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Abstract 

 
We use a stochastic production frontier model to investigate the presence of heterogeneous production 

and its impact on fleet capacity and capacity utilization in a multi-species fishery.  Furthermore, we 

propose a new fleet capacity estimate that incorporates complete information on the stochastic differences 

between each vessel-specific technical efficiency distribution.  Results indicate that ignoring 

heterogeneity in production technologies within a multi-species fishery, as well as the complete 

distribution of a vessel’s technical efficiency score, may yield erroneous fleet-wide production profiles 

and estimates of capacity. Furthermore, our new estimate of capacity enables out-of-sample production 

predictions predicated on either homogeneity or heterogeneity modeling which may be utilized to 

facilitate policy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: fishery capacity, heterogeneous production, latent class modeling. 

JEL Code:  C23, D24, N50 
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I. Introduction: 

Efficient management of natural resources hinges on our ability to monitor and assess the status of 

resource stocks as well as the actions and economic performance of agents using these resources.  The 

sustainability and viability (both in physical and economic terms) of our resource management plans can, 

in part, be assessed by estimating the extractive or productive capacity of economic agents relying on a 

given resource.  Limitations and uncertainty associated with available data, particularly in the fishing 

industry, make estimating capacity and capacity utilization of these agents particularly difficult.  

Compounding these difficulties is the heterogeneous nature of agents using the resource.  Heterogeneity 

implies that multiple production technologies may exist, which must be accounted for when trying to 

measure capacity and capacity utilization.  Otherwise, capacity estimates based on a homogeneous 

production model may be erroneous and yield inappropriate policy recommendations.   

 

Given the ever-growing concern that excess capacity is prevalent in many natural resource environments 

[13] and the need to assess capacity and its utilization to prioritize the settings in which direct problems 

exist, it is paramount that we develop methods to investigate and control for production heterogeneity. 

Furthermore, it is important that we use measures that better incorporate information on the statistical 

reliability of our measures of fleet capacity.  This research addresses these concerns by estimating 

heterogeneous capacity and capacity utilization in the context of a multi-species fishery and by proposing 

a new measure of fleet capacity which uses information on the stochastic dominance of a vessel’s 

technical efficiency score.  Our results illustrate the complexities that arise in the presence of 

heterogeneous production technologies – a common situation in multi-species, multi-gear fisheries. 

 

Estimates of capacity in fisheries are desirable, because overcapacity is often cited as the most prevalent 

impetus for the overexploitation of fisheries around the globe [13].  Common symptoms of excess 

capacity are dwindling fish stocks, an accelerated “race for fish” resulting in a shorter fishing season, and 

excessive investment or input use (“capital stuffing”) to increase one’s odds of catching a larger share of 

the total catch (further exacerbating excess capacity in the fishery).  The increased prevalence of these 

problems has stimulated a need to not only obtain reliable estimates of capacity and capacity utilization, 

but to develop management instruments to mitigate the rate of expansion in capacity and the effect of 

overcapacity in fisheries. 

 

Input controls are often used to control overcapacity in a fishery, which in turn homogenize the effort 

exerted by members of the fleet and reduces their ability to fully use available technology and vessel 

capital.  However, the success of input control regulations is contingent on the vessel’s inability to 
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substitute out of the regulated input into another unregulated input [23].  Vessel buybacks are often 

conducted as well in an effort to remove vessels from the fleet and increase the rents of the remaining 

fishermen, thereby reducing the fleet’s effective capacity and increasing the utilization of the remaining 

vessels [17].  Alternatively, a transition to dedicated access privileges, such as individual transferable 

fishing quotas, has been argued as a cost-effective solution to overcapacity as less efficient vessels are 

bought out by more efficient vessels within the fleet [40, 22].  Following this transition, the property 

rights structure will reduce the incentives to “race for fish” and yield investments in capacity only when it 

is economically advantageous.  This said, even with all the efforts to control excess capacity and 

recognition of the associated problems, there still does not exist a consensus on the definition of capacity, 

or a means of estimating it, within the fisheries literature [20], and thus alternative and improved 

definitions may be warranted. 

 

However, one common thread among existing studies of fishery capacity is the need to estimate 

production technology in a manner consistent with economic theory.1  Currently, there are two primary 

methods used to estimate fishery production technologies: data envelope analysis (DEA) [21, 19, 30] and 

stochastic production frontier (SPF) models [31, 10, 39, 15, 22].  DEA does not assume a parametric form 

for the production technology and is therefore a more general and flexible model.  However, DEA models 

used in fisheries measure a deterministic production frontier, whereas SPF estimates a stochastic frontier 

which accounts for unexplained production variability, but in a less flexible, parametric framework.  

Deterministic frontier models assume that an agent’s inability to produce the maximum amount of output, 

given there current mix of inputs, is due to agent-specific technical inefficiency.  On the other hand, SPF 

models decompose this inefficiency into a vessel-specific component and random error component.2  The 

method adopted in this research is a latent class stochastic production frontier model (LSPF) [35], which 

synthesizes latent class regressions with SPF models and allows for heterogeneity in the production 

frontiers within the fishery.   

 

To define capacity we base our measure of capacity on the technological-economic approach [11].   This 

measure defines capacity as the maximum feasible output that can be produced given the current level of 

technological, environmental, and economic conditions.  This approach provides a primal measure of 

capacity, because it is based on the physical relationship between inputs and outputs, rather than a dual 

approach which incorporates behavioral assumptions such as cost minimization or profit maximization.  

                                                 
1 Ad hoc approaches such as the “peak to peak” method have been used in the past, which prompted many authors to 
discuss their limitations and suggest more rigorous methodologies. 
2 The purpose of this paper is not to compare and contrast DEA and SPF models.  For a more complete analysis and 
discussion of these alternative methods see [10] and [20]. 
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The latter approach is often infeasible given the lack of cost data for most fisheries.  Therefore, our 

definition of capacity is consistent with that conventionally used within the fisheries production literature. 

 

In fisheries, the complexities of estimating capacity are often exacerbated by the multi-species nature of 

many fisheries as well as unexpected, and often times unmeasurable, variation in environmental 

conditions.  Addressing the former concern is readily achieved using ray production functions [10] or 

distance functions [26].3  In our example, the flatfish fishery within the Bering Sea and Aleutian Islands 

(BSAI), we use distance functions to account for the multi-species nature of this fishery,4 to control for 

unobservable variation in the production frontier, and to generate our new measure of fleet capacity.  This 

new measure incorporates information on the second moment of a vessel’s technical efficiency score to 

determine the probability of stochastic dominance of efficiency over other vessels within the fleet. 

 

Another motivation for our work is that current estimates of capacity and capacity utilization assume that 

all agents operate with the same production technology.  This presumes that each vessel possesses 

identical output elasticities, elasticities of substitution, marginal rates of transformation, and returns to 

scale (among other things).  This implies that these vessels have the same ability to react and adapt their 

fishing strategies to regulatory measures (such as input controls or trip limits for particular species) 

enacted to mitigate risks associated with excess capacity.5  Obviously the output elasticity of a particular 

input is likely to be higher for a more productive vessel, ceteris paribus.  However, if they have the same 

technology and we observe the same input bundles, we would incorrectly conclude that the addition of 

one input would have the same effect on output. This is an erroneous conclusion, as substantial variations 

in catch (for a given level of input use) often exist within the fleet.  These differences may be explained 

either by differences in the technical efficiencies possessed by vessels using a common production 

technology, or by asymmetries in the production technologies employed by different sub-fleets or groups 

of vessels.  The latent class model used in this paper allows for both of these phenomena to be 

investigated and measured, and compared to the homogeneous production assumption.    

 

Heterogeneity in behavior has received a fair amount of attention in the stated preference literature via the 

utilization of random coefficient models [37, 38].  In fisheries, random coefficient models have been used 

to investigate heterogeneity in site choice modeling for commercial fisheries [25, 36] as well as 
                                                 
3 For a comparison of the two methods used to estimate multi-species fishery production see [14]. 
4 The modeling approach we propose can be utilized within a ray production function framework as well. 
5 This is true if we assume that fishermen do not alter their technological choice or targeting strategies for output, 
measured are the assemblage of species caught, within the fishery.   Changes in regulatory measures will have all 
kinds of implications on people choice sets for inputs and outputs, which will not only reflect technological 
production possibilities but other factors not captured by the production function. 
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recreational fisheries [29]. Although these models could be adapted to investigate heterogeneity in 

production technologies within fisheries, they do not allow the estimation of vessel-specific capacity and 

capacity utilization measures 6, which are necessary to inform policy in many contexts.  To obtain vessel-

specific measures of capacity we use the latent class regression method developed by El-Gamal and 

Grether [6,7], the EC algorithm.  Alternatively, one could estimate the latent class production functions 

using finite mixture regressions [27].  However, finite mixture models estimate the probability of 

participation in each of the respective classes whereas the EC algorithm restricts class participation 

probabilities to be either zero or one.  This allows us to precisely identify class participation and therefore 

vessel-specific measures of capacity. 

  

II. Defining and Estimating Heterogeneous Capacity 

We define J different production technology groups (segments), indexed by Jj ,...,1= .  Within each 

segment operate jN vessels, indexed by jNi ,...,1= .  Each vessel operates in weekly time periods  

iTt ,...,1= .  Therefore, a vessel’s deterministic production function is:  

 ),,,,,,(| iitititittijjit TEMEdaysVSKYY = , Jj ,...,1= , jNi ,...,1= , iTt ,...,1= .    (1) 

Let iK  be a vector of quasi-fixed inputs of production, such as a vessel’s horsepower and size, which are 

assumed to be fixed during the time horizon analyzed.7  Let tS  be a vector of exogenous input stocks, 

such as the current stock level of the target species within a fishery.  Let itV  be a vector of variable inputs 

and potentially the amount of time the fishing gear is deployed.  Let itdays  be the number of 'days fished 

per week', also a variable input.  We make 'days fished per week' explicit in our function, because this is 

the time-varying input that we adjust to calculate capacity for each vessel (any time-varying input or 

inputs would suffice).  Let itE  be a vector of variables to control for differences in technology when 

multiple methods of production exist as well as to control for time, space, and environmental factors, such 

as El Nino and La Nina events.  Let itM be a vector of other species harvested in conjunction with the 

target species in a multi-species fishery. Finally, let iTE  be a scalar measure of a vessel's level of 

technical efficiency normalized on the unit interval.8 
 

                                                 
6 A random coefficients stochastic frontier model has been developed by Greene [16]. 
7 This assumption implies that the estimates of capacity we obtain are short-run estimates of primal capacity. 
8 In the empirical section we let vessel efficiency be stochastic.  We also augment the production function with a 
random errors term independent of efficiency. 
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There are two measures of capacity we are interested in calculating: fleet capacity and a vessel-specific 

measure of capacity utilization.  These measures are a function of the available inputs (both quasi-fixed 

and variable) and maximal output produced from these inputs.  Assuming that there exist J distinct 

production technologies within the fishery, we define three different measures of fleet capacity, C , and 

one measure of capacity utilization, CU .  The challenge of measuring capacity and capacity utilization is 

in defining the appropriate output measure for each vessel used in the capacity calculation.  One common 

measure of fleet capacity is:  

  ∑
=

=
J

j

MAX
j

MAX CC
1

,  ∑∑
= =

=
j iN

i

T

t

MAX
jit

MAX
j YC

1 1
|                (2) 

where output is ),,,,,,(| iitit
MAX
iittij

MAX
jit TEMEdaysVSKYY = , and }max{ it

t

MAX
i daysdays = .   The 

MAX
idays is the maximal level of the primary variable inputs utilized by vessel i . The MAX

jitY |  is the level 

of output each vessel may derive from their quasi-fixed input base, given the maximum observed 'days 

fished per week.'  Notice that jit
MAX

jit YY || ≥ .  Alternatively, one could substitute the technically efficient 

output, 

 )1,,,,,,(| == iitititittij
TE

jit TEMEdaysVSKYY ,                (3) 

for MAX
jY in equation (2).  Notice that MAX

idays  is not used in this last formulation of maximal output.  

However, this measure would likely underestimate fleet capacity, since often TE
jit

MAX
jit YY || > .9   A second 

commonly used measure of fleet capacity is, 

∑
=

=
J

j

MAXTE
j

MAXTE CC
1

,, ,  ∑∑
= =

=
j iN

i

T

t

MAXTE
jit

MAXTE
j YC

1 1

,
|

,             (4) 

where, 

)1,,,,,(,
| == iitit

MAX
iittij

MAXTE
jit TEMEdaysVSKYY ,            (5) 

which represents the technically efficient level of output producible by vessel i assuming maximum 

utilization of the primary variable input. Not only is the primary variable input at its maximal value, but 

vessels are assumed to be 100% efficient.  Clearly, MAX
jit

MAXTE
jit YY |

,
| ≥ , so MAXMAXTE CC ≥, . 

 

                                                 
9This may not be true if a vessel is very inefficient and expending a lot of effort for their size.  In this case the 
capacity utilization score could be high, and MAX

jitY |  could be less than TE
jitY | . 
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The previous measure of fleet capacity, MAXTEC , , assumes that a vessel's technical efficiency is a fixed 

parameter in its production function.  Ultimately, we assume in the modeling exercise that technical 

efficiency (or more precisely inefficiency) is a random draw from a positive distribution and estimate 

technical efficiency as the mean of this distribution [18,12]. This parameter estimate is then used for iTE  

in the above formula.  However, this procedure ignores that fact that efficiency is actually (by 

assumption) a random draw, and that for any given draw, the rank ordering of the vessel's efficiency may 

change.  Therefore, our final estimate of fleet capacity incorporates the probability that a vessel is the 

most technically efficient vessel in the fleet.  Call this probability, 
jTEiF |  = Pr{ inefficiency draw of vessel i  < inefficiency draw of vessel  k , ki ≠ | segment j } 

 = Pr{ vessel i  is most efficient in segment j }. 

The notation F  is used because the probability is derived from a cumulative distribution function of a 

multivariate truncated normal distribution [18].  For details on the estimation of this probability in a SPF 

model see Horrace [18].  Then, our proposed measure of fleet capacity is defined as, 

∑
=

=
J

j

MAXP
j

MAXP CC
1

,, ,   ∑
=

=
j

i

N

i

MAXTE
jit

jTE
j

MAXP
j YFNC

1

,
|

|,            (6) 

This last measure of fleet capacity refines the fleet-wide measure of capacity by assigning more weight to 

those vessels which possess a higher probability of being the most technically efficient.  It also 

incorporates all information on all differences between the technical efficiency distributions of all vessels.  

(That, is the probability that 'a vessel is efficient in segment j  is a statement on the extent to which the 

vessel stochastically dominates all other vessels in j .)  The relative magnitudes of MAXPC ,  and MAXTEC ,  

will depend on probability weights, jTEiF | , for each vessel in each segment.  If the high-output vessels 

stochastically dominate other vessels in term of jTEiF | , then MAXPC ,  will be greater than MAXTEC , .  If the 

low-output vessels stochastically dominate the other vessels, then MAXTEC ,  will be greater than MAXPC , .  

Either way, estimates of MAXPC ,  will refine our capacity estimates by incorporating additional 

information contained in the efficiency probabilities. 

Ultimately, all three measures will be estimated by estimating the production function 

),,,,,,( iitititittij TEMEdaysVSKY  for different technologies 3,2,1=j  using the EC algorithm. (We 

will discuss the empirical differences in the capacity estimates in the sequel.)  Furthermore, to investigate 

the sensitivity of our capacity analysis to the selection of the full capacity values of variable inputs, we 

use two additional measures which quantify capacity at 125% and 150% of current 'days fished per week.'   



 8

That is, we will substitute )7,25.1min( itdays⋅ and )7,50.1min( itdays⋅  for MAX
idays  in equations 2, 4, 

and 6, where 'min' is the minimum of the two arguments in parentheses.  This will produce measures, 
25C , 50C , 25,TEC , 50,TEC , 25,PC , and 50,PC respectively .  For example, 

  ∑
=

=
J

j
jCC

1

2525 ,  ∑∑
= =

=
j iN

i

T

t
jitj YC

1 1

25
|

25                  (7) 

where output is ),,),7,25.1min(,,,(25
| iitititittijjit TEMEdaysVSKYY ⋅= .   

 

Each vessel’s capacity utilization is expressed as the ratio of their normal output to their capacity output 

level.10  We select, 

1,
|

|, ≤= MAXTE
jit

jitMAXTE
i Y

Y
CU , jNi ,...,1= , Jj ,...,1= .              (8) 

The closer MAXTE
iCU ,  is to one, the less excess capacity the vessel possesses. 11   The inverse of 

MAXTE
iCU ,  indicates how much the vessel’s production could increase were it to fully utilize inputs in the 

short-run, given technical efficiency and maximal 'days fished per week.' 12  We also specify capacity 

utilization at 125% and 150% of 'days fished per week,' producing 25,TE
iCU and 50,TE

iCU , as with 

capacity.  Since capacity utilization measures are vessel specific, we cannot incorporate the relative 

probabilities of efficiency, TEiF , into their calculation in any practical way.13   

 

The latent class model identifies differences in output elasticities among the J  production technologies, 

leading to curvature differences between groups of vessels.  The magnitude of these differences 

determines the degree to which a homogeneous estimate of capacity will over/under measure 

heterogeneous capacity for a given vessel.  Figures 1 and 2 illustrate these differences when one assumes 

a homogeneous versus heterogeneous model and the degree of over/under measure of capacity generated 

by the homogeneous model assumption, when there exists two distinct production technologies, 2=J  . 

 

                                                 
10 There are number of issues that must be addressed when defining capacity measures, for a more detailed 
discussion of these issues see [20]. 
11 Alternatively, we could estimate capacity utilization MAXTE

jit
TE

jit YY ,
|| / as proposed by [9] which is 'unbiased' 

because it is not directly influenced by technical inefficiency. 
12 Ultimately, we estimate both the denominator and the numerator from a regression model, even though we have 
the actual data on the numerator.  This is to ensure the capacity utilization is, indeed, less than 1. 
13 This is because the vessel specific probabilities in the numerator and denominator of capacity utilization would 
cancel. 
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Consider Figure 1, which graphs observations of output, Y , as a function of capital, K , assuming 

2=J .  That is, there are two different technologies generating the data; one technology is high-output 

(circles), while the other is low-output (diamonds).  Estimation of a homogenous production function for 

these data might produce function Y .  In this environment the two segments are evaluated as one and the 

production frontier is the average of the two technologies which lies predominately above the low-output 

technology (diamonds) and below the high-output technology (circles).   Capacity output function might 

be MAXTEY ,  (technically efficient, with maximal primary variable input, days fished).  Then the 

homogenous capacity utilization at iKK =  is MAXTE
ii YY ,/ . Figure 2, depicts the same observations but 

with different (heterogeneous) production functions estimated for each technology 1Y  and 2Y .  

Heterogeneity of the estimates produces a better fit for the two distinct production technologies (circles 

and diamonds).  The technology-specific estimates of capacity utilization are MAXTE
jiji YY ,/  , 2,1=j , for 

the low-output (diamonds) and high-output (circles) technologies, respectively.  These capacity utilization 

estimates appear to be larger than the homogenous capacity utilization estimate implied by Figure 1.  This 

implies that there is less overcapacity in the heterogeneous model than the homogeneous model. 

 

In general, aggregate measures of overcapacity will be greater when homogeneity is assumed than when 

one allows for heterogeneous production.  This is because the frontier in the homogeneous model can be 

thought of as the outer envelope for all observations, whereas in the heterogeneous model, there will be 

one frontier corresponding to each technology, some of which may lie below the uppermost frontier 

(representing the most productive technology).  However, it is possible that the measures of overcapacity 

may be underestimated by the homogeneous model.  For example, if the output elasticities are 

substantially different (and large) for one production technology, and a large number of vessels possess 

this technology, then the increase in output associated with increased variable input (used for capacity 

output) will be also be large.  Capacity output measures for this group of vessels will, in turn, be more 

precise than in the homogenous model, which would underestimate capacity.  However, the total impact 

of model misspecification (mistaking a heterogeneous production for homogenous production) depends 

on the number of vessels which possess distinct technologies and the nature and extent of the differences 

between them.  Presumably, the effects of misspecification will be lessened when the differences between 

technologies are symmetric, since the homogeneous model represents the average production process for 

the different segments.  We also note that the issues discussed above also apply to measures of capacity 

utilization, since it is the ratio of capacity output to observed output.  
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Calculation proceeds by the estimation of a latent class production function and estimation of vessel-

specific technical (in)efficiency within each class.  That is, 

)ˆ,,,,,,(ˆˆ
| iitititittijjit ETMEdaysVSKYY = , Jj ,...,1= ,            (9) 

leading to output estimates, 

)ˆ,,,,,,(ˆˆ
| iitit

MAX
iittij

MAX
jit ETMEdaysVSKYY = ,              (10) 

and 

)1,,,,,,(ˆˆ ,
| == iitit

MAX
iittij

MAXTE
jit TEMEdaysVSKYY .             (11) 

These are then plugged in our capacity and capacity utilization measures to produces corresponding 

estimates.  For example, 

∑
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J

j
jCC

1

2525 ˆˆ ,  ∑∑
= =

=
j iN

i

T

t
jitj YC

1 1

25
|

25 ˆˆ                    (12) 

where output is )ˆ,,),7,25.1min(,,,(ˆˆ 25
| iitititittijjit ETMEdaysVSKYY ⋅= .   

 

ESTIMATION 

To estimate the heterogeneous production technologies and determine the appropriate number of 

technologies, J, within the population, we emply a LSPF model [35].  The LSPF model is based on a j-

technology production function with each technology possessing the following functional representation, 

}exp{)( || jitjitjit XfY εβ= ,                    (13) 

where ],,,,,[ itititittiit MEdaysVSKX =  and jβ  is the appropriately dimensioned vector of marginal 

products.  The stochastic error jit|ε  is composed of two components to generate the stochastic frontier 

model [1, 24] and is specified as, 

jijitjit uv ||| −=ε .                       (14) 

The first error component, jitv | is an independently and identically distributed ),0( 2
vN σ random variable, 

and jiu | is a one-sided, non-negative vessel specific error term drawn from a truncated ),( 2σμN , with 

truncation below zero.14  Let jitv |  and jiu |  be independent and uncorrelated with the inputs measures. 

Given these distributional assumptions, the log-likelihood function is [4,5], 

                                                 
14 Each of the j technologies share the same distributional parameters for jitv | and jiu | .  The model is 'ill-posed' 
without this assumption [8]. 
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The EC algorithm proceeds by pre-specifying the number of production technologies within the data, J, 

and then obtaining parameter estimates assuming that each agent’s contribution to the global likelihood 

function is the maximum joint likelihood of all their observations, iT , across all the J pre-specified 

production technologies, given ( )Jββ ,...,1 .  This is specified as follows, 

∑ ∑
= =

=
J

j

Ti

t
SjititjSJitjit XYLXYL

1 1

22
1| ),,,,,(maxarg),,,,...,,,( μσγβμσγββ       (16) 

To determine the optimal number of latent production technologies, *J , estimates are calculated 

assuming a number of different technologies, *,...,1 Jj = , and likelihood ratio tests, corrected Akaike 

Information Criterion (crAIC), and Bayesian Information Criterion (BIC) are used to determine the 

optimal number of latent types within the data set.  This method is identical to that used by Schnier et al. 

[35] to identify heterogeneous measures of technical efficiency, but this is the first time it has been used 

to obtain capacity measures.15   

 

Numerical maximization of this likelihood function returns consistent estimates jβ̂ , γ̂ , 2ˆ Sσ , and μ̂ .  

Equation 15 returns consistent 2ˆ vσ  and 2σ̂ .  The distributional assumptions in the error components 

imply that the distribution of jiu |  conditional on jit|ε  iTt ,...,1=  is that of a ),( 2**
iiN σμ  random variable 

truncated below zero [4,5], where, 

                                                 
15 This method is used in the experimental economics literature to investigate heterogeneity [6, 7, 2, 34]. 
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This distribution has conditional mean [3], 

( ) ( )[ ]{ }1**
|

**
|

**
||| 1],...,1,|[ −

−Φ−−+== ijiijiijiijitji TtuE σμσμφσμε ,        (20) 

where φ  and Φ  are the probability density and cumulative distribution of a standard normal random 

variable, respectively.  In what follows, we will abbreviate the conditional mean as ]|[ || jijiuE ε where 

ji|ε  is a 1×iT  vector.  Estimates *
|ˆ jiμ and *ˆ iσ  are calculated by substituting jitjitjit XYe β̂|| −=  for jit|ε  

in equation 18 (see [3] and [18]). Then ]|[ || jijiuE ε  in equation 20 is estimated by ]|[ || jiji euE .  

Estimates of efficiency probabilities, jiTEF | , are given in Horrace [18] and are based on *
|ˆ jiμ and *ˆ iσ . 

To generate output for our capacity and capacity utilization measure we use output estimates 

jitjit XY β̂ˆ
| = , but adjusted for differing values of the primary variable input (days) and also adjusted for 

the conditional mean of efficiency, ]|[ || jiji euE .  That is, 

)1,,,,,,(ˆˆˆ
| === iitititittijjitjit TEMEdaysVSKYXY β  

is the efficient output at nominal inputs. Then 

]|[)1,,,,,,(ˆˆ
||| jitjiiitit

MAX
iittij

MAX
jit euETEMEdaysVSKYY −== ,          

is inefficient output at maximal primary variable input (maximal production with deviation from the 

efficient frontier).  Efficient output at maximal primary variable input is . 

]|[ˆˆ
|||

,
| jiji

MAX
jit

MAXTE
jit uEYY ε+= . 

These three output measure are used along with jiTEF |  to generate capacity and capacity utilization 

estimates in equations 2, 4, 6, and 8. 

 

III. Data and Econometric Specification 

To illustrate our capacity and capacity utilization measures we use weekly data on catcher-processor 

vessels operating in the BSAI flatfish fishery for the years 1994 through 2004.  The unbalanced panel data 

set consists of 4403 observations on 45 distinct vessels greater than 125 feet in length, which are required 

to have federal observers onboard for all trips.  Data obtained from the federal observers were merged 
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with data from the weekly production reports filed by these vessels to create a dataset which includes 

vessel characteristics, the time period fished, the number of hauls made, the total length of time their gear 

was deployed (duration), crew size, and a complete characterization of their catch composition.  Although 

other vessels operate within the flatfish fishery, because they are smaller than 125 feet the observer data is 

incomplete (only 30% of trips include federal observers).  However, given the size of this segment within 

the fleet and the predominance of their catch within the flatfish fishery, our data set represents the most 

coherent 'fleet' for investigating capacity and capacity utilization within the BSAI flatfish fishery.  

Additionally, the large number of vessels facilitates characterization of multiple production technologies, 

jY  within the fishery.  The primary flatfish species caught are yellowfin sole, rock sole, flathead sole, 

arrowtooth flounder, flounder, rex sole, and Greenland turbot.16  Of these species, yellowfin sole 

comprises the largest percentage of total retained catch by the fleet, approximately 57%.17  An almost 

exclusively foreign group of vessels began targeting flatfish in the BSAI in mid 1950s.  However, 

extremely high catch rates from 1959-1962 caused a dramatic decline in the fish population.  With the 

creation of the Exclusive Economic Zone (EEZ), these foreign vessels were eventually expelled in favor 

of a domestic fishery.   

 

Our fixed input of production, iK , is vessel gross-registered tonnage.18  The vector of variable inputs is 

crew members per week (Crew), the number of days fished during the week (days) and the amount of 

time the gear was used during the week to harvest flatfish (Duration).  Although data on the number of 

weekly hauls was available, trawl duration provides a finer resolution of gear use and for parsimony (as 

well as collinearity concerns) we chose to use duration instead of hauls.  Additionally, during the time 

period there was a shift in the way many of the vessels fish.  Although total fishing/towing duration 

remained stable, vessels increased the number of hauls during the week (and thus decreased the average 

duration of each haul) in an attempt to decrease haul size and increase the quality of the deliverable 

product.  It is possible that if we used the data on the number of hauls, the structural change in haul size 

could have impacted our ability to accurately characterize the contribution of hauls over the period and 

might provide misleading estimates.  Dummy variables could have been used to capture such effects, but 

by using duration we avoid the need to estimate the additional parameters.  The itE  input is the month 

                                                 
16 In addition, these vessels catch a fair amount of Pacific cod and pollock.  These species compose about 8% and 
6% of the total retained catch, respectively.  However, we exclude then from the analysis since they are considered 
bycatch. 
17 We focus on retained catch in our analysis instead of total catch, since we believe it more closely reflects the 
targeting practices of the fleet.  In the case that the retained amount of yellowfin sole was zero we substituted in a 
value of 0.0001 metric tons to facilitate the log-transformation of the production variables. 
18 We also investigated using each vessels horsepower but due to multicollinearity concerns it was eliminated. 
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(Month) that each vessel's fishing activity was reported in the weekly production reports.  This control 

variable captures seasonal variation in the migration of flatfish, as well as the adverse climatic conditions 

present within the fishery.  Finally, due to multicollinearity concerns we elected to not use information on 

the flatfish stock densities tS .19 

 

Given our multi-species application, the production specification is the output distance function of 

Shepard [32].  That is, we select yellowfin sole as are our primary output )( |, jitYeY .20  Then rock sole 

)( *
|, jitRY , flathead sole , )( *

|, jitFY and all other flatfish species retained )( *
|, jitOY , are contained in itM .  The 

superscript (*) represents scaling by )( |, jitYeY .  Then our final translog specification of the output distance 

function is, 

jijitjitOjitFjjitOjitRjjitFjitRjititj
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 (21) 

To obtain the final specification we started with the full translog functional form for the homogenous 

model (J = 1) and eliminated interaction and squared terms that were highly collinear.21  The 

homogeneous model was further refined by eliminating interaction parameters that were insignificant, 

using likelihood ratio tests, conditional on standard curvature conditions for the production possibilities 

frontier.22  We then estimated a heterogeneous model (J = 3) based on the final specification of the 

homogenous model.  Although it is possible for each segment j = 1, 2, 3 to possess its own functional 

form, we did not do this so that the homogenous and heterogeneous models can be directly compared.  

This also allows the resulting heterogeneous model to violate production curvature restrictions in each 

sector j, so, in a sense, we are allowing the heterogeneous model to identify any misspecification resulting 

from the restriction that it be the same as the homogenous model. 

 

                                                 
19 Initial investigations used tS , but it was statistically insignificant and highly collinear with the constant term due 
its relative stability throughout the period studied.   
 
21 Our criterion for this selection was a collinearity estimate of 0.9 or greater. 
22 Restrictions on the coefficients were not implemented a priori, curvature restrictions were tested following 
estimation. 
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Equation (21) under the homogeneous assumption was estimated via maximum likelihood in GAUSS.  

Estimation under the heterogeneous assumption requires simulation techniques to maximize the 

likelihood function.  This is because the likelihood function expressed in equation (16) is not smooth and 

may possess many local maxima.  Therefore special maximization techniques are necessary such as 

repeated random starting points [2, 35], simulated annealing [34], or genetic algorithms.  For this study 

we use random starting points to find the global maximum of the likelihood function, because the large 

number of parameters make the other techniques intractable.23 

 

IV. Results, Capacity and Capacity Utilization Estimates 

Estimation results assuming J = 1 and J = 3 are in Table 1.24  To determine the appropriate number of 

production technologies we used likelihood ratio tests, the corrected Akiake Information Criterion 

(crAIC) and the Bayesian Information Criterion (BIC).25  The results from these tests are in Table 2.  Due 

to the large number of parameters, we were unable to estimate a J = 4 model.  However, given the small 

number of vessels within the fleet (45 vessels), we believe that the J = 3 captures a majority of the 

production heterogeneity and expanding to J = 4 may over-fit the data.  The production elasticities 

assuming a homogeneous versus heterogeneous production technologies are in Table 3. 

 

In Table 1 for, J = 1 (homogenous), we see that the most important production inputs are a vessel’s size 

(Net-tons) and the length of time a vessel deploys its gear (Duration).  In addition, the complements in the 

multi-species production, variable itM , are all of the expected sign and the second-order terms indicate 

that the presence of flathead sole, rock sole, and the other aggregated flatfish species decrease the portion 

of yellowfin sole caught at a decreasing rate.  Furthermore, the production elasticities are all of the 

expected sign.  Thus, our results indicate that the homogeneous model’s curvature conditions are 

consistent with economic theory. 

 

The empirical results for the heterogeneous production model in Table 1 generate distinctly different 

production profiles for each technology.   The first production technology (Technology 1) contains the 

fewest vessels within the fleet (10 vessels), and their production is primarily determined by the level of 

variable inputs employed, Duration and Crew.  A vessel's size and the number of days at sea within a 

week appear to have a much smaller role than the other technologies.  In Table 3 we see that the 

elasticities of input utilization show one curvature violation for Technology 1 (Net-tons).  However, the 
                                                 
23 We use 500 random starting points to determine the maximum likelihood function value. 
24 Estimation results assuming J=2 are available upon request from the author(s). 
25 The crAIC is -2ln(L)+G*(2+(2*(G+1)*(G+2)/(N-G-2))and the BIC is -2ln(L)+G(ln(N)), where G is the number of 
parameters estimated in the model and N is the number of vessels in the fishing fleet. 
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coefficient on Net-tons is insignificant in Table 1, so we conclude that this curvature violation is 

insignificant.  Hence, the distance function for the first production technology is well-behaved. 

 

The second production technology (Technology 2) in Table 1 contains 16 vessels and its production is 

influenced more by the Month and the abundance of other flatfish species within the fishery than the other 

technologies.  In fact, these variables have a larger marginal impact on output than changes in the quasi-

fixed or variable inputs (many of which are statistically insignificant). Elasticities of production in Table 

3 are all of the expected sign for this technology.  Given the lack of statistically significant quasi-fixed 

and variable inputs and the low level of production possessed by this production technology, shown in 

Tables 8 through 10, this production segment may represent a "fringe" technology that is either not well 

represented by our specification of the distance function or is a portion of the fleet that possesses a 

different targeting strategy that the model does not capture.  Alternatively, this result may be driven by 

reduced statistical significance of the parameter estimates as additional tiers in the latent class model are 

added, which has been observed in latent class models of recreational climbing [33].   Perhaps this 

technology represents the portion of the fleet that is “latent capacity,” that is, vessels which are not 

extremely active in the fishery but could become more active if it were advantageous.  Of course this 

conjecture requires further study, but this is beyond the scope of our analysis. 

 

The third production technology (Technology 3) in Table 1 is similar to the homogeneous production 

technology.  Production for these 19 vessels is primarily determined by Net-tons, and Duration.  

However, the elasticities for Net-tons and Duration (see Table 3) are substantially different than those in 

the homogeneous production model, with Net-tons being larger and Duration being smaller.  This 

production technology also possesses a curvature violation for Crew, however given that Crew is 

insignificant we can conclude that this is an insignificant curvature violation and that this production 

technology is consistent with a well-defined distance function. 

 

 Tables 4 through 7 contain the vessel-specific inefficiency estimates *ˆ iμ and 2*ˆ iσ .  These are used to 

generate the vessel specific mean of technical inefficiency ]|[ || jiji euE  and the probability of being 

efficient, jTEiF | , as defined in [18] and [12].  Table 4 contains the results under a homogenous 

production technology, sorted on jTEiF | .  Notice that there are 45 vessels represented.  In the 

homogeneous production model vessel 40 possess the largest probability that it is the most technically 

efficient vessel )391.0( |40 =jTEF .  This is reflected in its relatively low mean technical efficiency 

(0.0648), caused by a relatively small mean (0.0307) and relatively tight variance (0.0042) prior to 
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truncation.  The results for the next two vessels in the ranking are interesting.  Vessel 15 has a larger 

mean of technical inefficiency (0.1286) than vessel 44 (0.0982), but vessel 15 possesses a higher 

probability of being efficient.  This is due to the relatively large variance (prior to truncation) of vessel 15 

(0.0236).  High variance prior to truncation implies a high variance after truncation [18], so we cannot 

reject the hypothesis that vessel 15 is efficient relative to vessel 44.  This result highlights the importance 

of using the efficiency probabilities over (or in conjunction with) the mean of technical inefficiency, 

because using the mean measures alone may produce erroneous policy recommendations if they are used 

for capacity estimation (as wee shall see).26  Another interesting phenomenon occurs near the bottom of 

Table 4 (and 5, and 6, and 7).  That is, as the *ˆ iμ  gets large (ceteris paribus) it begins to dominate 2*ˆ iσ  in 

the calculation of  ]|[ || jiji euE  from equation 20, so that *
|| ˆ]|[ ijiji euE μ→ . 

 

Similar results are in Tables 5 though 7 but for heterogeneous production technologies.  Table 5 contains 

the results for the 10 vessels employing Technology 1 (j = 1).  Table 6 contains the results for the 16 

vessels employing Technology 2 (j = 2).  Table 7 contains the results for the 19 vessels employing 

Technology 3 (j = 3).  In Table 5, vessel 22 possesses the highest ranked probability of being efficient 

( jTEF |22 ) for the first production technology.  Notably, vessel 22’s mean inefficiency estimate 

( ]|[ |22|22 jj euE ) differs when we compare the homogenous model (0.6168) to the heterogeneous model 

(decreasing to 0.0491). A similar result arises for many other vessels possessing this production 

technology; the average mean inefficiency decreases from 1.0378 (homogeneous) to 0.6229 

(heterogeneous).  The reason is that homogenous estimation forces vessels with differing technologies to 

be benchmarked against one another, and large differences in vessels are attributed to inefficiency 

differences alone (and not to technological differences).  Heterogeneous estimation mitigates differences 

due to technology, so benchmarking reveals only differences due to inefficiency.  Another interesting 

result is that vessel 41, the fifth most inefficient vessel in this group (mean efficiency 0.3181), possesses 

the second highest jTEF |41 rank.  This result is driven by the very large *2
44σ , which make it difficult to 

reject the hypothesis that this vessel is efficient.  

 

In Table 6 we see that the average mean inefficiency (for vessels possessing the second production 

technology) decreases more than any other technology when the assumption of a homogeneous 

production technology is relaxed.  The mean inefficiency decreases from 1.299 to 0.5166, and vessel 3, a 

                                                 
26  Another commonly used measure the conditional expectation of exp{-ui|j}, but this is simply a monotonic 
transformation of the condition mean used here.  Therefore, they are essentially the same for the purposes of 
comparative analysis policy evaluation. 
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relatively inefficient vessel in the homogeneous model, has the highest mean inefficiency (0.0672) and 
jTEF |3 rank.  However, vessel 3's probability (0.36735) is lower than  highest jTEiF | rank for the other 

production technologies (0.73555 in Table 5 and 0.51379 in Table 7), indicating that the probability mass 

of the distribution of relative efficiency is more spread out in the second technology that in the others. 

Notice that in Table 7 none of the vessels have a zero probability of being efficient; this is not the case for 

the other technologies in Tables 5 and 7.  The final production technology in Table 7 parallels the 

homogeneous results of Table 4 in that vessel 40 has the smallest mean inefficiency ( ]|[ |22|22 jj euE = 

0.0479) and the highest probability rank ( jTEiF |  = 0.51379).  

 

The estimates ]|[ || jiji euE  and jTEiF |  in Tables 4 though 7  are used to estimate capacity and capacity 

utilization in Tables 8 and 9, respectively, based on equations 2, 4, 6, and 8.  Consider the fleet capacity 

estimates in Table 8.  The first column contains the various technologies: the homogenous technology and 

the heterogeneous technologies identified as  " j = 1",  " j = 2", and  " j = 3".  Consider the homogenous 

technology in the first row.  The capacity estimate MAX
jĈ  for the entire fleet is 898.3 thousand metric-tons 

of yellowfin sole over the period.  This estimate assumes that each vessel is operating at its mean level of 

inefficiency ( ]|[ || jiji euE  in Table 4) and that it is operating at its maximum number of days fished per 

week (not to exceed 7 days).  We have subtracted ]|[ || jiji euE in Table 4 from the technically efficient 

output in calculating this measure.  Moving to the measure MAXTE
jC ,ˆ for the homogenous technology, we 

add the mean inefficiency back into output and the fleet capacity increases to 1,697.4 thousand metric-

tons.  This estimate assumes that all vessel are operating efficiently at the maximal days fished.  The new 

measure of capacity, MAXP
jC ,ˆ , incorporates the probability that each boat is efficient into the capacity 

calculation, and it is larger than the first two estimates (2,077.1 thousand metric-tons of fish) for the 

homogenous technology. The fact that MAXTE
j

MAXP
j CC ,, ˆˆ > implies that high-catch vessels have a higher 

probability of being efficient than low-catch vessels.  Continuing across the first row of Table 8 we see 

that the relationship  MAX
j

MAXTE
j

MAXP
j CCC ˆˆˆ ,, >>  is maintained for the homogenous technology as we 

vary the magnitude of the days fish from 125% to 150% (This is not always true in the heterogeneous 

case, as we shall see.)  In general, fleet capacity estimates for kP
jC ,ˆ , k = MAX, 20, 50 are approximately 

1.22 times those obtained using kTE
jC ,ˆ .  The kTE

jC ,ˆ  imply that fleet production could be approximately 

doubled above k
jĈ , while kP

jC ,ˆ implies it could be more than doubled for each level of primary variable 
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input (k = MAX, 20, 50) once efficiency is taken into account.  This result is challenged when we allow 

for heterogeneous production technologies. 

 

The heterogeneous fleet capacity estimates in Table 8 illustrate the advantages of using heterogeneous 

production technologies and the probability scores, TEiF .   Consider the traditional fleet capacity 

estimate, MAXTE
jC ,ˆ , for the heterogeneous production technologies.  For technologies 1, 2, and 3 the 

capacities are 457, 109, and 909.9 metric-tons of fish, respectively.  These are naturally larger than the 

heterogeneous results for MAX
jĈ  (349, 91.7, and 549.4 metric-tons of fish, respectively), because they 

place all the vessels for each technology on the efficient frontier. (This pattern is also true for different 

levels of primary variable inputs, 125% and 150% of days fished.)  The truly interesting and primary 

results of this paper occur onve we account for the probabilities of vessels being efficient in each 

technology group, using our new capacity measure MAXP
jC ,ˆ .  For Technology 1, our new capacity 

measure is actually lower than MAXTE
jC ,ˆ  (391 metric-tons vs. 457 metric-tons).  Apparently, for the first 

technology the efficient vessels tend to be those with lower catch.  This is not the case for vessels using 

technologies 2 and 3, where high-catch vessels tend to be more efficient (compare 261.1 to 109 and 915.6 

to 909.9).  In particular this phenomenon of 'high-catch boats being more efficient' is more pronounced 

for technology 2 than for technology 3.  Although we did not formally test it, it may be that case that the 

difference between 915.6 metric-tons and 909.9 metric-tons for technology 3 is statistically insignificant.  

In that case the heterogeneous production technologies have remarkably differentiated the vessel 

technology into groups of vessels that are marked by 1) low-catch efficiency, 2) high-catch efficiency, 

and 3) medium-catch efficiency. (This pattern is also repeated for different levels of primary variable 

inputs, 125% and 150% of days fished.)   

 

In Table 8 the 'Total Heterogeneous Capacity' estimate is simple the sum of the capacity estimates for 

each technology (see equations 2, 4, and 6).  These are to be compared with the (fleet) capacity estimates 

of the homogenous technology.  For example, the three heterogeneous fleet capacities based on maximal 

primary variable inputs are 990.2 metric-tons, 1,475.9 metric-tons, and 1,566.7 metric-tons of fish.  

Compare these to the three homogenous estimates: 898.3 metric-ton, 1,697.4 metric-tons, and 2,077.1 

metric-tons.  When vessels operate at nominal efficiency levels ( MAX
jĈ ) the heterogeneous capacity 

estimate is approximately equal to the homogenous estimate (compare 990.2 to 898.3).  However, the 

heterogeneous capacity estimate is smaller than the homogenous estimate once we allow vessels to move 
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to the frontier ( MAXTE
jC ,ˆ  and MAXP

jC ,ˆ ).  The reason is that the homogenous production function 

overestimates inefficiency (underestimates efficiency), so when inefficient vessels are moved to the 

frontier we get a much larger increase in the homogenous case than in the heterogeneous case. The 

heterogeneous case makes economic sense, since we would expect many vessels to be close to the 

frontier, so moving them up does not drastically effect fleet capacity.  This indicates that failing to 

properly account for heterogeneity in production technologies, when it exists, may inflate our traditional 

capacity estimates and lead to inaccurate policy advice.  By accounting for both multiple production 

technologies we are able to obtain more reliable and realistic capacity estimates.  Another interesting 

result is that as the number of production technologies estimated increases the estimates of kP
jC ,ˆ  

converge to the kTE
jC ,ˆ estimates.  This is makes sense, because if the number of production technologies 

estimated equals the number of vessels within the fleet, J = N, then these two estimates will be identical.  

 

An additional benefit of the MAXP
jC ,ˆ estimates is its ability to provide an out-of-sample analysis of the 

expected production, generated by adding a vessel (or vessels) with similar characteristics to one of the 

production technologies.  This is made clear by the fact that the estimate MAXP
jC , in equation 6, includes 

jN , so it is simply the expected efficiency output of a single vessel which is then scaled up by the number 

of vessels, jN .  For instance, in the heterogeneous production model, we conclude that adding another 

(out-of-sample) vessel to the first production technology class would increase the expected production 

level by 39.1 thousand metric-tons of yellowfin sole over the period 1994-2004 (assuming MAXdays ).  If 

we added another vessel of similar production technology to the second production technology, we would 

increase flatfish production by 16.3 thousand metric-tons over the same time period, while if we do the 

same for the third production technology, output would increase by 48.2 thousand metric-tons. These are 

fairly large differences that highlighting the importance of heterogeneity modeling. The homogeneous 

production technology model generates an out-of-sample prediction of 46.2 thousand metric-tons. Out-of-

sample prediction could be generated by dividing the total fleet capacity estimates kTE
jC ,ˆ  by fleet size, but 

these estimates assign equal weight to each vessel and do not account for potential stochastic dominance 

of one vessel over another.  Heterogeneity modeling aside, the representative-vessel, out-of-sample 
kP

jC ,ˆ estimates of fleet capacity substantially enhance a policy maker’s ability to predict fleet expansion 

production as well as the reductions in production resulting from vessel buyback programs. 
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The vessel specific measures of capacity utilization ( kTE
iUC ,ˆ ), k = MAX, 25, 50 are in Table 9 under the 

assumption of homogeneous and heterogeneous production.  Since capacity utilization is a vessel-specific 

measure, we simple report the means and standard deviation (over vessels) within each technology for 

each estimate.  Qualitatively the estimates for the homogeneous production model and the third 

technology (j = 3) of the heterogeneous model are similar (compare 0.4924 to 0.5132, and 0.5165 to 

0.5768), while there are sizable divergence between the homogenous technology and the second (j = 2) 

and third (j = 3) technology of the heterogeneous model. The increases in vessel-specific capacity 

utilization as we move from a homogenous to a heterogeneous production function result from the 

decrease in the mean inefficiency estimates for each of the j production technologies as increasing levels 

of heterogeneity are incorporated.  As illustrated in Figures 1 and 2, allowing for separate production 

frontiers refines the mean inefficiency estimates because technically efficient output is no longer defined 

by the outer envelope of all the observations, but by just those that are encompassed by the jth production 

technology.  The most pronounced difference in the vessel-specific capacity utilization measures arises 

for the second production technology (j=2) in the heterogeneous model.  As discussed earlier, the average 

mean inefficiency for this group decreased from 1.299 to 0.5166 when heterogeneous production 

technologies were incorporated, leading each vessel to be closer to its technological frontier and to exhibit 

larger capacity utilization measures.  These results highlight the importance of heterogeneous 

technologies in production estimation.   

 

Conclusion 

Previous investigations of fleet capacity and vessel-specific measures of capacity utilization are based on 

a homogeneous production technology and measurement of inefficiency relative to a single production 

frontier.  This research expands these investigations by incorporating a heterogeneous frontier.  This 

research also informs previous work on heterogeneous production [35] by analyzing production in a 

multi-species fishery and by using the information contained in the simultaneous differences of the 

distributions of technical inefficiency.  Our production technology estimates indicate that ignoring 

heterogeneity in production may overestimate a fleet’s capacity.  Furthermore, using complete 

distributional information of the fleet’s technical efficiency distribution refines the fleet-wide estimates of 

capacity and suggests that traditional measures based on technically efficient production are unreliable.  

Combined, these results highlight the importance of incorporating production heterogeneity within 

fisheries – even when vessel characteristics or other measures often used to define "technology" may be 

quite similar.  Results also show that gains may be obtained by incorporating measures on the statistical 

reliability of the technical efficiency scores using the efficiency probabilities from stochastic frontier 

models.  These latter two results should be beneficial for policy development and for out-of-sample policy 
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responses, which are used to evaluate vessel buyback programs as well as fleet restructuring and 

expansion. 
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Tables and Figures: 

Figure 1: Homogeneous Production Estimate on Heterogeneous Data.  
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Figure 2: Heterogeneous Production Estimate on Heterogeneous Data.   

 
Circles = high-output technology 
Diamonds = low-output technology 
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Table 1: LSPF Regression Results 

Coefficient Homogeneous 

Technology 

 Heterogeneous 

Technology 1 

Heterogeneous 

Technology 2 

Heterogeneous 

Technology 3 

Constant -6.4834** 

(-5.76) 

 -10.5232** 

(-2.95) 

5.1786 

(0.98) 

-5.0473** 

(-2.67) 

Net Tons 0.6108** 

(2.81) 

 -0.1759 

(-0.50) 

-0.6731 

(-0.70) 

0.7279** 

(1.96) 

Duration 1.1721** 

(2.94) 

 1.8079* 

(1.86) 

-3.1188 

(-1.52) 

2.0011** 

(3.17) 

Crew 0.5524 

(1.42) 

 2.7112** 

(2.25) 

-0.8964 

(-1.05) 

0.3960 

(0.64) 

Days 0.9826 

(1.50) 

 1.0198 

(1.10) 

4.4097 

(1.54) 

-0.4097 

(-0.39) 

Month 0.6959 

(5.98) 

 0.8138** 

(4.87) 

0.7108** 

(2.74) 

0.1287 

(0.72) 

Rock Sole -0.1146 

(-18.62) 

 -0.2003** 

(-20.80) 

-0.0477** 

(-3.60) 

-0.1029** 

(-9.96) 

FlatHead -0.1764** 

(-19.68) 

 -0.2360** 

(-23.27) 

-0.0101 

(-0.32) 

-0.0319* 

(-1.69) 

Other -0.3435** 

(-37.73) 

 -0.3000** 

(-27.76) 

-0.5256** 

(-16.17) 

-0.4675** 

(-25.48) 

(Rock Sole)2 -0.0144** 

(-14.61) 

 -0.0282** 

(-18.24) 

-0.0020 

(-0.99) 

-0.0119** 

(-7.91) 

(FlatHead)2 -0.0246** 

(-17.67) 

 -0.0364** 

(-20.04) 

-0.0055 

(-1.15) 

-0.0045* 

(-1.67) 

(Other)2 -0.0756** 

(-52.31) 

 -0.0794** 

(-38.04) 

-0.0534** 

(-12.24) 

-0.0661** 

(-26.39) 

(Net Tons)*(Duration) -0.0778 

(-1.06) 

 0.0189 

(0.25) 

0.5089 

(1.46) 

-0.1394 

(-1.28) 

(Net Tons)*(Days) 0.0759 

(0.75) 

 0.0390 

(0.26) 

-0.5718 

(-1.24) 

0.2664 

(1.71) 

(Duration)*(Crew) -0.00579 

(-0.63) 

 -0.3661 

(-1.34) 

0.2707 

(1.35) 

-0.1813** 

(-1.16) 

(Days)*(Month) -0.3226** 

(-4.81) 

 -0.2770** 

(-2.91) 

-0.3398** 

(-2.26) 

-0.2478 

(-2.39) 
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Table 1: :LSPF Regression Results (cont.) 

      

(Rock Sole)*( FlatHead) 0.005** 

(4.40) 

 0.0027** 

(2.14) 

0.0027** 

(2.14) 

0.0010 

(1.14) 

(Rock Sole)*( Other) 0.0089** 

(9.78) 

 -0.0034* 

(-1.77) 

-0.0034* 

(-1.77) 

0.0061** 

(4.65) 

(FlatHead)*( Other) 0.0187** 

(14.34) 

 0.0008 

(0.19) 

0.0008 

(0.19) 

0.0040 

(1.64) 

γ  0.4692** 

(3.12) 

 ------- 0.8287** 

(4.92) 

------- 

2
Sσ  1.9655** 

(3.53) 

 ------- 5.2632 

(1.01) 

------- 

μ  0.6017 

(0.51) 

 ------- -5.8657 

(-0.69) 

------- 

      

# of Vessels 45  10 16 19 

Mean Log-Likelihood -1.45408   -1.37883  

(** indicates significant at the 95% level; * indicates significant at the 90% level) 

 

Table 2: Model Specification Tests 

Classes Parameters Mean Ln(L) LR Test BIC crAIC 
1 22 -1.45408 ------- 12888.38 12851.40 
2 41 -1.39270 540.51 12420.19 12363.10 
3 60 -1.37883 61.07 12370.38 12314.25 

 

Table 3: Elasticities of Production 

Model/Parameter Homogeneous Heterog. j = 1 Heterog. j = 2 Heterog. j = 3 

     

Net-tons 0.1231 -0.0280* 0.5199* 0.5782 

Duration 0.5133 0.6454 1.0070* 0.3687 

Crew 0.6684* 1.1330 0.2386* -0.3679* 

Days 0.8984* 0.7903* 0.3111* 0.9459* 

Number of 

Vessels 

 

45 

 

10 

 

16 

 

19 

(* indicates that the elasticity measure is statistically insignificant) 
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Table 4: Homogeneous Vessel Efficiency Results Sorted on jTEiF |  

Vessel Number *ˆ iμ  
2*ˆ iσ  ]|[ || jiji euE  

jTEiF |  

40 0.0307 0.0042 0.0648 0.39057 

15 0.0158 0.0236 0.1286 0.18669 

44 0.0919 0.0032 0.0982 0.14813 

43 0.0721 0.0289 0.4832 0.12745 

6 0.1187 0.0034 0.1218 0.07853 

41 -0.3331 0.4895 0.4530 0.05614 

16 1.0241 0.2525 1.0498 0.00387 

42 0.4806 0.0346 0.4832 0.00378 

28 1.4629 0.4895 1.4949 0.00241 

13 1.1816 0.1702 1.1843 0.00063 

14 1.1981 0.1702 1.2004 0.00058 

25 0.5267 0.0242 0.5269 0.00053 

38 1.7064 0.3332 1.7093 0.00033 

19 0.9896 0.0086 0.9900 0.00021 

11 0.2982 0.0045 0.2982 0.00015 

35 2.0989 0.3332 2.0992 0.00004 

31 0.3696 0.0058 0.3696 0.00002 

37 0.9005 0.0471 0.9005 0.00002 

39 1.9123 0.2033 1.9123 0.00001 

23 1.3645 0.0794 1.3645 0.00000 

34 1.5789 0.1143 1.5789 0.00000 

1 0.7694 0.0036 0.7694 0.00000 

2 1.5448 0.0281 1.5448 0.00000 

3 0.6518 0.0081 0.6518 0.00000 

4 1.1475 0.0129 1.1475 0.00000 

5 1.2121 0.0545 1.2121 0.00000 

7 0.8271 0.0100 0.8271 0.00000 

8 0.9400 0.0052 0.9400 0.00000 

9 1.8226 0.0738 1.8226 0.00000 

10 1.7337 0.0860 1.7337 0.00000 

12 1.3790 0.0494 1.3790 0.00000 



 31

17 1.8863 0.0415 1.8863 0.00000 

18 2.3698 0.0794 2.3698 0.00000 

20 1.3123 0.0289 1.3123 0.00000 

21 0.7140 0.0051 0.7140 0.00000 

22 0.6168 0.0033 0.6168 0.00000 

24 1.4785 0.0432 1.4785 0.00000 

26 0.5054 0.0058 0.5054 0.00000 

27 0.3852 0.0041 0.3852 0.00000 

29 2.7632 0.2525 2.7632 0.00000 

30 1.1045 0.0094 1.1045 0.00000 

32 0.7393 0.0031 0.7393 0.00000 

33 1.2083 0.0545 1.2083 0.00000 

36 0.4820 0.0044 0.4820 0.00000 

45 0.5967 0.0041 0.5967 0.00000 
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Table 5: Heterogeneous Model Sorted on jTEiF | ; J = 3; j = 1 

Vessel Number *ˆ iμ  
2*ˆ iσ  ]|[ || jiji euE  

jTEiF |  

22 0.0160 0.0029 0.0491 0.73555 

41 -1.7690 0.7472 0.3181 0.11251 

44 0.1246 0.0027 0.1258 0.08104 

32 0.1284 0.0026 0.1294 0.07074 

6 0.2724 0.0030 0.2724 0.00010 

26 0.3307 0.0050 0.3307 0.00010 

8 0.3983 0.0045 0.3983 0.00001 

2 1.2387 0.0249 1.2387 0.00000 

4 0.7919 0.0112 0.7919 0.00000 

29 3.1898 0.2812 3.1898 0.00000 

 

 

Table 6: Heterogeneous Model Sorted on jTEiF | ; J = 3; j = 2 

Vessel Number *ˆ iμ  
2*ˆ iσ  ]|[ || jiji euE  

jTEiF |  

3 0.0014 0.0070 0.0672 0.36735 

1 0.0664 0.0031 0.0789 0.22935 

7 0.1088 0.0087 0.1304 0.11102 

21 0.1231 0.0044 0.1280 0.07375 

16 0.0750 0.2812 0.4515 0.04310 

14 0.2137 0.1732 0.4227 0.03967 

12 0.2490 0.0446 0.2967 0.03916 

5 0.3039 0.0495 0.3421 0.02845 

23 0.3502 0.0739 0.4026 0.02521 

28 0.2605 0.7472 0.7934 0.02265 

35 0.9277 0.4086 1.0237 0.00774 

38 0.9494 0.4086 1.0403 0.00734 

33 0.5200 0.0495 0.5258 0.00484 

10 0.8965 0.0805 0.8972 0.00040 

24 0.7368 0.0389 0.7369 0.00010 

17 0.9282 0.0373 0.9282 0.00001 
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Table 7: Heterogeneous Model Sorted on jTEiF | ; J = 3; j = 3 

Vessel Number *ˆ iμ  
2*ˆ iσ  ]|[ || jiji euE  

jTEiF |  

40 -0.0014 0.0037 0.0479 0.51379 

43 -0.1204 0.0256 0.2047 0.25729 

15 0.0544 0.0209 0.1374 0.13233 

42 0.1397 0.0309 0.2047 0.07019 

13 0.5443 0.1732 0.6223 0.01397 

25 0.3497 0.0214 0.3531 0.00693 

39 0.9724 0.2144 0.9931 0.00308 

37 0.5477 0.0425 0.5502 0.00228 

34 1.0770 0.1099 1.0777 0.00023 

11 0.3165 0.0039 0.3165 0.00002 

9 1.0455 0.0683 1.0455 0.00002 

20 0.7259 0.0256 0.7359 0.00001 

19 1.3370 0.0805 1.3370 0.00000 

18 2.0008 0.0739 2.0008 0.00000 

27 0.4302 0.0036 0.4302 0.00000 

30 1.0187 0.0082 1.0187 0.00000 

31 0.6226 0.0050 0.6226 0.00000 

36 0.5078 0.0038 0.5078 0.00000 

45 0.7136 0.0036 0.7136 0.00000 
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Table 8: Fleet Capacity Estimates, thousands of metric-tons of Yellowfin Sole. 

  MAX
jĈ  MAXTE

jC ,ˆ MAXP
jC ,ˆ  25ˆ

jC  25,ˆ TE
jC  25,ˆ P

jC   50ˆ
jC  50,ˆ TE

jC  50,ˆ P
jC  

             
Homogeneous  898.3 1,697.4 2,077.1  811.1 1,530.7 1,861.6  848.3 1,603.7 1,955.0
Heterogeneous             

j = 1  349.0 457.0 391.0  321.6 421.4 366.8  349.1 457.9 391.0 
j = 2  91.7 109.0 261.1  90.5 107.6 257.9  91.1 108.3 259.6 
j = 3  549.4 909.9 915.6  483.0 800.8 807.4  508.2 843.0 850.0 

             
Total 
Heterogeneous 
Capacity 

 

990.2 1,475.9 1,566.7  895.1 1,329.8 1,432.1  948.4 1,409.2 1,500.6
             

 

 

Table 9: Capacity Utilization Measures 

  MAXTE
iUC ,ˆ  25,ˆ TE

iUC  50,ˆ TE
iUC  

  Mean Std. Dev Mean Std. Dev. Mean Std. Dev. 

        

Homogeneous  0.4924 0.2097 0.5165 0.1925 0.5415 0.1890 

Heterogeneous        

 j = 1  0.6850 0.1853 0.7309 0.1449 0.6850 0.1853 

j = 2  0.7956 0.1695 0.8223 0.1409 0.8098 0.1460 

j = 3  0.5132 0.2048 0.5768 0.1710 0.5459 0.1785 

     

 


	Estimating Heterogeneous Capacity and Capacity Utilization in a Multi-Species Fishery
	Recommended Citation

	Microsoft Word - wp86.doc

