
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1987

MPJ: A Proposed Java Message Passing API and Environment for MPJ: A Proposed Java Message Passing API and Environment for

High Performance Computing High Performance Computing

Mark Baker
Syracuse University

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center, dbc@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Baker, Mark and Carpenter, Bryan, "MPJ: A Proposed Java Message Passing API and Environment for
High Performance Computing" (1987). Northeast Parallel Architecture Center. 79.
https://surface.syr.edu/npac/79

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Fnpac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/79?utm_source=surface.syr.edu%2Fnpac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

MPJ: A Proposed Java Message
Passing API and Environment for

High Performance Computing

Mark Baker

University of Portsmouth
Hants, UK, PO1 2EG

Mark.Baker@port.ac.uk

Bryan Carpenter
NPAC at Syracuse University

Syracuse, NY 13244, USA
dbc@npac.syr.edu

January 24th 2000

Abstract
In this paper we sketch out a proposed reference
implementation for message passing in Java (MPJ), an
MPI-like API from the Message-Passing Working Group of
the Java Grande Forum [1,2]. The proposal relies heavily on
RMI and Jini for finding computational resources, creating
slave processes, and handling failures. User-level
communication is implemented efficiently directly on top of
Java sockets.

1. Introduction
The Message-Passing Working Group of the Java Grande Forum was formed late
1998 as a response to the appearance of several prototype Java bindings for MPI-
like libraries. An initial draft for a common API specification was distributed at
Supercomputing ’98. Since then the working group has met in San Francisco and
Syracuse. The present API is now called MPJ.

Currently there is no complete implementation of the draft specification. Our
own Java message-passing interface, mpiJava, is moving towards the
“standard”. The new version 1.2 of the software supports direct communication
of objects via object serialization, which is an important step towards
implementing the specification in [1]. We will release a version 1.3 of
mpiJava, implementing the new API.

The mpiJava wrappers [2] rely on the availability of platform-dependent native
MPI implementation for the target computer. While this is a reasonable basis in
many cases, the approach has some disadvantages.

° The two-stage installation procedure – get and build native MPI then install
and match the Java wrappers – is tedious and off-putting to new users.

° On several occasions in the development of mpiJava we saw conflicts
between the JVM environment and the native MPI runtime behaviour. The
situation has improved, and mpiJava now runs on various combinations of
JVM and MPI implementation.

° Finally, this strategy simply conflicts with the ethos of Java, where pure-
Java, write-once-run-anywhere software is the order of the day.

Ideally, the first two problems would be addressed by the providers of the original
native MPI package. We envisage that they could provide a Java interface
bundled with their C and Fortran bindings, avoiding the headache of separately
installing the native software and Java wrapper. Also they are presumably in the
best position to iron-out low-level conflicts and bugs. Ultimately, such packages
should represent the fastest, industrial-strength implementations of MPJ.

Meanwhile, to address the last shortcoming listed above, this paper considers
production of a pure-Java reference implementation for MPJ. The design goals
are that the system should be as easy to install on distributed systems as we can
make it, and that it be sufficiently robust to be useable in an Internet
environment. Ease of installation and use are special concerns to us. We want a
package that will be useable not only by experienced researchers and engineers,
but also in, say, an educational context.

We are by no means the first people to consider implementing MPI-like
functionality in pure Java, and working systems have already been reported in [3,
4], for example. The goal here is to build on the some lessons learnt in those
earlier systems, and produce software that is standalone, easy-to-use, robust, and
fully implements the specification of [1].

Section 2 reviews our design goals, and describes some decisions followed from
these goals. Section 3 reviews the proposed architecture. Various distributed
programming issues posed by computing in an unreliable environment are
discussed in Section 4, which covers basic process creation and monitoring. This
section assumes free use of RMI and Jini. Implementation of the message-
passing primitives on top of Java sockets and threads is covered in section 5.

2. Some design decisions
A MPJ “reference implementation” can be implemented as Java wrappers to a
native MPI implementation, or it can be implemented in pure Java. It could also
be implemented principally in Java with a few simple native methods to
optimize operations (like marshalling arrays of primitive elements) that are
difficult to do efficiently in Java. Our proposed system focuses on the latter
possibility – essentially pure Java, although experience with DOGMA [3] and
other systems strongly suggests that optional native support for marshalling will
be desirable. The aim is to provide an implementation of MPJ that is maximally

portable and requires the minimum of support for anomalies found in individual
systems.

We envisage that a user will download a jar-file of MPJ library classes onto
machines that may host parallel jobs. Some installation “script” (preferably a
parameterless script) is run on the host machines. This script installs a daemon
(perhaps by registering a persistent activatable object with an existing rmid
daemon). Parallel java codes are compiled on any host. An mpjrun program
invoked on that host transparently loads all the user's class files into JVMs
created on remote hosts by the MPJ daemons, and the parallel job starts. The only
required parameters for the mpjrun program should be the class name for the
application and the number of processors the application is to run on. These seem
to be an irreducible minimum set of steps; a conscious goal is that the user need
do no more than is absolutely necessary before parallel jobs can be compiled and
run.

In light of this goal one can sensibly ask if the step of installing a daemon on
each host is essential. On networks of UNIX workstations – an important target
for us – packages like MPICH avoid the need for special daemons by using the
rsh command and its associated system daemon. In the end we decided this is
not the best approach for us. Important targets, notably networks of NT
workstations, do not provide rsh as standard, and often on UNIX systems the
use of rsh is complicated by security considerations. Although neither RMI or
Jini provide any magic mechanism for conjuring a process out of nothing on a
remote host, RMI does provide a daemon called rmid for restarting activatable
objects. These need only be installed on a host once, and can be configured to
survive reboots of the host. We propose to use this Java-centric mechanism, on
the optimistic assumption that rmid will become as widely run across Java-
aware platforms as rshd is on current UNIX systems.

In the initial reference implementation it is likely that we will use Jini technology
[5, 6] to facilitate location of remote MPJ daemons and to provide a framework
for the required fault-tolerance. This choice rests on our guess that in the
medium-to-long-term Jini will become a ubiquitous component in Java
installations. Hence using Jini paradigms from the start should eventually
promote interoperability and compatibility between our software and other
systems. In terms of our aim to simplify using the system, Jini multicast discovery
relieves the user of the need to create a “hosts” file that defines where each
process of a parallel job should be run. If the user actually wants to restrict the
hosts, a unicast discovery method is available. Of course it has not escaped our
attention that eventually Jini discovery may provide a basis for much more
dynamic access to parallel computing resources.

Less fundamental assumptions bearing on the organization of the MPJ daemon
are that standard output (and standard error) streams from all tasks in an MPJ job
are merged non-deterministically and copied to the standard output of the

process that initiates the job. No guarantees are made about other IO Operations
– for now these are system-dependent.

The main role of the MPJ daemons and their associated infrastructure is thus to
provide an environment consisting of a group of processes with the user-code
loaded and running in a reliable way. The process group is reliable in the sense
that no partial failures should be visible to higher levels of the MPJ
implementation or the user code.A partial failure is the situation where some
members of a group of cooperating processes are unable to continue because
other members of the group have crashed, or the network connection between
members of the group has failed. To quote [7]: partial failure is a central reality
of distributed computing. No software technology can guarantee the absence of
total failures, in which the whole MPJ job dies at essentially the same time (and
all resources allocated by the MPJ system to support the user's job are released).
But total failure should be the only failure mode visible to the higher levels.
Thus a principal role of the base layer is to detect partial failures and cleanly
abort the whole parallel program when they occur.

Once a reliable cocoon of user processes has been created through negotiation
with the daemons, we have to establish connectivity. In the reference
implementation this will be based on Java sockets. Recently there has been
interest in producing Java bindings to VIA [8, 9]. Eventually this may provide a
better platform on which to implement MPI, but for now sockets are the only
realistic, portable option. Between the socket API and the MPJ API there will be
an intermediate “MPJ device” level. This is modelled on the abstract device
interface of MPICH [10]. Although the role is slightly different here – we do not
really anticipate a need for multiple device-specific implementations. The API is
actually not modelled in detail on the MPICH device, but the level of operations
is similar.

3. Overview of the Architecture
A possible architecture is sketched in Figure 1. The bottom level, process
creation and monitoring, incorporates initial negotiation with the MPJ daemon,
and low-level services provided by this daemon, including clean termination and
routing of output streams. The daemon invokes the MPJSlave class in a new
JVM. MPJSlave is responsible for downloading the user's application and
starting that application. It may also directly invoke routines to initialize the
message-passing layer. Overall, what this bottom layer provides to the next layer
is a reliable group of processes with user code installed. It may also provide
some mechanisms – presumably RMI-based – for global synchronization and
broadcasting simple information like server port numbers.

The next layer manages low-level socket connections. It establishes all-to-all
TCP socket connections between the hosts. The idea of an “MPJ device” level is
modelled on the Abstract Device Interface (ADI) of MPICH. A minimal API
includes non-blocking standard-mode send and receive operations (analogous to
MPI_ISEND and MPI_IRECV, and various wait operations – at least operations

equivalent to MPI_WAITANY and MPI_TESTANY). All other point-to-point
communication modes can be implemented correctly on top of this minimal set.
Unlike the MPICH device level, we do not incorporate direct support for groups,
communicators or (necessarily) datatypes at this level (but we do assume support
for message contexts). Message buffers are likely to be byte arrays. The device
level is intended to be implemented on socket send and recv operations, using
standard Java threads and synchronization methods to achieve its richer
semantics.

The next layer is base-level MPJ, which includes point-to-point communications,
communicators, groups, datatypes and environmental management. On top of
this are higher-level MPJ operations including the collective operations. We
anticipate that much of this code can be implemented by fairly direct
transcription of the src subdirectories in the MPICH release – the parts of the
MPICH implementation above the abstract device level.

3.1 Process creation and monitoring
We assume that an MPJ program will be written as a class that extends
MPJApplication. To simplify downloading we assume that the user class
also implements the Serializable interface. The default communicator is
passed as an argument to main. Note there is no equivalent of MPI_INIT or
MPI_FINALIZE. Their functionality is absorbed into code executed before and
after the user's main method is called.

High Level MPI Collective operations
Process topologies

Base Level MPI All point-to-point modes
Groups
Communicators
Datatypes

MPJ Device Level isend, irecv, waitany, . . .
Physical process ids (no groups)
Contexts and tags (no communicators)
Byte vector data

Java Socket and Thread APIs All-to-all TCP connections
Input handler threads
synchronized methods, wait notify

Process Creation and Monitoring MPJ service daemon
Lookup, leasing, distributed events (Jini)
exec java MPJSlave
Serializable objects, RMIClassLoader

Figure 1: Layers of an MPJ reference implementation
3.2 The MPJ daemon
The MPJ daemon must be installed on any machine that can host an MPJ
process. It will be realized as an instance of the class MPJService. It is likely
to be an activatable remote object registered with a system rmid daemon. The
MPJ daemon executes the Jini discovery protocols and registers itself with

available Jini lookup services, which we assume are accessible as part of the
standard system environment (Figure 2). The daemon passes the id of the new
slave into the java command that starts the slave running. We assume the
daemon is running an RMI registry, in which it publishes itself. The port of this
registry is passed to the slave as a second argument. The first actions of the slave
object are to look up its master in the registry, then call back to the master and
install a remote reference to itself (the slave) in the master’s slave table. The net
effect is that the client receives a remote reference to a new slave object running
in a private JVM. In practice a remote destroySlave method that invokes the
Process.destroy method will likely be needed as well.

Figure 2: Independent clients may find MPJService daemons through the Jini
lookup service. Each daemon may spawn several slaves.

3.3 Handling MPJ aborts – Jini events
If any slave JVM terminates unexpectedly while the runTask method is in
progress, a RemoteException will be passed to the thread that started the
remote call. The thread should catch the exception, and generate an MPJAbort
event. This is a Jini remote event – a subclass of RemoteEvent. Early in the
process of creating a slave, the MPJ daemons will have registered themselves
with the client as handlers for MPJAbort events. Their notify method will apply
the destroy method to the appropriate slave Process object. Hence if any
slave aborts (while the network connection stays intact), all remaining slave
processes associated with the job are immediately destroyed.
3.4 Other failures – Jini leasing
The distributed event mechanism can rapidly clean up processes in the case
where some slaves disappear unexpectedly, but it cannot generally reclaim
resources in the case where:

° the client process is killed during execution of an MPJ job,
° the daemon process is killed while it has some active slaves,
° the case of network failures that do not directly affect the client.

There is a danger that orphaned slave processes will be left running in the
network. The solution is to use the Jini leasing paradigm. The client leases the
services of each daemon for some interval, and continues renewing leases until
all slaves terminate, at which point it cancels its leases. If the client process is
killed (or it connection to the slave machine fails), its leases will expire. If a
client’s lease expires the daemon applies the destroy method to the
appropriate slave Process object. If a user program deadlocks, it is assumed
that the user eventually notices this fact and kills the client process. Soon after,
the client’s leases expire, and the orphaned slaves are destroyed. This does not
deal with the case where a daemon is killed while it is servicing some MPJ job,
but the slave continues to run. To deal with this case a daemon may lease the
service of its own slave processes immediately after creating them. Should the
daemon die, its leases on its slaves expire, and the slaves self-destruct.

3.5 Sketch of a “Device-Level” API for MPJ
Whereas the previous section was concerned with true distributed programming
where partial failure is the overriding concern, this section is mainly concerned
with concurrent programming within a single JVM – providing a reliable
environment. We assume that the MPJ user-level API will be implemented on
top of a “device-level” API, roughly corresponding to the MPID layer in
MPICH. The following properties are considered to be desirable for the device-
level API:
1. It should be implementable on the standard Java API for TCP sockets – in

the absence of select, this essentially forces the introduction of at least
one receive thread for each input socket connection.

2. It should be efficiently implementable (and will be implemented) with
precisely this minimum required number of threads.

3. It should be efficiently implementable with at least two protocols:
a) The naive eager-send protocol, assuming receiver threads have

unlimited buffering.
b) A ready-to-send/ready-to-receive/rendezvous protocol requiring

receiver threads only have enough buffering to queue unserviced
“ready” messages.

4. The basic operations will include isend, irecv and waitany (plus some
other “wait” and “test” operations). These suffice to build legal
implementations of all the MPI communication modes. Optimized entry
points for the other modes can be added later.

5. It is probable that all handling of groups and communicators will be outside
the device level. The device level only has to correctly interpret absolute
process ids and integer contexts from communicators.

6. It may be necessary that all handling of user-buffer datatypes is outside the
device level – here the device level only deals with byte vectors.

4. Conclusions and Future Work
In this paper we have discussed the findings from preliminary research into the
design and implementation issues for producing a reference message passing
interface for Java (MPJ). Our proposed design is based on our experiences from
creating and then supporting the widely used mpiJava wrappers, experimental
prototypes, and from on-going discussions with the Message-Passing Working
Group of the Java Grande Forum. Our preliminary research has highlighted a
number of design issues that the emerging Java technology, Jini, can help us
address. In particular the areas of application distribution, resource discovery and
fault tolerance. Issues that other message passing systems typically fail to
address. Apart from a few minor questions about the exact syntax of the MPJ
API, the design of our reference MPJ environment is complete and preliminary
implementation work is underway. We believe that with our current man power
we will be able to report on a limited release by the time that the workshop takes
place in early May 2000.

5. References
1. B. Carpenter, et al. MPI for Java: Position Document and Draft API Specification,

Java Grande Forum, JGF-TR-3, Nov. 1998, http://www.javagrande.org/
2. M. Baker, D. Carpenter, G. Fox, S. Ko and X. Li, mpiJava: A Java MPI Interface,

to appear in the International Journal Scientific Programming – ISSN 1058-9244,
http://www.cs.cf.ac.uk/hpjworkshop/

3. G. Judd, et. al., DOGMA: Distributed Object Group Management Architecture, ACM
1998 Workshop on Java for High-Performance Network Computing. Palo Alto,
February 1998, Concurrency: Practice and Experience, 10(11-13), 1998,

4. K. Dincer, jmpi and a Performance Instrumentation Analysis and Visualization Tool
for jmpi, First UK Workshop on Java for High Performance Network Computing,
Europar ’98, September 1998, http://www.cs.cf.ac.uk/hpjworkshop/

5. K. Arnold et. al., The Jini Specification, Addison Wesley, 1999
6. W. Edwards, Core Jini, Prentice Hall, 1999
7. J. Waldo, et. al., A Note on Distributed Computing, Sun Microsystems Laboratories,

SMLI TR-94-29, 1994
8. M. Welsh, Using Java to Make Servers Scream, Invited talk at ACM 1999 Java

Grande Conference, San Francisco, CA, June, 1999
9. C. Chang and T. von Eiken, Interfacing Java to the Virtual Interface Architecture,

ACM 1999 Java Grande Conference, June, 1999, ACM Press
10. MPICH – A Portable Implementation of MPI,

http://www.mcs.anl.gov/mpi/mpich/
11. MPI Forum, MPI: A Message-Passing Interface Standard, University of Tennessee,

Knoxville, TN, USA, June 1995, http://www.mcs.anl.gov/mpi
12. G. Crawford, Y. Dandass and A. Skjellum, The JMPI Commercial Message

Passing Environment and Specification: Requirements, Design, Motivations,
Strategies, and Target Users, http://www.mpi-
softtech.com/publications

	MPJ: A Proposed Java Message Passing API and Environment for High Performance Computing
	Recommended Citation

	MPJ: A Proposed Java Message Passing API and Environment for High Performance Computing

