
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

Compilation techniques for out-of-core parallel computations Compilation techniques for out-of-core parallel computations

Mahmut Kandemir
Syracuse University

Alok Choudhary
Northwestern University

J. Ramanujam
Louisiana State University

Rajesh Bordawekar
California Institute of Technology

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Kandemir, Mahmut; Choudhary, Alok; Ramanujam, J.; and Bordawekar, Rajesh, "Compilation techniques
for out-of-core parallel computations" (1998). Electrical Engineering and Computer Science. 80.
https://surface.syr.edu/eecs/80

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/80?utm_source=surface.syr.edu%2Feecs%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Compilation Techniques for Out-of-Core Parallel Computations�

M. Kandemir A. Choudhary J. Ramanujam R. Bordawekar
EECS Dept. ECE Dept. ECE Dept. CACR

Syracuse University Northwestern University Louisiana State University Caltech

Syracuse, NY, 13244 Evanston, IL, 60208-3118 Baton Rouge, LA 70803 Pasadena, CA 91125

mtk@ece.nwu.edu choudhar@ece.nwu.edu jxr@ee.lsu.edu rajesh@cacr.caltech.edu

Abstract

The difficulty of handling out-of-core data limits the performance of supercomputers as well as the potential of the
parallel machines. Since writing an efficient out-of-core version of a program is a difficult task and virtual memory
systems do not perform well on scientific computations, we believe that there is a clear need for compiler directed
explicit I/O approach for out-of-core computations. In this paper, we first present an out-of-core compilation strategy
based on a disk storage abstraction. Then we offer a compiler algorithm to optimize locality of disk accesses in out-of-
core codes by choosing a good combination of file layouts on disks and loop transformations. We introduce memory
coefficient and processor coefficient concepts to characterize the behavior of out-of-core programs under different
memory constraints. We also enhance our algorithm to handle data-parallel programs which contain multiple loop
nest. Our initial experimental results obtained on IBM SP-2 and Intel Paragon provide encouraging evidence that our
approach is successful at optimizing programs which depend on disk-resident data in distributed-memory machines.

Keywords: out-of-core, data-parallelism, I/O, optimizing compilers, distributed-memory machines.

�This work was supported in part by NSF Young Investigator Award CCR-9357840, NSF CCR-9509143 and in part by the Scalable I/O Initiative,
contract number DABT63-94-C-0049 from Defense Advanced Research Projects Agency(DARPA) administered by US Army at Fort Huachuca.
The work of J. Ramanujam was supported in part by an NSF Young Investigator Award CCR-9457768, an NSF grant CCR-9210422 and by the
Louisiana Board of Regents through contract LEQSF (1991-94)-RD-A-09.

2

1 Introduction

It is well known that the I/O subsystems of the supercomputers and massively parallel machines constitute one of

the major bottlenecks limiting the performance of those architectures. Many applications processing large quantities

of data cannot obtain the desired performance due to disparity between the computational and I/O speeds of those

machines. In order to alleviate this problem, over the decades, the computer scientists and engineers concentrated on

I/O subsystem hardware, the virtual memory (VM) and related operating system (OS) concepts, and finally parallel

file systems. Although each of those approaches contributed somewhat to alleviating the I/O problem, they all lacked

one important parameter which limited their effectiveness: a global view of application’s behavior.

In the architecture arena, the need for high-performance has prompted several manufacturers to develop parallel

I/O subsystems. Although these subsystems have increased the I/O capabilities of the parallel machines significantly,

a lot of improvement is still needed to balance the CPU performance. The problem has become more severe since the

size and complexity of applications, both in scientific and commercial worlds, have increased tremendously [14]. As

the data requirements of those complex applications exceed the capacity of main memories, the data needs to be stored

on a variety of storage media, which include disks and tape drives. As the performance of other system components

tends to improve rapidly, it is very likely that the storage subsystem performance of parallel machines will become

increasingly important in the future.

In the software arena, the first related studies came from OS designers who offered the handling of I/O activity via a

technique called virtual memory which also assumes a considerable amount of help from the hardware. The techniques

on this line generally fall into two groups: (1) techniques which consider smart virtual memory implementations and

replacement policies [2, 11]; and (2) techniques which consider re-shaping the data reference patterns in order to

exploit the given hardware facilities and system software [23, 32]. The latter group then paved the way for automatic

program restructuring techniques like loop distribution and page-indexing [1]. In general, these techniques apply to

already written programs and consist of re-arranging the code and data to make program’s access pattern more local.

Another system software based technique is built upon the file systems and run-time libraries. Several approaches

considered extending the traditional Unix file I/O interface for handling the parallel accesses to parallel disk sub-

systems [18]. The problem with those approaches was that although the Unix-like semantics is convenient for the

portability of the existent user applications, the file I/O interfaces derived from the Unix do not aim to get high I/O

performance. More recently a number of parallel file systems both from the academia and industry have emerged

[10]. Apart from presenting the user convenient interface for indicating parallel I/O accesses from within her program,

those file systems also support several I/O modes which take care of the commonly seen file access patterns [28] in ex-

plicitly or implicitly parallelized scientific codes. These patterns can be characterized as regular and non-consecutive

I/O accesses [18], and can be described by strided interfaces and their variants. Recently a number of run-time li-

braries for out-of-core computations and a few file interfaces have been proposed [31, 30, 8, 29]. SIO initiative [29]

leaded by Caltech proposed a parallel file system programming interface which is based on separation of programmer

convenience functions from high performance enabling functions. MPI-IO [8], on the other hand, is an attempt to

3

provide a portable interface for parallel machines. Instead of defining common I/O access modes, the designers of

MPI-IO chose to express data partitionings in terms of derived datatypes. Although most of the I/O libraries suffer

from the portability problem, they still fill, to some degree, the need for software for out-of-core computations. In

spite of the fact that the parallel file systems and run-time libraries for out-of-core computations provide considerable

I/O performance, they require a considerable effort from the user as well. As a result, the user-optimized parallel

I/O-intensive applications both consume precious time of the programmer who instead should focus on higher aspects

of her program and also are not portable across a wide variety of parallel machines with different disk subsystems.

In this paper, we concentrate on compiler techniques to optimize the I/O performance of scientific applications. In

other words, we give the responsibility of keeping track of data transfers between disk subsystems and memory to the

compiler. The main rational behind this approach is the fact that the compiler is, sometimes, in position to examine

the overall access pattern of the application, and can perform I/O optimizations which conform to application’s behav-

ior. Moreover, a compiler can establish a coordination with the underlying architecture, native parallel file system of

the machine and I/O-libraries available so that the optimizations can obtain good speedups and execution times. An

important challenge for the compiler approach to I/O on parallel machines is that the disk use, parallelism and commu-

nication (synchronization) need to be considered together to obtain a satisfying I/O performance. A compiler-based

approach to the I/O problem should be able to restructure the out-of-core data and computations, insert calls to the

parallel file systems and/or libraries, and perform some low-level I/O optimizations.

The remainder of this paper is organized as follows: In Section 2, we describe out-of-core computations. In Section

3 we present our data storage model used by compiler. We explain an out-of-core compilation strategy in Section 4, and

in Section 5 we discuss several compilation issues for I/O and communication. We present a file locality optimization

algorithm in Section 6. In Section 7, we report results of our experiments and in Section 8 we enhance our file locality

algorithm to handle multiple loop nests. In Section 9, we summarize the related work and we conclude the paper in

Section 10.

2 Out-of-Core Computations

A computation is called an out-of-core computation if the data that is used in the computation can not fit in the main

memory. Thus, the primary data structures reside in files and this data is called out-of-core data. Processing out-of-

core data, therefore, requires staging data in smaller granules that can fit in the main memory of a system. That is, the

computation is carried out in several phases, where in each phase, part of the data is brought into memory, processed,

and stored back onto secondary/tertiary storage media (if necessary).

Out-of-core computations can easily be classified as physically out-of-core or algorithmically out-of-core [3]. In

a physically out-of-core computation, data required for the entire computation has to be fetched from files because

the available memory is too small to hold the data structures. On the other hand, in an algorithmically out-of-core

computation, the overall computation is performed in phases because the input data is received in parts at runtime.

Examples of algorithmically out-of-core applications include real-time rendering application that processes a stream

4

of images or a scientific application accessing data over a network. In this paper we concentrate on the compilation of

physically out-of-core computations only.

Both types of out-of-core applications access data from files stored either in secondary (e.g., disk drives) or ter-

tiary memory (e.g., data tapes). For the purposes of this paper, we only consider files stored in secondary memory.

Moreover, we assume that the way a file is stored on disks is dependent on the underlying parallel file system, and the

connection between the parallel file system and compiler is provided by our data store model which is explained in the

following section.

3 Data Storage Model

Many new high performance multicomputers employ aggressive secondary storage subsystems. These subsystems

may contain private disks, shared disks or a combination of both. This variety in the I/O architectures makes it difficult

to design optimization techniques to reduce the time spent in I/O. We believe that in order to design techniques for

achieving reasonable performance for programs using disk-resident data on multicomputers, the following questions

should be addressed.

� Can a simple storage model abstracting out the details of the underlying disk subsystems be designed?

� On such a model, can the common locality optimizations be applied to programs manipulating the disk-resident

data? What kinds of program and/or data restructurings are needed?

� How should the effectiveness of such locality optimizations be measured? What is the success criterion?

� What are the architectural bottlenecks preventing these optimization from succeeding on different disk subsys-

tem architectures?

To address some of these problems, we designed and implemented an abstract storage subsystem called local place-

ment model (LPM) [3] extending the distributed-memory paradigm to account for disk subsystem related issues. Our

data storage model abstracts out the peculiarities of the underlying disk subsystem and presents the user or the com-

piler a system where the disk-resident arrays are divided into local disk-resident arrays, each of which is stored on

separate logical private disk assigned to a processor. Within this framework, access to data residing in a non-local disk

is performed via message passing. One of the advantages of such a model is that it enables the user and/or compiler to

apply optimizations in order to improve the disk-locality characteristics of programs.

Based on this abstract model, we introduce control and data transformations to exploit the locality in files. Our

control transformations change the access patterns to files and are based on a general loop transformation theory

[34]. Our data transformations, on the other hand, involve assigning appropriate file layouts for different disk-resident

arrays. In this way, we remove the impact of fixing layouts for all arrays as in conventional compiler and file systems.

However, we should make a distinction between file and disk layouts. Depending on the storage style used by the

underlying file system, a file can be striped across several disks. Accordingly, an I/O call in the program can correspond

5

Disk

Disk

Disk

Disk

Communication

Processor

Processor

Processor

Processor

Network

Global Out-of-Core Array

(BLOCK,BLOCK)

Figure 1: Our storage subsystem abstraction - LPM.

to several system calls to disk(s). The techniques described in this paper attempt to reach the optimized file layouts and

to minimize the number of I/O calls to the files. Of course, reduction in I/O calls to files lead, in general, to reduction

in calls to disks. The relation, though, is system dependent and is not addressed in this paper. Additionally, when

more than one array is involved in a computation, we offer a memory allocation strategy such that the total I/O time is

minimized.

Since our main objective is to minimize the time spent in I/O, commonly termed as I/O cost, we must have a

measure to quantify the effectiveness of our optimizations statically for different programs. Practically, the cost of

an I/O call can be modeled by two parameters: startup cost, which is the time taken to start a file I/O operation; and

read/write cost of a datum. Since the startup cost is the dominating term, it should be amortized by transferring data

between node memory and disk in large chunks. On the other hand, we can restructure the program so that once a data

block is transferred into node memory, it will be reused as much as possible. Our optimizations achieve both of these

goals. The reduction in number of I/O calls is computed, the overall effect of our approach at reducing the number of

I/O calls and at reusing data is shown analytically. Our experimental results confirm these results.

In principle, our storage subsystem model can be implemented on any distributed-memory message passing ma-

chine. The data storage subsystem shown in Figure 1 specifies how the out-of-core arrays are placed on disks and

how they are accessed by the processors. The local arrays of each processor are stored in separate files called local

array files. The local array file can be assumed to be owned by that processor. The node program explicitly reads from

and writes into the local array file when required. Figure 2 shows how data in an out-of-core local array is tiled into

memory.

In other words we assume that each processor has its own logical disk with the local array files stored on that

disk. The mapping of the logical disk to the physical disks is system dependent. If a processor needs data from

6

Disk

Data Tile

Global Out-of-Core Array

Processor

Memory

Local Out-of-Core Array

Figure 2: Data tiling for a single processor.

any of the local array files of another processor, the required data will be first read by the owner processor and then

communicated to the requesting processor. Since data sharing is performed by explicit message passing, this system

is a natural extension of distributed-memory paradigm.

Designing I/O optimizations for architectures with different disk subsystems can be a very difficult task. Instead by

building a storage subsystem abstraction, we isolate the peculiarities of underlying systems. An architecture with local

disks is a straightforward extension of distributed-memory message-passing machine. The main advantages of such

a system are scalability, ease of I/O programming and predictability of I/O optimizations. To elaborate more on the

difficulty of designing efficient software optimizations, let us consider an I/O intensive data parallel program running

on a multicomputer. The primary data sets of the program will be accessed from files stored on disks. Assume that the

files will be striped across several disks. We can define four different working spaces [3] in which this I/O intensive

parallel program operates: a program space which consists of all the data declared in the program, a processor space

which consists of all the data belonging to a processor, a file space which consists of all the data belonging to a local

file of a processor and finally a disk space which contains some subset of striping units belonging to a local file. An

important challenge before the compiler writers for out-of-core computations is to maintenance the maximum degree

of locality across those spaces. During the execution of I/O intensive programs, data needs to fetched from external

storage into memory. Consequently, performance of such a program depends mainly on the time required to access

data. In order to achieve reasonable speedups, the compiler or user needs to minimize the number of I/O accesses.

One way to achieve this goal is to transform the program and data sets such that the localities between those spaces

are maintained. This problem is similar to that of finding appropriate compiler optimizations to enhance the locality

characteristics of in-core programs; but due to the complex interaction between working spaces it is more difficult. To

improve the I/O performance, any application should access as much consecutive data as possible from disks. In other

words, the program locality should be translated into spatial locality in disk space. Since maintaining the locality in

7

Disk Disk Disk

Disk Disk Disk

Communication Network

Communication Network

Compute Node Compute Node Compute Node

(a)

Compute Node Compute Node Compute Node

I/O Node I/O Node I/O Node

(b)

Figure 3: Storage subsystems of SP-2 (a) and Paragon (b) as seen by LPM.

disk space is very difficult in general, our compiler optimizations try to maintain the locality in the file space.

Throughout the paper we present out-of-core compilation methods and I/O optimization techniques that work on

LPM and evaluate the performance of those techniques on two different distributed-memory machines: IBM SP-2 and

Intel Paragon.

In order to implement the LPM on SP-2 we used the locally attached disk space to store the local array files as

shown in Figure 3:(a). For Paragon, on the other hand, we created on the disk subsystem a separate file for each local

array (Figure 3:(b)). We should note that under those implementations there is a strong parity between LPM and the

underlying I/O architecture on the SP-2 whereas there is a disparity between those on the Paragon. Of course, those

implementations are only representative, and the LPM can be implemented in a variety of ways on both Paragon and

SP-2.

4 Out-of-Core Compilation Strategy

In this section we discuss the general issues involved in compilation of out-of-core codes on distributed-memory

message-passing machines. Our programming model is inspired by the data-parallel programming paradigm. In

essence, data-parallel programs apply the same conceptual operations to all elements of large data structures. This

form of parallelism occurs naturally in many scientific and engineering applications such as partial differential equation

solvers and linear algebra routines. In these programs, a decomposition of the data domain exploits the inherent

parallelism and adapts it to a particular machine. Compilers can use programmer-supplied decomposition patterns such

as block and cyclic to partition computation, generate communication and synchronization, and guide optimization of

the program. Different data alignment and distribution strategies used in the decomposition affect the computational

8

load balance, and amount of interprocessor communication, and allow other optimizations.

Several new languages provide directives that permit the expression of mappings from the problem domain to

the processing domain to allow a user to express precisely these alignments and distributions. The compiler uses

the information provided by these directives to optimize the programs. Languages based on this principle are called

data-parallel languages and include High Performance Fortran (HPF) [17], Vienna Fortran [35], and Fortran D [13].

In this paper, we refer to all those languages as HPF-like languages, and to directives provided by them as HPF-like

directives.

Our main assumption throughout this section is that HPF-like language directives are used to distribute the data

across the processors. In out-of-core computations, however, these directives apply to data on disk(s). For example

a directive such as DISTRIBUTE X(BLOCK,BLOCK) ON TO P(2,2) results in distribution of an out-of-core

array X in a block-block manner across the local disks of four processors (see Figure 1). An alternative approach

[27] is to employ two types of directives: one type for the decomposition of out-of-core data into in-core chunks; and

another type for the distribution of an in-core chunk across the local memories of processors. The main disadvantage

of this two-level mapping is that it specifies the tile access pattern of a node program completely, and hinders high-

level optimizations to improve I/O performance. As will be shown in the rest of the paper, the determination of tile

access pattern can be successfully achieved by a compiler analysis; so, our approach uses only one-level mapping.

The compilation of an out-of-core data-parallel program consists of two distinct phases. In the first phase, a global

program analysis is performed. This part involves lexical analysis, file/data distribution analysis, dependence/data-

flow analysis and a preliminary analysis of DO loops and FORALL statements. In fact, the out-of-core compilation in

this phase proceeds in the same way as an in-core compilation would. The second phase operates on the local name

space. Using the distribution information supplied by the user directives, the out-of-core arrays are partitioned across

the local disks of the processors. Then the compiler performs work distribution which involves computing the local

array sizes for each processor, scalarizing the FORALL statements and generating corresponding DO loops. Also in

this step, the compiler detects necessary communication and generates the communication sets. The next step in this

phase is to perform tiling. Tiling (also known as blocking) is a technique to improve the locality and is a combination

of strip-mining and loop permutation [33, 34]. It can be used to automatically create blocked versions of programs,

and when it is applied it replaces the original loop with two new loops: a tiling loop and an element loop. In an out-of-

core compilation strategy based on explicit file I/O, tiling of out-of-core data into memory is mandatory, and compiler

uses the results of the dependence analysis [34] performed in the first phase to determine whether or not tiling is legal.

All necessary loop transformations are performed in order to ensure the legality of tiling. Notice that the fetch order

of tiles in out-of-core computations determines the order of computation as well. What essentially being performed

during tiling is strip-mining the local computation according to the available memory. The next step performs some

layout and loop optimizations in order to minimize the time spent in I/O. This re-ordering of computation and file

layout transformations may not be trivial and we discuss this issue in detail in Section 6. After the I/O optimizations

are applied, several communication optimizations are performed. The main task of this step is to determine the

communication points for specific data tiles within the program. As will be explained in the following section, apart

9

node program+ I/O calls+ communication calls

source program
with user-directives

lexical analysis

work distribution
communication detection
tiling
I/O optimizations
Communication Optimizations

data-distribution analysis
dependence/data-flow analysis

Global Name-Space
Analysis

Local Name-Space
Analysis

Figure 4: Out-of-core compilation process.

from reducing the time spent in communication, the communication optimizations also help to reduce the overall I/O

time. This is especially true for the FORALL-type computations as they involve anti-dependence relations only. This

gives the compiler the freedom to re-order the tile fetches such that the communication will only be performed for the

data tiles currently residing in memory. The final step of this phase deals with the low-level I/O optimizations. This

may involve pipelining of writes, aggregation of multiple I/O requests, and selection of the disk access strategy and

I/O mode(s) taking into account the striping-type of the local data across disks. The strategies like two-phase access

[3] and disk-directed I/O [19] can be used at this step, but in this paper we do not consider this last step anymore. The

Figure 4 shows the overall compilation process.

5 Issues in Out-of-Core Compilation

In this section we summarize some of the previous work on out-of-core compilation and discuss several issues unique

to out-of-core compilation.

An optimizing compiler based on explicit file I/O for out-of-core data parallel applications takes a data-parallel

program (such as one written in HPF) accessing out-of-core arrays as input and generates the corresponding node

10

1 REAL A(1024,1024), B(1024,1024)
..........

2 !HPF$ PROCESSORS P(2,2)
3 !HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P ::A,B

...........
4 FORALL (I=2:N-1, J=2:N-1)
5 A(I,J) = (B(I,J-1) + B(I,J+1) + B(I+1,J) + B(I-1,J))/4
6 END FORALL

Figure 5: A program fragment for two-dimensional Jacobi computation.

program with calls to runtime routines for I/O and communication. The compiler strip-mines the computation so that

only the data which are in memory are operated on, and handles the required buffering. Computation on in-core data

often requires data which is not present in a processor’s memory requiring I/O access as well as communication. Since

the data is stored on disks, communication often results in disk accesses. The disk access costs are normally several

orders of magnitude greater than the inter-processor communication costs. Therefore, it is very important to reduce

the disk access costs. In this section we summarize strategies to perform communication when data is stored on disks.

Consider the HPF program fragment from Figure 5. The HPF program achieves parallelism using data and work

distribution. Work distribution is performed by the compiler during the compilation of parallel constructs like FORALL

or array assignment statements (lines 4-6, Figure 5). A commonly used paradigm for work distribution is the owner-

computes rule [34].

In this example, it can be observed that for the execution of the FORALL statement, each processor requires data

from two neighboring processors. This communication requirement can be easily and efficiently satisfied for an in-

core computation by collective communication routines such as overlap shift. In out-of-core computations, however,

the compiler should make an important decision as how to perform the communication. The communication in our

example can be satisfied by either a collective communication routine as in in-core compilation, or by considering the

individual communication requirements of the data tiles in memory [3, 4, 5]. The latter performs communication only

for the data tiles currently being processed in memory. Although the former communication method is attractive from

compiler’s point of view since it allows the compiler to easily identify and optimize collective communication patterns,

it has been shown in [4] that in out-of-core computations involving transfer of the boundary data it is inefficient. In

order for the latter method to be effective however, the compiler should be able to re-order processing of data tiles

such that whenever a data item is required it should be available in some processor’s memory rather than somewhere

on disk. The details of the methods to obtain desired processing order can be found in [3, 5, 15].

During all this effort however, we have considered the I/O optimizations which are required because of the commu-

nication requirements of the out-of-core program. In the following section, we will concentrate on I/O optimizations

which are required because of the computation requirements of the out-of-core programs. We will show that the main

issue is to select the appropriate layouts, loop order and to allocate the available node memory such that the overall

I/O time will be minimized.

11

6 I/O Optimizations for File Locality

Since accessing data on disks is usually orders of magnitude slower than accessing data on memory, the optimizing

compilers must reduce the number as well as volume of the disk accesses. In this section we present:

� we present an algorithm based on explicit file I/O to reduce the time spent in disk I/O. Our algorithm auto-

matically transforms a given loop nest to exploit spatial locality on files, assigns appropriate file layouts for

arrays, and partitions the available memory among the data tiles of different out-of-core arrays, all in a unified

framework.

� we present performance results for several kernels on an IBM SP-2 and on an Intel Paragon. These results

provide enough evidence that the algorithm can be very useful for compilation of out-of-core codes.

As has been explained in the previous sections, in order to translate out-of-core programs, the compiler has to take into

account the data distribution on disks, the number of disks used for storing data etc. Abstractly, the compilation of an

out-of-core loop nest can be thought of as consisting of two distinct phases. In the first phase, several analyses are per-

formed, the out-of-core arrays in the source HPF program are partitioned according to the distribution information and

bounds for local out-of-core arrays are computed. The second phase, on the other hand, adds appropriate statements

to perform I/O and communication, and performs some I/O and communication optimizations. The local out-of-core

arrays are first tiled according to the node memory available in each processor and the resulting tiles are analyzed for

communication. The loops are then modified to insert necessary I/O calls. The techniques explained so far have not

taken the file layouts into consideration. As will be shown in this section, however, some out-of-core computations

perform best when different out-of-core arrays have different file layouts. This optimization is vital for generating an

output code with satisfying I/O performance on large number of processors. The domain of our techniques is dense

numerical out-of-core codes. This domain is appropriate because it is very important in practice.

Our research [16] has identified three major issues to be exploited in order to generate efficient code for out-of-

core computations: access pattern, storage layouts on files, and memory allocation. The access pattern is generally a

function of distribution directives and control constructs such as loops, conditional statements etc. Since in scientific

computations most of the execution time is spent in loop nests, we can consider loops as the sole factor determining

the access pattern along with the data distribution directives. On the other hand, the file layout for an h-dimensional

array can be in one of the h� forms, each of which corresponds to layout of data in file linearly by a nested traversal of

the axes in some predetermined order. The innermost axis is called the fastest changing dimension. As an example, for

row-major storage layout of a two-dimensional array, the second axis is the fastest changing dimension. And lastly,

since node memory is a limited resource, it should be divided optimally among competing out-of-core arrays such that

the total I/O time is minimized. A compiler for out-of-core codes should optimize the access pattern, storage layout

and memory allocation together in order to exploit the locality as much as possible.

A naive approach can extend the compilation methodology of in-core data-parallel programs for out-of-core com-

putations as follows: after the node program is determined, the loops are tiled (by considering data dependences) and

12

1/4 1/16 1/64 1/256
Slab Ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o

rm
a

liz
e

d
 I

/O
 T

im
e

Naive I/O
Optimized I/O

Figure 6: Optimized I/O vs. Unoptimized (naive) I/O on IBM SP-2.

appropriate I/O calls are inserted between tiling loops. If no layout optimization is performed, data tiles with sides

of equal length in each dimension are fetched from disk, and the available memory is divided as evenly as possible

across the arrays involved. We believe that the code produced by this naive method may not perform well due to the

following reasons.

(1) In this method, the order of tiling loops is the same as that of the original loops. As will be shown later, for

many nests encountered in practice that order of tiling loops may not be the best to exploit the data locality in files. In

other words, the best loop order for file locality may be different from that for the register/cache locality.

(2) Assuming a fixed file layout such as row-major or column-major for all arrays involved in the computation

may not be a good idea. In out-of-core computations, fixed file layout strategy can lead to poor results on secondary

storage.

(3) When more than one array is involved in computation, during memory allocation it might be better to favor (by

allocating more memory) the frequently accessed arrays over the others.

6.1 Why File Layout Optimizations?

Figure 6 shows the normalized I/O times of unoptimized and optimized versions of a loop nest on IBM SP-2. The

loop nest (shown in Figure 9:(a)) accesses three out-of-core arrays, size of each is 4096�4096 double elements. The

experiment was performed for different values of slab ratio (SR)�, and in order to eliminate the effects of parallelism

and isolate the improvement originating from the layout optimizations, we ran both versions of the program on a single

node of SP-2. The following subsections will give detailed analysis in order to obtain appropriate file layouts for given

a loop nest. For now, we should emphasize that the optimized version has different file layouts, access pattern and

memory allocation than the unoptimized version, the combined effect of which is ��� � ��� improvement in the

total I/O time.

�Slab ratio is the ratio of size of the in-core node memory to the total size of the out-of-core local arrays.

13

6.2 What is an optimized array access?

We refer to an array access as optimized if it can be performed such that all the data along a specific dimension will

be read by a low I/O cost. Practically, the situation is depicted in Figure 7 for three different cases using a two-

dimensional array. The shaded portions denote data tiles. The case in Figure 7:(a) corresponds to unoptimized case

where all the available memory is utilized for accessing a square tile. In that case the file layout for the array does not

matter as in order to read an Sa � Sa data tile, Sa I/O calls should be issued no matter what the file layout is. The

cases shown in Figures 7:(b) and Figures 7:(c), on the other hand, correspond to the optimized accesses for row-major

and column-major file layouts respectively. In Figures 7:(b), with Sb I/O calls it is possible to read Sb � n elements

from the file, and in Figures 7:(c), n� Sc elements are read by issuing only Sc I/O calls (assuming for both the cases

at most n elements can be read by a single I/O call). The technique described in the rest of the paper attempts to reach

the optimized array accesses for all references. The following points should be noted. First, an optimized array access

is only meaningful with the corresponding optimized file layout. For example, reading Sb�n elements from the array

shown in Figures 7:(b) would cost n separate I/O calls (i.e. would not be optimized) if the array was stored in file as

column-major. Second, in order to have a fair comparison we fix the available memory size (M) no matter how the

arrays are optimized. As an example, for the cases shown in Figures 7, assuming this is the only array referenced in

the nest, the equality Sa
� � Sbn � nSc � M should hold.

6.3 Array Reference Matrices and Loop Transformation Basics

Our focus is on loops where both array subscripts and loop bounds are affine functions of enclosing loop indices. Given

a loop nest with indices i�,i�,...,in that can be represented by a column vector �I , we define an array reference matrix

L for each reference in that nest such that the array reference can be expressed in the form L�I ��b where�b is an offset

vector. In general there are as many array reference matrices as there are references. For our purposes, however, we

consider only the array reference matrices which are distinct. On applying a transformation T to a loop nest denoted

by �I , the transformed loop index becomes T �I and the transformed array reference matrix LT ��. Similarly if �d is

the original distance/direction vector, after applying T , T �d is the new distance/direction vector. A transformation is

legal if and only if T �d is lexicographically positive for every �d. We denote T�� by Q. An important characteristic of

our approach is that using the array reference matrices, the entries of Q are derived systematically. For the rest of the

paper, the reference matrix for array X will be denoted by LX whereas the ith row of the reference matrix for array

X will be denoted by ��i
X

.

6.4 Algorithm for Optimizing File Locality

Let i�,i�,...,in be loop indices of the original nest, and j�,j�,...,jn be the loop indices of the transformed nest, starting

from outermost loop. An explanation of our algorithm for a single statement follows. The modifications necessary for

multiple LHSs and multiple nests are discussed in Section 8.

14

S

(c)

S S

S

a

a b

c

n

n

(a) (b)

Figure 7: (a) Unoptimized access. (b)-(c) Optimized accesses.

Handling the LHS. At the first step, our technique determines a suitable transformed array reference matrix for

the LHS reference. The transformation matrix should be such that the LHS array of the transformed loop should

have the innermost index as the only element in one of the array dimensions and that index should not appear in

any other dimension for this array. In other words, after the transformation, the LHS array C should be of the form

C��� �� ���� jn� ���� �� �� where jn (the new innermost loop index) is in the rth dimension and � indicates a term inde-

pendent of jn. This means that the rth row of the transformed reference matrix for C is ��� �� ���� �� 	� and all entries

of the last column, except the one in rth row, are zero. After that process the LHS array can be stored in file such

that the rth dimension will be the fastest changing dimension. This helps to exploit the spatial locality in file, for this

reference. Notice that after this step the out-of-core array is not stored in file immediately according to the determined

layout. Instead, the final layout for the LHS array is decided after considering all alternatives.

Handling the RHSs. Then the algorithm works on one reference from the RHS at a time. If a row s in the

data reference matrix is identical to rth row of the original reference matrix of the LHS array, then this RHS array is

attempted to be stored in file such that the sth dimension will be the fastest changing dimension. We note however

that having such a row s does not guarantee that the array will be stored in the file such that the sth dimension will be

the fastest changing dimension.

If the condition above does not hold for a RHS array A, in that case the algorithm attempts to transform the

reference to A��� �� ����F�jn���� ���� �� �� whereF�jn��� is an affine function of jn�� and other indices except jn, and

� indicates a term independent of both jn�� and jn. This helps to exploit the spatial locality at the second innermost

loop. If no such transformation is possible, the jn�� is tried and so on. If all loop indices are tried unsuccessfully, then

the remaining entries of Q are determined considering the data dependences and non-singularity. Li [21] discusses the

completion of partial transformations derived from the data access matrix of a loop nest. The modified versions of his

completion algorithms can be used for our purpose.

Choosing the best alternative. After a transformation and corresponding file layouts are found, they are recorded

and the next alternative layout for the LHS is considered and so on. Among all feasible solutions, the best one is

chosen. Although several approaches can be taken to select the best alternative, we found the following scheme both

accurate and practical: Each loop in the nest is numbered with its level (depth), the outermost loop getting the number

	. Then, for each reference in the nest, the level number of the loop whose index sits in the fastest changing dimension

for this reference is checked. The number for all references in the nest are summed up, and the alternative with

15

the maximum sum is chosen. As an example, if, for a two-deep nest with three references, an alternative exploits

the locality for the first reference in the outer loop, and for the other references in the inner loop, the sum for this

alternative is 	 �
 �
 � �.

Memory allocation. After choosing the best alternative, our technique applies the following heuristic to partition

the available memory among the competing array references: The algorithm divides the array references in the nest

into groups according to file layouts of the associated files (i.e. the arrays with the same file layout are placed in the

same group). The heuristic then handles the groups one by one. For each group, the compiler considers all fastest

changing positions in turn. If a (tiling) loop index appears in the fastest changing position of a reference and does not

appear in any other position (except the fastest changing) of any reference in that group, then it sets the tile size for the

fastest changing position to n; otherwise it sets the tile size to S. The tile sizes for the remaining dimensions are also

set to S. After all the tile sizes for all dimensions of all array references are determined, our approach takes the size

of the available node memory (M) into consideration and computes the actual value for S. For example, suppose that

in a four-deep nest in which four two-dimensional arrays are referenced, the previous steps have assigned row-major

file layout for the arrays A, B and C, and column-major file layout for the array D. Also assume that the references

to those arrays are A�IT�KT �, B�JT�KT �, C�IT� JT � and D�KT�LT �. Our memory allocation scheme divides

those references into two groups: A�IT�KT �, B�JT�KT �, C�IT� JT � in the row-major group, and D�KT�LT � in

the column-major group. Since KT appears in the fastest-changing positions of A�IT�KT � and B�JT�KT �, and

does not appear in any other position of any reference in this group, the tile sizes for A and B are determined as

S � n. Notice that JT also appears in the fastest-changing position (of the reference C�IT� JT �). But since it also

appears in other positions of some other references (namely in the first position of B) in this group, the algorithm

determines the tile size for C�IT� JT � as S � S. Then it proceeds with the other group which contains the reference

D�KT�LT � alone. Since KT is in the column-conformant position, and does not appear any other index position of

D, the compiler allocates a data tile of size n�S for D�KT�LT �. After those allocations the final memory constraint

is determined as �n�S�S�S �M . Given a value for M , the value of S that utilizes all of the available memory

can easily be determined by solving the second order equation S ��nS�M � � for the positive S values. Note that

any inconsistency between the groups (due to a common loop index) should be resolved by setting the tile size for the

conflicting dimension(s) to S.

Our algorithm also takes care of the following points:

� After an alternative transformation matrix T (in fact, inverse of it) is computed, it is checked for legality. If

there is at least one dependence distance/direction vector �d such that T �d is not lexicographically positive, then

it is discarded.

� We also note that our approach is general and considers all possible layouts (h� of them) for an h-dimensional

array. The technique, however, does not consider chunking-a method by which the rectilinear blocks are stored

in file consecutively- as it is very difficult to choose suitable chunks for multiple loop nests, given the current

state of the optimizing compiler technology. Moreover, for singly-nested dense matrix codes we did not run into

16

Step 1 Initialize i � 	.

Step 2 Set ��i
C
�Q � ��� �� ���� �� 	� and ��k

C
�Q � ��� �� ���� �� �� for each k �� i, where � denotes don’t-care. The solution

of those results in determination of some values of T��.

Step 3 Set the file layout of C for this alternative such that ith index position will be the fastest changing position.

Step 4 For each array reference A on the RHS that has ��l
A
� ��i

C
for some l, set the file layout of A for this alternative

such that the lth dimension will be the fastest changing dimension.

Step 5 Choose an array reference A for which the equality in Step 4 does not hold. Initialize j � 	.

Step 6 Set ��j
A
�Q � ��� �� ���� 	� �� and ��k

A
�Q � ��� �� ���� �� �� �� for each k �� j. If this step is consistent with the pre-

vious steps go to Step 7, otherwise increment j and go to the beginning of this step. If there exist inconsistencies

for all j values, then initialize j � 	, and set ��j
A
�Q � ��� �� ���� 	� �� �� and ��k

A
�Q � ��� �� ���� �� �� �� �� for each

k �� j, and repeat Step 6 and so on. If no T �� is found then fill the remaining entries arbitrarily observing the
dependences and non-singularity.

Step 7 Repeat Step 6 for all reference matrices of a particular A (Of course, all reference matrices for a particular A
should have the same distribution).

Step 8 Repeat Step 6 for all distinct array references.

Step 9 Record the obtained transformation matrix. Also record, for each array, the loop index position which appears
in the fastest changing position for that array.

Step 10 Increment i and go to Step 2 (try a different layout for the LHS array C).

Step 11 Compare all the recorded transformation matrices and their associated layouts, and choose the best alternative
(see the explanation in Section 6.4).

Step 12 Determine the memory allocations for the all out-of-core arrays in the nest and obtain the memory constraint in
terms of S, n, p (number of processors) and M (size of the available node memory).

Step 13 Solve the memory constraint for S.

Figure 8: Algorithm for optimizing locality in out-of-core computations.

any case in which chunking could have produced better results than our approach as far as the number of I/O

calls are concerned.

� As the reader might notice, our method is LHS-based. In other words, it first optimizes the LHS reference and

then proceeds with the RHS references. Although, theoretically, this order is not necessary, in practice we found

it to be useful as the data tiles for the LHS reference are both read and written whereas the data tiles for the RHS

references are read only.

The algorithm is shown in Figure 8. In the algorithm, C is the array reference on the LHS whereas A represents an

array reference from RHS. The symbol � denotes the “don’t care” condition. It should be emphasized that the Step 2

and Step 6 involve solving matrix equations.

17

6.5 Layout Constraints

The approach presented so far implicitly assumes that the file layouts for all out-of-core arrays can be set according to

the output of the file locality algorithm. Unfortunately, this assumptions applies only to the case for which the compiler

is to create arrays on disk from scratch as in the case of temporary array allocation or out-of-core version of an in-core

program. In general, however, an out-of-compiler should be able to work with out-of-core arrays which have already

been created on disk. To be specific, during the compilation of an out-of-core program either or both the following

may be true: (a) the compiler does not have complete knowledge about the access pattern or storage layouts; (b) the

compiler, due to data dependences or other constraints, is not able to change the access pattern or storage layout. Each

unknown or unmodifiable information about access pattern or storage layouts constitutes a constraint for the compiler.

We now focus on the problem of optimizing locality when some or all array layouts are fixed, as this case frequently

occurs in practice. We note that each fixed layout requires that the innermost loop index should be in the appropriate

(corresponding) array index position (dimension), depending on the file layout of the array. For example, suppose

that the file layout for a h-dimensional array is such that the dimension k� is the fastest changing dimension, the

dimension k� is the second fastest changing dimension, k� is the third etc. The algorithm should first try to place the

new innermost loop index jn only to the k�
th dimension of this array. If this is not possible, then it should try to place

jn only to the k�
th dimension and so on. If all dimensions up to and including kh are tried unsuccessfully, then jn��

should be tried for the k�
th dimension and so on.

In general, given a loop nest, the layouts for some of the arrays may have already been determined, and the question

is to determine the layouts of the remaining arrays, and find a loop order accordingly. This problem can easily occur,

for example, in a program in which multiple nests access (overlapping) subsets of the out-of-core arrays declared in

the program. It should be noted that solving this constrained-layout problem is less expensive than solving the general

problem in which all possible layouts for all arrays should be evaluated. As we will show later, this modified algorithm

with the constrained layouts is very important for global I/O optimization.

6.6 Example

In order to illustrate the performance improvement that can be obtained by compiler optimizations aiming file layouts

over the naive explicit I/O approach, we consider the nest shown in Figure 9:(a), assuming that arrays A, B and C

are n � n out-of-core arrays. In the naive translation, after obtaining the node program, the compiler tiles all four

loops and inserts I/O statements between tiling loops. Of course, it should also check for legality of tiling; but, for

sake of this explanation we do not consider legality as an issue and assume that tiling is always legal. A sketch of

the resulting code is given in Figure 9:(b), assuming n is an exact multiple of S, the tile size; and p is the number of

processors. In this example, using HPF-like distribution directives, the array A is distributed in row-block, the array

B is distributed in column-block across the processors, and the array C is replicated. We remind the reader that in

out-of-core computations, compiler directives apply to data on (logical) disks. In the translated code the loops u, v, w

and y are called tiling loops and the computation inside the tiling loops is performed on data tiles (sub-matrices) rather

18

DO i = 1, n DO u = 1, n/p, S DO u = 1, n/p, S
DO j = 1, n DO v = 1, n, S read data tile for A[u,1:n]
DO k = 1, n read data tile for A[u,v] read data tile for B[1:n,u]
DO l = 1, n DO w = 1, n, S DO v = 1, n, S
A(i,j)+=B(k,i)+C(l,k) read data tile for B[w,u] read data tile for C[v,1:n]

ENDDO l DO y = 1, n, S A[u,1:n]+=B[1:n,u]+C[v,1:n]
ENDDO k read data tile for C[y,w] ENDDO v

ENDDO j A[u,v]+=B[w,u]+C[y,w] write data tile for A[u,1:n]
ENDDO i ENDDO y ENDDO u

ENDDO w
write data tile for A[u,v]

ENDDO v
ENDDO u

(a) (b) (c)

(g)

u
v

w
u

y
w

y
u

v
y

w
v

w
y

u
y

w
u

v
w

v
y

u
w

S

n/p
n/p n

n
n

n

S
SnS

Array A

Array A

Array A

Array A

Array B

Array B Array B

Array B

Array C

Array C Array C

Array C

S
S

S
S

S
S

(d)

(e)

(f)

Figure 9: (a) An out-of-core loop nest. (b) Straightforward translation. (c) I/O optimized translation. (d)-(g)
Different tile allocations.

than individual array elements. In other words, there are four more loops called element loops (not shown for sake of

clarity) that iterate over the individual elements of data tiles of A, B and C. It should be emphasized that a reference

such as A�u� v� denotes a data tile of size S�S from file coordinates �u� v� as upper-left corner to �u�S�	� v�S�	�

as lower-right corner. A reference like A�u� 	 � n�, on the other hand, denotes a data tile of size S � n from �u� 	� to

�u� S � 	� n�, i.e. a block of S consecutive rows of the out-of-core matrix A.

With Figure 9:(b), during the execution, square tiles of size S � S (shown as shaded blocks in Figure 9:(d)) are

read from files. Note that this tile allocation scheme implies the memory constraint S� �M where M is the size of

the available node memory.

The array reference matrices are as follows:

LA �

�
� 	 � � �

� 	 � �

�
�,LB �

�
� � � 	 �

	 � � �

�
� andLC �

�
� � � � 	

� � 	 �

�
�. The algorithm works as follows:

First it considers column-major disk layout for A.

19

LA�Q �

�
� � � � 	

� � � �

�
�. Therefore q�� � q�� � q�� � q�� � � and q�� � 	.

LB�Q �

�
� � � � �

� � � 	

�
�. Therefore q�� � �.

LC �Q �

�
� � � 	 �

� � � �

�
�. Therefore q�� � q�� � � and q�� � 	. At this point T�� � Q �

�
�������

� � � 	

q�� q�� q�� �

q�� q�� � �

q�� q�� 	 �

�
�������

.

We set the unknowns to the following values: q�� � q�� � q�� � q�� � q�� � � and q�� � q�� � 	, and obtain

T�� � Q �

�
�������

� � � 	

	 � � �

� 	 � �

� � 	 �

�
�������

.

The resulting code is as follows:

DO u = 1, n/p, S

DO v = 1, n, S

DO w = 1, n, n

DO y = 1, n/p, n/p

A[y,u]+=B[v,y]+C[w,v]

ENDDO y

ENDDO w

ENDDO v

ENDDO u

Arrays A and C are column-major whereas the array B is row-major. By using our memory allocation scheme

explained earlier, a tile of size n�p� S is allocated for A, of size n � S for C, and of size S � n�p for B. The final

memory constraint is
nS�p� nS �M . � Tile allocations are shown in Figure 9:(e).

Next the algorithm considers the other alternative layout (row-major) for A.

LA�Q �

�
� � � � �

� � � 	

�
�. Therefore q�� � q�� � q�� � q�� � � and q�� � 	.

LB�Q �

�
� � � 	 �

� � � �

�
�. Therefore q�� � q�� � � and q�� � 	.

LC �Q �

�
� � � � �

� � 	 �

�
�. Therefore q�� � q�� � �. At this point T�� � Q �

�
�������

q�� q�� � �

� � � 	

q�� q�� 	 �

q�� q�� � �

�
�������

. By

�Notice that the value of S for each of the four cases in Figure 9 is different. It is computed by taking into account the memory constraint.

20

setting q�� � q�� � q�� � q�� � � and q�� � q�� � 	, T�� � Q �

�
�������

	 � � �

� � � 	

� � 	 �

� 	 � �

�
�������

.

The resulting code is as follows.

DO u = 1, n/p, S

DO v = 1, n, S

DO w = 1, n ,n

DO y = 1, n, n

A[u,y]+=B[w,u]+C[v,w]

ENDDO y

ENDDO w

ENDDO v

ENDDO u

The arrays A and C are row-major whereas the array B is column-major. Tiles of size S � n are allocated for A

and C, and a tile of size n�S is allocated for B. The final memory constraint is �n�S �M . Tile allocations are

shown in Figure 9:(g). Notice that since tile sizes are equal to array sizes for some array dimensions, the loops w and

y disappear and the optimized code given earlier in Figure 9:(c) is obtained. Also note that although we could have

chosen one of these two alternatives as the best alternative by using our criterion based on loop levels as explained

earlier, we have presented here the tile allocations for both the alternatives for illustrative purposes.

We now consider the example shown in Figure 9 once more, this time assuming fixed row-major file layouts for

all arrays. Due to lack of space, we do not show the formulation; but after our constraint-based algorithm is run, the

tiles of size S � S are allocated for B and C, and a tile of size S � n is allocated for A. The final memory constraint

is nS �
S� � M . Tile allocations for this constrained version are shown in Figure 9:(f). Note that the two array

references in this constrained version are not optimized due to the fixed layout requirement. This is the main reason

that the locality optimizations adopted by out-of-core compilers should take into account both file layouts and loop

transformations.

6.7 Analytical Formulation

Essentially the reduction (as will be shown in the Experimental Results section) in the I/O costs of the optimized

program come from the decrease in both the number of I/O calls issued from within the program and the volume of the

data transferred between disk and memory. In this subsection, using an analytical model, we evaluate the effectiveness

of the algorithm presented in this paper at reducing the number of I/O calls. In order to get a simple formulation, we

assume that at most n elements can be accessed in a single I/O call, where n being the array size in one dimension

and the loop upper bound. Let Cf , tf and M be the file I/O startup cost, the cost of reading (writing) an element from

21

100 1000
Memory Size (in elements)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N
u
m

b
e
r

o
f
I/
O

 C
a
lls

(A)

Ori
Col
Row
Opt

100 1000
Memory Size (in elements)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

N
u
m

b
e
r

o
f
I/
O

 C
a
lls

(B)

Ori
Col
Row
Opt

Figure 10: (a) Number of I/O calls for the example shown in Figure 9 for
K �
K double arrays. (b) Number
of I/O calls for the example shown in Figure 9 for �K � �K double arrays.

(into) file, and the size of the available node memory respectively. If we assume that I/O cost of reading (writing) l

consecutive array elements from (into) file can be approximated by Cf � l � tf , then the total I/O cost of the naive

out-of-core translation shown in Figure 9:(b) (excluding write costs) is

Toverall �
n�Cf

S
� n�tf� �z �
TA

�
n�Cf

S�
�
n�tf
S� �z �

TB

�
n�Cf

S�
�
n�tf
S�� �z �

TC

under the memory constraint S� � M . The TA, TB and TC represent the I/O costs for the arrays A, B and C

respectively. The overall I/O cost of the I/O optimized version (Figure 9:(c)), on the other hand, is

Toverall � nCf � n�tf� �z �
TA

�nCf � n�tf� �z �
TB

�
n�Cf

S
�
n�tf
S� �z �

TC

under the memory constraint nS � M . The overall I/O costs for the versions with fixed layouts are computed

similarly. The write costs can safely be neglected as the writes are performed very infrequently as compared to the

reads and, in principle, they can always be pipelined. These formulae clearly show that, for reasonable values of

M , our algorithm is very effective at reducing the number as well as the volume of disk accesses. We computed

the number of I/O calls for different input sizes for the example in Figure 9. Figures 10:(a) and (b) illustrate the

curves representing the number of I/O calls (coefficient of Cf) for
K�
K and �K� �K double arrays respectively

on logarithmic scales. We consider four different versions: unoptimized (naive) version (Ori), optimized version

assuming fixed column-major layout for all arrays (Col), optimized version assuming fixed row-major layout for all

arrays (Row), and the version that is optimized by our approach (Opt). It should be emphasized that the curves for the

optimized versions are overestimates, because of the fact that we assume at most n elements can be read in a single

I/O call. The effectiveness of our approach at reducing the number of I/O calls is clearly reflected on these curves. For

example, for �K � �K double arrays with a memory size of 	�� elements , the number of I/O calls required for Ori,

Col, Row and Opt versions are approximately �� 	��,
� 	��, 	��� 	�� and 	��� 	�� respectively.

22

Table 1: I/O times (in seconds) for the example shown in Figure 9 on SP-2 and Paragon.

IBM SP-2 Intel Paragon
�K � �K arrays �K � �K arrays �K � �K arrays �K � �K arrays

SR Ori Col Row Opt Ori Col Row Opt Ori Col Row Opt Ori Col Row Opt
1/4 152 138 131 77 363 311 281 199 1159 1050 988 208 5172 4431 4001 1273

1/16 623 577 524 105 1441 1108 1074 441 2320 2141 1951 252 7360 5668 5412 1344
1/64 4224 3111 2462 563 8384 6449 5912 1422 19201 14141 11760 576 28864 22002 20257 2304
1/256 25087 21627 19298 1566 48880 35759 30055 4584 99583 83848 76245 3028 192512 141370 117270 8193

Table 2: Number of bytes read and number of I/O calls issued for our example.

SR=1/4 �K � �K double arrays �K � �K double arrays
Ori Col Row Opt Ori Col Row Opt

Number of bytes read ����� ��
�

����� ��
�

����� ��
�

����� ��
�

����� ��
�

����� ��
�

����� ��
�

����� ��
�

Number of I/O calls issued 28672 20480 14336 8192 57344 40960 28672 16384

7 Preliminary Results

The experiments were performed by hand using PASSION [30], a run-time library for parallel I/O. PASSION routines

can be called from C and Fortran, and different out-of-core arrays can be associated with different file layouts. All the

reported times are in seconds. The experiments were performed for different values of slab ratio (SR), the ratio of

available node memory to the total size of all out-of-core local arrays. Notice that the SR is both an abstract variable

and a good indicator of the behavior of the out-of-core programs under different memory constraints.

Table 1 shows the I/O times of four different versions (Ori, Col, Row and Opt as explained above) of the example

shown in Figure 9 on single nodes of IBM SP-2 and Intel Paragon.

The Table 2 shows the number of bytes read, and number of I/O calls issued for each of the four versions. It is easy

to see that the Opt version minimizes both the number of I/O calls in the program and the number of bytes transferred

from the disk subsystem, and that explains the reduction in the overall I/O time.

Tables 3 and 4 show the I/O times for the example shown in Figure 9 with �K � �K (128 MByte) double arrays

and different number of processors on SP-2 and Paragon respectively.

Figure 11 gives the speedups for Ori (original, unoptimized) and Opt versions. We define two kinds of speedups:

speedup that is obtained for each version by increasing the number of processors, which we call Sp, and speedup that is

obtained by using Opt version instead of the Ori when the number of processors is fixed. We call this second speedup

local speedup (Sl), and product Sp � Sl is termed as combined speedup (see Figure 12:(a)).

From these results we conclude the following:

(1) The Opt (I/O optimized) version performs much better than the Ori (naive) version. The reason for this result

is that in the Opt version, array accesses are optimized as much as possible. For example as shown in Figure 9:(g), by

using the I/O optimization technique presented in this paper all three array accesses are optimized.

(2) When the slab ratio is decreased, the effectiveness of our approach (Opt) increases. As the amount of node

memory is reduced, the Ori performs many number of small I/O requests, and that in turn degrades the performance

23

Table 3: I/O times for the example shown in Figure 9 with �K � �K (128 MByte) double arrays on IBM SP-2.

Number of Processors = 4
SR Original Col-Opt Row-Opt Opt

1/4 202 161 119 66
1/16 672 412 354 152
1/64 5193 2411 2196 490
1/256 29504 16904 12291 1689

Number of Processors = 8
SR Original Col-Opt Row-Opt Opt

1/4 154 117 93 39
1/16 427 359 288 87
1/64 2858 1955 1327 272

1/256 21026 8901 7505 941

Number of Processors = 16
SR Original Col-Opt Row-Opt Opt

1/4 99 79 61 21
1/16 286 271 259 48
1/64 1874 1654 1141 160

1/256 16719 6221 5687 522

Table 4: I/O times for the example shown in Figure 9 with �K��K (128 MByte) double arrays on Intel Paragon.

Number of Processors = 4
SR Original Col-Opt Row-Opt Opt

1/4 1840 1546 1220 410
1/16 2889 2063 1094 536
1/64 17251 12128 9877 1233
1/256 123545 88246 80940 5043

Number of Processors = 8
SR Original Col-Opt Row-Opt Opt

1/4 1186 996 786 221
1/16 1862 1241 985 286
1/64 11120 9976 8100 701
1/256 79631 56780 51160 2695

Number of Processors = 16
SR Original Col-Opt Row-Opt Opt

1/4 810 670 600 135
1/16 1271 998 851 188
1/64 7590 5698 5012 474
1/256 52995 35330 30994 1701

significantly. The Opt version, on the other hand, continues with the optimized I/O no matter how small the node

memory is.

(3) As shown in Figure 11, the Opt version also scales better than the Ori (original, unoptimized) for all slab ratios.

(4) Experiments on two different platforms (Paragon and SP-2) with varying compile-time/run-time parameters

such as available node memory, array sizes, number of processors etc., demonstrate that our algorithm is quite robust.

7.1 Memory Coefficient

Suppose that a problem of a specific size is solved in t� seconds with a slab ratio SR using the Ori version (i.e. without

any optimization). In principle the same problem can be solved in � t� seconds with a smaller slab ratio SR� (i.e.

less memory) using the Opt version on the same number of processors. We call the ratio SR�SR� memory coefficient

(MC) [16]. The larger this coefficient the better it is, because it indicates the reduction in the memory requirements

24

0.0 5.0 10.0 15.0 20.0
Number of Processors

0.0

5.0

10.0

15.0

20.0

S
p
e
e
d
u
p

Slab Ratio=1/4

Original
Opt
Ideal

0.0 5.0 10.0 15.0 20.0
Number of Processors

0.0

5.0

10.0

15.0

20.0

S
p
e
e
d
u
p

Slab Ratio=1/16

Original
Opt
Ideal

0.0 5.0 10.0 15.0 20.0
Number of Processors

0.0

5.0

10.0

15.0

20.0

S
p
e
e
d
u
p

Slab Ratio=1/64

Original
Opt
Ideal

0.0 5.0 10.0 15.0 20.0
Number of Processors

0.0

5.0

10.0

15.0

20.0

S
p
e
e
d
u
p

Slab Ratio=1/256

Original
Opt
Ideal

Figure 11: Speedups for unoptimized and optimized versions of our example with �K � �K double arrays on
SP-2.

of the application. During our experiments with different out-of-core nests, we noticed that the MC is usually a fixed

value for a given loop nest. As an example, Figure 12:(c) presents the MC values for the example shown in Figure 9

for different slab ratio (SR) values. As can be seen, MC is almost always �. Practically this indicates that it is

possible to solve the same problem, at the same or less time, with 	�� of the original memory by using the Opt version

instead of the Ori, the straightforward translation. Of course, the value of the MC depends on the computation under

consideration and can be approximated by using the analytical formulation presented earlier. During the experiments,

we found that if the original SR value is large, MC can be unpredictable in some cases (e.g. in Figure 12:(c), for

SR=1/4 on Paragon). Since the Opt version can solve the same problem using less memory than Ori, we believe that

our algorithm is especially useful for multiprogramming systems.

7.2 Processor Coefficient

A problem that is solved by the Original version using a fixed slab ratio on p processors can, in principle, be solved

in the same or less time on p� processors with the same slab ratio using the Opt version. The ratio p�p� is termed as

processor coefficient (PC). Figure 12:(b) shows the PC curves for our running example with �K � �K (128 MByte)

25

0.0 5.0 10.0 15.0 20.0
Number of Processors

0.0

20.0

40.0

60.0

80.0

100.0

S
pe

ed
up

(a)
Combined Speedups

Slab Ratio=1/4
Slab Ratio=1/16
Slab Ratio=1/64
Slab Ratio=1/256
Linear

4 8 1632 4 8 1632 4 8 1632 4 8 1632 4 8 1632
Number of Processors

0.0

10.0

20.0

30.0

40.0

P
C

(b)
PC curves

Slab Ratio=1/4
Slab Ratio=1/16
Slab Ratio=1/64
Slab Ratio=1/256
Slab Ratio=1/1024

1/4 1/16 1/64 1/256
Slab Ratio

4

1

16

M
em

or
y

C
oe

ffi
ci

en
t (

M
C

)

(c)

2K*2K arrays (IBM SP-2)
4K*4K arrays (IBM SP-2)
2K*2K arrays (Intel Paragon)
4K*4K arrays (Intel Paragon)

Figure 12: (a) Combined Speedups for our example with �K� �K double arrays. (b) PC curves. (c) MC values.

double arrays on SP-2. It can be observed that there is a slab ratio, called critical slab ratio, beyond which the shape

of the PC curve does not change. In Figure 12:(b) the critical slab ratio is 	���. Below this ratio, independent of the

node memory capacities, for a given p it is possible to find the corresponding p� where p and p� are as defined above.

An intuitive explanation for this is that, in the unoptimized case, beyond a slab ratio, the program performs so badly

that increasing the number of processors does not help much; and the same execution time can easily be obtained by

one or two processors using the Opt version.

We believe that the final PC curves and MC values give enough information about the performance of I/O opti-

mizations in a distributed-memory environment.

8 Global I/O Optimization

In this section, we show how our algorithm can be extended to work on multiple nests. Notice that a single loop

nest with multiple LHSs (i.e. multiple statements) can be handled in a similar manner if we think the nest as if it is

distributed [34] over the individual statements.

Since a number of arrays can be accessed by a number of nests and these nests may require different layouts for a

specific out-of-core array, the algorithm should find a layout for that array that satisfies the majority of the nests. In the

following we present sketch of a simple heuristic. Our approach is based on the concept of most costly nest, the nest

which takes the most I/O time. The programmer can use compiler directives to give hints about this nest, or we can use

a metric such as multiplication of the number of loops and the number of arrays referenced in the nest. The nest which

has the largest resulting value can be marked as the most costly nest. A more aggressive approach should consider

all references in program for a particular array globally. Since it is unclear to us at this point whether compiler itself

can or should select the most costly nest, we do not discuss this issue further. The rest of the algorithm is independent

from how the most costly nest is determined.

The algorithm proceeds as follows: First, the most costly nest is fully optimized by using the algorithm presented

in this paper. After this step, file layouts for some of the arrays will be determined. Then each of the remaining

nests can be optimized using the approach presented for the constrained layout case in Section 6.5. After each nest is

26

for (each loop nest i) compute Cost(i);
endfor;
sort nests according to non-increasing values of Cost(i) into Nest List;
Unconstrained(Nest List(1),&new constraints);
constraints = new constraints;
while (there is a nest in the Nest List)
Current Nest = next nest in the Nest List;
Constrained(Current Nest,constraints,&new constraints);
constraints = constraints � new constraints;

endwhile;

Figure 13: A global I/O optimization algorithm.

optimized, new layout constraints will be obtained, and these will be propagated for optimization of the next nest.

Figure 13 shows an algorithm for global I/O optimization. The functions Unconstrained() and Constrained() implement

the algorithms for the unconstrained and constrained layout cases respectively. constraints refers to a set that holds the

array layout constraints and updated after each nest is processed. Before the main loop, estimated cost of each nest

i is computed using a metric and the nests are sorted according to non-increasing values of Cost(i) into Nest List (e.g.

Nest List(1) is more costly than Nest List(2) etc.). Then the most costly nest Nest List(1) is optimized using Unconstrained()

whereas the others are optimized inside the while loop using Constrained(). Notice that besides returning new constraints

both Unconstrained() and Constrained() also compute the loop transformation for each nest (not shown for clarity).

We note that the global I/O optimization problem is very similar to the problem of determining the appropriate

data decomposition across the processors for multiple nests [20]. We are currently investigating whether or not the

techniques developed for the data decomposition problem can be applied for the file layout optimization for multiple

nests.

9 Related Work

Iteration space tiling has been used for optimizing the cache locality in several papers [21, 33]. McKinley et al. [24]

proposes an optimization technique consisting of loop permutation, loop fusion and loop distribution. The assumption

of a fixed layout strategy prevents some array references getting optimized as shown earlier in this paper, and that

in turn may cause a substantial performance loss. But as indicated earlier, after our approach is applied, we strongly

recommend the use of an in-core locality optimization technique for data tiles in memory.

In [7], a unified approach to locality optimization which employs both control and data transformations is presented

for in-core problems in distributed shared-memory machines. This model can be adapted to out-of-core computations

as well. But we believe our approach is better than that of [7] because of the following reasons:

� The approach given in [7] depends on a stride vector whose value should be guessed by the compiler beforehand.

Our approach does not have such a requirement.

� Our approach is more accurate, as it does not restrict the search space of possible loop transformations whereas

27

the approach in [7] does.

� Our extension to multiple nests (global optimization) is also simpler than the one offered by [7] for global

optimization, because we use the same algorithm for each nest.

In [16], the authors present a heuristic for optimizing out-of-core programs consisting of a single loop nest. In the

future, we intend to implement the algorithms in [7] and [16], enhance them by a suitable memory allocation scheme

for out-of-core computations and compare them with the approach presented in this paper on different programs.

Another compiler-directed optimization, prefetching, is used by [25] for caches and by [26] for main memories.

We believe that the compiler-directed prefetch is complimentary to our work in the sense that once the I/O time is

reduced by our optimization, the remaining I/O time can be hidden by prefetching.

There has been a few papers on out-of-core compilation. Some of them consider optimizing the performance of

virtual memory (VM). The most notable work is from Abu-Sufah et al. [1], which deals with optimizations to enhance

the locality properties of programs in a VM environment. Among the program transformations used are loop fusion,

loop distribution and tiling (page indexing). It should be emphasized that in principle, our file layout determination

scheme can be applied for optimizing the performance of the VM as well (by changing tile sizes to take the page size

into account). Recently Malkawi et.al. [22] and Gornish et.al. [12] have proposed compiler based techniques to obtain

good performance from memory hierarchy.

In [9], the functionality of a ViC�, a compiler-like preprocessor for out-of-core C� is described. Several compiler

methods for out-of-core HPF programs are presented in [30] and [4]. In [27], compiler techniques to choreograph

I/O for applications based on high-level programmer annotations are investigated. The techniques in [30] and [27] are

specifically designed for parallel machines whereas our approach can also be used on uniprocessors. To our knowledge,

non of the previous work on out-of-core computations considers the compiler-directed file layout transformations.

10 Conclusions

The difficulty of efficiently handling out-of-core data limits the performance of supercomputers as well as the enor-

mous potential of parallel machines. Since coding out-of-core version of a problem might be a very onerous task and

virtual memory does not perform well in scientific programs, we believe that there is a need for compiler-directed

explicit I/O approach for parallel architectures. Unfortunately, fixed layout strategies adopted by popular compilers

prevent the potential spatial locality in files from being exploited.

In this paper, after discussing some important issues on out-of-core compilation, we presented a compiler algorithm

to optimize the locality on files by changing the access pattern and file layouts. Our technique can easily be employed

as a part of an out-of-core compilation framework like [9], [27] or [30]. An important characteristic of the approach

is that it also optimizes the nests with arrays whose layouts are constrained. We show that this is important for global

I/O optimization as well.

An area of future work is integrating this technique with the techniques designed to eliminate I/O costs originating

28

from communication requirements of out-of-core parallel programs [4, 5, 6]. We also intend to employ the algorithm

presented in this paper in in-core compilers, and investigate its effectiveness at determining memory layouts and in

improving cache performance.

References

[1] W. Abu-Sufah, D. Kuck, and D. Lawrie. On the Performance Enhancement of Paging Systems Through Program

Analysis and Transformations. IEEE Transactions on Computers, C-30(5):341–356, May 1981.

[2] L. A. Belady. A Study of Replacement Algorithms for a Virtual Storage Computer. In IBM Systems Journal, 5

(1996), pages 78-101.

[3] R. Bordawekar. Techniques for Compiling I/O Intensive Parallel Programs, Ph.D. Dissertation, ECE Dept., Syra-

cuse University, Syracuse, NY, May 1996.

[4] R. Bordawekar, A. Choudhary, and J. Ramanujam. Compilation and Communication Strategies for Out-of-core

programs on Distributed Memory Machines. In Journal of Parallel and Distributed Computing, 38:(2), Novem-

ber, 1996.

[5] R. Bordawekar, A. Choudhary, and J. Ramanujam. Automatic Optimization of Communication in Compiling

Out-of-core Stencil Codes. In Proc. 10th ACM International Conference on Supercomputiing, Philadelphia, PA,

May 1996.

[6] R. Bordawekar, A. Choudhary, and J. Ramanujam. A Framework for Integrated Communication and I/O Place-

ment. In Proc. EUROPAR’96, Lecture Notes in Computer Science, Springer-Verlag, August 1996.

[7] M. Cierniak, and W. Li. Unifying Data and Control Transformations for Distributed Shared Memory Machines.

Technical Report 542, Dept. of Computer Science, University of Rochester, NY, November 1994.

[8] P. Corbett, D. Fietelson, S. Fineberg, Y. Hsu, B. Nitzberg, J. Prost, M. Snir, B. Traversat, and P. Wong. Overview

of the MPI-IO parallel I/O interface, In Proc. Third Workshop on I/O in Parallel and Distributed Systems,

IPPS’95, Santa Barbara, CA, April 1995.

[9] T. H. Cormen, and A. Colvin. ViC*: A Preprocessor for Virtual-Memory C*. Dartmouth College Computer

Science Technical Report PCS-TR94-243, November 1994.

[10] T. H. Cormen, and D. Kotz. Integrating theory and practice in parallel file systems. In Proceedings of the 1993

DAGS/PC Symposium, pages 64-74, Hanover, NH, June 1993.

[11] P.J. Denning. The Working Set Model for Program Behavior. In Comm. of the ACM, Vol. 11, No. 5, May 1968.

29

[12] E. Gornish, E. Granston, and A V. Veidenbaum. Compiler Directed Data Prefetching in Multiprocessors with

Memory Hierarchies. In Proc. ACM Int’l Conf. on Supercomputing, pp 354–368, Amsterdam, The Netherlands,

1990.

[13] S.Hiranandani, K.Kennedy, and C.Tseng. Compiling Fortran D for MIMD distributed-memory machines. In

Comm. of the ACM 35,8, pages 66-80, Aug. 1992.

[14] High Performance Computing and Communications: Grand Challenges 1993 Report. A Report by the Committee

on Physical,Mathematical and Engineering Sciences, Federal Coordinating Council for Science, Engineering and

Technology.

[15] M. Kandemir, R. Bordawekar, A. Choudhary, and J. Ramanujam. A Unified Tiling Approach for Out-of-core

Computations, In the Sixth Workshop on Compilers for Parallel Computers, December 1996.

[16] M. Kandemir, R. Bordawekar, and A. Choudhary, Data Access Reorganizations in Compiling Out-of-Core Data

Parallel Programs on Distributed Memory Machines. In Proc. the Int’l. Parallel Processing Symposium (IPPS),

pp 559–564, Geneva, Switzerland, April 1997.

[17] C. Koelbel, D. Lovemen, R. Schreiber, G. Steele, and M.Zosel. High Performance Fortran Handbook. The MIT

Press, 1994.

[18] D. Kotz. Multiprocessor file system interfaces. In Proceedings of the Second International Conference on Parallel

and Distributed Information Systems, pages 194-201, 1993.

[19] D. Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings of the 1994 Symposium on Operating

Systems Design and Implementation, pages 61-74, November 1994.

[20] U. Kremer. Automatic Data Layout for Distributed Memory Machines. Ph.D. thesis, Technical Report CRPC-

TR95559-S, Center for Research on Parallel Computation, October 1995.

[21] W. Li. Compiling for NUMA Parallel Machines, Ph.D. Thesis, Cornell University, Ithaca, NY, 1993.

[22] M. Malkawi, and J. Patel. Compiler Directed Memory Management Policy for Numerical Programs. In Proc.

ACM Symposium on Operating Systems Principles (SOSP’85), 1985.

[23] A. C. McKellar, and E. G. Coffman. The Organization of Matrices and Matrix Operations in a Paged Multipro-

gramming Environment, In Comm. ACM 12, 3 (March 1969), pages 153-165.

[24] K. McKinley, S. Carr, and C.W. Tseng. Improving Data Locality with Loop Transformations. ACM Transactions

on Programming Languages and Systems, 1996.

[25] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evaluation of a Compiler Algorithm for Prefetching. In Proc.

Fifth International Conference on Architectural Support for Programming Languages and Operating Systems,

October, 1992.

30

[26] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic Compiler-Inserted I/O Prefetching for Out-of-Core Ap-

plications. Proc. Second Symposium on Operating Systems Design and Implementations, Seattle, WA, October

1996, pages 3-17.

[27] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler Support for Out-of-Core Arrays on Parallel Machines.

CRPC Technical Report 94509-S, Rice University, Houston, TX, December 1994.

[28] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best. Characterizing parallel file-access patterns

on a large-scale multiprocessor. In Proceedings of the Ninth International Parallel Processing Symposium, pages

165-172, April 1995.

[29] The Scalable I/O Low-level API: A Portable Programming Interface for Parallel File Systems. Presentation in

Supercomputing’96, Philadelphia, PA, 1996.

[30] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh. PASSION Runtime Library for Parallel

I/O, In Proc. The Scalable Parallel Libraries Conference, October 1994.

[31] S. Toledo, and F. G. Gustavson. The Design and Implementation of SOLAR, a Portable Library for Scalable Out-

of-Core Linear Algebra Computations. In Proc. of the Fourth Annual Workshop on I/O in Parallel and Distributed

Systems, May 27, 1996, Philadelphia, PA, pages 28-40.

[32] K. S. Trivedi. On the Paging Performance of Array Algorithms. IEEE Transactions on Computers, C-26(10):938-

947, October 1977.

[33] M. Wolf, and M. Lam. A Data Locality Optimizing Algorithm. In Proc. ACM SIGPLAN 91 Conf. Programming

Language Design and Implementation, pages 30–44, June 1991.

[34] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company, CA,

1996.

[35] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language specification.

ICASE Interim Report 21, MS 132c, ICASE, NASA, Hampton VA 23681, 1992.

	Compilation techniques for out-of-core parallel computations
	Recommended Citation

	pc97.dvi

