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We consider a coarse-grained description of a system of self-propelled particles given by hydrody-
namic equations for the density and polarization fields. We find that the ordered moving or flocking
state of the system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion
velocity of the individual units. In this region, the system organizes itself into an inhomogeneous
state of well-defined propagating stripes of flocking particles interspersed with low density disor-
dered regions. Further, we find that even in the regime where the homogeneous flocking state is
stable, the system exhibits large fluctuations in both density and orientational order. We study the
hydrodynamic equations analytically and numerically to characterize both regimes.

I. INTRODUCTION

Large collections of living organisms exhibit a highly
coherent collective dynamics at large scales [1]. This be-
havior, often referred to as “flocking”, spans an enormous
range of length scales and is seen in diverse systems, in-
cluding mammalian herds [2], crowds of pedestrians [3, 4],
bird flocks [5], fish schools [6], insect swarms [7], bac-
terial suspensions [8], extracts of cytoskeletal filaments
and molecular motor proteins [9, 10], and motility assays
[11]. Many of these systems can be unified under the
theoretical paradigm of collections of self-propelled par-
ticles. Their intriguing collective behavior has received
considerable attention in recent years.

A number of different theoretical approaches have
proved fruitful in understanding the dynamics of collec-
tions of self-propelled units. Starting with the seminal
work of Vicsek [12], rule-based models have been in-
vestigated numerically and have been shown to exhibit
nonequilibrium transitions between disordered and or-
dered (flocking or moving) states. Subsequent work has
focused on characterizing the nature of the order-disorder
transition, its dependence on the noise, and pattern for-
mation in the ordered state, both in the context of rule-
based Vicsek-type models [12–14] and of models of bac-
terial swarming [27–29]. Continuum hydrodynamic theo-
ries have been used to describe the behavior of the system
at large scales [1, 16, 18, 19]. Self-propelled particles are
typically elongated and move along one direction of their
long body axis. They can exhibit orientational order at
high concentration. The ordered state is characterized by
a vector order parameter, the polarization, which is also
proportional to the mean velocity of the system. Hence
the ordered state is a macroscopically moving state. The
continuum theory has been developed phenomenologi-
cally on the basis of general symmetry arguments by
drawing on analogies with magnetic systems and with
liquid crystals [1]. In fact active or self-propelled sys-
tems have been likened to “living liquid crystals” [15].
This work has yielded several important results, includ-
ing the possibility of long range order in 2D [16] and
the prediction and observation of giant number fluctua-

tions in the ordered state[18, 20]. The continuum theory
has also been derived by systematic coarse-graining of
specific microscopic models, including rule-based [21, 22]
and physically motivated [23, 30] models. These deriva-
tions yields (model-dependent) estimates for the param-
eters in the hydrodynamic equations and have provided
insight into the microscopic origin of of the large-scale
collective physics.

In a recent paper we derived the hydrodynamic equa-
tions for a collections of self propelled hard rods mov-
ing on a frictional substrate and interacting through ex-
cluded volume interactions [23]. Although self-propulsion
and steric effects alone are not sufficient to yield a ho-
mogeneous polarized moving state in bulk, the hydro-
dynamic equations are easily modified to incorporate a
mean-field continuous transition from an isotropic state
at low concentration of rods to a polar state at high den-
sity. In the present paper we examine analytically and
numerically the coupled nonlinear hydrodynamic equa-
tions for density and polarization to characterize the
large-scale structures that replace the linearly unstable
homogeneous ordered state. The main results of our work
are summarized in Fig. 1 that represents a “phase dia-
gram” in terms of the density ρ of rods and their self-
propulsion speed, v0. In the absence of self-propulsion
(v0 = 0) the model considered exhibits a mean-field
continuous transition at the critical density ρc from an
isotropic state of zero polarization for ρ0 < ρc to an
ordered moving state, with uniform density and macro-
scopic polarization P 6= 0. In a uniform ordered state
at finite v0, all rods would move with uniform mean ve-
locity ∼ v0P. We find however that the moving state
for ρ0 > ρc exhibits more complex behavior. For v0 be-
low a critical value vc(ρ0) the steady state of the sys-
tem is still macroscopically polarized on average, but ex-
hibits anomalous density and polarization fluctuations.
We refer to this state as the “fluctuating flocking state”.
The anomalous density fluctuations are the giant num-
ber fluctuations predicted by Toner and coworkers [17]
and observed experimentally in active nematics [31]. An
additional feature of this regime, is a very slow tempo-
ral approach to this noisy steady state, with some fea-
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tures of a coarsening process. For v0 > vc(ρ0) the system
orders in a robust striped phase, consisting of traveling
high/low density stripes. The high density stripes are or-
dered with polarization transverse to the long direction
of the stripes, which is also the direction of the stripes’
motion. Both of these phases have been identified in nu-
merical studies of the Vicsek model [13, 32]. Here we
characterize them in terms of their origins in the hydro-
dynamic equations using both analytical and numerical
tools. This allows us to derive an understanding that
transcends any specific microscopic model and is gener-
ically applicable to a large number of self-propelled sys-
tems.
The coupling of density and polarization fluctuations

embodied in the convective terms in the hydrodynamic
equations of self-propelled systems plays a crucial role
in controlling pattern formation. Some of these convec-
tive terms reflect the dual role played by the polarization
field as vector order parameter and as the mean velocity,
resulting in competition between diffusion and convec-
tion along the direction of mean local order. There is
a qualitative analogy here with sedimentation problems
[33, 34], where the interplay of local alignment along the
sedimenting direction and diffusion can destabilize the
system resulting in convective patterns, although hydro-
dynamic interactions, not incorporated here, often also
play an important role in sedimenting systems.
The layout of the paper is as follows. First we intro-

duce the hydrodynamic equations that are the starting
point of our analysis. Then, we carry out a linear sta-
bility analysis about the ordered state and characterize
the region of linear stability of the bulk ordered phase

or homogeneous flock. Next, we report the results of nu-
merical solution of the nonlinear hydrodynamic equations
and identify and characterize both the fluctuating flock-
ing state and the striped phase, as well as the coarsening-
like behavior leading to these phases.

II. THE MODEL

We consider a collection of polar rods of length ℓ mov-
ing on an inert substrate characterized by a friction con-
stant ζ in two dimensions (2d). Each rod is driven by an
internal force F acting along one direction of its long axis,
called its head. This force, together with the frictional
interaction with the medium, results in a self-propulsion
speed v0 = F/ζ of constant magnitude. On length scales
long compared to ℓ and on time scales long compared
to the microscopic interaction times, the dynamics of the
system can be described in terms of hydrodynamic fields,
namely the conserved densities (here the density ρ (r, t)
of rods) and the variables associated with possible bro-
ken symmetries. A collection of self-propelled polar rod
can order in a polarized state, characterized by a finite
value of a vector order parameter, P(r, t), describing the
mean polarization of the rods. The ordered state is also
a moving state, with mean velocity ∼ v0P. The dynam-
ics of the system is described by coupled equations for
density and polarization, given by

∂tρ = −∇ · (ρv0P−D∇ρ) (1)

and

∂tρP+ λ1ρP ·∇ρP = −Dr

[
a2 (ρ) + P 2a4 (ρ)

]
ρP−

v0
2
∇ρ+ λ3ρPi∇ρPi + λ2ρP∇ · ρP

+(Ds −Db)∇ (∇ · ρP) +Db∇
2ρP. (2)

The hydrodynamic equations (1) and (2) have the same
form as those first proposed on a phenomenological basis
by Toner and Tu [1, 16, 17] to describe the physics of
flocking. The parameter a2 is chosen to change sign at a
characteristic density ρc, while a4 > 0. This guarantees a
mean-field continuous transition from an isotropic state
with ρ = ρ0 and P=0 when a2 > 0 to a homogeneous po-

larized state with ρ = ρ0 and |P0| =
√

−a2

a4
when a2 < 0.

These equations have also been derived from specific
microscopic models of self-propelled particles on a sub-
strate by some of us [23–25] and by Bertin and collabora-
tors [21]. Bertin et al obtained hydrodynamic equations
by coarse-graining a Vicsek-type model of self-propelled
point particles, with a specific aligning rule for the pair
interaction. In contrast, Baskaran and Marchetti, con-
sidered a model of self-propelled hard rods of finite size

with excluded volume interaction and analyzed in detail
the modifications induced by self-propulsion on the linear
and angular momentum exchanged in a binary collision.
The equations obtained by Bertin et have precisely the
form given in Eqs. (1) and (2), with parameters a2 and a4
determined by the aligning interaction between particles.
In contrast, it was demonstrated in Ref. [23] that steric
effects alone are not sufficient to yield a homogeneous
bulk polarized state. As a result, the equations derived
in [23] for a purely physical model have a4 = 0. We
note that it was also demonstrated recently in a model
of swimmers in a fluid that hydrodynamic interactions
among swimmers are equally insufficient to yield a ho-
mogeneous polarized state in bulk [26]. These results
suggest that genetically and biochemically-regulated sig-
naling, or external symmetry-breaking effects, such as
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FIG. 1: (color online) Phase diagram in the (v0, ρ0) plane. At v0 = 0 the system exhibits a continuous mean field transition
at ρ0 = ρc from an isotropic (I) to a homogeneous polarized (HP) state. The isotropic phase survives at finite v0 in the region
ρ < ρc bounded by the vertical dashed line (blue online). For ρ0 > ρc there is a critical vc(ρ0) separating a polarized moving
state with large anomalous fluctuations, named the “fluctuating flocking state”, at low self-propulsion speed from a high-speed
phase of traveling stripes. The circles denote the values of vc(ρ0) obtained numerically with the error bars indicating the step
size used in the computation. The dashed-dotted line (purple online) is the longitudinal instability boundary vLc1(ρ0) obtained
in Section III. The dashed line (red online) is the splay instability boundary vSc (ρ0), given by Eq. (A11). The top right panel
is a real space snapshot of the density profile in the striped phase. The stripes travel in the direction of the white arrow, that
also denotes the direction of mean polarization in the high density regions. The bottom right panel shows a real space snapshot
of the density profile in the “coarsening” transient leading to the fluctuating flocking state at v0 < vc. Density values from low
(blue) to high (yellow) are indicated in the side bar. The value of the density in the blue stripes is well below the critical value
ρc = 0.5, while the red stripes are well into the polarized phase.

chemotaxis, may be needed to obtain a polar state. Non-
physical or external mechanisms of this type are embod-
ied in Bertin et al in an alignment rule, but are absent
in the work by Baskaran and Marchetti that aimed at
identifying the role of purely physical interactions in con-
trolling the large scale behavior of self-propelled systems.
The goal of the present paper is to study the stability of
the homogeneous polar state. For this reason we have
added phenomenologically the term proportional to a4
to the equations derived in [23]. Both a2 and a4 will
then treated as phenomenological parameters.

The density satisfies a conservation law, with a flux
controlled by two terms: ρv0P describing convection
along the mean self-propulsion velocity, v0P, and a dif-

fusive current −D∇ρ that drives the system to a ho-
mogeneous state. The anisotropy of the diffusion coeffi-
cient relative to the direction of mean motion is neglected
here for simplicity. The various terms in Eq. (2) (other
than the one proportional to a4) are obtained from the
microscopic hard rod model and have a simple physi-
cal interpretation. The polarization field P plays a dual
role in self-propelled systems. On one hand, it represents
the vector order parameter associated with the sponta-
neous breaking of rotational symmetry in the polarized
state. Its dynamics is then in the class of that of equi-
librium polar liquid crystals and X-Y spin systems. On
the other hand, v0P is also the mean velocity of the flock
with which particles are convected. The interplay be-



4

tween these two physical roles of the polarization field
gives rise to the various terms in Eq. (2) and underlies
most of the phenomena discussed in this paper. The
three terms proportional to λi in Eq. (2) play a crucial
role in controlling the pattern formation phenomena de-
scribed below. If we think of v0P as a velocity, then
all three terms have the structure of convective nonlin-
earities. Galilean invariance would require λ1 = v0

ρ and

λ2 = λ3 = 0. The self-propelled overdamped system
considered here is, however, moving relative to a fixed
substrate and does not satisfy Galilean invariance. As
a result, the values of λi are unconstrained and in gen-
eral model-dependent. There is an additional important
difference between these three terms. The term propor-
tional to λ1 is a truly nonequilibrium term that can be
understood only as a convective nonlinearity. In contrast,
the terms proportional to λ2 and λ3 have an equilibrium-
like interpretation associated with the role of P as the
polar order parameter. These two terms would arise in
equilibrium from a term of the form ρ |P|2 ∇ · P in the
free energy, which effectively accounts for a dependence
of the elastic constant associated with splay deformations
on the amount of orientational order in the system. In
this case one would obtain λ2 = −λ3. Finally, Ds and Db

are diffusion constants that characterize the relaxation of
splay and bend fluctuations, respectively, and Dr is a ro-
tational diffusion rate.
Before proceeding to analyze the hydrodynamic equa-

tions, it is useful to introduce dimensionless variables.
We measure time in units of the inverse rotational diffu-
sion rate, D−1

r , and lengths in units of the length ℓ of the
self propelled particles. The various dimensionless fields
and parameters are then given by

ρ̃ = ρℓ2,

ṽ0 = v0/(ℓDr),

λ̃i = λi/(Drℓ
3),

D̃ = D/(Drℓ
2).

In the following all quantities are dimensionless and we
drop the tilde for simplicity of notation.

III. LINEAR STABILITY

The hydrodynamic Eqs. (1) and (2) admit two homo-
geneous solutions: an isotropic state (I) with ρ = ρ0 and
P = 0 for ρ < ρc, and a homogeneous polarized (HP)
state with ρ = ρ0 and P ≡ P0p̂0 for ρ0 > ρc, where p̂0

is the direction of broken symmetry and P0 =
√
−a2/a4.

The critical value ρc is defined by a2(ρc) = 0 and is cho-
sen here as ρc = 0.5. It was shown in Ref. [23] that the
isotropic state is always linearly stable. In this section
we examine the linear stability of the HP state at finite
v0. To do this we linearize the hydrodynamic equations
by letting

ρ = ρ0 + δρ, (3)

P = p̂0(P0 + δP ) + P0δp⊥ , (4)

where p̂0 · δp⊥ = 0. Inserting this ansatz in Eqs. (1) and
(2), we obtain three coupled equations for the fluctua-
tions in the density, δρ, the magnitude δP of the polar
order parameter and the director, δp⊥. Combining the
fluctuations into a vector,

δyα (r, t) →




δρ (r, t) /ρ0
δP (r, t)
δp⊥ (r, t)


 (5)

and introducing the Fourier components, δỹ (k, t) =∫
r
eik·rδy (r, t), the coupled linear equations can be writ-

ten in matrix form as

δỹα (k, t) = Aαβ (k) δỹβ (k, t) , (6)

where

A (k) =




ik‖v0P0 −Dk2 ik‖v0 ik⊥v0P0

−2αa20P0 + ik‖
(
v0
2 + λρ20P

2
0

)

−Dsk
2
‖ −Dbk

2
⊥

2a20 − ik‖λρ0P0

−Dbk
2
⊥ −Dsk

2
‖

−ik⊥λ2ρ0P
2
0 − (Ds −Db)k‖k⊥

ik⊥

(
v0
2P0

− ρ0P0λ3

)
− (Ds −Db) k‖k⊥ −ik⊥λ3ρ0 −

(Ds−Db)
P0

k‖k⊥ ik‖λ1ρ0P0 −Dsk
2
⊥ −Dbk

2
‖




(7)

with k = p̂0k‖ + k⊥, k⊥ = k⊥k̂⊥, δỹ3(k, t) = k̂⊥ ·
δp̃⊥(k, t), and

α =
ρ0
2a20

(
∂a2
∂ρ

)

ρ=ρ0

−
ρ0
2a40

(
∂a4
∂ρ

)

ρ=ρ0

, (8)

where a20 = a2(ρ0) < 0, a40 = a4(ρ0) > 0, and

λ = λ1 − λ2 − λ3. (9)

The coefficients a2 and a4 are chosen of the simplest form
that guarantees a continuous transition at ρc and P0 ≃ 1
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for ρ0 ≫ ρc, i.e.,

a2 = 1− ρ/ρc , (10a)

a4 = 1 + ρ/ρc . (10b)

With this choice α = ρ0ρc

ρ2

0
−ρ2

c

is always positive.

We look for solutions of the form δỹ(k, t) ∼ esα(k)t,
where the rates sα (k) are the hydrodynamic modes of
the system. These are defined as those with decay rates
(here proportional to Re[sα(k)]) that vanishes in the long
wavelength limit k → 0. Modes with Re[sα(k)] < 0
decay at long times, while modes with Re[sα(k)] > 0
grow, rendering the homogeneous state linearly unstable.

We discuss the hydrodynamic modes by considering some
simplified cases. Further details are given in Appendix
A.

First, we consider the behavior of the system for
ρ0 ≫ ρc, i.e., deep in the ordered state. The rate of
decay of long wavelength fluctuations of the magnitude
δP of the order parameter is controlled by A22 ∼ 2a20,
which is always finite for ρ ≫ ρc, away from the mean
field continuous transition. In other words δP is a non-
hydrodynamic variable that decays on microscopic time
scales. In this regime we can then neglect fluctuations δP
and simply consider the dynamics of density and director
fluctuations governed by the two coupled equations

∂tδρ̃ =
(
ik‖v0P0 −Dk2

)
δρ̃+ ik⊥v0ρ0P0δp̃⊥ (11)

∂tδp̃⊥ =

[
i

(
v0
2P0

− ρ0P0λ3

)
− k‖ (Ds −Db)

]
k⊥

δρ̃

ρ0
+
[
ik‖λ1ρ0P0 −

(
Dsk

2
⊥ +Dbk

2
‖

)]
δp̃⊥ (12)

The general form of the dispersion relation of the hydro-
dynamic modes is readily obtained by solving a quadratic
equation and is given in Appendix A. Here we discuss
some limiting cases. For wavevectors k along the direc-
tion p̂0 of broken symmetry, i.e., k = k‖ and k⊥ = 0,
density and orientation fluctuations decouple and decay
with rates

sLρ (k) = ikv0P0 −Dk2 , (13a)

sLp = ikλ1ρ0P0 −Dbk
2 . (13b)

Both modes are stable and propagating, albeit with dif-
ferent speeds. Deep in the ordered region, P0 ≃ 1. The

propagation speed of density fluctuations is then simply
v0, while the propagation speed of director fluctuations
is λ1ρ0 ∼ v20ρ0. A Galilean invariant system would have
λ1 = v0/ρ0 and the two modes would have the same
propagation speed, v0. The difference in the propaga-
tion speed of the two modes can then be considered a
signature of the violation of Galilean invariance.

Next, we consider wavevectors k transverse to the di-
rection p̂0 of broken symmetry, i.e., k = k⊥ and k‖ = 0.
In this case the equations for density and director fluctu-
ations are coupled and the two hydrodynamic modes are
given by

sT± = −
1

2
(D +Ds) k

2 ±
1

2

{
(D −Ds)

2
k4 − 2k2v0ρ0

[
v0 − 2ρ0P

2
0 λ3

]}1/2

. (14)

The mode sT+ can become positive, yielding an instability,
for k < kc, with

kc =
√
v0 [2ρ0P 2

0 λ3 − v0] /(DDs) , (15)

provided

2ρ0P0λ3 > v0 . (16)

The parameter λ3 has been estimated for a few mi-
croscopic models and found to be of order v20 [21, 23].
Eq. (16) then identifies a value vSc (ρ0) of the self propul-
sion speed above which the homogeneous polarized state

becomes unstable, with kc ∼ (v0 − vSc )
1/2. The instabil-

ity boundary vSc (ρ0) depends on microscopic parameters
and is therefore model-dependent. Using the parameter
values obtained for the model of self-propelled hard rods
discussed in [23], where the nonlinear terms in the polar-
ization equation arise from momentum-conserving colli-
sions between the self-propelled rods, and summarized in
Table I, we obtain

vSc =
[
2πρ0P

2
0

]−1
. (17)
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This instability is associated with splay deformations of
the director and with spatial gradients normal to the di-
rection of mean order, suggesting that it may bear no
relevance to the stripe formation observed in the numer-
ics due to the fact that the particles in the stripes are
always aligned along the short direction thereby retain-
ing the long-wavelength nature of the splay mode. How-
ever, as shown in Fig. (1), the splay instability line agrees
remarkably well with the numerically observed onset of
stripe formation at high density. This result, discussed
further below, suggests that nonlinear pattern selection
mechanisms may play an important role in stripe forma-
tion. Finally, Eq. (17) shows that vSc ∼ 1

ρ0
for ρ0 >> ρc

and appears to diverge as we approach the phase tran-
sition. This apparent divergence is regularized when the
effect of overdamped fluctuations of the magnitude of the
polar order is incorporated in the mode analysis. This is
done in Appendix A, where rather than just neglecting
δP̃ entirely, we approximate its behavior by assuming
that on the time scales of interest |∂tδP̃ | ≪ |2a20δP̃ | in
Eqs. (6) and (7). We then neglect the time derivative of

δP̃ , solve for the overdamped δP̃ , and use this result to
eliminate it from the equations for density and director
fluctuations. We find that the resulting modes still ex-
hibit a splay instability as described above, but the crit-
ical speed monotonically approaches the constant value
vSc (ρc) = [π2 ρc]

−1 as ρ0 → ρc. The renormalized bound-

ary vSc (ρ0) of this splay instability given in Eq.(A11) is
plotted in Fig. 1 as a red dashed line. In addition, fluctu-
ations in the magnitude of the polarization renormalize
of the diffusion constant associated with the decay of
density fluctuations.

As the continuous order-disorder transition is ap-
proached from above, a20 → 0 and the separation of
time scales between the decay of speed/magnitude fluc-
tuations δP and the true hydrodynamic variables δρ and
δp⊥ no longer holds. To capture the physics of the system
in the vicinity of the order disorder transition, we need to
retain the dynamics of the ”non-hydrodynamic” variable
δP and examine the three coupled equations (6). One
can show that the splay instability described above for
k normal to the direction of mean order survives and is
qualitatively unchanged. On the other hand, for k along
the direction of broken symmetry, director fluctuations
δp⊥ decouple from density and speed fluctuations and
decay at the rate (13b). The coupled modes for the dy-
namics of density and speed fluctuations are then given
by

sL± =
1

2
(A11 +A22)±

1

2

√
(A11 −A22)

2 + 4A21A12 (18)

where Aij are the elements of the matrix A(k, t) given
in Eq. (7) for k = k‖p̂0. It is easy to see that one of the
two dispersion relations describes a non-hydrodynamic
mode, sL+ (0) = 2a20, but with a decay rate that becomes
vanishingly small for ρ0 → ρc. The other mode vanishes
at k = 0. At small wavevectors the dispersion relation of

the hydrodynamic mode sL− takes the form

sL− (k) = ikv0P0(α+ 1)−Deffk
2 +O(k3) , (19)

with

Deff = D+
v20

4 |a20|
−

v20 (α+ 1)
2

2a40
+

πv30ρ0 (α+ 1)

2a40
(20)

where we have used the microscopic parameters given in
Table 1. When Deff < 0, density fluctuations grow in
time and the ordered state is unstable. At the phase
transition, i.e., for ρ0 = ρc, The condition Deff < 0 is
satisfied for all values of v0 and the ordered state is always
unstable. Away from the transition, by considering the
exact modes in (18) we find that for densities in a range
ρc ≤ ρ0 ≤ ρLc there exists a range of self propulsion
speeds vLc1 ≤ v0 ≤ vLc2 where the propagating density
fluctuations are unstable. The lower instability boundary
vLc1(ρ0) is shown in Fig. (1) as a purple dashed-dotted
line.
The results of the linear stability analysis are sum-

marized in Fig. 2. The linear stability analysis predicts
that near the mean field order-disorder transition the ho-
mogeneous ordered state is destabilized at small v0 by
the growth of coupled density and polarization fluctua-
tions. The instability occurs for spatial gradients along
the direction of mean order, signaling the onset of spa-
tial structures that are inhomogeneous in this direction,
like the stripes found numerically. The wavevector kc
of the fastest growing mode for this instability scales as
kc ∼ (v0 − vc)

−1/2 at fixed density ρ0 and as (ρ0 − ρc)
1/2

at fixed self propulsion speed. The boundary of stabil-
ity vLc1(ρ0) obtained from the linear theory vanishes at
ρc, in agreement with the onset of the striped phase
obtained by numerical solution of the nonlinear equa-
tions, as shown in Fig. (1), but grows faster with v0
than obtained numerically. This discrepancy is likely to
stem from the fact that the full nonlinear dynamics of
amplitude fluctuations must be incorporated to account
for the behavior in these regions. In addition, the lin-
ear stability analysis predicts that the homegeneous or-
dered state is again stable at large self-propulsion speed
for v0 > vLc2(ρ0). This second line is shown in Fig. 2.
The numerics, however, yield a striped phase in this re-
gion. Finally, the longitudinal instability only exists for
ρ0 ≤ ρLc ≃ 1.1, while numerically stripes are observed
at all densities above a critical velocity. Deep in the or-
dered state, the linear stability analysis predicts that the
homogeneous flocking state is destabilized by splay fluc-
tuations of the order parameter. In this case the insta-
bility is associated with spatial gradients in the direction
normal to that the mean order. The wavevector of the
fastest growing mode also scales as kc ∼ (v0 − vc)

1/2 at
fixed density ρ0 and as (ρ0 − ρc)

1/2 at fixed self propul-
sion speed, but it is clear that nonlinear pattern selection
mechanisms must be involved to yield the formation of
the observed transverse stripes (associated with spatial
gradients in the longitudinal direction) in this region. On
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FIG. 2: (color online) The figure displays the linear stabil-
ity boundaries in the (v0, ρ0) plane. All lines have been cal-
culated using the microscopic parameter values of Table I.
The vertical dotted line (blue online) is the mean field con-
tinuous transition from the isotropic (I) to the homogeneous
polarized (HP) state. The dashed-dotted lines (purple on-
line) are the boundaries (calculated by numerical solution of
Deff (v0, ρ0) = 0, with Deff given by Eq. (20)) that define the
region vLc1 ≤ v0 ≤ vLc2 where the homogeneous polarized state
is unstable due to the growth of coupled density and polar-
ization fluctuation associated with spatial gradients along the
direction of mean order (longitudinal instability). The linear
theory predicts that the homogeneous polar state is unstable
in the ruled region to the right of the vertical mean-field tran-
sition and bounded by these two lines. The dashed line (red
online) is the splay instability boundary given in Eq. (A11).
It terminates at a finite value at ρ0 = ρc. The linear the-
ory predicts that splay fluctuations destabilize the polar state
in the entire ruled region above the dashed (red) line. The
region where the system exhibits both the longitudinal and
splay instabilities is cross-hatched. The longitudinal instabil-
ity boundary vLc1(ρ0) vanishes for v0 → 0 and ρ0 → ρ+c , in
agreement with the numerics.

the other hand, the instability line obtained from the lin-
ear theory agrees remarkably well with the numerical on-
set of stripes in this high density region (Fig. (1)). More
work is needed to understand stripe formation at high
density and the origin of the associated length scale.

IV. NONLINEAR REGIME

To go beyond the linear stability analysis and investi-
gate the nature of the flocking state above vc, we have

D/D0 Db/D0 Ds/D0 λ1 λ2 λ3

(3 + 2v20)/2 (7 + 6v20)/8 (9 + 10v20)/8 3πv20 πv20 πv20

TABLE I: Diffusion constants and convective parameters for
the model of self-propelled hard rods with excluded volume
interactions discussed in Ref. [23]. All diffusion constants are
in units of ℓ2Dr and all convective parameters are in units of
ℓ3Dr. The diffusion coefficients have been expressed in terms
of the longitudinal diffusion constant D0 of a long, thin rod.
Below we use the low density value, D0 = 1/4.

solved numerically the full nonlinear hydrodynamic equa-
tions. The numerical analysis has been carried out us-
ing the specific parameter values obtained for the self-
propelled hard rod model of Ref. [23], summarized in
Table I. All diffusion coefficients are enhanced by self
propulsion of an additive contribution proportional to v20
that arises from the persistent nature of the random walk
performed by Brownian, self-propelled rods. In the fol-
lowing we discuss the properties of the system in terms of
two dimensionless parameters, the self-propulsion speed,
v0, and the density of particles, ρ0. In the numerics
the coefficients a2 and a4 that control the continuous
mean field phase transition from an isotropic to a polar
state have been taken to be of the simple form given in
Eqs. (10b) with ρc = 0.5 in units of the rod length. This
form yields P0 ∼ (ρ − ρc)

1/2 for ρ → ρc and P0 → 1 for
ρ >> ρc.
For generality we include fluctuations beyond the mean

field level in the numerical analysis by adding Gaussian
white noise terms in both the density and polarization
equations of the forms ∇ · fρ(r, t) and fP (r, t), respec-
tively. The random forces are chosen to have zero mean
and correlations

< fiρ(r, t)fjρ(r
′, t′) >= δij∆ρρ(r, t)δ(r − r′)δ(t− t′),

(21)

< fiP (r, t)fjP (r
′, t′) >= δij

∆P

ρ(r, t)
δ(r−r′)δ(t−t′), (22)

where ∆ρ and ∆P are dimensionless noise strengths. The

noise in the density equation scales as [ρ(r, t)]1/2, while
the polarization noise scales as [ρ(r, t)]−1/2 [22, 36]. This
difference arises because the fields ρ and P are extensive
and intensive quantities, respectively. The numerical re-
sults described below are all for fixed values of the noise
amplitudes, ∆p = ∆ρ = 0.3. We have solved the non-
linear equations using the Euler method for numerical
differentiation on a grid with ∆x = 1.0 and ∆t = 0.1 (we
have verified that the numerical scheme is convergent and
stable for ∆t/(∆x)2 < 0.5) We consider a square system
of size L × L with both periodic and shifted boundary
conditions and a range of system sizes.
The behavior of the system as a function of the self-

propulsion velocity v0 and the density of particles ρ is
summarized in the phase diagram shown in Fig 1 dis-
cussed in the Introduction. The isotropic state is stable



8

for all v0 and ρ < ρc. For ρ > ρc and v0 < vc(ρ0)
the system is in the fluctuating flocking state, charac-
terized by finite polarization and large spatial and tem-
poral fluctuations of both density and order parameter.
For v > vc(ρ0) we find a striped phase, with alternating
ordered high density bands and disordered low density
bands, propagating in the direction of order. In the nu-
merics the value of vc is identified as the self propulsion
velocity where the density histograms shown in Fig. (9)
change from unimodal to bimodal. The histograms are
constructed by recording the local density at each spatial
grid point for fixed mean density ρ0 averaged over many
initial conditions. We have also verified that histogram
of local polarization magnitude change from unimodal to
bimodal as the same value of v0. The numerical bound-
ary for the onset of the stripe regime vanishes with v0 for
ρ0 → ρc and is in qualitative agreement with the bound-
ary calculated in section for the onset of the longitudinal
instability. The theoretical curve, however, grows much
faster with v0 than the numerical boundary. Surprisingly,
at high density the theoretical boundary for the linear in-
stability of splay fluctuations agrees very well with the
numerical onset of stripes.

A. Fluctuating flocking state

In this subsection we characterize the fluctuating flock-
ing state that exists in the region ρ > ρc and v0 < vc
of the phase diagram in Fig. 1. As noted earlier, this
state is characterized by large fluctuations in the den-
sity. These fluctuations do not, however, destroy the
underlying orientational order of the system. This is dis-
played in Figs. 3 and 4. Figure 3 shows the time evo-
lution of the magnitude squared of the order parameter,
〈P 2(t)〉 = 〈P 2

x (t) + P 2
y (t)〉, where here and below the

brackets denote a spatial average over the system and an
average over different realizations of initial conditions,
for both an initial ordered (〈P 2(t = 0)〉 = 1) and an
initial disordered (〈P 2(t = 0)〉 = 0) state. Both states
reach the same ordered state at long times, although on
very different time scales. The asymptotic state is or-
dered (i.e., 〈P 2〉 6= 0)and this does not appear to be
an artifact of the finite system size, as shown in Fig. 4
where the magnitude of the order parameter is displayed
as function of system size for various values of v0 and dif-
ferent initial states. The numerics suggest that P is finite
and close to unity (note the narrow range of 〈P 〉 on the
vertical axis of Fig. 4) in the fluctuating flocking state.
The large difference in the relaxation time from an ini-
tial disordered/ordered state to the asymptotic ordered
state seen in Fig. 3 is not unexpected. When starting
in a disordered state, the system locally finds different
degenerate ordered states, which subsequently coarsen
towards the homogeneous ordered state. Below we char-
acterize both the coarsening behavior as the system seeks
out its asymptotic steady state and the properties of the
asymptotic fluctuating flocking state.

0 50000 1e+05 1.5e+05 2e+05
t

0

0.2

0.4

0.6

0.8

1

<
P

2
(t

)>

L = 128
L = 256
L = 512

Ordered Initial state

Isotropic Initial state

FIG. 3: (color online) The magnitude squared of the orien-
tational order parameter 〈P 2(t)〉 as a function of time for an
isotropic initial state (〈P 2(t = 0)〉 = 0) and an ordered initial
state (〈P 2(t = 0)〉 = 1), for three system sizes and v0 = 0.1,
ρ0 = 0.7, corresponding to vc ∼ 0.42. The three curves ob-
tained for an isotropic initial state overlap and cannot be
distinguished in the figure. Both initial states approach the
same macroscopically ordered state at long time, although the
time scale required for the isotropic initial state to reach the
asymptotic steady value is much longer.

To quantify the coarsening behavior we have measured
the two-point correlation function of both the density and
the order parameter, defined as

Cρ (r, t) =< δρ(r0 + r, t)δρ(r0, t) > , (23)

CP (r, t) =< P(r0 + r, t) ·P(r0, t) > . (24)

Before discussing the behavior of these correlation func-
tions, it is useful to recall the dynamics of phase order-
ing developed in the context of equilibrium second order
phase transitions [37]. Phase ordering theories consider
a system in an initially disordered state that is rapidly
quenched below the order-disorder transition point and
describe the time evolution following the quench. Imme-
diately after the quench the system consists of finite-size
ordered regions, each in one of the continuum of degen-
erate ground states that correspond to one choice of the
spontaneously broken continuous symmetry. The sys-
tem then evolves in time and “coarsens” with some of
the ordered regions growing at the expense of others and
eventually taking over the entire system. The coarsening
process is typically controlled by a single energy scale,
namely the energy cost of the domain walls between dif-
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FIG. 4: (color online) The mean magnitude of the polar order
parameter as a function of system size L for different values
of v0 and ρ0 = 0.7, corresponding to vc ≃ 0.42. The curves
appear to saturate as the system size increases, suggesting
that the system remains macroscopically ordered in the ther-
modynamic limit.

ferent ordered regions. This implies that the time evo-
lution of the system occurs via the growth of a single
length scale L(t) that characterizes the size of a typical
ordered region in the system at a time t. The order pa-
rameter correlation function will then depend on time

only through L(t), i.e., CP (r, t) = C
(

r
L(t)

)
. Scaling

analysis indicates that the length scale L(t) grows with
the dynamical critical exponent z, L (t) ∼ t1/z. For a
vector order parameter in two dimensions in equilibrium
one expects z ∼ 2 [37].

In the case of self propelled particles, the orientational
fluctuations that drive the coarsening of the ordered state
also induce mass fluxes and hence couple to density fluc-
tuations. As a result, density correlations are essentially
slaved to the order parameter correlations and both Cρ

and CP are expected to exhibit coarsening behavior [38].
This is indeed the behavior that has been observed in
active nematic liquid crystals, where both density and
orientational correlations have been shown to coarsen on
a characteristic length scale that grows like t1/z, with
z ∼ 2 [39].

The behavior of polar active system appears to be
somewhat different. Figure 5 shows the two-point cor-
relation function for the density and the order parameter
for our flock. Both exhibit a growing correlation length
as a function of time, but they do not exhibit the simple

scaling behavior outlined above, indicating that the ap-
proach to the homogeneous state is no longer controlled
by the single energy scale associated with the cost of a do-
main wall. Convective fluxes induced by self-propulsion
lead to correlations on longer length scales and hence ac-
celerate the coarsening dynamics. This picture can be
substantiated by extracting a length scale L (t) from the
correlation functions. This is shown in Fig. 6 where we
see that the dynamical exponent z is smaller than the
equilibrium value, indicating that the coarsening dynam-
ics in polar active systems is faster than that of both
equilibrium systems with vector order parameters and
active nematics. This may be due to the fact that, in a
polar self-propelled system, there is true long range or-
der in 2D [16, 17] and the associated suppression of the
Goldstone mode by the nonlinear couplings changes the
dynamics of the system as the orientational order builds
up towards the homogeneous ordered state.
At long times, for v0 < vc, the system reaches the

“fluctuating flocking state”, a steady state with finite
mean polarization and anomalous fluctuations. To char-
acterize the properties of this state we have evaluated
the two-point correlation function of fluctuations in the
orientational order parameter,

CδP (r, t) =< δP(r0 + r, t) · δP(r0, t) >, (25)

with δP(r, t) = P(r, t)−P (t). This is shown in the right
frame of Fig. 8 and it decays logarithmically as expected
for vector order in 2D. The correlation function shown
in Fig. 8 has been averaged over r0, hence it represents
only the isotropic (angular-averaged) part of the order
parameter correlations. In general we expect the corre-
lation function to be anisotropic and its spatial decay to
be described by different length scales in the directions
longitudinal and transverse to the direction of mean mo-
tion, as described in Ref. [17]. We have calculated the
spatial decay of the order parameter correlation in each
direction and find it indeed to be anisotropic, as shown
in Fig. (7). The theoretical analysis of Ref. [17] predicts
a power law behavior with different exponents character-
izing the decay along and orthogonal to the direction of
broken symmetry. Given the large spatial and temporal

fluctuations in our system, the system sizes considered
here are too small to obtain reliable statistics to quantify
this behavior and extract scaling exponents.
In contrast to the order parameter correlations, which

decay logarithmically, the two point density correlation
shown in the in the left frame of Fig. 8 displays correla-
tions over longer length scales than expected in equilib-
rium. In fact the density correlation functions exhibits

cuspy behavior of the form Cρ (r, t) = 1 −
(

r
L(t)

)α

with

α ≃ 0.6 typically characteristic of a state with growing
domains. Furthermore, Cρ (r, t) depends very weakly on
the self propulsion speed. These large correlations in the
density arise because of the coupling of this conserved
field to the fluctuations in the underlying order parame-
ter field that is an intensive variable. This leads to what
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FIG. 5: (color online) Early time, two-point density (top panel) and order parameter (bottom panel) correlation function for
v0 = 0.1 < vc = 0.42 mean density ρ0 = 0.7, and L = 1024. The dashed horizontal line indicates the value of the correlation
function at which we extract the coarsening length scale L(t), shown in Fig. 6.
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FIG. 6: (color online) The coarsening length L(t) as a function
of time for the density (circles) and order parameter (squares)
correlations for v0 = 0.1, ρ0 = 0.7 and L = 1024. For this
density vc ≃ 0.42 and the system was started in a disordered
state. The straight line has slope 2. Although no single scal-
ing exponents can be extracted for the two length scales L(t),
it is clear that the growth with time is faster than would be
obtained for z = 2.

has been termed “giant number fluctuations” in these ac-
tive systems [20] and is the underlying mechanism for the
large fluctuations in the density in the flocking state of
our system.

B. Striped Phase

The top inset of Fig. 1 shows a real space snapshot of
the density obtained for ρ0 > ρc and v0 > vc(ρ0) In this
region the systems consists of well defined stripes of the
high density ordered phase alternating with stripes of the
low density disordered phase. In the ordered region the
polarization is always normal to the long direction of the
stripes and the stripes travel at a fixed speed in the di-
rection of polar order. Panels (a) and (b) of Fig. 9 show
histograms of the density and magnitude of the order pa-
rameter for a fixed density ρ0 = 0.7 > ρc and different
self propulsion speeds, v0. For small v0, the histograms
are unimodal (fitted with a gaussian peaked at mean den-
sity ρ0 = 0.7), signalling a uniform state. Above a char-
acteristic value of v0 the histograms acquire a bimodal
structure (fitted with two overlapping Gaussians peaked
at low and high densities), corresponding to the striped
phase. The boundary vc(ρ0) corresponding to the onset
of the striped phase and shown in Fig. 1 is determined as
the value of v0 corresponding to the onset of this bimodal
structure. The error bars on these data point are sim-
ply the step size of our increments in v0. Within these
error bars, the same values of vc(ρ0) are obtained from
the onset of a bimodal structure in both the density and
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FIG. 7: (color online) Plot of CδP (r, t) for the case when r is
parallel to p̂0 (black/open circles) and when r is perpendicular
to it (red/ filled circles). The anisotropy of the correlation
functions begins to appear at large r, but larger system sizes
are needed to quantify the difference.

polarization histograms. The points shown in the phase
diagram are obtained using the density histograms. As
noted earlier, this boundary closely tracks the thresh-
old line for the onset of the linear instability of splay
fluctuations at large ρ0 (although this instability arises
from spatial gradients normal to those of stripe forma-
tion!), and vanishes with v0 as ρ0 → ρ+c , as predicted
by the longitudinal linear instability discussed in Section
III. However, there is considerable discrepancy between
the linear theory and the numerics in the details of the
behavior at low density.
The bottom two panels of Fig. 9 show histograms of

density and polarization for a fixed self propulsion speed
v0 > vc and three different values of density. These his-
tograms are used to infer the properties of this striped
phase. The difference in position of the two peaks in
the bimodal histograms indicates the contrast in density
and order parameter between the ordered and disordered
stripes. The position of the peaks is independent of the
self propulsion speed and only weakly dependent on the
density, suggesting that the density contrast between the
isotropic and ordered stripes is entirely diffusion limited.
The height of the high density/high order peaks in the bi-
modal histograms is a measure of the width of the ordered
stripe with respect to the disordered one. We note from
the figure that the height decreases with both increasing
v0 and ρ0. This indicates that the width of the ordered
stripe decreases with increasing values of these two pa-
rameters. Further, we measure the speed of propagation

of the stripes, shown in Fig. 10. As naively expected, the
propagation speed of the stripes increases linearly with
v0.

An alternative way of displaying the existence of the
stripes and quantifying their properties is provided by the
two point density correlation function defined in Eq. (23).
We have evolved the system starting form a uniform or-
dered initial state and evaluated the two-point correla-
tion function as a function of r for three directions: 0◦,
45◦ and 90◦ to the direction of initial orientational order.
The result is shown in Fig. 11. When the self propul-
sion speed v0 < vc (right frame), the correlation decays
monotonically in all directions. On the other hand, when
v0 > vc (left frame), we find well defined oscillations in
the correlation function in the directions normal and at
45◦ to the direction of motion showing the emergence of
the periodic structure associated with the stripe pattern.
Also, this clearly indicates that the spatial inhomogeneity
develops in the direction of initial orientational ordering
even in the region where the linear instability is along a
wavevector orthogonal to the ordering direction. Finally
we have also investigated the dependence of stripe for-
mation on system size and boundary conditions. We find
that the width and speed of the stripes remain mostly
invariant as we go to larger system sizes. We have also
solved our equations with shifted boundary conditions
[40] and have found that the striped phase persists.

In summary, for values of v0 > vc(ρ) given by the
(black) solid line in Fig. (1), the system develops robust
propagating stripes of alternating ordered and disordered
regions. The numerically identified transition line follows
closely the threshold for the splay instability identified in
Eq. (17), goes to zero at the phase transition in agreement
with the longitudinal instability identified using Eq. (20)
and shows a behavior unlike both of these linear insta-
bilities in the intermediate region. Further, for systems
initialized in a uniform ordered state, these stripes form
along the direction of initial ordering even in the domain
where the longitudinal instability is absent. This sug-
gests that the pattern selection arises from a complex
interplay between the unstable linear modes [41]. Also,
the width of the stripes exhibits a scaling behavior consis-
tent with the critical wavevectors kc of both instabilities,
but is not quantitatively captured by either length scale.
A systematic study of the relationship between the linear
modes and the patterns observed here will be the focus
of a future work.

We can show that the nonlinear equations admit a
propagating front solution that may correspond to the
onset of the stripe phase, although the stability if this
solution is yet to be established. In our numerical study
we have solved the equations (1) and (2) by systemati-
cally dropping various nonlinear terms. We have estab-
lished that the terms that are critical for the formation
of the striped phase are the homogeneous nonlinearity
in the coefficient a2 that induces the phase transition,
the couplings between density and polarization embodied
by the convective terms in the density and polarization
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FIG. 8: (color online) Late-time two point correlation functions of density, Cρ(r), and order parameter, CδP (r), fluctuations.
The data are obtained from an initial ordered configuration for ρ0 = 0.7, L = 512 and various values of v0, in the region
corresponding to the fluctuating flocking state. Inset (top panel) shows (1 − Cρ(r/L(t))) vs. the scaled distance r/L(t), for
various values of v0. The dashed straight line shows the cuspy nature of two-point correlation function with cusp exponent
α = 0.6. Inset (bottom panel) shows the scaled two-point order parameter correlation function, CδP (r/L(t)), vs. the scaled
distance r/L(t), for several v0. The dashed straight line shows the logarithmic decay of CδP (r/L(t)).

equations (v0∇ρP and v0(∇ρ)/ρ, respectively) and the
convective nonlinearity controlled by the parameter λ3.
The longitudinal instability arises from the interplay of
a2 and the convective terms while the splay instability
is controlled by the term proportional to λ3. It is useful
then to consider a simplified description of the nonlin-
ear dynamics where diffusion is neglected and only terms
essential for the pattern formation are retained, given by

∂tρ = −∇ · (ρv0P) (26)

∂tP = −
[
a2 (ρ) + P 2a4 (ρ)

]
P

−
v0
2ρ

∇ρ+ λ3Pi∇ρPi (27)

Denoting by x the direction of broken symmetry of the
putative HP state, we postulate a solution of these equa-
tions in the form of a front uniform in y and propagating
along x with a yet undetermined constant speed U ,

ρ (x, y, t) = ρ (x− Ut) , (28)

P (x, y, t) = P (x− Ut) x̂ . (29)

Inserting this ansatz, Eqs. (26) and (27) become

∂x ln ρ =
v0

(U − v0P )
∂xP , (30)

(
a2 + a4P

2
)
P−

(
λ3P

2 −
v0
2ρ

)
∂xρ−(U + λ3ρP ) ∂xP = 0.

(31)

The density equation can be formally integrated by pos-
tulating an isotropic state at x = ∞ (P (∞, t) = 0) and
a polar state at x = −∞ (P (−∞, t) = 1). This gives us
the ratio of the density in in a polarized region to the
density an isotropic region as

ρpol
ρiso

=
U

U − v0P
. (32)

The density contrast is infinitely sharp when the front
propagates at a speed v0P commensurate with the de-
gree of ordering in the stripes. Diffusion, neglected here,
will smooth the density crossover between the two re-
gions. This is in agreement with our numerical results
that indicated that the contrast between the two regions
is insensitive to the parameters and is indeed diffusion
limited.
Writing the density from Eq. (30) as ρ = 1/(U − v0P ),

and substituting in the order parameter equation, we can
formally integrate Eq. (31) to obtain a solution of the
form

x = −
Λ

(P − 1)
+
Λa4
ζR

ln
[
a4(P − 1)2 (1 + P )

]
+

v0
2a2

ln(P ),

(33)
where for simplicity we have assumed U ∼ v0 and we
have introduced a dimensionless friction constant, ζR =
(a2 + a4) and a dimensionless length scale, Λ = λ3

v0ζR
.

This formal solution cannot be inverted analytically. A
plot is shown in Fig. 12 and clearly displays that the
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FIG. 9: (color online) (a)-(c) Density and (b)-(d) order parameter histograms. In panels (a) and (b) the histograms are shown
for ρ0 = 0.7, v0 = 0.1, 0.3, 0.5, 0.7 and L = 128. For small v0, below the threshold value vc ≃ 0.42, the histograms are unimodal
(fitted by a Gaussian), indicating a uniform state. For v0 > vc, the histograms are bimodal (fitted by two Gaussian curves),
indicating the onset of stripes. In panels (c) and (d) the histograms are shown for v0 > vc and three values of the mean density,
ρ0 = 0.6, 0.7, 0.8. The position of the peaks does not change with density, while the difference in the height of the two peaks
increases with increasing density.

solution represents a propagating domain boundary of
effective thickness Λ between a state with P = 1 and
a state with P = 0. In physical units, the length scale
controlling the crossover between isotropic and polarized
states, hence the sharpness of the stripes, is given by
(3πv0/ℓDr). This length is essentially the distance trav-
eled by a self propelled particle in a rotational diffusion
time. In other words, stripe formation is controlled by
the formation of domain boundaries in the polarization,
and the fact that the density is slaved to the polarization
and hence leads to mass fluxes that delineate the two re-
gions in the striped phase. Finally, it is apparent from

Eqs. (30) and (31) that there is no propagating front so-
lution if we turn off the couplings between density and
polarization.

V. SUMMARY

In this work we have considered a continuum descrip-
tion of a collection of self propelled particles moving in
a passive medium. Their dynamics on large length and
time scales is governed by hydrodynamic equations for
the density and the polarization field. The crucial physics
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FIG. 10: (color online) Speed of the stripes as a function of
v0 − vc for ρ0 = 0.7. The speed of propagation of the stripes
increases linearly with v0. The solid line is a guide to the eye.
The dashed line is a linear fit ∼ v0 − vc

in these systems that distinguishes them from conven-
tional liquid crystalline systems is the dual role of the
polarization field as i) a physical velocity that leads to
mass convection and hence couples orientational fluctu-
ation to density fluctuations and ii) an order parameter
associated with a spontaneously broken continuous sym-
metry. This duality leads to the remarkable phenomenon
of long range ordering identified in [16]. Here we show
that this same physics destabilizes the homogeneous or-
dered state above a critical value of self propulsion speed
and allows the nonlinear equations to admit a propagat-
ing front solution that yields the striped phase identified
numerically. Further, the coupling of orientational fluc-
tuations to density fluctuations gives rise to anomalous
fluctuations even in the regime where the ordered state is
stable and leads to nontrivial coarsening dynamics that
is different from the dynamics of both the equilibrium 2D
X-Y model and that of active nematics.

The two phases observed here, namely the striped
phase and the fluctuating flocking phase, have been iden-
tified earlier in the context of numerical studies of the
Vicsek model. Our work identifies the origin of these
phenomena in the model independent framework of the
dynamics of conserved quantities and broken symmetry
variable. It has been shown in different systems of this
class that pattern formation phenomena might be cru-
cially related to biological functionality [42, 43]. This
work would facilitate the application of theoretical tools,
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FIG. 11: (color online) Steady-state two-point density cor-
relation function for three different directions with respect
to the ordering direction, 90◦, 45◦ and 0◦, for v0 > vc (top
panel) and for v0 < vc (bottom panel). For v0 < vc, there
is no directional dependance in the correlation function. For
v0 > vc, correlations at 90◦ to the ordering direction decay
monotonically, while correlations at 0◦ and 45◦ to the order-
ing direction show oscillations.

such as the amplitude equations and pattern selection
analysis that are well developed in the context of chem-
ical reacting systems to collections of self propelled par-
ticles.



15

-5 0 5
x

0

0.2

0.4

0.6

0.8

1

P

Λ

FIG. 12: Plot of polarization as a function of x as obtained
by inverting Eq. 33 for ρ0 = 0.7 and v0 = 1.0. The solution
represents a propagating domain boundary between a state
with P = 1 and a state with P = 0. For these parameters
Λ ∼ 1.57.
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Appendix A: Linearized Equations

Here we analyze in more detail the hydrodynamic
equations linearized about the homogeneous polar state
given in Eq. (6) and (7) in the main text and present
a better approximation for the discussion of the splay
instability.

The hydrodynamic modes deep in the ordered phase
were discussed in Section III by entirely neglecting mag-
nitude fluctuations δP that decay on microscopic time
scales. A better approximation consists of neglecting the
rate of change of δP in Eq. (??) and solve for δP in
terms of fluctuations in density and director to lowest
order in gradients, with the result

δP̃ =
1

2a20

{[
2a20αP0 + ık‖

(v0
2

− λ̃ρ0p
2
0

)] δρ̃

ρ0

+ık⊥ρ0λ2P
2
0 δp̃⊥

}
(A1)

We then use this expression to eliminate δP̃ from from
Eqs. (6) for density and director fluctuations. The eigen-
values of the resulting two coupled equations are given

s± =
1

2
(c11 + c22)±

1

2

√
(c11 − c22)2 + 4c12c21 (A2)

where

c11 = ik‖v0P0 (1 + α)− k2‖

[
D −

1

2a20

(
v20
2

− λ̃v0ρ0P
2
0

)]
(A3)

c12 = ik⊥v0ρ0P0 − k‖k⊥ρ
2
0v

2
0P

2
0

λ2

2a20
(A4)

c21 = ik⊥

[
v0
2P0

− ρ0λ3P0 (1 + α)

]
− k‖k⊥

[
(Ds −Db)−

λ3ρ0
2a20

(v0
2

− λρ0P
2
0

)]
(A5)

c22 = −ik‖λ1ρ0P0 −

[
Dbk

2
‖ +

(
Ds −

λ3λ2ρ
2
0

2a20
P 2
0

)
k2⊥

]
(A6)

Again the modes decouple when k = k‖p̂0 lies along the
direction of broken symmetry. The two modes governing

the dynamics of density and director fluctuations are then
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given by

sLρ = ikv0P0 (1 + α)−

[
D −

1

4a20

(
v20 + 2λv0ρ0P

2
0

)]
k2 ,

(A7a)

sLp = −ikλ1ρ0P0 −Dbk
2 . (A7b)

Director fluctuations are stable and their decay rate is
controlled by the bend diffusion constant. Since a20 < 0
in the ordered state, one can define an effective dif-
fusion constant in Eq. (A7a) as DL

eff = D + (v20 +

λv0ρ0P
2
0 )/(4|a20|). The first correction to D in this ex-

pression, proportional to v20 , always enhances diffusion
and arises from the fact that self propelled particles per-
form a persistent random walk [23]. The second correc-
tion can lead to an instability if λ < 0. The parameters
λi are microscopic quantities and their values are model
dependent. As discussed in the main text, if we think
of the polarization an an equilibrium order parameter,

then λ = 0. If in contrast we think of the polarization as
a physical velocity in a Galilean invariant system, then
λ > 0. In both these cases the density fluctuations relax
diffusively for all values of the parameters. For the self-
propelled hard rod model discussed in Ref. [23] λ > 0 (see
also Table I). In this case the convective terms propor-
tional to λi further enhance the effective diffusion con-
stant and the homogeneous state is stable. Note that a
value λ > 0 is also obtained in the microscopic Boltz-
mann equation model studied in [21]. If, however, the
microscopic model allows for higher order chemical and
biological processes that can lead, for example, to a re-
versal of the direction of motion of an individual unit due
to interactions with other units, then λ can be negative
and drive a longitudinal instability [35].

Next, we consider wavevectors k transverse to the di-
rection p̂0 of broken symmetry, i.e., k = k⊥. In this case
the equations for density and director fluctuations are
coupled and the two hydrodynamic modes are given by

sT± = −
1

2

(
D +Ds

)
k2 ±

1

2

{(
D −Ds

)2
k4 − 2k2v0ρ0

[
v0 − 2ρ0P

2
0 λ3 (1 + α)

]}1/2

, (A8)

where Ds = Ds + ρ20P
2
0 λ2λ3/(2|a20|). The mode sT+ can

become positive, yielding an instability, for k < kc, with

kc =

√
v0 [2ρ0P 2

0 λ3(1 + α)− v0] /(DDs), (A9)

provided

2ρ0P0λ3[1 + α] > v0. (A10)

Using the parameter values obtained for the model of self-
propelled hard rods discussed in [23], where the nonlinear
terms in the polarization equation arise from momentum-
conserving collisions between the self-propelled rods, and
summarized in Table I, we obtain

vSc =
[
2πρ0P

2
0 (1 + α)

]−1
. (A11)

The critical line vSc (ρ0) given in Eq. (A11) is plotted in
Fig. 1. As obtained in the main text , the instability line
vanishes as vSc ∼ 1/ρ0 at large density. However, near the
transition incorporating overdamped magnitude fluctua-
tions regularizes the behavior yielding a finite value for

vSc (ρc). Finally, for a wavevector k at an angle θ to direc-
tion p̂0 of broken symmetry, the splay instability occurs
for a range of angles θm ≤ θ ≤ π/2, where θ = π/2
corresponds to k normal to p̂0. The growth rate of the
unstable mode is, however, always largest for θ = π/2,
when director deformations are pure splay.
Appendix B: Wavevector of fastest growing modes

In this appendix we identify and charachterize the
fastest growing mode associated with the two linear in-
stabilities identified in the main text. To identify the
wavevector of the fastest growing mode for the longitu-
dinal instability discussed in Section III, we evaluate the
real part of the dispersion relation of this mode to order
k4, with the result

Re[sL−(k)] = −Deffk
2 −D4k

4 +O(k6) , (B1)

where Deff is given in Eq. (20) and
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D4 =
1

32 |a20|
3A (A− 4αP0v0) (D −Ds)

+
1

32 |a20|
2

[(
1

8 |a20|
(A− 4αP0v0)

2 +
1

|a20|
v20

)2

+ 4 (D −Ds)

(
1

8 |a20|
(A− 4αP0v0)

2 +
1

|a20|
v20

)]

+
3

16
(
8 |a20|

3
)A2

(
−2 (D −Ds)−

1

8 |a20|
(A− 2αP0v0)

2
−

1

|a20|
v20

)
−

5

128 (2 |a20|)
8A

4 (B2)

FIG. 13: (color online) The maximum growth wavevector of
the longitudinal instability as a function of the self-propulsion
speed v0 for different densities.

where

A = 2
[
v0(1− 2α) + λρ0

]
P0 (B3)

The growth rate of the unstable mode is then maximum
at a wavevector kc, given by

kLc =
√
−Deff/2D4 (B4)

Fig. (13) shows a plot of the maximum growth wavevec-
tor as a function of the self propulsion speed for vari-
ous values of the mean density ρ0. The critical length
scale k−1

c decreases with increasing density ρ0, in agree-
ment with what observed numerically for the width of the
stripes. On the other hand, k−1

c increases with increas-
ing v0decreases as the self propulsion speed increases, im-
plying that the width of the stripe should increase with
increasing SP speed, while the stripes width exhibits the

opposite behavior. This indicates that the length scale
selected by the nonlinear pattern is not simply related
to the wavevector of the most unstable mode associated
with the linear instability.

FIG. 14: (color online) The maximum growth wavevector of
the splay instability as a function of the self-propulsion speed
v0 for different densities.

Next, proceeding as above, we can find the fastest
growing mode associated with the splay instability. This
is of the form

kc ∼
v0

(Ds +D)

√

2

(
v0
vc

− 1

)
. (B5)

This critical wavevector is shown as a function of self-
propulsion speed v0 > vSc (ρ) for different values of ρ0 in
Fig. (14). In this case kc is a non-monotonic function of
v0. But, it increases with both v0 and ρ0 for the range
of densities and self propulsion speeds probed by the nu-
merical analysis.
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