2006

Random effects and Spatial Autocorrelations with Equal Weights

Badi H. Baltagi
Syracuse University. Center for Policy Research, bbaltagi@maxwell.syr.edu

Follow this and additional works at: https://surface.syr.edu/cpr

Part of the Mathematics Commons

Recommended Citation
https://surface.syr.edu/cpr/77

This Working Paper is brought to you for free and open access by the Maxwell School of Citizenship and Public Affairs at SURFACE. It has been accepted for inclusion in Center for Policy Research by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Center for Policy Research
Working Paper No. 89

RANDOM EFFECTS AND SPATIAL
AUTOCORRELATION WITH EQUAL WEIGHTS

Badi H. Baltagi

December 2006

$5.00

Up-to-date information about CPR’s research projects and other activities is available from our World Wide Web site at www-cpr.maxwell.syr.edu. All recent working papers and Policy Briefs can be read and/or printed from there as well.
ASSOCIATE DIRECTORS

Margaret Austin
Associate Director
Budget and Administration

Douglas Wolf
Professor of Public Administration
Associate Director, Aging Studies Program

John Yinger
Professor of Economics and Public Administration
Associate Director, Metropolitan Studies Program

SENIOR RESEARCH ASSOCIATES

Badi Baltagi .. Economics
Pablo Beramendi Political Science
Dan Black .. Economics
Lloyd Blanchard .. Public Administration
William Duncombe Public Administration
Gary Engelhardt .. Economics
Deborah Freund .. Public Administration
Madonna Harrington Meyer
Associate Director, Aging Studies Program
Christine Himes .. Sociology
William C. Horrace Economics
Duke Kao .. Economics
Eric Kingson .. Social Work
Thomas Kniesner .. Economics
Jeffrey Kubik .. Economics
Andrew London .. Sociology
Len Lopoo ... Public Administration
Jerry Miner ... Economics
Jan Ondrich .. Economics
John Palmer ... Public Administration
Lori Ploutz-Snyder Exercise Science
David Popp .. Public Administration
Grant Reehler .. Political Science
Christopher Rohfs Economics
Stuart Rosenthal Economics
Ross Rubenstein Public Administration
Margaret Usdansky
Professor of Economics
Michael Wasylenko Economics
Janet Wilmoth .. Sociology

GRADUATE ASSOCIATES

Javier Baez ... Economics
Sonali Ballal .. Public Administration
Jesse Bricker .. Economics
Maria Brown .. Social Science
Mike Erickson .. Economics
Qu Feng .. Economics
Katie Fitzpatrick Economics
Alexandre Genest Public Administration
Julie Anna Golebiewski
Associate Director, Aging Studies Program
Nadia Greenhalgh-Stanley Economics
Tamara Hafner .. Public Administration
Yue Hu .. Economics
Joseph Marchand Economics
Neelakshi Medhi Social Science
Larry Miller ... Public Administration
Wendy Parker .. Sociology
Emily Pas .. Economics
Shawn Rohlin .. Economics
Cynthia Searcy .. Public Administration
Jacqueline Smith Sociology
Jeff Thompson .. Economics
Coady Wing ... Public Administration
Daniel Yanulavich Public Administration
Ryan Yeung ... Public Administration

STAFF

Kelly Bogart
Administrative Secretary
Martha Bonney .. Publications/Events Coordinator
Karen Cimilluca Administrative Secretary
Kitty Nasto ... Administrative Secretary
Candi Patterson Computer Consultant
Mary Santy ... Administrative Secretary
Tammy Tanner Librarian/Office Coordinator
Abstract:

This note considers a panel data regression model with spatial autoregressive disturbances and random effects where the weight matrix is normalized and has equal elements. This is motivated by Kelejian, et al. (2005) who argue that such a weighting matrix, having blocks of equal elements, might be considered when units are equally distant within certain neighborhoods but unrelated between neighborhoods. We derive a simple weighted least squares transformation that obtains GLS on this model as a simple OLS. For the special case of a spatial panel model with no random effects, we obtain two sufficient conditions where GLS on this model is equivalent to OLS. Finally, we show that these results, for the equal weight matrix, hold whether we use the spatial autoregressive specification, the spatial moving average specification, the spatial error components specification or the Kapoor, et al. (2005) alternative to modeling panel data with spatially correlated error components.

Keywords: Panel data, Spatial Error Correlation, Equal Weights, Error Components.
JEL classification: C23, C12
Random Effects and Spatial Autocorrelation With Equal Weights*

by

Badi H. Baltagi

Department of Economics and Center For Policy Research,
Syracuse University, 426 Eggers Hall,
Syracuse, New York 13244-1020, USA
(315) 443-1630
bbaltagi@maxwell.syr.edu

Keywords: Panel data, Spatial Error Correlation, Equal Weights, Error Components.

JEL classification: C23, C12

ABSTRACT

This note considers a panel data regression model with spatial autoregressive disturbances and random effects where the weight matrix is normalized and has equal elements. This is motivated by Kelejian, et al. (2005) who argue that such a weighting matrix, having blocks of equal elements, might be considered when units are equally distant within certain neighborhoods but unrelated between neighborhoods. We derive a simple weighted least squares transformation that obtains GLS on this model as a simple OLS. For the special case of a spatial panel model with no random effects, we obtain two sufficient conditions where GLS on this model is equivalent to OLS. Finally, we show that these results, for the equal weight matrix, hold whether we use the spatial autoregressive specification, the spatial moving average specification, the spatial error components specification or the Kapoor, et al. (2005) alternative to modelling panel data with spatially correlated error components.

1 Introduction

Spatial models deal with correlation across spatial units usually in a cross-section setting. However, Anselin (1988) also considered spatial panel data models which allow for random effects across these units, see also Baltagi, Song and Koh (2003) and Kapoor, Kelejian and

1 I would like to thank Paolo Paruolo, Tom Kniesner and an anonymous referee for helpful comments and suggestions.
Prucha (2005) for two recent studies on testing and estimation in these models and Case (1991) and Holtz-Eakin (1994) for two empirical applications. This note focuses on a panel data regression model with spatial autoregressive disturbances and random effects where the weight matrix is normalized and has equal elements. This is motivated by Kelejian and Prucha (2002) and Kelejian, et al. (2005) who use this weight matrix in the context of a spatially lagged dependent variable model. Kelejian, et al. (2005) argue that such a weighting matrix having blocks of equal elements might be considered when units are equally distant within certain neighborhoods but unrelated between neighborhoods. Section 2 introduces a panel regression model with spatial autoregressive (SAR) disturbances and random effects. We show that for the equal weight matrix case, one can derive a simple weighted least squares transformation that obtains GLS on this model as a simple OLS. For the special case of a spatial panel model with no random effects, we obtain two sufficient conditions where GLS on this model is equivalent to OLS. Section 3 extends these results to other type of spatial error specifications, including the spatial moving average (SMA) and spatial error components (SEC) cases as well as an alternative panel data regression model with spatially correlated error components suggested by Kapoor, et al. (2005).

2 The Model

Consider the following panel data regression model

\[y_{ti} = \alpha + X'_{ti} \beta + u_{ti}, \quad i = 1, \ldots, N; \quad t = 1, \ldots, T, \]

where \(y_{ti} \) is the observation on the \(i \)th region for the \(t \)th time period, \(X_{ti} \) denotes the \(k \times 1 \) vector of observations on the nonstochastic regressors and \(u_{ti} \) is the regression disturbance. \(\alpha \) is a scalar and \(\beta \) is a \(k \times 1 \) vector of slope parameters. In vector form, the disturbance vector of (1) is assumed to have random region effects and spatially autoregressive (SAR) remainder disturbances:

\[u_t = \mu + \epsilon_t, \]

with

\[\epsilon_t = \lambda W_N \epsilon_t + \nu_t, \]

where \(u'_t = (u_{t1}, \ldots, u_{tN}) \) and \(\epsilon_t \) and \(\nu_t \) are similarly defined. \(\mu' = (\mu_1, \mu_2, \ldots, \mu_N) \) denote the vector of random region effects which are assumed to be \(\text{IID}(0, \sigma_\mu^2) \). \(\lambda \) is the scalar spatial autoregressive coefficient with \(|\lambda| < 1 \), while \(\nu_t \sim \text{IID}(0, \sigma_\nu^2) \). We assume that \(\mu \) and \(\nu \) are independent. \(W_N \) is an \(N \times N \) weighting matrix with zero elements across the diagonal, and equal elements \((1/(N-1))\) off the diagonal. In other words, the disturbance for each unit is related to an average of the \((N-1)\) disturbances of the remaining units. Such a weighting matrix was recently considered by Kelejian and Prucha (2002), Lee (2002) and Kelejian, et al. (2005) and would naturally arise if all units are neighbors to each other and there is no other reasonable or observable measure of distance between them. Kelejian and Prucha (2002) consider the case of a spatially lagged dependent variable model with a row normalized weighting matrix with equal elements. They show that OLS and 2SLS are
inconsistent unless panel data is available. Kelejian, et al. (2005) give exact small sample results that corroborate the earlier asymptotic findings. In addition, they demonstrate that for the spatial panel data case with fixed effects across time, OLS and 2SLS are both inconsistent. Lee (2002), on the other hand, shows that OLS can be consistent in an economic spatial environment where each unit can be influenced aggregately by a significant portion of units in the population.

One can rewrite (3) as

$$\epsilon_t = (I_N - \lambda W_N)^{-1} \nu_t = B_N^{-1} \nu_t$$

where \(B_N = I_N - \lambda W_N\). The model (1) can be rewritten in matrix notation as

$$y = \alpha \nu_{NT} + X \beta + u = Z \gamma + u$$

where \(y\) is of dimension \(NT \times 1\), \(\nu_{NT}\) is a vector of ones of dimension \(NT\), \(X\) is \(NT \times k\), \(u\) is \(NT \times 1\) and \(Z = (\nu_{NT}, X)\). \(X\) is assumed to be of full column rank and its elements are assumed to be bounded in absolute value. The disturbance term can be written in vector form as

$$u = (\nu_T \otimes I_N) \mu + (I_T \otimes B_N^{-1}) \nu$$

where \(\nu' = (\nu'_1, \nu'_2, \ldots, \nu'_T)\) and \(u\) is similarly defined. \(\nu_T\) is a vector of ones of dimension \(T\), \(I_T\) is an identity matrix of dimension \(T\) and \(\otimes\) denotes the Kronecker product. Under these assumptions, the variance-covariance matrix of \(u\) can be written as

$$\Omega = \sigma^2_B (J_T \otimes I_N) + \sigma^2_\nu (I_T \otimes (B_N B_N^{-1}))$$

Kelejian and Prucha (2002) showed that \(W_N\) can be written as

$$W_N = \frac{J_N}{(N - 1)} - \frac{I_N}{(N - 1)}$$

where \(J_N\) is a matrix of ones, and \(I_N\) is an identity matrix, both of dimension \(N\). Defining \(\bar{J}_N = J_N/N\) and \(E_N = I_N - J_N\), and replacing \(J_N\) and \(I_N\) by their equivalent terms \(N \bar{J}_N\) and \((E_N + \bar{J}_N)\) and collecting like terms, see Wansbeek and Kapteyn (1982), one gets

$$W_N = \bar{J}_N - \frac{E_N}{(N - 1)}$$

with

$$B_N = (I_N - \lambda W_N) = \frac{(N - 1 + \lambda)}{(N - 1)} E_N + (1 - \lambda)\bar{J}_N$$

Therefore

$$B_N^{-1} = (I_N - \lambda W_N)^{-1} = \frac{(N - 1)}{(N - 1 + \lambda)} E_N + \frac{1}{(1 - \lambda)} \bar{J}_N$$

Note that \(W_N\) is symmetric and

$$(B_N' B_N)^{-1} = \frac{(N - 1)^2}{(N - 1 + \lambda)^2} E_N + \frac{1}{(1 - \lambda)^2} J_N = c_1 E_N + c_2 J_N$$
where \(c_1 = \frac{(N-1)^2}{(N-1 + \lambda)^2} \) and \(c_2 = \frac{1}{(1+\lambda)^2} \).

Replacing \(J_T \) and \(I_T \) by their equivalent terms \(T J_T \) and \((E_T + J_T) \) in (7), one gets

\[
\Omega = T \sigma^2_{\mu}((J_T \otimes (E_N + J_N)) + \sigma^2_{\nu}((E_T + J_T) \otimes (c_1 E_N + c_2 J_N))
\]

Collecting like terms, we obtain the spectral decomposition of \(\Omega \),

\[
\Omega = (T \sigma^2_{\mu} + c_1 \sigma^2_{\nu})(J_T \otimes E_N) + (T \sigma^2_{\mu} + c_2 \sigma^2_{\nu})(J_T \otimes J_N) + c_1 \sigma^2_{\nu}(E_T \otimes E_N) + c_2 \sigma^2_{\nu}(E_T \otimes J_N)
\]

Hence

\[
\Omega^{-1} = \frac{1}{(T \sigma^2_{\mu} + c_1 \sigma^2_{\nu})} (J_T \otimes E_N) + \frac{1}{(T \sigma^2_{\mu} + c_2 \sigma^2_{\nu})} (J_T \otimes J_N)
+ \frac{1}{c_1 \sigma^2_{\nu}} (E_T \otimes E_N) + \frac{1}{c_2 \sigma^2_{\nu}} (E_T \otimes J_N)
\]

and

\[
\Omega^{-1/2} = \frac{1}{\sqrt{(T \sigma^2_{\mu} + c_1 \sigma^2_{\nu})}} (J_T \otimes E_N) + \frac{1}{\sqrt{(T \sigma^2_{\mu} + c_2 \sigma^2_{\nu})}} (J_T \otimes J_N)
+ \frac{1}{\sqrt{c_1 \sigma^2_{\nu}}} (E_T \otimes E_N) + \frac{1}{\sqrt{c_2 \sigma^2_{\nu}}} (E_T \otimes J_N)
\]

Note that if \(\lambda = 0 \), so that there is no spatial autocorrelation, then \(c_1 = c_2 = 1 \) and \(\Omega \) in (13) reduces to the familiar variance-covariance matrix of the random effects panel data model given by \(\Omega = (T \sigma^2_{\mu} + \sigma^2_{\nu})(J_T \otimes I_N) + \sigma^2_{\nu}(E_T \otimes I_N) \), see Baltagi (2005). Premultiplying the regression model in (5) by \(\sigma_{\nu} \sqrt{c_1 \Omega^{-1/2}} \) from (15), one gets a similar transformation to the one suggested by Fuller and Battese (1973) for the random effects panel data model.

In fact \(y^* = \sigma_{\nu} \sqrt{c_1} \Omega^{-1/2} y \) will have typical elements \(y^*_{li} = (y_{li} - \theta_1 \overline{y}_l - \theta_2 \overline{y}_i + \theta_3 \overline{y}_n) \) where \(\overline{y}_l \) denotes the sample average over regions, \(\overline{y}_i \) denotes the sample average over time, and \(\overline{y}_n \) denotes the average over the entire sample. The \(\theta \)'s can be easily obtained from the corresponding \((c_1, c_2, \sigma^2_{\nu}, \sigma^2_{\mu}) \) parameters. For example, \(\theta_1 \) is the coefficient corresponding to \((I_T \otimes J_N)\) which can be verified to be \(1 - \sqrt{\frac{c_1}{c_2}} \); \(\theta_2 \) is the coefficient corresponding to \((J_T \otimes I_N)\) which can be verified to be \(1 - \sqrt{\frac{c_1 \sigma^2_{\nu}}{(T \sigma^2_{\mu} + c_1 \sigma^2_{\nu})}} \); and \(\theta_3 \) is the coefficient corresponding to \((J_T \otimes J_N)\) which can be verified to be \(1 - \sqrt{\frac{c_1}{c_2} - \sqrt{\frac{c_1 \sigma^2_{\nu}}{(T \sigma^2_{\mu} + c_1 \sigma^2_{\nu})}} + \sqrt{\frac{c_1 \sigma^2_{\nu}}{(T \sigma^2_{\mu} + c_2 \sigma^2_{\nu})}}}) \).

If \(\lambda = 0 \), then \(\theta_1 = \theta_3 = 0 \) and \(\theta_2 = 1 - \frac{\sigma_{\nu}}{\sqrt{T \sigma^2_{\mu} + \sigma^2_{\nu}}} \), which reduces \(y^*_{li} \) to \((y_{li} - \theta_2 \overline{y}_i)\). This is the familiar Fuller and Battese (1973) random effects transformation that allows us to obtain GLS as weighted least squares.

If \(\sigma^2_{\mu} = 0 \), i.e., the case of no random effects, the variance-covariance matrix in (7) reduces to

\[
\Omega = \sigma^2_{\nu}(I_T \otimes (B_N' B_N)^{-1})
\]
which from (11) reduces to
\[\Omega = \sigma_\nu^2 (I_T \otimes (c_1 E_N + c_2 J_N)) \]

Hence
\[\Omega^{-1} = \frac{1}{c_1 \sigma_\nu^2} (I_T \otimes E_N) + \frac{1}{c_2 \sigma_\nu^2} (I_T \otimes J_N) \]

and
\[\Omega^{-1/2} = \frac{1}{\sigma_\nu \sqrt{c_1}} (I_T \otimes E_N) + \frac{1}{\sigma_\nu \sqrt{c_2}} (I_T \otimes J_N) \]

so that the typical element of \(y^* = \sigma_\nu \sqrt{c_1} \Omega^{-1/2} y \) is \(y_{it}^* = (y_{it} - \theta_1 y_{i.}) \) where \(\theta_1 = (1 - \sqrt{c_1}). \)

Note that as \(N \to \infty, \sqrt{\frac{c_1}{c_2}} \to (1 - \lambda), \) and \(\theta_1 \to \lambda. \)

A special case of this model is the cross-section spatial regression model with \((T = 1) \) and equal weight matrix given by (8). In this case, one can show that OLS is equivalent to GLS as long as there is a constant in the regression. To prove this, note that the model in (5) becomes

\[y_N = \alpha \iota_N + X_N \beta + u_N = Z_N \gamma + u_N \]

where \(Z_N = (\iota_N, X_N) \) and \(\gamma = (\alpha, \beta)' \). Here \(y_N \) is a vector of observations on the dependent variable and \(\iota_N \) is a vector of ones, both of dimension \(N \). \(X_N \) is an \(N \times K \) matrix of observations on the \(K \) explanatory variables. The disturbance vector is assumed to follow a spatial autoregressive process

\[u_N = \lambda W_N u_N + \nu_N \]

where \(W_N \) is an \(N \times N \) equal weighting matrix given in (8). In fact, one can prove that the Zyskind (1967) necessary and sufficient condition for OLS to be equivalent to GLS on (20) is satisfied. This calls for \(P_Z \Sigma = \Sigma P_Z \), where \(Z = Z_N = (\iota_N, X_N) \) is the matrix of regressors in (20) and \(\Sigma = E(u_N u_N') = \sigma^2 \Omega \) is the variance-covariance matrix of the disturbances given in (21). It is straightforward to show that \(\Omega = c_1 E_N + c_2 J_N \) and

\[P_Z \Omega = \frac{(N - 1)^2}{(N - 1 + \lambda)^2} (P_Z - J_N) + \frac{1}{(1 - \lambda)^2} J_N \]

since \(P_Z \iota_N = \iota_N, P_Z J_N = J_N \) and \(P_Z E_N = P_Z - J_N \). Similarly,

\[\Omega P_Z = \frac{(N - 1)^2}{(N - 1 + \lambda)^2} (P_Z - J_N) + \frac{1}{(1 - \lambda)^2} J_N \]
Hence, $P_Z \Omega = \Omega P_Z$.

In fact, another necessary and sufficient condition for OLS to be equivalent to GLS, which relies on Ω^{-1}, is given by Milliken and Albohali (1984) and this condition calls for $Z' \Omega^{-1} (I_N - P_Z) = 0$. Here

$$\Omega^{-1} = \frac{(N - 1 + \lambda)^2}{(N - 1)^2} E_N + (1 - \lambda)^2 \bar{J}_N$$

and the fact that $\bar{J}_N (I_N - P_Z) = 0$, we get

$$\Omega^{-1} (I_N - P_Z) = \frac{(N - 1 + \lambda)^2}{(N - 1)^2} E_N (I_N - P_Z) + (1 - \lambda)^2 \bar{J}_N (I_N - P_Z)$$

$$= \frac{(N - 1 + \lambda)^2}{(N - 1)^2} (I_N - P_Z)$$

Hence

$$Z' \Omega^{-1} (I_N - P_Z) = \frac{(N - 1 + \lambda)^2}{(N - 1)^2} Z' (I_N - P_Z) = 0$$

since $Z' P_Z = Z'$.

Note that

$$\text{var}(\hat{\gamma}_{OLS}) = \text{var}(\hat{\gamma}_{GLS}) = \sigma^2_v (Z' \Omega^{-1} Z)^{-1}$$

$$= \sigma^2_v \left[(1 - \lambda)^2 (Z' \bar{J}_N Z) + \frac{(N - 1 + \lambda)^2}{(N - 1)^2} (Z' E_N Z) \right]^{-1}$$

and this, in general, is not equal to the usual formula for $\text{var}(\hat{\gamma}_{OLS})$ computed by regression packages, i.e., $\sigma^2_v (Z' Z)^{-1}$, unless $\lambda = 0$ which is the case of no spatial correlation.

For the spatial panel regression with equal weights, this result is not necessarily true as long as $\sigma^2_v > 0$. Two special cases where OLS on (5) is the same as GLS, i.e., $\hat{\gamma}_{OLS} = (Z' Z)^{-1} Z' y = \hat{\gamma}_{GLS} = (Z' \Omega^{-1} Z)^{-1} Z' \Omega^{-1} y$ are the following: (i) the trivial case where $\sigma^2_v = 0$ and $\lambda = 0$; In fact, when $\lambda = 0$, $c_1 = c_2 = 1$, $\theta_1 = 0$ and $y_{it} = y_{ti}$ and GLS reduces to OLS; Also, (ii) when the matrix of regressors X is invariant across time, i.e., when $X = \psi_T \otimes X_N$, with X_N being the $N \times k$ matrix of exogenous regressors that is invariant across time. To show this, we prove that the Zyskind (1967) necessary and sufficient condition for OLS to be equivalent to GLS on (5) is satisfied. This calls for $P_Z \Omega = \Omega P_Z$, where $Z = \psi_T \otimes Z_N = \psi_T \otimes (\iota_N, X_N)$ is the matrix of regressors in (5) and Ω is the variance-covariance matrix of the disturbances given in (17). It is straightforward to
show that $P_Z = J_T \otimes P_{Z_N}$ and that $P_{Z_N} I_N = I_N$, $P_{Z_N} J_N = J_N$ and $P_{Z_N} E_N = P_{Z_N} - J_N$. Hence

$$P_Z \Omega = \sigma^2 (J_T \otimes P_{Z_N})(I_T \otimes (c_1 E_N + c_2 J_N)) = \sigma^2 (J_T \otimes (c_1 (P_{Z_N} - J_N) + c_2 J_N))$$

(28)

Similarly,

$$\Omega P_Z = \sigma^2 (I_T \otimes (c_1 E_N + c_2 J_N))(J_T \otimes P_{Z_N}) = \sigma^2 (J_T \otimes (c_1 (P_{Z_N} - J_N) + c_2 J_N))$$

(29)

Hence, $P_Z \Omega = \Omega P_Z$.

In fact, another necessary and sufficient condition for OLS to be equivalent to GLS, which relies on Ω^{-1}, is given by Milliken and Albohali (1984) and this condition calls for $Z' \Omega^{-1} (I_{TN} - P_Z) = 0$. Using (18), and the fact that $J_N (I_N - P_{Z_N}) = 0$, we get

$$\Omega^{-1} (I_{TN} - P_Z) = \left(\frac{1}{c_1 \sigma^2} (I_T \otimes E_N) + \frac{1}{c_2 \sigma^2} (I_T \otimes J_N) \right) (I_{TN} - P_Z)$$

(30)

$$= \left(\frac{1}{c_1 \sigma^2} (I_T \otimes E_N) + \frac{1}{c_2 \sigma^2} (I_T \otimes J_N) \right)$$

$$- \left(\frac{1}{c_1 \sigma^2} (J_T \otimes (P_{Z_N} - J_N)) + \frac{1}{c_2 \sigma^2} (J_T \otimes J_N) \right)$$

$$= \frac{1}{c_1 \sigma^2} ((I_T \otimes E_N) - (J_T \otimes (P_{Z_N} - J_N)))$$

$$+ \frac{1}{c_2 \sigma^2} (E_T \otimes J_N)$$

Hence

$$Z' \Omega^{-1} (I_{TN} - P_Z) = \frac{1}{c_1 \sigma^2} \{ (I_T \otimes Z_N')((I_T \otimes E_N) - (J_T \otimes (P_{Z_N} - J_N))) \}$$

(31)

$$= \frac{1}{c_1 \sigma^2} \{ (I_T \otimes Z_N' E_N) - (I_T \otimes Z_N' (P_{Z_N} - J_N)) \}$$

$$= \frac{1}{c_1 \sigma^2} \{ (I_T \otimes Z_N' E_N) - (I_T \otimes (Z_N' - Z_N', J_N)) \} = 0$$

since $I_T J_N = I_T$ and $Z_N' P_{Z_N} = Z_N'$.

An anonymous referee pointed out that an alternative derivation of these results can be obtained using lemma 2.1 of Magnus (1982). This lemma was derived in the context of a multivariate error component model, but when applied to the model considered in this paper, one common theme is the following: If $W_N = \alpha_1 A_N + \alpha_2 (I_N - A_N)$ with $\alpha_1 \neq \alpha_2$, and A_N is a symmetric idempotent matrix, then all powers of W_N (also negative powers), its eigenvalues, and determinant can all be easily calculated. Here, we have $I_N - \lambda W_N = \beta_1 A_N + \beta_2 (I_N - A_N)$, with $\beta_1 = 1 - \lambda \alpha_1$, and $\beta_2 = 1 - \lambda \alpha_2$. Assuming that $\lambda \alpha_1 \neq 1$ and $\lambda \alpha_2 \neq 1$, we get $(I_N - \lambda W_N)^{-1} = \frac{1}{\beta_1} A_N + \frac{1}{\beta_2} (I_N - A_N)$. Hence
\[\Omega = (I_N - \lambda W_N)^{-2} = \frac{1}{\beta_1^2} A_N + \frac{1}{\beta_2^2} (I_N - A_N). \]

Applying the Milliken and Albohali (1984) necessary and sufficient condition which calls for \(Z' \Omega^{-1} (I_N - P_Z) = 0 \), we get: \(Z' \Omega^{-1} (I_N - P_Z) = (\beta_1^2 - \beta_2^2) Z' A_N (I_N - P_Z) = 0 \), which is \(\Leftrightarrow Z' A_N (I_N - P_Z) = 0 \). In the special case, where \(A_N = \tilde{J}_N \), we see that OLS is equivalent to GLS if and only if \(Z' \mu_N = 0 \) or \((I_N - P_Z) \mu_N = 0 \), that is, if and only if the regressors are measured in deviations from the mean or the regression contains a constant.

3 Extensions

So far, we have considered the spatial autoregressive (SAR) specification for the disturbances. An alternative specification is the spatial moving average (SMA) specification. Anselin (2003) classifies the spatial covariance structure induced by SAR as global, and that by SMA as local. In this case, the model given by (1) and (2) is the same, but the disturbances in (3) become

\[\epsilon_t = \lambda W_N \nu_t + \nu_t = (I_N + \lambda W_N) \nu_t \]

In vector form, the panel disturbances in (6) become

\[u = (\nu_T \otimes I_N) \mu + (I_T \otimes (I_N + \lambda W_N)) \nu \]

with variance covariance matrix

\[\Omega = \sigma^2_\mu (J_T \otimes I_N) + \sigma^2_\nu (I_T \otimes (I_N + \lambda W_N))^2 \]

since \(W_N \) given by (9) is symmetric. In fact,

\[(I_N + \lambda W_N)^2 = \frac{(N - 1 - \lambda)^2}{(N - 1)^2} E_N + (1 + \lambda)^2 \tilde{J}_N = d_1 E_N + d_2 \tilde{J}_N \]

where \(d_1 = \frac{(N - 1 - \lambda)^2}{(N - 1)^2} \) and \(d_2 = (1 + \lambda)^2 \).

Replacing \(J_T \) and \(I_T \) by their equivalent terms \(T \tilde{J}_T \) and \((E_T + \tilde{J}_T) \) in (34), and collecting like terms, we obtain

\[\Omega = (T \sigma^2_\mu + d_1 \sigma^2_\nu) (\tilde{J}_T \otimes E_N) + (T \sigma^2_\mu + d_2 \sigma^2_\nu) (\tilde{J}_T \otimes \tilde{J}_N) \]

\[+ d_1 \sigma^2_\nu (E_T \otimes E_N) + d_2 \sigma^2_\nu (E_T \otimes \tilde{J}_N) \]

Hence, we get the same results for the SMA specification as for the SAR specification when the weigh matrix is equal. The only difference between (36) and (13) is \(d_1 \) and \(d_2 \) rather than \(c_1 \) and \(c_2 \). Similarly, \(\Omega^{-1} \) and \(\Omega^{-1/2} \) are the same as (14) and (15) with \(d_1 \) and \(d_2 \) replacing \(c_1 \) and \(c_2 \). The same holds true for the Fuller and Battese type transformation described below (15). Note that if \(\lambda = 0 \), so that there is no spatial autocorrelation, then \(d_1 = d_2 = 1 \) and \(\Omega \) in (36) reduces to the familiar variance-covariance matrix of the random effects panel data model. If \(\sigma^2_\mu = 0 \), i.e., the case of no random effects, the variance-covariance matrix in (34) reduces to
\[\Omega = \sigma_{\epsilon}^2 (I_T \otimes (d_1 E_N + d_2 \bar{J}_N))\]
(37)

Hence, \(\Omega^{-1}\) and \(\Omega^{-1/2}\) are the same as in (18) and (19) with \(d_1\) and \(d_2\) replacing \(c_1\) and \(c_2\). The Fuller and Battese transformation given below (19) is now

\[y^* = \sigma_{\nu} \sqrt{\frac{d_1}{d_2}} \Omega^{-1/2} y\]

with typical element \(y^*_i = (y_{ti} - \theta_1 \bar{y}_t)\) where \(\theta_1 = (1 - \sqrt{\frac{d_1}{d_2}})\). Note that as \(N \rightarrow \infty\),

\[\sqrt{\frac{d_1}{d_2}} \rightarrow \frac{1}{1+\lambda},\]

and \(\theta_1 \rightarrow \frac{\lambda}{1+\lambda}\).

Kelejian and Robinson (1995) considered an alternative spatial error components (SEC) specification that differs from the SAR and SMA specification. In this case, the model given by (1) and (2) is the same, but the disturbances in (3) become

\[\epsilon_t = \lambda W_N \psi_t + \nu_t\]
(38)

where \(\psi_t\) is an \((N \times 1)\) vector of spillover error components. The two component vectors \(\psi_t\) and \(\nu_t\) are assumed to consist of iid terms with respective variances \(\sigma_{\psi}^2\) and \(\sigma_{\nu}^2\) and are uncorrelated. In vector form, the panel disturbances in (6) become

\[u = (\nu_T \otimes I_N) \mu + (I_T \otimes \lambda W_N) \psi + \nu\]
(39)

with variance covariance matrix

\[\Omega = \sigma_{\epsilon}^2 (I_T \otimes I_N) + (I_T \otimes (\sigma_{\nu}^2 I_N + \lambda^2 \sigma_{\psi}^2 W_N^2))\]

(40)

since \(W_N\) given by (9) is symmetric. In fact,

\[\left(\sigma_{\psi}^2 I_N + \lambda^2 \sigma_{\psi}^2 W_N^2\right) = \left(\sigma_{\nu}^2 + \frac{\lambda^2 \sigma_{\psi}^2}{(N-1)^2}\right) E_N + \left(\sigma_{\nu}^2 + \lambda^2 \sigma_{\psi}^2\right) \bar{J}_N = b_1 E_N + b_2 \bar{J}_N\]
(41)

where \(b_1 = (\sigma_{\nu}^2 + \frac{\lambda^2 \sigma_{\psi}^2}{(N-1)^2})\) and \(b_2 = (\sigma_{\nu}^2 + \lambda^2 \sigma_{\psi}^2)\). The rest of the derivations are the same as above with \(b_1\) and \(b_2\) replacing \(c_1\) and \(c_2\). Note that as \(N \rightarrow \infty\),

\[\sqrt{\frac{b_1}{b_2}} \rightarrow \frac{\sigma_{\nu}}{\sqrt{\sigma_{\nu}^2 + \lambda^2 \sigma_{\psi}^2}},\]

and \(\theta_1 \rightarrow 1 - \frac{\sigma_{\nu}}{\sqrt{\sigma_{\nu}^2 + \lambda^2 \sigma_{\psi}^2}}\).

For the cross-section \((T = 1)\) spatial regression model with SMA or SEC disturbances and an equal weight matrix, one can easily show that OLS is equivalent to GLS as long as there is a constant in the model, the proof is left to the reader. For the spatial panel regression with equal weights, this result is not necessarily true as long as \(\sigma_{\mu}^2 > 0\). Two cases where OLS is the same as GLS are once again: (i) the trivial case where \(\sigma_{\mu}^2 = 0\) and \(\lambda = 0\) or (ii) when the matrix of regressors \(X\) is invariant across time. The proofs for the SMA and SEC cases are the same as that for the SAR case and are left for the reader. The key for these results is the fact that (11) for SAR, (35) for SMA and (41) for SEC are all linear combinations of \(E_N\) and \(\bar{J}_N\). These matrices are idempotent, orthogonal to each other and sum to \(I_N\). Alternatively, one can apply lemma 2.1 of Magnus (1982) to obtain the same results.

Next, we consider an alternative panel data model with spatially correlated error components suggested by Kapoor, Kelejian, and Prucha (2005). The regression model is the same as (1), but the spatial error components structure given by (2) and (3) becomes:
\[u = \lambda (I_T \otimes W_N) u + \epsilon \]

(42)

with

\[\epsilon = (\nu T \otimes I_N) \mu + \nu \]

(43)

where \(\mu \) and \(\nu \) are the same as before, i.e., \(IID(0, \sigma^2_\mu) \) and \(IID(0, \sigma^2_\nu) \) independent of each other and among themselves. Performing the spatial Cochrane-Orcutt type transformation on (5) one gets:

\[y^*(\lambda) = \alpha (1 - \lambda) \iota_{NT} + X^*(\lambda) \beta + u^*(\lambda) = Z^*(\lambda) \gamma + u^*(\lambda) \]

(44)

with

\[u^*(\lambda) = (I_T \otimes (I_N - \lambda W_N)) u = \epsilon \]

(45)

and \(y^*(\lambda), X^*(\lambda) \) and \(Z^*(\lambda) \) defined similarly. The variance-covariance matrix \(\Omega_\epsilon = E(\epsilon \epsilon') = (T \sigma^2_\mu + \sigma^2_\nu)(\bar{J}_T \otimes I_N) + \sigma^2_\nu(E_T \otimes I_N) \), is the usual panel data error components random effects variance-covariance matrix. GLS on (44) can be obtained as OLS on the Fuller-Battese transformed equation (44), i.e., after premultiplying it by \(\sigma_\nu \Omega_\epsilon^{1/2} = (E_T \otimes I_N) + \frac{\sigma_\nu}{\sigma_1}(\bar{J}_T \otimes I_N) \), where \(\sigma_1 = \sqrt{T \sigma^2_\mu + \sigma^2_\nu} \). In this case,

\[y^{**}(\lambda) = \sigma_\nu \Omega_\epsilon^{-1/2} y^*(\lambda) = ((E_T \otimes I_N) + \frac{\sigma_\nu}{\sigma_1}(\bar{J}_T \otimes I_N))(I_T \otimes (I_N - \lambda W_N)) y \]

(46)

For the equal weight matrix given in (8), \((I_N - \lambda W_N) \) is given below (9) and can be rewritten as \((I_N - \lambda W_N) = a_1 E_N + a_2 \bar{J}_N \), where \(a_1 = \frac{(N-1+\lambda)}{(N-1)} \) and \(a_2 = (1 - \lambda) \). Substituting this expression in (46) yields:

\[y^{**}(\lambda) = \frac{\sigma_1}{\sigma_\nu}(\bar{J}_T \otimes (a_1 E_N + a_2 \bar{J}_N)) y \]

(47)

\(y^{**}(\lambda) = \)

\[= a_1 (E_T \otimes E_N) y + a_2 (E_T \otimes \bar{J}_N) y + \frac{a_1 \sigma_\nu}{\sigma_1}(\bar{J}_T \otimes E_N) y + \frac{a_2 \sigma_\nu}{\sigma_1}(\bar{J}_T \otimes \bar{J}_N) y \]

once again, we see that for the Kapoor, Kelejian, and Prucha (2005) specification, with an equal weight matrix, GLS on (44) can be written as a weighted combination similar to that below (15), i.e., \(y_i^{**} = a_1(y_{i1} - \theta_1 \bar{y}_1 - \theta_2 \bar{y}_{\cdot1} + \theta_3 \bar{y}_{\cdot\cdot}) \) where \(\bar{y}_{\cdot\cdot} \) denotes the sample average over regions, \(\bar{y}_{\cdot1} \) denotes the sample average over time, and \(\bar{y}_{\cdot\cdot} \) denotes the average over the entire sample. The \(\theta 's \) can be easily obtained from the corresponding \((a_1, a_2, \sigma_\mu, \sigma_\nu) \) parameters. For example, \(\theta_1 \) is the coefficient corresponding to \((I_T \otimes \bar{J}_N) \) which can be verified to be \((1 - \frac{\sigma_\nu}{\sigma_1}) \); \(\theta_2 \) is the coefficient corresponding to \((\bar{J}_T \otimes I_N) \) which can be verified to be \((1 - \frac{\sigma_\nu}{\sigma_1}) \); and \(\theta_3 \) is the coefficient corresponding to \((\bar{J}_T \otimes \bar{J}_N) \) which can be verified to be \((1 - \frac{\sigma_\nu}{\sigma_1} - \frac{\sigma_\nu}{\sigma_1} + \frac{\sigma_\nu}{\sigma_1}) \). If \(\lambda = 0, a_1 = a_2 = 1, \) then \(\theta_1 = \theta_3 = 0 \) and \(\theta_2 = (1 - \frac{\sigma_\nu}{\sigma_1}) \), which reduces \(y_i^{**} \) to \((y_{i1} - \theta_2 \bar{y}_{\cdot1}). \) This is the familiar Fuller and Battese (1973) random effects transformation.
If $\sigma^2 = 0$, i.e., the case of no random effects, then $\sigma = \sigma_1$, $\theta_2 = \theta_3 = 0$ and $\theta_1 = (1 - \frac{a_2}{a_1})$, which reduces y_{ti}^* to $a_1(y_{ti} - \theta_1 \bar{y}_t)$. In fact, $y^{**}(\lambda)$ from (2.39) reduces to

$$y^{**}(\lambda) = [I_T \otimes (a_1 E_N + a_2 \bar{J}_N)]y = a_1 (I_T \otimes E_N)y + a_2 (I_T \otimes \bar{J}_N)y$$

(48)

and note that $a_1 \theta_1 = (a_1 - a_2)$. Therefore, y_{ti}^* is a weighted combination of y_{ti} and \bar{y}_t. For this model, OLS is the same as GLS for the trivial case where $\sigma^2 = 0$ and $\lambda = 0$. The more interesting case where OLS on (44) is equivalent to GLS is the case where the matrix of regressors X is invariant across time. The proof is along the same lines as above and is left for the reader. In fact, one can easily show that when $X = \nu_T \otimes X_N$, with X_N being the $N \times k$ matrix of exogenous regressors that is invariant across time, both the Zyskind (1967) and the Milliken and Albohali (1984) necessary and sufficient conditions are satisfied for this model.

4 Conclusion

For spatial panel models with a weight matrix that is row normalized and has equal weights within a block but otherwise uncorrelated across blocks, we showed that GLS can be obtained as a simple weighted least squares transformation involving the means of the observations over time and over units. This is similar to the Fuller and Battese (1973) transformation for the random effects model in panel data with no spatial correlation. In addition, we showed that OLS is equivalent to GLS if there are no random or spatial effects, or if the regressors vary across units but are invariant over time. We also showed that these results for the equal weight matrix hold whether we use the spatial autoregressive specification, the spatial moving average specification, the spatial error components specification, or the alternative panel data regression model with spatially correlated error components suggested by Kapoor, et al. (2005).

5 REFERENCES

