1-loop order, since there
exists only a single vertex, thus one cannot get a term of the
form [ @24, For this, one needs (at least) 2 loops. Therefore:

51 = —A"(0) 1y (B.1)

I := 1 (B.2) FIG. B.1: 2-loop dynamical diagrams correcting the friotiol hey
» (P2 +m?2)? ' all have multiplicity8 except (c) and (d) which have multiplicity
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momentum integrals: They are calculated in [18].
I = / ! / ! _lp
! (qf +m?)(g3 +m?)?(a3 + ¢3 +2m?) g (@@ +m2) (@3 +m2)2(¢ + ¢ +2m?) 2 L
q1,92
(B.10)
_ (% N 1 —42 1n2) (eI,)? + finite (B.g) ascan be seen by symmetrizingzinandgs,.
€ €
4. Correctionsto ~io
I / d4q; dq, 1 1 1
1) @l @n)l g+ m? @+ m? (ata2)? + m?)? ats _
1 1 09 - = (B.11)
===+ 3 ) (el)? . B.9
(e + 3+ 06 e (®.9)
|
5yoyetd Vo ((af + @3) vty + (65 — a7) 7ia) A'(0F)A™(0T) (B.12)

:/ 2 2
wa: 26363 (a} + a3) 1 ({0} + 3)° 0% — (@ — )’ 1)

In principle, [B.12) should be written with massive propaga Since the integral is finite, we can take the limiteof- 0 or
tors. We have puin = 0 for notational compactness. Itis d — 4. This gives the resulf (B.13) up to an overall normal-
easy to see that for generic valuesyef and~;» (B.12) has ization, which is also easily checked.

no subdivergence for either — oo or g; — oo, only if they It is now straightforward to integrate (BJ12) using (B.13):
become large together. Properly regularized, it therefiaie
only a single pole ir, and this pole is universal, i.e. inde- wibie  Y12A/ODAG(0) - [y11 + 712
pendent of the regularization scheme. For such an integral g T = In (B.16)

. . . ) : de Y11 — Y12
which moreover is homogenousdn andg,, the pole can be
expressed as Note that physically one has to restrict4g > 0 andy_ >

12 e 0, thus all results are to be taken in this domain only. The
fla?, ¢, m?) = ﬁ/ d(g3)f(1,43,0) @3+0(?) absolute-value therefore represents nothing but a natdtio
41,92 € 0 commodity.

. _ _ (B.13) The other two diagrams are trivial:
This is proven using conformal mappings of the different sec
tors, and was established In [106, 107./1108, 109]. Accepting 572, =0 (B.17)
that the integral is indeed universal, a quick way of degvin s —0 B.18
(B13) is as follows T2 =T (B.18)

(@3, q3,m?) x/ f(q3,432,0) = FA_ , 5. Correctionsto 11
q1,92 <A Jq2 €

(B.14)  Grouping diagrams, which partially cancel, we find for the
where the %” indicates up to terms of)(¢). To obtain the corrections toy;:
residueF’, we derive w.r.tA, and then seh = 1:
071 E = A (021} (B.19)
FrSp [ flai=1,43,0) (B.15)
q2
|

2
o / (2 (@ +a3) v+ (208 + 386 + @) vih + 6 (6 — &) ﬁz) A’(0T)A"(0)
11 = 2 2
a1z 2¢3a4 (aF + a3) a1 (6} + 3)° 0% — (@ — )’ 1)

=0 A'(0F)A™ (0
12 / 7112 i 3 (2 ) (B.20)
ne GG (6 +6)
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57}“{“C+d is a little bit more complicated to calculate analyticallynce it has a subdivergence, which has to be subtracted if
we want to use the magic relation (Bl13). We observe thatracting the term at;, = 0, the diagram has no longer a
subdivergence. In order to proceed, one then Uses](B.18pearfiorms a partial fraction decomposition (the variablg) of

the remaining term, leading to integrals known by Matheogatlhe final result is

A/ O+ AI/I 0+ A/ O+ A/I/ O+
syperd - MAODA(O) 15 | 712A"(0F)A"(0Y) 1Og‘711 + 712 (B.21)
2 4e Y11 — Y12
The next diagram is
2
i / m ((q§ +a3)" (a5 +5) v — (5 — 20345 — 24303 — 24543 + ¢5) vfz) A'(0F)A"(0F) 622
1 = 2 5 .
20330 (a3 +@3) (63 + )% o — (63— ) %)
|
We have used the abbreviatiofis:= ¢ + ¢, andgs := |G3]. N 291172,
Again, this diagram has a subdivergence (double pole),whic 2/ 9, o9 9 | o2 o 9 92 9
we want to subtract. Let us again try the termyat — 0: a1 (45 + 43) ((q2 +a5) v (6~ a5) 712)
(B.24)
5~° 'leﬂ()/ (q% —|—q§) 711A/(0+)A/N(0+)
Y
! we 2034363 (3 + @3)
_ / 114" (0F)A"(07F) (B.23) Thelastintegralis
a0 (65 +a3)
d7%, can be rewritten as:
1
(q4+q4)711 / 2 (42 2 2 N2,.2 (2 . 2\2.2
N " 2 T 43 a2 q7 (g5 +q3) (g5 +a3)" i1 — (65 — 43) i
6711 = A(0)A™(0) 2 4 _4( 2 2
nae | 2479243 (95 + ¢3) n 42
log | 22| log |1 - 2
+ 27117122 1 - devi1v12 46’72 B (B.25)
3 2 12
i (63 +d3)" v — af (@3 — @3)” (a3 + a3) i

— A(0YA"(0 / Y11
0)a70) d142 lq%fé (43 +a3)
|

One way to prove this is as follows. Introduce Schwingerlpaeters to write the I.h.s. df (BR25) as

2 2 2 2 2 2 2 2 2 2 2
/ / e~ s1(a2+43) f(q2+q3)52753('y11q2+712q2+q3711fq3712)754('yqu7712q2+q3'm+q3'y12)efsz (B.26)
q1,92 Y $1>0,52>0,53>0,54>0

where we have introduced a mass fgonly (using again universality of the leading poles)n Then integrate over thg's:

/2
/ e 82 (— (53— 54)° 72s + 52 (251 + 52) + (53 + 84) 711 (2 (51 + 52) + (53 + 54)711)) (B.27)
$1>0,52>0,53>0,54>0

Rescale alls; with i # 2 by so and integrate oves.. Then  complete result fod~{, is (up to finite terms)
go to new variabless — (s +t)/2, s4 — (s —t)/2. Our
integral becomes

/ / ” / I'(e) 0751 = A'(0)A™(0) {71117
2
s>0J—s 5150 2((sy11+1) (281 +sy11 + 1) — t?%g _i_m log | 12 + Y12 n Y1 log |1 — 7_122 (B.29)
(B.28) 2e Y11 — V12 2€ 2

The result can be simplified tb (B125). A tricky point are logs
halfway. Expanding{B.28) in,2, we circumvent the prob-
lem and can check the first terms of the Taylor series. Th&he final diagram is
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A'(0+)A”(0) + A”(0)2

ot = /
U e atasqs
= 2711 [A'(0T)A"(0F) + A"(0)?] I .

This gives the flow equations given in the main text.

?a3q3

= 2711 /
q1q2

(B.30)
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