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Abstract 
In this paper we sketch out a proposed reference 
implementation for message passing in Java (MPJ), an 
MPI-like API from the Message-Passing Working Group of 
the Java Grande Forum [1,2]. The proposal relies heavily on 
RMI and Jini for finding computational resources, creating 
slave processes, and handling failures. User-level 
communication is implemented efficiently directly on top of  
Java sockets. 

 

1. Introduction 
The Message-Passing Working Group of the Java Grande Forum was formed late 
1998 as a response to the appearance of several prototype Java bindings for MPI-
like libraries.  An initial draft for a common API specification was distributed at 
Supercomputing ’98.  Since then the working group has met in San Francisco and 
Syracuse.  The present API is now called MPJ. 
 

Currently there is no complete implementation of the draft specification. Our 
own Java message-passing interface, mpiJava, is moving towards the 
“standard”.  The new version 1.2 of the software supports direct communication 
of objects via object serialization, which is an important step towards 
implementing the specification in [1]. We will release a version 1.3 of 
mpiJava, implementing the new API.  
 

The mpiJava wrappers [2] rely on the availability of platform-dependent native 
MPI implementation for the target computer.  While this is a reasonable basis in 
many cases, the approach has some disadvantages. 



° The two-stage installation procedure – get and build native MPI then install 
and match the Java wrappers – is  tedious and off-putting to new users.  

° On several occasions in the development of mpiJava we saw conflicts 
between the JVM environment and the native MPI runtime behaviour. The 
situation has improved, and mpiJava now runs on various combinations of 
JVM and MPI implementation. 

° Finally, this strategy simply conflicts with the ethos of Java, where pure-
Java, write-once-run-anywhere software is the order of the day. 

 

Ideally, the first two problems would be addressed by the providers of the original 
native MPI package. We envisage that they could provide a Java interface 
bundled with their C and Fortran bindings, avoiding the headache of separately 
installing the native software and Java wrapper. Also they are presumably in the 
best position to iron-out low-level conflicts and bugs. Ultimately, such packages 
should represent the fastest, industrial-strength implementations of MPJ.  
 

Meanwhile, to address the last shortcoming listed above, this paper considers 
production of a pure-Java reference implementation for MPJ. The design goals 
are that the system should be as easy to install on distributed systems as we can 
make it, and that it be sufficiently robust to be useable in an Internet 
environment. Ease of installation and use are special concerns to us. We want a 
package that will be useable not only by experienced researchers and engineers, 
but also in, say, an educational context.  
 

We are by no means the first people to consider implementing MPI-like 
functionality in pure Java, and working systems have already been reported in [3, 
4], for example. The goal here is to build on the some lessons learnt in those 
earlier systems, and produce software that is standalone, easy-to-use, robust, and 
fully implements the specification of [1].  

 
Section 2 reviews our design goals, and describes some decisions followed from 
these goals. Section 3 reviews the proposed architecture. Various distributed 
programming issues posed by computing in an unreliable environment are 
discussed in Section 4, which covers basic process creation and monitoring. This 
section assumes free use of RMI and Jini. Implementation of the message-
passing primitives on top of Java sockets and threads is covered in section 5. 
 

2. Some design decisions  
A MPJ “reference implementation” can be implemented as Java wrappers to a 
native MPI implementation, or it can be implemented in pure Java. It could also 
be implemented principally in Java with a few simple native methods to 
optimize operations (like marshalling arrays of primitive elements) that are 
difficult to do efficiently in Java. Our proposed system focuses on the latter 
possibility – essentially pure Java, although experience with DOGMA [3] and 
other systems strongly suggests that optional native support for marshalling will 
be desirable. The aim is to provide an implementation of MPJ that is maximally 



portable and requires the minimum of support for anomalies found in individual 
systems.  
 

We envisage that a user will download a jar-file of MPJ library classes onto 
machines that may host parallel jobs. Some installation “script” (preferably a 
parameterless script) is run on the host machines. This script installs a daemon 
(perhaps by registering a persistent activatable object with an existing rmid 
daemon). Parallel java codes are compiled on any host. An mpjrun program 
invoked on that host transparently loads all the user's class files into JVMs 
created on remote hosts by the MPJ daemons, and the parallel job starts. The only 
required parameters for the mpjrun program should be the class name for the 
application and the number of processors the application is to run on. These seem 
to be an irreducible minimum set of steps; a conscious goal is that the user need 
do no more than is absolutely necessary before parallel jobs can be compiled and 
run. 
 

In light of this goal one can sensibly ask if the step of installing a daemon on 
each host is essential. On networks of UNIX workstations – an important target 
for us – packages like MPICH avoid the need for special daemons by using the 
rsh command and its associated system daemon. In the end we decided this is 
not the best approach for us. Important targets, notably networks of NT 
workstations, do not provide rsh as standard, and often on UNIX systems the 
use of rsh is complicated by security considerations. Although neither RMI or 
Jini provide any magic mechanism for conjuring a process out of nothing on a 
remote host, RMI does provide a daemon called rmid for restarting activatable 
objects. These need only be installed on a host once, and can be configured to 
survive reboots of the host. We propose to use this Java-centric mechanism, on 
the optimistic assumption that rmid will become as widely run across Java-
aware platforms as rshd is on current UNIX systems. 
 

In the initial reference implementation it is likely that we will use Jini technology 
[5, 6] to facilitate location of remote MPJ daemons and to provide a framework 
for the required fault-tolerance. This choice rests on our guess that in the 
medium-to-long-term Jini will become a ubiquitous component in Java 
installations. Hence using Jini paradigms from the start should eventually 
promote interoperability and compatibility between our software and other 
systems. In terms of our aim to simplify using the system, Jini multicast discovery 
relieves the user of the need to create a “hosts” file that defines where each 
process of a parallel job should be run. If the user actually wants to restrict the 
hosts, a unicast discovery method is available. Of course it has not escaped our 
attention that eventually Jini discovery may provide a basis for much more 
dynamic access to parallel computing resources. 
 

Less fundamental assumptions bearing on the organization of the MPJ daemon 
are that standard output (and standard error) streams from all tasks in an MPJ job 
are merged non-deterministically and copied to the standard output of the 



process that initiates the job. No guarantees are made about other IO Operations 
– for now these are system-dependent. 
 

The main role of the MPJ daemons and their associated infrastructure is thus to 
provide an environment consisting of a group of processes with the user-code 
loaded and running in a reliable way. The process group is reliable in the sense 
that no partial failures should be visible to higher levels of the MPJ 
implementation or the user code.A partial failure is the situation where some 
members of a group of cooperating processes are unable to continue because 
other members of the group have crashed, or the network connection between 
members of the group has failed. To quote [7]: partial failure is a central reality 
of distributed computing. No software technology can guarantee the absence of 
total failures, in which the whole MPJ job dies at essentially the same time (and 
all resources allocated by the MPJ system to support the user's job are released). 
But total failure should be the only failure mode visible to the higher levels. 
Thus a principal role of the base layer is to detect partial failures and cleanly 
abort the whole parallel program when they occur.  
 

Once a reliable cocoon of user processes has been created through negotiation 
with the daemons, we have to establish connectivity. In the reference 
implementation this will be based on Java sockets. Recently there has been 
interest in producing Java bindings to VIA [8, 9]. Eventually this may provide a 
better platform on which to implement MPI, but for now sockets are the only 
realistic, portable option. Between the socket API and the MPJ API there will be 
an intermediate “MPJ device” level. This is modelled on the abstract device 
interface of MPICH [10]. Although the role is slightly different here – we do not 
really anticipate a need for multiple device-specific implementations. The API is 
actually not modelled in detail on the MPICH device, but the level of operations 
is similar. 
 

3. Overview of the Architecture  
A possible architecture is sketched in Figure 1. The bottom level, process 
creation and monitoring, incorporates initial negotiation with the MPJ daemon, 
and low-level services provided by this daemon, including clean termination and 
routing of output streams. The daemon invokes the MPJSlave class in a new 
JVM. MPJSlave is responsible for downloading the user's application and 
starting that application. It may also directly invoke routines to initialize the 
message-passing layer. Overall, what this bottom layer provides to the next layer 
is a reliable group of processes with user code installed. It may also provide 
some mechanisms – presumably RMI-based – for global synchronization and 
broadcasting simple information like server port numbers.  
 

The next layer manages low-level socket connections. It establishes all-to-all 
TCP socket connections between the hosts.  The idea of an “MPJ device” level is 
modelled on the Abstract Device Interface (ADI) of MPICH. A minimal API 
includes non-blocking standard-mode send and receive operations (analogous to 
MPI_ISEND and MPI_IRECV, and various wait operations – at least operations 



equivalent to MPI_WAITANY and MPI_TESTANY). All other point-to-point 
communication modes can be implemented correctly on top of this minimal set. 
Unlike the MPICH device level, we do not incorporate direct support for groups, 
communicators or (necessarily) datatypes at this level (but we do assume support 
for message contexts). Message buffers are likely to be byte arrays. The device 
level is intended to be implemented on socket send and recv operations, using 
standard Java threads and synchronization methods to achieve its richer 
semantics.  
 

The next layer is base-level MPJ, which includes point-to-point communications, 
communicators, groups, datatypes and environmental management. On top of 
this are higher-level MPJ operations including the collective operations. We 
anticipate that much of this code can be implemented by fairly direct 
transcription of the src subdirectories in the MPICH release – the parts of the 
MPICH implementation above the abstract device level. 
 

3.1 Process creation and monitoring  
We assume that an MPJ program will be written as a class that extends 
MPJApplication. To simplify downloading we assume that the user class 
also implements the Serializable interface. The default communicator is 
passed as an argument to main. Note there is no  equivalent of MPI_INIT or 
MPI_FINALIZE. Their functionality is absorbed into code executed before and 
after the user's main method is called.  
 

High Level MPI Collective operations  
Process topologies 

Base Level MPI All point-to-point modes  
Groups  
Communicators  
Datatypes 

MPJ Device Level isend, irecv, waitany, . . .  
Physical process ids (no groups)  
Contexts and tags (no communicators)  
Byte vector data 

Java Socket and Thread APIs All-to-all TCP connections  
Input handler threads 
synchronized methods, wait notify 

Process Creation and Monitoring MPJ service daemon  
Lookup, leasing, distributed events (Jini)  
exec java MPJSlave   
Serializable objects, RMIClassLoader 

Figure 1: Layers of an MPJ reference implementation 
3.2 The MPJ daemon  
The MPJ daemon must be installed on any machine that can host an MPJ 
process. It will be realized as an instance of the class MPJService. It is likely 
to be an activatable remote object registered with a system rmid daemon. The 
MPJ daemon executes the Jini discovery protocols and registers itself with 



available Jini lookup services, which we assume are accessible as part of the 
standard system environment (Figure 2).  The daemon passes the id of the new 
slave into the java  command that starts the slave running. We assume the 
daemon is running an RMI registry, in which it publishes itself. The port of this 
registry is passed to the slave as a second argument. The first actions of the slave 
object are to look up its master in the registry, then call back to the master and 
install a remote reference to itself (the slave) in the master’s slave table.  The net 
effect is that the client receives a remote reference to a new slave object running 
in a private JVM. In practice a remote destroySlave method that invokes the 
Process.destroy method will likely be needed as well. 

 
Figure 2: Independent clients may find MPJService daemons through the Jini 
lookup service. Each daemon may spawn several slaves. 
 

3.3 Handling MPJ aborts – Jini  events  
If any slave JVM terminates unexpectedly while the runTask method is in 
progress, a RemoteException will be passed to the thread that started the 
remote call. The thread should catch the exception, and generate an MPJAbort 
event. This is a Jini remote event – a subclass of RemoteEvent. Early in the 
process of creating a slave, the MPJ daemons will have registered themselves 
with the client as handlers for MPJAbort events. Their notify method will apply 
the destroy method to the appropriate slave Process object.  Hence if any 
slave aborts (while the network connection stays intact), all remaining slave 
processes associated with the job are immediately destroyed. 
3.4 Other failures – Jini leasing  
The distributed event mechanism can rapidly clean up processes in the case 
where some slaves disappear unexpectedly, but it cannot generally reclaim 
resources in the case where: 



° the client process is killed during execution of an MPJ job, 
° the daemon process is killed while it has some active slaves,  
° the case of network failures that do not directly affect the client.  
 

There is a danger that orphaned slave processes will be left running in the 
network. The solution is to use the Jini leasing paradigm. The client leases the 
services of each daemon for some interval, and continues renewing leases until 
all slaves terminate, at which point it cancels its leases. If the client process is 
killed (or it connection to the slave machine fails), its leases will expire. If a 
client’s lease expires the daemon applies the destroy method to the 
appropriate slave Process object.  If a user program deadlocks, it is assumed 
that the user eventually notices this fact and kills the client process. Soon after, 
the client’s leases expire, and the orphaned slaves are destroyed. This does not 
deal with the case where a daemon is killed while it is servicing some MPJ job, 
but the slave continues to run. To deal with this case a daemon may lease the 
service of its own slave processes immediately after creating them. Should the 
daemon die, its leases on its slaves expire, and the slaves self-destruct. 
 

3.5 Sketch of a “Device-Level” API for MPJ 
Whereas the previous section was concerned with true distributed programming 
where partial failure is the overriding concern, this section is mainly concerned 
with concurrent programming within a single JVM – providing a reliable 
environment. We assume that the MPJ user-level API will be implemented on 
top of a “device-level” API, roughly corresponding to the MPID layer in 
MPICH. The following properties are considered to be desirable for the device-
level API:  
1. It should be implementable on the standard Java API for TCP sockets – in 

the absence of select, this essentially forces the introduction of at least 
one receive thread for each input socket connection.  

2. It should be efficiently implementable (and will be implemented) with 
precisely this minimum required number of threads. 

3. It should be efficiently implementable with at least two protocols:  
a) The naive eager-send protocol, assuming receiver threads have 

unlimited buffering.  
b) A ready-to-send/ready-to-receive/rendezvous protocol requiring 

receiver threads only have enough buffering to queue unserviced 
“ready” messages.  

4. The basic operations will include isend, irecv and waitany (plus some 
other “wait” and “test” operations). These suffice to build legal 
implementations of all the MPI communication modes. Optimized entry 
points for the other modes can be added later.  

5. It is probable that all handling of groups and communicators will be outside 
the device level. The device level only has to correctly interpret absolute 
process ids and integer contexts from communicators. 

6. It may be necessary that all handling of user-buffer datatypes is outside the 
device level – here the device level only deals with byte vectors. 



 

4. Conclusions and Future Work 
In this paper we have discussed the findings from preliminary research into the 
design and implementation issues for producing a reference message passing 
interface for Java (MPJ).  Our proposed design is based on our experiences from 
creating and then supporting the widely used mpiJava wrappers, experimental 
prototypes, and from on-going discussions with the Message-Passing Working 
Group of the Java Grande Forum. Our preliminary research has highlighted a 
number of design issues that the emerging Java technology, Jini, can help us 
address. In particular the areas of application distribution, resource discovery and 
fault tolerance. Issues that other message passing systems typically fail to 
address.  Apart from a few minor questions about the exact syntax of the MPJ 
API, the design of our reference MPJ environment is complete and preliminary 
implementation work is underway. We believe that with our current man power 
we will be able to report on a limited release by the time that the workshop takes 
place in early May 2000. 
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