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5 ENDOMORPHISM RINGS OF FINITE GLOBAL DIMENSION

GRAHAM J. LEUSCHKE

Abstract. For a commutative local ring R, consider (noncommutative) R-algebras Λ of the form

Λ = EndR(M) where M is a reflexive R-module with nonzero free direct summand. Such algebras Λ

of finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of

singularities of Spec R. For example, Van den Bergh has shown that a three-dimensional Gorenstein

normal C-algebra with isolated terminal singularities has a crepant resolution of singularities if

and only if it has such an algebra Λ with finite global dimension and which is maximal Cohen–

Macaulay over R (a “noncommutative crepant resolution of singularities”). We produce algebras

Λ = EndR(M) having finite global dimension in two contexts: when R is a reduced one-dimensional

complete local ring, or when R is a Cohen–Macaulay local ring of finite Cohen–Macaulay type. If

in the latter case R is Gorenstein, then the construction gives a noncommutative crepant resolution

of singularities in the sense of Van den Bergh.

This paper takes for its starting point two results of Auslander:

Theorem A ([1, §III.3]). Let Λ be a left Artinian ring with radical r and assume that rn = 0,

rn−1 6= 0. Set M =
⊕n

i=1 Λ/ri. Then Γ := EndΛ(M)op is coherent of global dimension at most

n + 1.

Theorem B ([2]). Let S = k[[x, y]] be the ring of formal power series in two variables over a

field k and let G be a finite subgroup of GL2(k) with |G| invertible in k. Set R = SG. Then

A := EndR(S)op has global dimension at most two.

These theorems both relate to Auslander’s notion of representation dimension, introduced in [1]

as a way to measure homologically the failure of an Artin algebra to have finite representation type.
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2 GRAHAM J. LEUSCHKE

The representation dimension of an Artin algebra Λ can be defined as

repdimΛ = inf{gldim EndΛ(M)},

where the infimum is taken over all finitely generated modules M which are generator-cogenerators

for mod Λ. Note that Theorem A does not prove finiteness of the representation dimension; while

M has a nonzero free direct summand, it need not be a cogenerator. Auslander showed in [1] that

repdimΛ ≤ 2 if and only if Λ has finite representation type, and in 2003, Rouquier [19] gave the

first examples with repdimΛ > 3. Iyama has recently shown [15] that the representation dimension

of an Artin algebra is always finite.

We extend Theorems A and B in two directions. In each case, we consider commutative Noe-

therian (semi)local base rings.

First, we fill a gap between Auslander’s theorems: the case of dimension one. A reduced complete

local ring R of dimension one always has a finitely generated module whose endomorphism ring has

finite global dimension: the normalization R̃. However, R̃ is never a generator in the category of

R-modules, unless R is already a discrete valuation ring. Theorem 1.4 produces a finitely generated

generator M such that EndR(M) has finite global dimension. Specifically, M can be taken to be

a direct sum of certain overrings S between R and R̃, and the global dimension of EndR(M) is

bounded by the multiplicity of R. This completes a coherent picture for rings of dimension at most

2; see [20] and [21] for related progress in dimension three.

We also generalize to dimensions d > 2 by exploiting the connection with finite representation

type. The two-dimensional quotient singularities C[[x, y]]G, with G ⊆ GL2(C) a finite group, are

precisely the two-dimensional complete local rings with residue field C and having finite Cohen–

Macaulay type [12, 2, 9]. Moreover, C[[x, y]] contains as R-direct summands all indecomposable

maximal Cohen–Macaulay R-modules [12]. Theorem 2.1 states that if R is a d-dimensional Cohen–

Macaulay local ring of finite Cohen–Macaulay type, and if M is the direct sum of all indecomposable

maximal Cohen–Macaulay R-modules, then EndR(M) has global dimension at most max{2, d}. It

follows that the representation dimension of a complete Cohen–Macaulay local ring of finite Cohen–

Macaulay type is finite. (See Definition 2.2 for the definition of representation dimension in this

context.)

The proofs of both theorems are based on projectivization [3, II.2]. In the present contexts,

this means that the functor HomR(M,−) induces an equivalence of categories between add(M),

the full subcategory of R-modules which are direct summands of finite direct sums of copies of
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M , and the full subcategory of finitely generated projective modules over A := EndR(M)op. In

particular, if M is an R-generator, then M has an R-free direct summand, and so M is a projective

A-module. Auslander’s original proof of Theorem A uses this technique, and the proofs of our two

main results are very close in spirit to his method. Iyama has refined Auslander’s methods into a

theory of rejective subcategories [13, 14], which he uses to prove that the representation dimension

of an order over a complete discrete valuation ring is finite.

Section 3 discusses the implications of Theorem 2.1 to the theory of non-commutative crepant

resolutions [21]. If R is Gorenstein and has finite Cohen–Macaulay type, Theorem 2.1 does indeed

produce a non-commutative crepant resolution of R. If R is not Gorenstein, then non-commutative

crepant resolutions are not yet defined, but Theorem 2.1 still gives an analogue. We discuss

advantages and disadvantages of this analogy.

The rings under consideration will be Noetherian, and all modules finitely generated. We abbre-

viate HomR(−,−) by (−,−).

1. Dimension one

In this section we consider reduced one-dimensional semilocal rings R. We always assume that

R is complete with respect to its Jacobson radical, equivalently that R is isomorphic to a direct

product of complete local rings. Let K be the total quotient ring of R, obtained by inverting all

nonzerodivisors of R. Recall that a finitely generated R-module M is torsion-free provided the

natural map M−→M ⊗R K is injective.

Our goal requires us to consider the module theory of certain birational extensions of reduced

rings, that is, extensions R ⊆ S where S is a finitely generated R-module contained in the total

quotient ring K of R. Of course, in this situation every finitely generated torsion-free S-module

is a finitely generated torsion-free R-module, but not vice versa. The following lemma, however,

follows easily by clearing denominators.

Lemma 1.1. Let R ⊆ S be a birational extension of reduced rings as above. Let C and D be

finitely generated torsion-free S-modules. Then HomR(C,D) = HomS(C,D). Furthermore, if M

is a finitely generated torsion-free R-module, and f : C−→M is an R-linear map, then the image

of f is an S-module.

For the remainder of this section, (R,m) will be a reduced complete local ring of dimension one

with total quotient ring K and integral closure R̃. Note that K is a direct product of finitely many
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fields, and R̃ is correspondingly a direct product of discrete valuation rings. Since R is complete

and reduced, R̃ is a finitely generated R-module [18, Theorem 11.7].

Set R(1) := EndR(m). Since m contains a nonzerodivisor, R(1) embeds naturally into K (by

sending f to f(r)/r, which is independent of the nonzerodivisor r). It is well known that in fact

R(1) ⊆ R̃. Furthermore, R ( R(1) unless R = R̃. Now, R(1) may no longer be local (if, for example,

we take R = k[[x, y]]/(xy)), but by Hensel’s Lemma, R(1) is a direct product of complete local rings,

R(1) = R
(1)
1 × · · · × R

(1)
n1 , each of which is again reduced.

Iterating this procedure by taking the endomorphism ring of the maximal ideal of each of the

local rings R
(1)
ℓ , ℓ = 1, . . . , n1, gives a family of reduced complete local rings {R

(i)
j }. Since R̃/R is

an R-module of finite length and each R
(i)
j is trapped between some R

(i−1)
l and R̃, this family is

finite. It follows that the lengths of the chains

(‡) R ( R
(1)
j1

( · · · ( R
(n)
jn

= R̃,

are bounded above, where each R
(i)
ji

is a direct factor of the endomorphism ring of the maximal

ideal of R
(i−1)
(ji−1)

.

Let E(R) denote the family of rings obtained in this way, including R itself. Put A(R) =

add(E(R)), the full subcategory of mod-R containing all direct summands of finite direct sums

of rings in E(R), considered as R-modules. If S is a direct product of complete local rings Si,

j = 1, . . . ,m, let E(S) be the corresponding union of the E(Sj), and A(S) = add(E(S)) the full

subcategory containing all direct summands of finite direct sums of rings in E(S), again considered

as S-modules.

Even though we begin with a local ring, the proof of Theorem 1.4 requires dealing with semilocal

rings that crop up along the way. Lemma 1.2 allows us to reduce to the local case each time.

Lemma 1.2. Let S = S1 × · · · × Sk be a direct product of rings. Assume that for each i = 1, . . . , k

and for each torsion-free Si-module D, there is an exact sequence

(1.2.1) 0−→Ci,mi
−→Ci,mi−1−→· · · −→Ci,0−→D−→0

with each Cij ∈ A(Si) and such that

0−→(X,Ci,mi
)−→(X,Ci,mi−1)−→· · · −→(X,Ci,0)−→(X,D)−→0

is exact for all X ∈ A(Si). Then for each torsion-free S-module E, there exists an exact sequence

(1.2.2) 0−→Cm−→Cm−1−→· · · −→C0−→E−→0
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with each Cj ∈ A(Si) and such that

(1.2.3) 0−→(X,Cm)−→(X,Cm−1)−→· · · −→(X,C0)−→(X,E)−→0

is exact for all X ∈ A(S).

Proof. Let E be a torsion-free S-module. Then E ∼=
∏n

i=1 eiE, where ei is a complete set of

orthogonal idempotents for the decomposition S = S1 × · · · × Sn. The exact sequence (1.2.2) can

be taken to be the direct sum of the sequences (1.2.1) with D = eiE. It remains to show that

(1.2.3) is exact for all X ∈ A(S). Since HomS(Y,Z) = 0 whenever Y is a Si-module and Z is a Sj-

module with i 6= j, this is clear. �

We can now state the key result which will imply our main theorem in the reduced case.

Proposition 1.3. Let (R,m) be a reduced complete local ring of dimension one and let N be a

torsion-free R-module. Let n be the length of the longest chain (‡). Then there exists an exact

sequence

0−→Cn−→Cn−1−→· · · −→C0−→N−→0

with each Ci ∈ A(R) and such that

0−→(X,Cn)−→(X,Cn−1)−→· · · −→(X,C0)−→(X,N)−→0

is exact for all X ∈ A(R).

Proof. We proceed by induction on n. If n = 0, then R = R̃ is a discrete valuation ring, and

any torsion-free R-module is free. The set A(R) consists exactly of the free R-modules, so that

0−→C0
=

−→N−→0 is the required sequence.

Assume that the statement holds for reduced complete local rings of dimension one having a

chain (‡) of length at most n − 1, and that R has a chain of length n. In particular, then the

proposition holds for each direct factor of R(1) = EndR(m). Let N be a torsion-free R-module.

First suppose that N is an R(1)-module. By Lemma 1.2, then, there is an exact sequence of

R(1)-modules

(1.3.1) 0−→Cn−→Cn−1−→· · · −→C0−→N−→0,

with each Ci ∈ A(R(1)), which remains exact under (X,−) for any X ∈ A(R(1)). (We use Lemma 1.1

here to know that HomR(X,−) = HomR(1)(X,−).) The only indecomposable module in A(R) but
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not in A(R(1)) is the free module R, so the sequence remains exact under (X,−) for any X ∈ A(R),

as desired.

Next suppose that N is not an R(1)-module. Let N ′ = HomR(R(1), N) ( N be the largest

R(1)-module contained in N . Observe that for any R(1)-module X, and any R-linear homomor-

phism X−→N , the image of X is contained in N ′. In particular, (X,N ′) = (X,N) for any

X ∈ A(R(1)). By induction, there is a surjection f : C ′−→N ′, with C ′ ∈ A(R(1)), such that

(X, f) : (X,C ′)−→(X,N ′) is surjective for all X ∈ A(R(1)). Since (X,N ′) = (X,N), we see that

applying (X,−) to the composition C ′−→N ′ →֒ N yields a surjection for all X ∈ A(R(1)).

Take a free R-module F mapping minimally onto N/N ′ and lift to a homomorphism g : F−→N .

Then g−1(N ′) is an R(1)-module. Indeed, g−1(N ′) ⊆ mF as F is a minimal free cover of N/N ′, and

since mF is clearly a module over R(1) = EndR(m), Lemma 1.1 implies that g−1(N ′) = mF , so in

particular is an R(1)-module.

Define π : F ⊕ C ′−→N by π(p, c) = g(p) − f(c). Since (X, f) is surjective for all X ∈ A(R(1)),

and g induces a surjection F−→N/N ′, we see that (X,π) is surjective for all X ∈ A(R). We claim

that the L = ker π is an R(1)-module. Let α ∈ R(1) and (p, c) ∈ L, so that g(p) = f(c). Since

f(c) ∈ N ′ and g−1(N ′) is an R(1)-module, αp ∈ g−1(N ′). Then, since f |f−1(N ′) is R(1)-linear by

Lemma 1.1, g(αp) = αg(p) = αf(c). Finally, f : C ′−→N ′ is R(1)-linear, so αf(c) = f(αc). That

is, (αp, αc) ∈ L, as claimed.

By the previous case, then, there is an exact sequence

0−→Cn−1−→Cn−2−→· · · −→C0−→L−→0

such that

0−→(X,Cn−1)−→(X,Cn−2)−→· · · −→(X,C0)−→(X,L)−→0

is exact for all X ∈ A(R(1)). Splicing this together with the short exact sequence 0−→L−→F ⊕

C ′−→N−→0, and using once again that the only indecomposable module in A(R) but not in

A(R(1)) is the free module R, we are done. �

Theorem 1.4. Let (R,m) be a one-dimensional reduced complete local ring. Put M =
⊕

S∈E(R) S,

a finitely generated R-module. Then Γ := EndR(M)op has global dimension at most n + 1, where n

is the length of the longest chain (‡).

Proof. Let N be a finitely generated Γ-module. Then by [3, II.2] there exists a homomorphism

M1−→M0 with Mi ∈ add(M) such that (M,M1)−→(M,M0)−→N−→0 is exact. Let L be the
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kernel of M1−→M0. Then L is torsion-free, so by the Proposition has a resolution of length n by

modules in add(M), which remains exact after applying (M,−). Since each (M,Mi) is a projective

Λ-module, N has projective dimension at most n + 1. �

Corollary 1.5. A one-dimensional reduced complete local ring has a finitely generated module

whose endomorphism ring has global dimension at most e(R), the multiplicity of R.

Proof. It is known that R̃/mR̃ has dimension e(R) as a vector space over R/m. Thus R̃/R has

length e(R) − 1, so e is a uniform bound on the length of chains (‡). �

It seems plausible that Theorem 1.4 actually holds for rings R such that the integral closure R̃ is

a finitely-generated R-module and a regular ring, for example, the hypersurface x2 +y3 −y2z2 = 0.

The proof given above is reminiscent of the algorithm of de Jong [7] for obtaining the integral

closure by taking iterated endomorphism rings.

2. Finite Cohen–Macaulay Type

As mentioned in the introduction, the original motivation for Auslander’s representation di-

mension was to study Artin algebras of finite representation type, that is, Artin algebras with

only finitely many isomorphism classes of finitely generated modules. For (commutative Noether-

ian) rings of higher dimension, this property has been generalized to finite Cohen–Macaulay type.

A nonzero finitely generated module M over a d-dimensional ring R is called maximal Cohen–

Macaulay (MCM) if there exists an M -regular sequence x1, . . . , xd. We then say that R has finite

CM type provided there are, up to isomorphism, only finitely many indecomposable MCM R-

modules.

The one-dimensional CM local rings of finite CM type are completely characterized [8, 11, 22,

23, 6]. In dimension two, the complete local rings containing the complex numbers and having

finite CM type are also completely classified [12, 2, 9]. They are exactly the rings of Theorem B,

that is, the invariant rings R = C[[x, y]]G under the action of a finite group G. In this case, C[[x, y]]

is a representation generator for R, that is, contains as direct summands all the indecomposable

MCM R-modules.

The main result of this section is a generalization of Theorem B. Again, the proof relies on the

process of projectivization, which was described in the introduction.
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Theorem 2.1. Let (R,m) be a d-dimensional CM local ring of finite CM type. Let M be a repre-

sentation generator for R (in particular, M has a free direct summand). Then A := EndR(M)op

has global dimension at most max{2, d}. If d ≥ 2, then equality holds.

Proof. First assume that d ≥ 2. Let N be a finitely generated left A-module. Take the first d − 1

steps in a projective resolution of N over A:

(2.1.1) P• : Pd−1
ϕd−1
−−−−→ · · ·

ϕ2
−−−−→ P1

ϕ1
−−−−→ P0

with coker ϕ1 = N . For each i, we can use [3, II.2] to write Pi = HomR(M,Mi), where Mi is

a direct summand of a direct sum of copies of M . In particular, each Mi is a MCM R-module.

Moreover, each ϕi can be written as HomR(M,fi) for R-homomorphisms fi : Mi−→Mi−1. This

gives the following sequence of MCM R-modules and homomorphisms:

(2.1.2) C• : Md−1
fd−1

−−−−→ · · ·
f2

−−−−→ M1
f1

−−−−→ M0.

Since M has a free direct summand and HomR(M,C•) is exact, it follows that in fact C• is exact.

Put Md = ker(fd−1). Then Md is a MCM R-module by the depth lemma, and left-exactness of

Hom gives an exact sequence

(2.1.3) 0 −−−−→ HomR(M,Md) −−−−→ Pd−1
ϕd−1
−−−−→ · · ·

ϕ2
−−−−→ P1

ϕ1
−−−−→ P0.

Since Md is MCM, HomR(M,Md) is A-projective, and N has projective dimension at most d.

To see that the global dimension of A is exactly d, take N to be a simple A-module. Then N

has finite length as an R-module, so is of depth zero. A projective resolution of N is in particular

an exact sequence of MCM R-modules, and so a projective resolution of length less than d would

contradict the depth lemma. Thus N has projective dimension exactly d. Since the global dimension

of A is the maximum of the projective dimensions of the simple modules, this finishes the case d ≥ 2.

If d < 2, then we can repeat the first part of the argument, simply taking an A-projective

resolution of length 1. The remainder of the proof is the same, showing that gldim A ≤ 2. �

One can also state the proof above in terms of the adjoint pair g∗ = HomR(M,−) and g∗ =

−⊗AM . In this context, the fact that C• is exact comes down to the facts that (1) M is a projective

A-module, so g∗ is an exact functor, and (2) g∗g
∗ is the identity on projective A-modules.

Following Iyama [14], we extend the definition of representation dimension to rings of positive

Krull dimension.
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Definition 2.2. Let T be a complete regular local ring and let R be a T -algebra, finitely generated

and free as a T -module. Let C be the category of R-modules which are finitely generated free

T -modules. Let

repdimR = inf
N∈C

{gldim EndR(R ⊕ R∗ ⊕ N)},

where R∗ := HomT (R,T ).

Proposition 2.3. Let R be a CM complete local ring of finite CM type. Then repdimR ≤

max{2,dim R}.

Proof. By Cohen’s structure theorem, R is a finitely generated module over some complete regular

local ring T . The MCM R-modules are precisely the R-modules that are free over T . Finally,

R∗ ∼= ωR is the canonical module for R, which is MCM. Theorem 2.1 then shows that EndR(R ⊕

ωR ⊕N) has global dimension at most max{2,dim R}, where N is the direct sum of the remaining

indecomposable MCM R-modules. �

Remark 2.4. As mentioned in the Introduction, Auslander proved in [1] that if Λ is an Artin algebra

of finite representation type, with additive generator M , then Γ := EndΛ(M) has representation

dimension two. In fact, he showed that Γ is what is now called an Auslander algebra, that is, Γ has

global dimension two and dominant dimension two. We say that a ring A has dominant dimension

at least t if, in a minimal injective resolution 0−→A−→I• of A, the jth injective module Ij is also

projective for j < t.

One checks easily that the proof given in [3, VI.5] applies verbatim to CM local rings of finite

CM type, and shows that, in the situation of Theorem 2.1, A = EndR(M) has dominant dimension

two. To see that one cannot hope for higher dominant dimension, consider a three-dimensional

CM local ring R of finite CM type, e.g. Example 3.2 or 3.3. Let M be the direct sum of the

indecomposable MCM R-modules, and A = EndR(M). If A has dominant dimension > 2, then the

minimal injective resolution of A is

0−→A−→HomR(M, I0)−→HomR(M, I1)−→HomR(M, I2)

where each HomR(M, Ij) is a projective-injective A-module. It follows that each Ij is an injective

R-module. By the equivalence of categories between add(M) and projective A-modules, then, the

minimal injective resolution of M over R is

0−→M−→I0−→I1−→I2,
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and applying HomR(M,−) to this injective resolution preserves exactness. This implies that

Ext1R(M,M) = 0, which is quite false in Examples 3.2 and 3.3.

3. Connections with non-commutative crepant resolutions

Though it is a purely algebraic statement, Theorem 2.1 is closely related to geometric statements

about resolution of singularities. Recent work of M. Van den Bergh [20, 21] has revealed unexpected

connections between the (geometric) resolutions of certain rational singularities and the algebraic

properties of certain endomorphism rings over their coordinate rings. To make this connection

more precise, we quote the following definition of Van den Bergh:

Definition 3.1. Let R be a Gorenstein normal domain. A non-commutative crepant resolution of

R is an R-algebra A = EndR(M), for a finitely generated reflexive R-module M , such that A is a

MCM R-module and gldim Ap = dimRp for all p ∈ SpecR.

Non-commutative crepant resolutions were introduced to solve a problem related to their geo-

metric counterparts. A (geometric) crepant resolution of a scheme X is a projective morphism

f : Y −→X, with Y regular, such that f∗ωX = ωY , where ω denotes the canonical bundle. A. Bon-

dal and D. Orlov [4] conjecture that if X has a geometric crepant resolution, then any two have

equivalent bounded derived categories of coherent sheaves. M. Kapranov and E. Vasserot [16] ver-

ify the conjecture of Bondal-Orlov for two-dimensional quotient singularities C2/G; they show that

any geometric crepant resolution is derived equivalent to the non-commutative crepant resolution

given by EndR(C[[x, y]]).

Van den Bergh pushes this point of view into dimension three. He proves [20] that a three-

dimensional Gorenstein normal C-algebra with terminal singularities has a non-commutative crepant

resolution if and only if it has a geometric crepant resolution, and furthermore that the two crepant

resolutions are derived equivalent, establishing the conjecture of Bondal–Orlov in this case. In

fact, he conjectures [20, Conj. 4.6] that all crepant resolutions of a given Gorenstein scheme X,

non-commutative as well as geometric, are derived equivalent. He also gives some further examples

in which non-commutative crepant resolutions exist.

Theorem 2.1 implies that if R is a Gorenstein local ring of finite CM type, containing a field and

having dimension two or three, then R has a non-commutative crepant resolution. The completion

of such a ring is the analytic local ring of one of the simple hypersurface singularities (see, for

example, [24]), the MCM modules of which are known. One can thus check that for each of the

simple singularities, the endomorphism ring of a representation generator is indeed a MCM module.
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In fact, Theorem 2.1 gives a little more: the reflexive module in the definition of the non-

commutative crepant resolution can actually be taken to be MCM. This is consistent with all the

other known examples of non-commutative crepant resolutions [20, Remark 4.4].

It is worth pointing out that Theorem 2.1 also implies that graded Gorenstein local rings of finite

CM type (containing C) have rational singularities. Van den Bergh shows [20, Prop. 3.3] that if

R is a positively graded Gorenstein algebra over a field, with an isolated singularity, and R has a

noncommutative crepant resolution of singularities, then R has at most rational singularities. Of

course, this is already known for the Gorenstein local rings of finite CM type, following from the

complete classification of such rings [12, 5, 17].

Non-commutative crepant resolutions are not yet defined for non-Gorenstein rings. It is tempting

to accept Definition 3.1 verbatim for all CM normal domains, and look to Theorem 2.1 as a source

of non-commutative crepant resolutions in this context as well. This optimism is quickly tempered

by the following two examples (the only known non-Gorenstein CM local rings of of finite CM type

and dimension ≥ 3).

Example 3.2. Let R = k[[x2, xy, y2, yz, z2, xz]], where k is an algebraically closed field of character-

istic zero. By [24, 16.10], R has finite CM type. The indecomposable MCM R-modules are the

free module of rank one, the canonical module ω ∼= (x2, xy, xz), and M := syzR
1 (ω), which has

rank 2. By Theorem 2.1, A := End(R ⊕ ω ⊕ M) has global dimension 3. However, depthR A = 2

(this can be easily checked with, say, Macaulay2 [10]). The culprit is M : both HomR(M,R) and

HomR(M,M) have depth 2.

Removing M , however, eliminates the problem. Observe that R is a ring of invariants of k[[x, y, z]]

under an action of Z2. Therefore EndR(k[[x, y, z]]) is isomorphic to the twisted group ring k[[x, y, z]]∗

Z2, and the twisted group ring has global dimension 3 by [24, Ch. 10]. Finally, since k[[x, y, z]] ∼=

R ⊕ ω as an R-module, we see that R ⊕ ω gives a noncommutative crepant resolution of R, and

exhibits repdimR ≤ 3.

Example 3.3. Let R = k[[x, y, z, u, v]]/I, where I is generated by the 2 × 2 minors of the matrix

( x y u
y z v ). Then R has finite CM type [24, 16.12]. The only indecomposable nonfree MCM R-modules

are, up to isomorphism,

• the canonical module ω ∼= (u, v)R;

• M := syzR
1 (ω), isomorphic to the ideal (x, y, u)R;

• N := syzR
2 (ω), rank two and 6-generated;
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• L := M∨, the canonical dual of M , isomorphic to the ideal (x, y, z)R.

In particular, ω∗ = HomR(ω,R) is isomorphic to M . By Theorem 2.1, then, A := EndR(R ⊕ ω ⊕

M ⊕N ⊕L) has global dimension 3. Again, A fails to be MCM as an R-module, since none of L∗,

N∗, and HomR(ω,M) are MCM. In this example, EndR(R ⊕ ω) and EndR(R ⊕ M) are the only

endomorphism rings of the form EndR(D), with D nonfree MCM, that are themselves MCM. I do

not know whether the endomorphism ring EndR(R ⊕ ω) has finite global dimension.
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