
Syracuse University
SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

2003

A Transport Framework for Distributed Brokering
Systems
Shrideep Pallickara
Indiana University

Geoffrey C. Fox
Indiana University

John Yin
Anabas Inc.

Gurham Gunduz
Syracuse University, ggunduz@syr.edu

Hongbin Liu
Indiana University

See next page for additional authors

Follow this and additional works at: https://surface.syr.edu/eecs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for
inclusion in Electrical Engineering and Computer Science by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

Recommended Citation
Pallickara, Shrideep; Fox, Geoffrey C.; Yin, John; Gunduz, Gurham; Liu, Hongbin; Uyar, Ahmet; and Varank, Mustafa, "A Transport
Framework for Distributed Brokering Systems" (2003). Electrical Engineering and Computer Science. 79.
https://surface.syr.edu/eecs/79

https://surface.syr.edu?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/79?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Authors/Contributors
Shrideep Pallickara, Geoffrey C. Fox, John Yin, Gurham Gunduz, Hongbin Liu, Ahmet Uyar, and Mustafa
Varank

This article is available at SURFACE: https://surface.syr.edu/eecs/79

https://surface.syr.edu/eecs/79?utm_source=surface.syr.edu%2Feecs%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages

A Transport Framework for Distributed Brokering Systems

Shrideep Pallickara1, Geoffrey Fox1, John Yin2, Gurhan Gunduz1,3, Hongbin Liu1, Ahmet Uyar1,3 ,
Mustafa Varank1

Community Grid Labs, Indiana University1

{spallick,gcf,holiu,mvarank}@indiana.edu,
Anabas Inc., CA2

johnyin@earthlink.net,
Department of Electrical Engineering and Computer Science, Syracuse University3

(ggunduz,auyar}@syr.edu,

Abstract

Increasingly, services need to interact with a wide
spectrum of devices with varying networking capabilities.
Services hosted on a messaging infrastructure need to
optimally utilize and exploit the conditions that exist
within the local networks. The messaging infrastructure
must manage the communication between external
resources, services and clients to achieve the highest
possible system performance and reliability. In this paper
we suggest that a transport framework needs to be
incorporated into the messaging infrastructure hosting
the services. We base our investigations in the context of
the NaradaBrokering system.

Keywords: transport frameworks, distributed brokering,
network monitoring, adaptive systems, messaging
middleware.

1. Introduction

Recent years have seen an increase in the number of
devices with differing communication, compute and
display capabilities. Increasingly, services need to interact
with a wide spectrum of devices with varying networking
capabilities. In most cases, services and the functions that
they perform are independent of the transports deployed
for communications. Furthermore, given the scale and the
variety of devices that services need to interact with,
services are usually hosted on a distributed messaging
infrastructure. It is thus entirely conceivable that a
message would traverse multiple hops (possibly over
different underlying transports) en route to its final
destinations.

Services hosted on a messaging infrastructure need to
optimally utilize and exploit the conditions that exist
within the local networks. Different transport protocols

are suited for different tasks. Multicast works best within
a domain where there is a high concentration of clients,
most of which are interested in those events. TCP works
best where reliable delivery is at a premium. UDP works
best for applications that can sustain losses in delivery to
clients but cannot afford the premiums – associated with
error correction and out of delivery in TCP – that can lead
to increased latencies.

Service protocol layers reside on top of the
transport/networking layer. This layer may have
constructed a view of the entire distributed network, but
the routing algorithms may still continue to operate on an
abstract representation of underlying communication
links. The messaging infrastructure must manage the
communication between external resources, services and
clients to achieve the highest possible system
performance and reliability. A lot of this decision making
resides in the transport layers.

In this paper we suggest that the problem is an
important one, and that, a transport framework needs to
be incorporated into the messaging infrastructure hosting
the services. We may enumerate the issues that need to be
addressed within any transport framework designed for
distributed brokering systems. These include –
1. Framework Design: Interfaces need to be general

enough to abstract the communication requirements
for most service protocol layers. At the same time,
the interfaces should ensure that they are general
enough over multiple transports, while not
incorporating details pertaining to a specific transport
into the framework.

2. Easy extensibility: An ability to incorporate support
for new protocols easily. Each implementation of the
interfaces might include support for any handshaking
protocols that might be necessary.

3. Alternate Communications: Though communications
between two nodes in the fabric would be over a
specific transport protocol, there might be

applications for which communications over that
transport protocol might be unacceptable. The
transport interfaces need to incorporate support for
this need. Performance Monitoring: The ability to
incorporate support for measuring network
performance over communication links. Performance
monitoring is generally the pre-cursor to any
remedial measures that might be deployed to assuage
network conditions.

4. Migration Support: A lot of times the underlying
transport of a communication link might become
unsuitable for continued communications under
certain network conditions. Links should thus be able
to deploy other transports for communications. Link
creators specify the conditions under which these
migrations should take place.

5. Negotiation of best transports: Two nodes should be
able to negotiate the best transport for
communications.

Finally, a truly dynamic system would allow for
adaptability in communications by responding to the
changing network conditions. Though self-sustaining,
responsive and self-healing systems are not within the
scope of this paper, the underpinnings for such systems
exist in those systems that provide a flexible transport
framework, addressing the issues enumerated above.

There are also two other issues, which
implementations of these transport interfaces need to
address. First, it is inevitable that the realms, over which
the nodes try to establish communication links, would be
protected by firewalls that would halt application
channels dead in their tracks. The messaging
infrastructure should thus be able to communicate across
firewall, DHCP and NAT boundaries. Sometimes
communications would also be through authenticating
proxies.

Second, and more subtly, there are cases where the
transport interfaces themselves would be used to process
data received and routed from and to specialized
applications. Implementations of transport interfaces
would themselves be used to incorporate support for
legacy applications, without the need to incorporate
complicate logic in the higher layers at a given node. A
similar strategy has been used by us to incorporate
support for audio/video conferencing while interfacing
with legacy clients. Work is also underway on a
specialized implementation of the interfaces to
incorporate support for PDA device. Note that data pre-
processing is done over the transport interfaces.

In this paper, we address these issues in the context of
our advanced research prototype, NaradaBrokering [1-7].
This paper is organized as follows. Section 2 provides an
overview of the related work. In section 3 we provide an
overview of the NaradaBrokering system, we then
proceed to outline the transport framework in section 4.

Section 5 presents issues related to implementing the
framework with section 6 providing results from various
transport implementations. Finally, in section 7 we outline
the future work that we intend to do, along with our
summary and conclusions (section 8) from the work
discussed in this paper.

2. Related work

JXTA [8,9] from Sun is a set of open, generalized
protocols to support peer-to-peer (P2P) [10] interactions
and core P2P capabilities such as indexing, file sharing,
searching, peer grouping and security. JXTA’s end point
layer abstracts communication details independent of
transport protocols and can be implemented on top of a
variety of transport protocols. Recent efforts from OMG
to provide a transport framework for plugging in
transports with sufficient predictability can be found in
[11]. This effort seeks extensions to the Real-time
CORBA 1.0 specification. The JMS [12] specification
abstracts interactions in publish-subscribe environments.
These interactions can be implemented on top of a variety
of transport protocols. The specification itself however
does not include a separately transport framework.
Proteus [13] is a multi-protocol library for integrating
multiple message protocols, such as SOAP and JMS,
within one system while supporting the dynamic addition
of protocols.

There are many efforts in the area of Internet
performance measurement. IP Provider Metrics, which is
a subgroup of IETF’s Bench Marking Working Group
(BMWG), is trying to develop a set of standard metrics
that can be applied to the quality, performance and
reliability of Internet data delivery services [14].
Cooperative Association for Internet Data Analysis
(CADIA) [15], a collaborative effort in engineering and
maintenance of the Internet, provides and analyses
measurement tools currently available.

The Network Weather System (NWS) [16,17] collects
end-to-end throughput and latency information and uses
that information to forecast future performance. Metrics
are collected by sensors, which are organized as a
hierarchy of sensor sets called cliques in order to prevent
contention and also to provide scalability. NWS also
accumulates CPU and available non-paged memory
information from various nodes.

Bprobe [18] measures the maximum possible
bandwidth along the bottleneck link of a given path, while
Cprobe [19] estimates the current congestion along the
same path. All measurements are non-intrusive. Remos
[20] provides a query based interface for applications to
obtain information about their execution environment
including network state.

In one of the efforts [21] to interface handheld devices
to services, the approach involves a dedicated process,

which interacts with the server. This server then
communicates with specific PDA devices. In our
approach this logic could reside in specialized links.

Protocol A

LinkFactory X

Protocol A

Protocol AProtocol A

Protocol Handler

Transport Handler

LinkFactory Y

Link
X

Link
Y

Performance
Data

3. NaradaBrokering: Brief Overview

NaradaBrokering is a distributed brokering system,
implemented on a network of cooperating broker nodes.
Broker nodes are organized in a cluster-based
architecture, which allows the system to scale to support
an arbitrary number of clients. NaradaBrokering provides
support for centralized, distributed and P2P interactions.
NaradaBrokering has been tested in synchronous and
asynchronous applications, including as a media server
for audio-video conferencing. These features supported
by NaradaBrokering, entail different and sometimes
competing networking requirements. The issues
enumerated, in the introduction (section 1.0), are thus
very relevant to the NaradaBrokering system.
Communication within NaradaBrokering is asynchronous
and the system can be used to support different
interactions by encapsulating them in specialized events.

Figure 1: Transport Framework - Main
components

4. The Transport Framework 4.1 Link

In the distributed NaradaBrokering setting it is
expected that when an event traverses an end-to-end
channel across multiple broker hops or links, the
underlying transport protocols deployed for
communications would vary. In this section we discuss
the major components that make up the transport
framework. The TransportHandler provides the
interface between the transport and protocol layers at a
node.

Operations that need to be supported between two
communication endpoints are encapsulated within the
Link primitive in the transport framework. A Link is an
abstraction that hides details pertaining to
communications. Implementations of the Link interface
can incorporate transport-specific handshaking protocols
to facilitate setting up of the communication link. Links
encapsulate abilities to perform various functions such as
1. Failure detection: Links also contain methods,

which allow for checking the status of the underlying
communication mechanism at specified intervals
while reporting communication losses to the relevant
error handlers within the transport framework.

The TransportHandler manages all registered
LinkFactorys, which are responsible for enabling
communications for a specific type, while managing the
Links created in the process. Link implementations can
monitor and report performance data in a specialized
construct viz. LinkPerformanceData. Figure 1
provides a brief overview of the main components in the
transport framework, we now discuss each of these in
detail.

2. Garbage collection: This pertains to the collection of
resources associated with the concept of alternate
links, outlined in a subsequent sub-section.

3. Performance measurements: Each implementation of
the Link interface can expose and measure a set of
performance factors.

4. Transport protocol migrations: A Link allows the
specification of a constraint (usually on the set of
performance factors that it measures) and the Link
type that communications migrate to, when the
constraint is satisfied.

5. Security Information: A Link also includes methods
to report whether communication over the link is
secure, and if so, what the security/encryption
mechanism is over the link.

4.2 Performance Metrics The AdmistrativeLink uses the information
exchanged over it to determine the optimal transport for
communications, between the nodes it is established over.
Information exchange over the AdministrativeLink
also includes information, pertaining to the supported
protocols, such as host, port, multicast group etc.

Measurement of performance factors over a link

requires cooperation, from the two nodes, between which,
it is established. Link implementers for different
transports have autonomy over the factors they measure,
and the strategy they use to do so. Factors measured over
a link include round trip delays, jitters, bandwidth, loss
rates etc. Individual Links can enable/disable the
measurement of a given performance factor or the entire
set of performance factors measured for that link. Links
expose the performance related information in the
LinkPerformanceData construct. Using this construct
it is possible to retrieve the list of factors being measured,
the type of the parameter value, the value corresponding
to a specific parameter or the complete set of performance
data that is measured over the link.

LinkNegotiators are used by the
AdminsitrativeLink to determine the best available
link to deploy for communications between two
NaradaBrokering nodes. LinkNegotiators are
initialized based on information exchanged over the
AdminitrativeLink. Initializations for
LinkNegotiators are generally similar to those required
for the creation of the corresponding Link.
LinkNegotiators currently return whether
communication is possible using the underlying protocol.
It could also be used to return metrics that would enable
the administrative link in arriving at a better decision. Also important, is the ability of a link to deploy a

different transport protocol, when communication using
the current transport degrades substantially or is
impossible to achieve. Links can specify a constraint on
the performance factors measured over a link and specify
the migration to another underlying transport protocol
when this constraint is satisfied. For example in cases
where communications using UDP is not feasible due to
high loss rates, one may consider switching to TCP for
communications. Similarly, it is conceivable that while
communicating using TCP, bandwidth and latency
constraints force a switch to UDP communications.

4.4 LinkFactory

A LinkFactory is responsible for managing Links of
a certain communications type, and provides three
important capabilities. First, it facilitates the creation of
inbound (and outbound) communication links from (and
to) other nodes. For example in the case of the TCP
communication link, the TCPLinkFactory needs to set up
a ServerSocket that would allow TCPLinks to be set up
based on the socket connections that are enabled by the
ServerSocket.accept().

4.3 Administrative Link and Negotiation of
Optimal Transport

Second, it manages the migration of communications
from a different underlying communications protocol.
This is a very important function, and each
implementation of the LinkFactory provides a list of
communication types, for which, it can manage the
migrations. Finally, the LinkFactory can enable or
disable failure-detection and performance-monitoring
over managed Links, while changing the measurement
intervals associated with these important functions.

In the distributed NaradaBrokering setting, different

broker nodes may incorporate support for link
implementations with different underlying protocols. The
framework places no constraints on the number of
different implementations of the transport framework.
Depending on the firewall, NAT and proxy boundaries
that separate the nodes, communication will be possible
over a subset of implementations of the framework.

As a pre-cursor to determining the possibility of
communications over different transports, information
needs to be exchanged between the nodes in question.
Information regarding the availability of a specific link
types could be encapsulated in an URI, which could then
possibly be used to dynamically load services. This
information is exchanged over the
AdministrativeLink, which is different from Links in
the methods that can be invoked on it. Communication
over the AdministrativeLink will generally be HTTP
based, to ensure the best possibility for communications
between two nodes.

4.5 TransportHandler

Protocol layers use the TransportHandler interface
to invoke methods for communications with other
NaradaBrokering nodes. The TransportHandler
manages all LinkFactorys and Links. Based on the
LinkFactorys that are loaded at run-time the
TransportHandler can expose the set of link types
(generally corresponding to transport types) that it
supports. A reference to the TransportHandler is
passed on to every Link created by a LinkFactory.

Individual Links use the TransportHandler
interface to report data streams that are received over the
link, loss of communications and requests to migrate to a

different communication protocol by invoking the
appropriate methods within the interface. The
TransportHandler deals with these notifications
within the transport layer, and also propagates appropriate
notifications and encapsulated data to the protocol layer.

The TransportHandler also facilitates the creation
of alternate Links, an important feature to enable effieint
communications. While routing events/messages between
two NaradaBrokering brokers (over the established link)
it should be possible for the event routing protocol to
specify the creation of alternate communication links for
disseminations.

Support for this feature arises when routing handlers
request the deployment of specific transport protocols for
routing content, for e.g. a RTP event router, in the
protocol layer, could request that RTP-based Links be
used for communication. Sometimes such links will be
needed for short durations of time. In such cases we
should be able to specify the time for which the link
should be kept alive. Expiry of this timer should cause the
garbage collection of all resources associated with the
link. The keepalive time associated with a Link
corresponds to the period of inactivity after which the
associated Link resources must be garbage collected.
Figure 2 depicts the issues that we discussed in this
section.

Transport Interfaces
Link

Performance
Data

Transport
Handler Link

Factory

Link
Factory

LinksSpecific to a transport

Link Monitors

Data accumulated
by Monitoring

Service

Broker
node

Administrative Link (HTTP)

Alternate Link

Transport
Interfaces

Created depending on application and
content being transferred

Negotiates Optimal transport for
communications

Broker
node

Monitoring
Service

Figure 2: Transport Framework – The bigger

picture.

5. Implementation Issues

TCP, UDP, Multicast, SSL, HTTP and RTP based
implementations of the transport framework are currently
available in NaradaBrokering. It is also entirely
conceivable that there could be a JXTA link, which will
defer communications to the underlying JXTA pipe
mechanism.

The SSL based implementation of the interfaces works
with authenticating proxies and supports 3 different
authentication mechanisms Basic, Digest and NTLM (a

proprietary scheme from Microsoft). This implementation
tunnels through firewalls that allow HTTPS traffic.

We provided support for legacy RTP applications by
providing a specialized implementation of the transport
interfaces. This implementation dealt with managing
initializations (and assorted set of operations) mandated
for every client connected to a broker. Raw data from
RTP applications were packaged into appropriate
NaradaBrokering events, with appropriate source and
identifiers for intelligent routing within the system. While
routing event data back to these applications, only the raw
data is routed to the application, every else – the headers,
distribution traces and other identifiers for computing
destinations – is discarded. In this approach the transport
implementation has insulated the both the brokering
system and the RTP application from being tightly
coupled to each other.

NaradaBrokering can also tunnel through
authenticating proxies and firewalls. Negotiation of
transport protocols between two nodes will soon be
addressed.

6. Experimental Results

Figure 3 depicts results for the TCP implementation of
the framework. The graphs depict the mean transit delays
for native NaradaBrokering messages traversing through
multiple (2, 3, 5 and 7) hops with multiple brokers (1, 2, 4
and 6 respectively) in the path from the sender of the
message to the receiver.

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

50 100 150 200 250 300 350 400 450 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
 (Bytes)

Transit delay for message samples in NaradaBrokering
 Different number of communication hops

hop-7
hop-5
hop-3
hop-2

Figure 3: Mean Transit Delays for varying

payloads
For each test case the payload associated with the

message was varied. The transit delay plotted is the
average of the 50 messages that were published for each
payload. The sender/receiver pair along with every broker
involved in the test cases were hosted on different
physical machines (Pentium-3, 1 GHz, 256 MB RAM).
These machines resided on a 100 Mbps LAN. The run-

time environment for all the processes is JDK-1.3 build
Blackdown-1.3.1, Red Hat Linux 7.3 The average delay
per inter-node (broker-broker, broker-client) hop was
around 500-700 microseconds. Figure 4 depicts the
standard deviation of the transit delays for message
samples used in computing the mean transit delay in
Figure 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 100 150 200 250 300 350 400 450 500

St
an

da
rd

 D
ev

ia
tio

n
(M

illi
se

co
nd

s)

Message Payload Size (Bytes)

Standard Deviation for transit delays in NaradaBrokering
 Different number of communication hops

hop-7
hop-5
hop-3
hop-2

Figure 4: Standard Deviation for varying payloads

We now compare the performance of routing RTP

audio packets using the Java Media Framework (JMF)
and NaradaBrokering. The client machine (Pentium-3, 2.2
GHz, 1 GB RAM) runs the transmitter and 30 receiver
clients (corresponding to the first 10, middle 10 and last
10 of the total 100 clients). The remaining 70 clients are
hosted on another machine (Pentium-3, 1.2 GHz, 512 MB
RAM). The JMF reflector server and a NaradaBrokering
broker are hosted on another machine (dual CPU,
Pentium-3, 1.2 GHz, 1 GB RAM). All processes involved
in the experimental setup use the Blackdown-1.3.1, Java 2
JRE JVM. The machines reside on a 100 Mbps LAN. Our
benchmark uses a ULAW format based audio file, with an
average bit-rate of 600Kbps (Kilo bits per second) and a
packet (492 bytes) being sent every 60 ms. The
transmitter client reads this file from the disk and sends it
to the server/broker machine. Then reflector server or the
NaradaBrokering broker sends it back to the receiver
clients which play it.

For every packet that is received we compute the
average transit delay associated with the delivery of RTP
packets, to each of the 10 receiver clients. We also
measure the Jitter J, which is defined by the RTP RFC
[22] as the mean deviation (smoothed absolute value) of
the difference D in packet spacing at the receiver
compared to the sender for a pair of packets. The Jitter J
is computed based on the formula: J = J + (|D(i-1, i)| -
J)/16, where D(i-1, i) corresponds to the difference

between the delay for ith RTP packet and the delay for the
(i-1)th RTP packet.

For the sample of packets that are received we also
compute the mean delay and the standard deviation
associated with the delays for individual packets. In both
cases we ignore the first 50 RTP packets from our
calculations since they correspond to application startup.

-5
0
5

10
15
20
25
30
35
40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
el

ay
 (M

illi
se

co
nd

s)

Packet Number

Average delays/packet for 30 (of the 100 total) audio-clients.
 NaradaBrokering Avg=2.89 ms, JMF Avg=2.77 ms

 NaradaBrokering-RTP
 JMF-RTP

Figure 5: Transit delays comparing
NaradaBrokering and JMF

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ji
tte

r
(M

illi
se

co
nd

s)

Packet Number

Average jitter/packet for 30 (of the 100 total) audio clients.
 NaradaBrokering Avg=0.56 ms, JMF Avg=0.61 ms

 NaradaBrokering-RTP
 JMF-RTP

Figure 6: Jitter values, comparing NaradaBrokering

and JMF

Figures 5 and 6 depict the delays and jitter (up until

that point) values associated with individual packets. The
results demonstrate comparable performance between
NaradaBrokering broker and JMF media server in routing
RTP packets.

7. Future Work

There are some issues that need to be investigated
further. Trade-offs in the language used to specify
migration constraints, the evaluation of these constraints
and whether it is practical in real time settings needs to be

investigated further. We are researching a strategy where
links report their constraints to a separate node which
would evaluate these migration constraints. This
eliminates any delays on links due to computations
involved in evaluating constraints. Extending this strategy
by incorporating support for specialized links for dealing
with handheld devices is an area we plan to explore.
Extending support further for RTP clients by including
codec transformations in the links is another area that we
intend to research to determine the complexities/trade-offs
involved in achieving this.

8. Conclusions

In the paper we presented a transport framework that is
ap

eferences

] The NaradaBrokering System

propriate for distributed brokering systems. The
framework sufficiently abstracts operations that need to
be supported for enabling efficient communications
between nodes. The paper outlined the abstractions within
the framework. We also discussed some issues pertaining
to supporting different transports within this framework.
We also presented results from our implementations.

R

[1
http://www.naradabrokering.org
[2] Shrideep Pallickara and Geoffrey Fox. A Middleware

radaBrokering:

vent

 Fox, Shrideep Pallickara and Xi Rao. A Scaleable

Framework and Architecture for Peer-to-Peer Grids. (To
appear) Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003.
[3] Geoffrey Fox and Shrideep Pallickara. Na
An Event Based Infrastructure for Building Scaleable Durable
Peer-to-Peer Grids. Chapter 22 of "Grid Computing: Making
the Global Infrastructure a Reality". John Wiley April’03.
[4] Geoffrey Fox and Shrideep Pallickara. The Narada E
Brokering System: Overview and Extensions. Proceedings of
the International Conference on Parallel and Distributed
Processing Techniques and Applications, June 2002. pp 353-
359.
[5] Geoffrey
Event Infrastructure for Peer to Peer Grids. Proceedings of ACM
Java Grande ISCOPE Conference 2002. Seattle, Washington.
November 2002.

[6] Geoffrey Fox and Shrideep Pallickara. JMS Compliance in
the Narada Event Brokering System. Proceedings of the
International Conference on Internet Computing (IC-02). June
2002. pp 391-402.
[7] Bulut et. al. Integration of NaradaBrokering and
Audio/Video Conferencing as a Web Service. Proceedings of
the IASTED IC Communications, Internet, and Information
Technology, November, 2002, in St.Thomas, US Virgin Islands.
[8] Sun Microsystems. The JXTA Project and Peer-to-Peer
Technology http://www.jxta.org
[9] The JXTA Protocol Specifications.
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
[10] Oram, A. (eds) 2001. Peer-To-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly, Sebastapol, CA 95472.
[11] Extensible Transport Framework for Real-Time
CORBA. OMG document orbos/2000-09-12. Available
from http://cgi.omg.org/docs/orbos/00-09-12.txt.
[12] M. Happner, R. Burridge and R. Sharma. Java
Message Service. http://java.sun.com/products/jms.
[13] K. Chiu, M. Govindaraju, and D. Gannon. The Proteus
Multiprotocol Library. Supercomputing, November 2002.
[14] IETF Benchmark Working subgroup:
http://www.ietf.org/html.charters/ippm-charter.html
[15] CAIDA http://www.caida.org/tools/
[16] R. Wolski, N. Spring, and C. Peterson. Implementing a
performance forecasting system for metacomputing: The
Network Weather Service. Tech. Rep. TR-cs97-540, University
of California, San Diego, May 1997.
[17] R. Wolski. Forecasting network performance to support
dynamic scheduling using the network weather service.
Proceedings of the 6th IEEE Symp. On High Performance
Distributed Computing, August 1997.
[18] R. Carter and M. Crovella. Dynamic server selection using
bandwidth probing in wide-area networks. Technical Report TR-
96-007, Boston University 1996.
[19] R. Carter and M. Crovella. Measuring bottleneck link speed
in packet-switched networks. Technical Report TR-96-006,
Boston University 1996.
[20] B. Lowecamp, N. Miller, D. Sutherland, T. Gross, P.
Steenkiste and J. Subhlok. A resource query interface for
network-aware applications. In Proc. 7th IEEE Symp. On High
Performance Distributed Computing, August 1998.
[21] G. Fox, et. al. on "Integration of Hand-Held Devices into
Collaborative Environments" IC'02.
[22] RTP: A Transport Protocol for Real-Time Applications
(IETF RFC 1889) http://www.ietf.org/rfc/rfc1889.txt.

http://www.naradabrokering.org/
http://www.jxta.org/
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
http://java.sun.com/products/jms
http://www.ietf.org/html.charters/ippm-charter.html
http://www.caida.org/tools/
http://www.ietf.org/rfc/rfc1889.txt

	Syracuse University
	SURFACE
	2003

	A Transport Framework for Distributed Brokering Systems
	Shrideep Pallickara
	Geoffrey C. Fox
	John Yin
	Gurham Gunduz
	Hongbin Liu
	See next page for additional authors
	Recommended Citation
	Authors/Contributors

	Abstract
	1. Introduction
	2. Related work
	3. NaradaBrokering: Brief Overview
	4. The Transport Framework
	4.1 Link
	4.2 Performance Metrics
	4.3 Administrative Link and Negotiation of Optimal Transport
	4.4 LinkFactory
	4.5 TransportHandler

	5. Implementation Issues
	6. Experimental Results
	7. Future Work
	8. Conclusions
	References

