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Abstract 

Acute high altitude (HA) exposure compromises cognitive function thus posing a significant risk 

to personnel safety in a HA environment, particularly when performing tasks that requires 

cognitive vigilance.  Normal cerebral function, and thus cognitive function, is dependent upon 

oxygen supply.  At HA there is reduced oxygen availability results in compensatory increases in 

cerebrovascular blood flow which may be related to nitric oxide (NO), a primary signaling 

molecule that acts to increase blood flow and ensure an optimal neurovascular coupling (NVC).  

Upon initial ascent to HA, however, there may be reductions in NO production which may play a 

role in acute decrements in cerebrovascular/cognitive function at HA.  Dietary nitrate may serve 

as a means to replenish NO availability.  Increasing NO in this manner could have positive 

effects on NVC during increased cognitive demand.  Purpose: To investigate the effects of acute 

nitrate supplementation on 1) cognitive and 2) cerebrovascular function compared to an inert 

placebo at HA.  Hypotheses: It was hypothesized that compared to placebo at HA, nitrate 

supplementation would 1) increase cognitive function, and 2) increase cerebral blood flow.  

Methods: 20 healthy men (23 ± 3 yrs, BMI 24.3 ± 3.0 kg∙m-2) participated in this randomized, 

double-blind, crossover design study on two separate days. Following sea level (SL) 

cognitive/NVC testing, participants consumed either nitrate (NIT) or a NIT-depleted placebo 

(PLA).  Participants then underwent 120 minutes of HA (11.5 ± 0.2% O2) and all cognitive/NVC 

testing was repeated.  NVC was assessed by measuring the change in mean middle cerebral 

artery (MCA) and common carotid artery (CCA) blood flow during a cognitive challenge 

(incongruent Stroop task) using Doppler ultrasound.  Brachial artery flow-mediated dilation 

(FMD), salivary nitrite, and exhaled NO (in a subset of participants) were assessed as systemic 

proxies of NO-metabolism.  A computerized testing battery was used to assess cognitive function 

 
 



across a variety of cognitive domains including memory, executive function, cognitive 

flexibility, sensorimotor, and attention. Results: Salivary nitrite and exhaled NO significantly 

increased following supplementation at HA for NIT compared to PLA (p < 0.05).  FMD 

significantly decreased and MCA and CCA blood flow increased at HA in both conditions (p < 

0.05).  Measures of NVC were unchanged at HA in both conditions.  Memory performance 

significantly decreased at HA in both conditions (p < 0.05), while all other domains were 

unaffected.  Conclusions: NIT significantly increased markers of NO-metabolism at HA 

compared to PLA.  Cerebrovascular blood flow increased at HA compared to SL in both 

conditions at rest.  NIT, however, was unable to prevent reductions in FMD or memory at HA 

nor was NIT able to augment NVC at HA compared to SL.     
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Chapter I: Introduction 

Numerous populations are exposed to physiologically taxing high altitude (HA) 

environments including mountaineers,1 HA natives,2 aircraft pilots,3 and military personnel.4  

Acute HA exposure compromises cognitive function across several areas; specifically, it results 

in visual impairment,5 impaired complex reaction time,6 loss of motor skills,7 and decreased 

marksmanship.8  Moreover, performance decrements cannot be attenuated with cognitive-

specific training prior to ascent.  These impairments pose a significant risk to personnel safety in 

a HA environment, particularly when performing tasks that requires cognitive vigilance.   

Normal cerebral function, a critical determinant of cognitive function9, is dependent upon 

oxygen supply.10  At HA, the partial pressure of oxygen (PO2) decreases, leading to reduced 

oxygen availability, and hypoxemia10 at the expense of critical organs such as the brain.  This 

results in a compensatory increase in cerebral blood flow (CBF),10-12  to offset drops in blood 

oxygen saturation.  A primary signaling molecule that may help regulate blood flow in this 

setting is nitric oxide (NO).  NO is released from the vascular endothelium and acts to relax 

vascular smooth muscle, eliciting vasodilation and increased blood flow.13  In addition to its 

central role as a regulator of blood flow,14 NO  ensures optimal hyperemic response to neural 

activity (neurovascular coupling between central and cerebrovasculature),15 and is necessary for 

hypoxia-induced cerebral vasodilation.16 Moreover, NO appears to play an integral role in 

adaptation to HA.14  Specifically, NO production is elevated following acclimatization to HA,14 

and HA natives have been shown to have drastically greater levels of circulating NO products 

compared to lowlanders, which was further associated with increased  blood flow.17  These 

chronic and acclimatization-based adaptations most likely serve to increase oxygen delivery18 

and may be related to the improvement in cognitive function with acclimatization.19,20   Some 
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populations, such as military fighting units or rescue teams, are often rapidly deployed to HA4 

permitting little or no time to properly acclimatize to HA-hypoxia and increase NO production. 

This is important since upon initial ascent there may be reductions in exhaled NO,21 indicative of 

decreased NO production.  This reduction in bioactive NO may play a role in acute decrements 

in cerebrovascular/cognitive function at HA.  Finding a method to increase NO upon initial 

ascent to HA might present a means to positively augment blood flow, neurovascular coupling, 

and ultimately attenuate decreases in cognitive performance that occur with sudden acute 

exposure.   

NO can be synthesized endogenously by NO synthases (NOS),22 or from dietary nitrate,23 

a natural ingredient of beetroots, vegetables, and leafy greens.24  Nitrate is subsequently reduced 

to circulating nitrite through reactions occurring in the saliva and stomach.25,26  Increasing 

circulating plasma nitrite has been shown to increase NO formation27 and peripheral vascular 

blood flow27,28 in humans.  Furthermore, bioactive levels of plasma nitrite can be attained 

through increased intake of dietary nitrate.29  The NOS pathway requires the presence of oxygen, 

however the conversion of dietary nitrite to NO takes place preferentially in hypoxic 

conditions,29 making nitrate supplementation of particular interest to populations exposed to 

hypoxia.  Acute dietary nitrate supplementation increases arterial/muscle oxygenation during 

high simulated altitude (5,000m).23  Thus, it has been proposed that increased nitrite 

concentration via dietary nitrate consumption could enhance NO production during neuronal 

activity, augmenting  cerebral oxygenation and subsequent neurovascular coupling during 

increased cognitive demand.30  In fact, increased dietary nitrate intake increases regional cerebral 

perfusion in areas involved in executive functioning (the ability to perform complex, goal-

oriented tasks)31 in older adults.25  To date, no research has directly investigated the effects of 
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nitrate supplementation on cerebral perfusion and cognitive function in hypoxic conditions 

observed at HA.  Thus, an acute nitrate supplement may be able to attenuate cognitive 

decrements following rapid ascent to HA in lieu of proper acclimatization and could be of value 

to personnel in HA hypoxic conditions.   

 

The specific aims of the proposed study are as follows: 

Aim 1:  To investigate the effects of acute nitrate supplementation on cognitive function 

compared to an inert placebo at HA. 

Hypothesis 1: It is hypothesized that compared to placebo, cognitive function will increase 

following acute nitrate supplementation.  

Aim 2:  To investigate the effects of acute nitrate supplementation on central and 

cerebrovascular function compared to an inert placebo at HA.  

Hypothesis 2: It is hypothesized that compared to placebo, central and cerebral blood flow 

(CBF) will increase following nitrate supplementation.  
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Chapter II: Review of Literature 

 Exposure to high altitude (HA) is associated with a myriad of environmental and 

physiological challenges that can impair physical and cognitive performance and function.  This 

ultimately compromises the health and safety of personnel exposed to HA without proper 

acclimatization.  This review will focus on the effects of HA on oxygen kinetics, cognitive 

function, cerebrovascular and central hemodynamics, acclimatization to HA, and the role of 

nitric oxide in adaptation to HA.   

 High altitude effects on oxygen diffusion. 

 Barometric pressure decreases exponentially with increasing altitude, resulting in a 

decreased partial pressure of oxygen (PO2) known as hypoxia.10,32  PO2 at a given altitude is 

calculated as (PB – 47 mmHg) x 0.2093, where PB is barometric pressure, 47 mmHg is the water 

vapor pressure at 37oC, and 0.2093 is the fractional concentration of O2 in the air (which is 

unchanged with altitude).33  This equation clearly details the relationship between a decrease in 

barometric pressure and the resulting drop in PO2.  This altered PO2 has severe effects on the 

human body because of altered O2 cascade gradients.  The movement of O2 from the alveoli to 

the pulmonary capillaries and circulation occurs via passive diffusion32 where the rate of 

diffusion is directly proportional to tissue cross sectional area, partial pressure gradient, and gas 

solubility.34  At HA a decrease in PO2 leads to a decreased diffusion rate into the pulmonary 

vasculature, this results in greater time for hemoglobin (Hb) to become fully saturated.34  This 

can result in diffusion limitation at HA, where the rate of diffusion has slowed to the point that 

red blood cells and Hb cannot fully saturate as they pass through the pulmonary capillaries.34  

Ultimately, the reduced diffusion gradient results in hypoxemia (decreased arterial O2 
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saturation), which reduces O2 delivery to tissues and impairs cognitive function and disrupts 

cerebrovascular hemodynamics.32    

High altitude effects on cognitive function. 

Cognitive domains  

 Cognitive function is generally divided into 7 domains including: attention/concentration, 

language, visuospatial skills, psychomotor skills, executive functions, memory and orientation.35  

Executive function is an expansive term describing the high-level interrelated cognitive abilities, 

dependent on lower-level functions, which are necessary to complete goal-directed behavior.36,37  

There is some debate as to the specific components that comprise executive function, but 

information processing, attentional control, cognitive flexibility, and working memory have all 

been acknowledged as playing a role.35-37  Description of the cognitive domains and tests that 

have been used to target them are displayed in Table 1.     

Acute effects of high altitude on Cognitive domains  

Ascent to HA results in severe impairments in cognitive function38 with more pronounced 

effects occurring at more extreme hypoxia.39  Of note, decrements occur independent of acute 

mountain sickness32 and can occur within 30 min of exposure.40  Decrements often develop in 

memory, motor skills, language, and executive function32 at altitudes greater than 2000-4500 m,5 

although some decrements have been documented to occur as low as 1500 m.41  For a brief 

summary table of HA effects on divisions of cognition see Table 1.  The threshold to observe 

memory dysfunction is posited to be approximately 3,500 m.32  There are, however, marked 

decreases in spatial memory in both rat models42 and humans43 above 5000 m.  Short-term 

memory decreases between 3,658 m and 4,600 m in both simulated43,44 and  expedition based45,46 
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designs.  Typically, memory assessment at HA has used number recitation, digit span, and digit 

symbol tests.32   

 Psychomotor impairment at HA often manifests as decreased motor speed and precision 

during complex tasks and decreases with hypoxia.47-50 These decrements in motor skill are 

believed to be indirect results from HA hypoxia and are not responsible for changes in reaction 

time (RT) with HA.32  RT is comprised of simple (timed response to single unvarying stimuli) 

and complex (timed response to multiple stimuli and respective responses) and is a measure of 

higher cognitive function.6  There appears to be an inverse relationship between increasing 

altitude and RT performance6,51-54 when above a threshold of 4000 m.6  Furthermore, complex 

RT appears to be more affected than simple RT, as 2-choice RT does not change with ascent to 

8,848 m.49  HA exposure has been linked with impaired cognitive flexibility (as assessed using 

the Stroop color test) months after an ascent in world class mountain climbers.  

Hyperventilation-induced brain hypoxia (hyperventilation as a means to induce cerebral 

vasoconstriction) has also resulted in impaired cognitive flexibility at an arterial O2 saturation of 

90%, roughly equivalent to 2,500 m.55   

 Numerous experimental factors can impact cognitive function at HA such as simulated 

HA vs. hypobaric HA, rate of ascent, previous cognition-based training, and difficulty of the 

cognitive task.  Expedition or transit based ascent to hypobaric hypoxic HA differs from 

hypobaric and normobaric simulated HA.32  Studies using expedition-based ascent to HA have a 

large number of external environmental factors that may affect cognitive performance; including 

fatigue, dehydration, environmental temperature, rate of ascent, and sleep quality.32  Poor sleep 

quality at HA has been shown to greatly affect the cognitive decline at altitude56 and rate of 

ascent can alter neuropsychological performance at HA, as slower ascent may permit more 
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acclimatization compared to rapid ascents.57  The brain is characterized by neural plasticity and 

the ability to improve cognitive functioning through training.58,59  Populations that perform in 

significant operational work (such as military personnel) require greater cognitive skills than 

other workers, which may lead to better cognitive performance compared to their lesser 

developed counterparts.60  Importantly, rather than attenuate decreases in cognitive function at 

HA, cognitive-training prior to HA ascent results in more substantial decrements in performance 

compared to untrained personnel.60  Moreover, task difficulty plays a large role in the detection 

of hypoxia-induced decrements, such that tasks that require higher memory capacity45 or greater 

complexity38,50,54 are more affected by hypoxia than simpler tasks.  Tasks that document 

response time are more useful for highlighting differences in cognitive processing speeds than 

non-timed tasks since performance slows at HA, a strategy that may aim to minimize mistakes.5  

This suggests that detecting changes in cognition would be most sensitive using complex time-

limited tasks following a rapid ascent to an altitude greater than 4000 m.   

Neurovascular coupling 

Brain metabolism accounts for 20% of the body’s energy and nutrients.61  Proper brain 

function is dependent on continuous, adequate perfusion and oxygen delivery provided by the 

cerebrovasculature.10,39,61  Blood flow and neural activity are strongly linked such that 

insufficient glucose and oxygen delivery to a region of the brain can result in glial cell injury or 

death.15  Functional hyperemia is a compensatory increase in blood flow to brain regions where 

neurons are active, ensuring adequate blood flow to support neural activity.15  As brain activity 

increases, blood flow must increase to meet neural metabolic demands.62  Therefore, optimal 

coupling must be established between the brain and blood perfusion, a process known as 

neurovascular coupling (NVC).15 The ability of the vasculature to respond to stimuli, 
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appropriately vasodilate and increase blood flow is dependent on endothelial function.   In this 

manner, cognitive function is linked to the cerebrovascular endothelial function in order to 

support neural activity.   

The cerebrovascular endothelium,  neurons and non-neuronal cells combine to form a 

functional unit that is responsible for regulating hemodynamic NVC in addition to other 

interactions.63  Since neural activity is dependent on blood flow matching neural metabolic 

demand, deleterious changes in vascular and endothelial function can impact NVC and thereby 

impair neural and cognitive function.  Endothelial dysfunction has been associated with 

cognitive impairments,64 with one study reporting worse flow-mediated dilation in participants 

with multiple-domain cognitive impairment.65  Vascular cognitive impairment (VCI), is an 

umbrella term that has been proposed to represent the spectrum of cognitive decrements 

associated with vascular dysfunction and disease (ranging from mild cognitive impairment to 

dementia)66 that profoundly affects NVC through changes in blood flow to neurons.63   

Hypertension, a risk factor of VCI that contributes to endothelial dysfunction, is 

characterized by accelerated atherosclerotic development and decreased endothelium-dependent 

vasodilation,67 which may be manifested in the peripheral and cerebral vasculature.  Indeed, 

hypertension and its sequela are associated with dementia,68 mild cognitive impairments and 

disorders,69 and impaired executive function.70  Cerebrovascular disease is linked to greater 

declines in cerebral blood flow (CBF)71-73 and decreased hyperemic reserve capacity,74 

suggesting impaired NVC as the vasculature cannot adapt to the increased demands, resulting in 

blunted blood flow responses to neural activity.75  This has been shown in older adults who have 

been reported to have depressed NVC compared to younger adults.76-78  Contrastingly, beneficial 

changes in vascular function have been reported to attenuate and even reverse this process.  
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Specifically, as vascular function improves, as reported with exercise training, measures of 

cognitive function (executive function and working memory) similarly improve79,80 at least in 

part through beneficial adaptations in the cerebrovasculature.  In this manner, cognitive 

performance and neural activity are dependent on the vasculature (through NVC) for proper 

function and any dysfunction or abnormalities in the cerebrovasculature, resulting from 

environmental challenges or perturbations, may compromise the integrity of brain function.61   

Effects of high altitude on cerebrovascular hemodynamics 

Cerebral blood flow 

Cerebral hemodynamic responses to HA-induced hypoxia result from two competing 

compensatory reactions.  The development of hypoxemia at HA results in a compensatory 

increase in CBF10,39,81,82 via increased flow velocity,57 and relaxation of the cerebral arterioles 

and/or release of vasodilator substances.39,81  Perfusion-based increases in oxygen delivery are 

necessary because there is no capillary recruitment in the cerebrovasculature, meaning increased 

brain metabolism is dependent on enhancing the diffusion gradient.39  Ventilation increases with 

increasing altitude in order to positively augment arterial saturation of oxygen.83,84  However, 

although arterial PO2 increases, there is a concomitant decrease in arterial PCO2, which 

potentiates cerebral vasoconstriction, acting to decrease CBF.85,86  In this manner, the given CBF 

response to HA-hypoxia is a result of the balance between a compensatory vasodilation response, 

seeking to increase oxygen delivery, and vasoconstriction responding to decreased arterial 

PCO2.39,87  These competing responses can result in unaltered,86 increased10,39,81 or decreased88 

CBF depending on external factors such as the magnitude of hypoxia, as well as cerebrovascular 

and ventilatory oxygen and carbon dioxide sensitivity.87  External stimuli such as exercise or 
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cognitive tasks may be required to create perturbation sufficient to quantify changes in CBF at 

HA.     

Cerebral perfusion is largely dependent on changes in vessel diameter and blood flow 

velocity.  It has generally been shown that CBF velocity (CBFv) increases with HA-

hypoxia,57,81,89 although this finding is not universal.10,90  Recent data has suggested that cerebral 

vessels vasodilate in response to HA.10  Wilson et al (2011) documented changes in the middle 

cerebral artery (MCA) during an Everest expedition to 7,930 m in addition to a simulated HA 

condition using magnetic resonance imaging to quantify changes in the MCA.10  Their results 

demonstrated no change in CBFv during the expedition, while diameter increased drastically 

above 6,400 m.  In the simulated HA study, MCA diameter similarly increased following 180 

min at 4,400 m, although CBFv also increased compared to baseline.10  This suggests that 

vasodilation plays a larger role in the response to HA-hypoxia than originally believed, although 

these changes in diameter were principally seen at extreme HA and after three hours of 

simulated-HA.10  Moreover, the changes in MCA diameter were reversed under supplemental 

oxygen use, suggesting that increased CBF is a direct hypoxic effect.10  More recently, however, 

CBFv was shown to increase during a 6-day HA sojourn and remain significantly elevated 6-hr 

post descent.89  Which may suggest that changes in cerebral hemodynamics rely mechanisms 

other than vasodilation since CBF remained elevated after returning to normoxic conditions.89    

CBFv measured via transcranial Doppler (TCD) has been widely used to document CBFv 

across rest, exercise, and cognitive perturbations in normal and pathological populations,91 as 

well as in different environmental conditions, including HA.10,16,57  This method assumes that 

diameter of cerebral vessels are relatively unchanged during different physiological stimuli, and 

thereby indirectly estimates blood flow.91  It has been recently suggested that cerebral 
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vasodilation occurs frequently at HA to increase CBF,10 which would not be quantifiable using 

TCD.  Importantly, there are additional noninvasive methods to indirectly assess changes in 

cerebrovascular tone and altered CBF.  Doppler ultrasound can be used to document changes in 

carotid hemodynamics, which feed into the MCA and other cerebral arteries and provide 

information on blood flow to the brain.92-96   

High altitude acclimatization 

Upon ascent to HA, there are decrements in both cognitive and physical function.97  Fortunately, 

human physiology undergoes a series of adaptations and adjustments to compensate for the 

hypoxic environment.97  Adaptations to prolonged hypoxic exposure (days to weeks) are 

beneficial and paramount in the ability to survive at HA, although they do not return bodily 

functions to sea level performance.33  Importantly, these adaptations take time to develop before 

performance is positively affected.  The rate of adaptation varies based on rate of ascent, peak 

altitude, and individual physiology.98  Adaptations can occur within the first days to weeks or 

can occur from chronic exposure (such as the native populations of the Tibetan high plains).  

Ultimately, acclimatization-based adaptations can serve as a model to elucidate how best to 

design interventions intended to maintain performance during acute exposure to HA without 

proper acclimatization. 

Oxygen transport  

Initial key adaptations to HA-hypoxia pertain to augmenting oxygen saturation.  

Hyperventilation, achieved through deeper and more frequent breathing, increases alveolar 

ventilation by as much as 5-fold and is often referenced as the most important HA adaptation.33,99  

This occurs through the hypoxic ventilatory response and leads to greater blood oxygen 
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saturation, and a concomitant decrease in CO2 in the blood.97  As discussed previously, the 

hyperventilatory response to HA may affect cerebrovascular responses, as hypocapnic conditions 

can precipitate cerebral vascoconstriction.85,86  The decrease in CO2 causes a shift in acid-base 

balance, leading to respiratory alkalosis, a process by which excess CO2 exhalation decreases 

hydrogen ion concentration in the blood, resulting in an increase in pH.  Within a week the body 

compensates by lowering the bicarbonate concentration in the blood via urinary excretion, acting 

to balance pH while maintaining elevated ventilation and oxygen saturation.  

Hematological adaptions occur in parallel to respiratory adaptations to maximize oxygen 

transport.100  There is an increase in red blood cells (RBC), the primary oxygen transporter in the 

body, which initially results from reduction in plasma volume, but later from erythropoiesis (the 

production of new RBCs).  Erythropoiesis can begin as early as 24-48 hours after ascent, evident 

by elevated plasma erythropoietin, the glycoprotein responsible for stimulating RBC 

production.101  Importantly, when increased RBC production is coupled with dehydration-

induced decreases in plasma volume, a frequent occurrence at HA,102 there is a marked increase 

in RBC concentration97 and blood viscosity.  These changes, when combined with small shifts in 

the oxygen-dissociation curve, facilitate greater oxygen unloading and delivery to tissues, which 

improve function at HA although do not permit a full return to sea level performance. 

Oxygen delivery 

The effects of HA acclimatization on oxygen delivery and cardiovascular adaptations remain 

somewhat less clear.  There are conflicting results regarding the cardiac acclimatization 

response, with some findings suggest decreased cardiac output100 and others finding a return to 

baseline103 or no change104 following prolonged exposure. Ultimately, heart rate remains 
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elevated following acclimatization in order to compensate for the decreased plasma volume and 

ventricular filling time.103   

Increased oxygen transport, elicited from the aforementioned adaptations would be 

expected to favor brain-tissue oxygenation and potentially attenuate decrements in cognitive 

performance.  Indeed, a study by Pagani et al reported that acclimatized mountaineers out 

performed non-acclimatized participants at 5,350 m in cognitive function.20  Notably, these 

results are limited by the cross-sectional design, but none the less suggest that acclimatization 

may improve cognitive function.  Another study showed no difference in saccadic eye 

movement, a marker for impaired cerebral performance, following prolonged stay at very high 

altitudes.1  Consistent with these findings, HA natives do not appear to have severe decrements 

in cognitive function.  Cognitive function in adolescent HA natives has been reported to be 

similar to their lowland counterparts, indicating no evidence of compromised function while 

being tested at their native altitudes.2  Moreover, event-related potentials in the brain electrical 

activity were similar between HA and lowland natives during cognitive testing.2  Despite 

increased oxygen carrying capacity of the blood following acclimatization, cognitive 

performance still depends on NVC, and the ability of the vasculature to respond and increase 

blood flow to the active areas of the brain.  Therefore, any increase in cognitive function with 

acclimatization must depend on the matching of blood flow by the vascular system to neural 

activity. 

Role of nitric oxide in vascular adaptations 

There are rather limited data on vascular responses to HA acclimatization, as much of the 

literature focuses on cardiorespiratory adaptations.  However, some of the most insightful 
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research into vascular adaptations to HA has been derived from studying native populations to 

HA, specifically from Tibet.  Tibetan HA natives have been shown to have less saturated Hb,105 

and lower concentrations of Hb and erythropoietin106 compared to their Andean HA 

counterparts.  These adaptations, or lack thereof, result in lower arterial oxygenation content, 

which would suggest their HA performance would be impaired.  In fact, Tibetan’s cardiovascular 

adaptations may target the oxygen delivery through the vascular system and blood flow’s 

dependence on vasodilation, rather than oxygen transport.107   

Tibetan HA natives have been reported to have extremely high levels of exhaled nitric 

oxide (NO),108 a potent vasodilator and modulator of blood flow produced by the vasculature,13 

compared to lowlanders and other HA natives.  This up-regulation of NO production and 

bioavailability likely plays a large role in increased blood flow for oxygen delivery.  Indeed, 

rather than vasoconstrict pulmonary vessels, Tibetan HA natives display vasodilation of the 

pulmonary vasculature, normal blood flow, and essentially no pulmonary hypertension.109,110  

This is in contrast to the typical lowlander response to HA which includes a down-regulation of 

NO synthesis,21,111 and the development of severe HA performance limitations.  This enhanced 

NO bioavailability is related to increased systemic blood flow (indicated by forearm blood 

flow),17 lung blood flow,110 CBF during exercise,95 and greater hyperemic responses to 

temporary occlusion.112  In this manner, higher blood flow may offset the low arterial oxygen 

content observed in this HA population,113 and the key adaptation may revolve around the up-

regulation/ bioavailability of NO.   

The decrease in NO bioavailability experienced by lowlanders during acute HA exposure 

is thought to be caused by reduced enzymatic production, and reaction oxygen specie (ROS) 

interference.114,115  Enzymatic production depends on oxygen availability and thereby decreases 
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in hypoxia, while the production of ROS inactivates NO.14,115  Importantly, levels of bioactive 

NO increase as acclimatization proceeds and relative function improves in lowlanders.14  Levett 

et al demonstrated that plasma biomarkers of NO production (nitrate/nitrite) are increased 

following acclimatization, with increases evident as low as 1,300 m and with the largest gains 

noted following the greatest rate of ascent.14  This suggests that NO-based adaptations to HA are 

not unique to Tibetan HA natives,14 although their adaptions are to a far greater extent compared 

the lowlander acclimatization response.  Moreover, it offers the possibility that increasing NO 

upon initial ascent to altitude may attenuate the initial, large decrements in performance prior to 

hematological adaptations that occur with acclimatization. 

Nitric oxide and the nitrate-nitrite-nitric oxide pathway 

  Nitric oxide can be synthesized endogenously by NO synthases (NOS),22 or from dietary 

nitrates via the nitrate-nitrite-nitric oxide (n-n-NO) pathway.23  It is an autocrine and paracrine 

signaling molecule29 that plays a role in regulation of endothelial function.114  Once created, NO 

diffuses into the vascular smooth muscle, activating guanyl cyclase and in turn, causing 

relaxation of the vascular smooth muscle (vasodilation).13,114  NO has been implicated in the 

systemic blood flow response to mental stress (induced via cognitive challenges),116 as well as 

blood flow responses to HA,16 hypoxic vasodilation of cerebral vessels,16,117 and proper 

acclimatization/adaptation to HA,14 as discussed previously.  Importantly, research has suggested 

that NO plays a role in optimizing NVC.    

The appropriate hyperemic vascular response to neural activity, discussed previously, is 

believed to occur via feed-forward mechanisms.15 Specifically, neuron signals potentiate the 

release of vasoactive agents (Figure 1).  With increased neural activity there is increased synaptic 
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release of glutamate, which binds to neuron receptors, leading to a calcium influx, activation of 

neuronal NOS, and increased NO production.15  Glutamate can also bind to active astrocytes, 

resulting in increased arachadonic acid formation which can increase both vasodilatory and 

vasoconstrictor messenger production.15  Importantly, NO concomitantly inhibits vasoconstrictor 

substances that may be derived from arachadonic acid118 in addition to its vasodilatory functions, 

in attempt to optimize the vascular hyperemic response.  Research has demonstrated that NO has 

an integral role in establishing NVC.  If neuronal NOS is inhibited, thereby decreasing NO 

bioavailability in the cerebrovasculature, functional hyperemia is decreased by 37-60% in the 

somatosensory cortex,119,120 and 50-90% in the cerebellum.121-124  NOS activity is dependent on 

oxygen, and NO synthesis is thus limited by oxygen availability.15  Importantly, NOS activity 

and creation of NO depends on reacting L-arginine with oxygen, whereas the n-n-NO pathway 

does not require oxygen for reaction and, in fact, gradually increases activation as oxygen 

tension decreases.29  In this manner, the n-n-NO pathway serves as a NOS-independent NO 

formation pathway that can increase NO production as NOS reactions are attenuated.29  This may 

be of greater importance when operating in hypoxic conditions (such as HA), when NOS-

dependent formation may be impaired.   

Once NO has been formed, its lifetime and diffusion capabilities depend on scavenging 

radicals, that can quickly react with circulating NO.29  NO oxidation to nitrate (NO3
-) or nitrite 

(NO2
-) may present a more stable form that can circulate and be converted back to NO under 

hypoxic conditions.29  This suggests that nitrite may be a primary modulator of hypoxic 

vasodilation and blood flow at HA.  Research has demonstrated that increased plasma nitrite is 

associated with greater forearm blood flow,125 peripheral blood flow,27,28 and NO formation.27 

Nitrate/nitrite must be reduced to the bioactive from of NO and research suggests that Hb may 
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act as an allosterically-regulated nitrite reductase, generating NO and contributing to hypoxic 

signaling and vasodilation.27,126,127  Moreover, it appears that maximal nitrite reduction rates 

occur when Hb is 40-60% saturated with oxygen,127 meaning that if plasma nitrite is available in 

such conditions there will be increased NO formation and vasodilation.  

Nitrates can be readily consumed through diet, as they are natural ingredients in of 

beetroots, vegetables, and leafy greens,24 and can increase bioactive levels of nitrite adequate for 

increased NO formation.29  Ingested nitrate is quickly absorbed from the upper gastrointestinal 

tract29 and is transported to the salivary glands where it is reduced to nitrite via anaerobic 

bacteria before re-entering the gut.128  Some of the nitrite is converted to nitrous acid, which 

dissociates to form NO,129,130 while some nitrite is absorbed through the intestines and enters 

circulation.26  Indeed, following a dietary nitrate bolus, plasma, salivary and urine levels of 

nitrite increase, indicating greater storage pools for NO formation.131  Increased nitrite could aid 

in the vascular adjustments attempting to increase oxygen delivery during acute exposure to a 

hypoxic environment through increased NO formation.  

High dietary nitrate intake in older adults has been shown to increase regional cerebral 

perfusion to the frontal cortex compared to a low dietary nitrate group.25  Moreover, nitrate 

supplementation has been shown to result in shorter hyperemic lag times to visual stimulation, 

indicative of improved NVC in healthy males.30  At both low and HA, administration of a 

sublingual NO donor resulted in cerebral vasodilation (evident through decreased CBFv) in two 

different HA native populations.16  Dietary nitrate consumed prior to a rapid ascent to 5000 m 

resulted in significantly higher arterial/muscle oxygenation during submaximal and maximal 

exercise compared to placebo.23  This study concurrently noted no change cerebral oxygenation 

and estimated flow which may be a direct result of the exercise stimulus.  Specifically, exercise 
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at HA causes a marked increase in ventilation, that concomitantly decreases the partial pressure 

of CO2, causing vasoconstriction of cerebral vessels.  Therefore, the insignificant changes in 

cerebral perfusion may have resulted from an intense, compensatory reaction to vasoconstrict 

vessels.  The effect of nitrate supplementation on cognitive responses to acute HA exposure has 

yet to be elucidated.   

Proposed study 

 Dietary nitrate supplementation may serve as a means to mimic Tibetan HA natives’ 

adaptations to acute HA-hypoxia prior to compensatory acclimatization.  Tibetan natives 

accommodate large changes in blood flow and oxygen delivery through increased NO 

bioavailability, rather than up-regulation of oxygen transport.108  Increased nitrate availability 

during HA exposure may potentially reduce hypoxic performance decrements.  High 

concentration of nitrates would result in greater ability of the n-n-NO pathway to augment NO 

formation, especially in the face of hypoxic deactivation of the NOS pathway.29 This would in 

turn act to increase vasodilation, increasing blood flow16,117 and oxygen delivery, as well as 

optimizing NVC by facilitating more rapid hyperemic responses to neural activity.30  In this 

manner, nitrate supplementation could act to improve or attenuate decrements in cognitive 

performance following rapid ascent to HA.  Therefore, the purpose of this study is to document 

the effects of acute nitrate supplementation compared to a placebo on 1) cognitive function at 

HA and 2) cerebrovascular function at HA.  It is hypothesized that cognitive function will 

improve and that cerebrovascular blood flow will increase compared to the placebo at HA. 
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Chapter III: Methodology 

Participants 

20 Recreationally active men, age 18-30 yrs, were recruited from the local University 

community for this randomized, double-blind, crossover-design study.  Exclusion criteria 

included self-reported (health history questionnaire) smoking, hypertension, diabetes mellitus, 

hyperlipidemia, pulmonary disease, renal disease, neurological disease, or peripheral artery 

disease.  All participants provided written informed consent prior to study initiation.  Testing was 

conducted at the same time of day in a temperature-controlled laboratory.  Participants were 

instructed to fast for ≥ 3 hours and avoid vigorous exercise and avoid consuming caffeine and 

alcohol the day of testing.  Additionally, participants were given a list of high-nitrate foods to 

avoid for the 2 days prior to experimental testing.  Height and weight was assessed via wall-

mounted ruler and electronic scale, respectively, and body composition was estimated via air 

displacement plethysmography (BodPod; COSMED, Concord, CA).  

Design 

Participants rested in the supine position for 10 minutes upon arrival before baseline 

(normoxic) vascular and cognitive measures were assessed.  Participants consumed either a) a 

0.45 g nitrate bolus (Beet It Sports Shot; NIT) or b) an inert placebo (PLA) prior to exposure to 

HA in a randomized order.  This single dose of nitrate has been previously reported to 

significantly increase plasma nitrite concentration at HA (2,500 m).26  Participants remained at 

HA for 105 minutes before undergoing HA vascular and cognitive testing (Figure 1).  This 

timeline was chosen so that cognitive testing would occur at approximately 2 hrs post-nitrate 

ingestion since previous literature suggests peak plasma nitrite levels occur between 2-3 hrs post-
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ingestion (and remain elevated for approximately 2 additional hours).25,132  HA testing was 

conducted in a normobaric hypoxic chamber (Hypoxico Systems) at simulated altitude 

conditions approximately equivalent to 4,500 m (achieved by lowering the fractional 

concentration of inspired oxygen (FiO2) to approximately 11.5 ± 0.2% O2).   Oxygen 

concentration was measured using an oxygen monitor (PureAire Monitoring Systems Inc., Lake 

Zurich, IL) secured inside the hypoxic chamber.  This altitude was chosen based on previous 

research that established 4000-5000 m as the critical altitude for changes in cognitive function.133 

Vascular Measures 

Arterial Hemoglobin Concentration and Saturation 

Arterial oxygen saturation was assessed using a reflectance pulse oximeter placed 

forehead (Nonin Medical, Plymouth, MN) at baseline, and during vascular testing.  The forehead 

reflectance sensor was secured using adhesive and a flexible head band to the forehead just 

above the brow.  Hemoglobin concentration was assessed at baseline via finger-stick blood 

sample and microcuvette (The Hemocue Hemoglobin System, Hb201+; Angelholm, Sweden). 

End-tidal CO2 

End-tidal CO2 (EtCO2) was measured (Nellcor OxiMax, Covidien, Mansfield, MA) at sea 

level and HA baseline with sampling lines secured directly under the nostrils.  Participants rested 

for 10 minutes prior to assessment to ensure resting values.  Data was collected over a 5-minute 

period with triplicate measures taken during minutes 2-4 and averaged.  

Nitrite and Exhaled Nitric Oxide 
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Salivary nitrite was qualitatively assessed using salivary test strips (Berkeley Test, 

Berkeley, CA).  A salivary absorbent pad was placed under the tongue for 3-5 s and then pressed 

against a reagent strip. The resulting color was compared to a colored scale to qualitatively 

assess nitrite availability. Exhaled NO was measured in a subset of participants using a NIOX 

MINO (Aerocrine AB Solna, Sweden).  This method has been described in detail previously.134  

Briefly, participants were instructed to empty their lungs and fully inhale through the NIOX 

MINO mouthpiece before beginning a paced exhalation (approximately 5 seconds).  The 

participants exhalation was guided by a visual cue program that provided immediate feedback 

allowing the participant to adjust the exhalation force to the target level (i.e. too forceful an 

exhalation would push the needle farther right on the computerized display dial).  Nitrite/NO 

availability was assessed at sea level and approximately 2 hours after nitrate ingestion/HA 

exposure.  This timeline was chosen based on previous findings that report nitrite/NO availability 

to peak approximately 2 hours post-ingestion.25,132   

Brachial Blood Pressure 

Systolic blood pressure (SBP) and diastolic brachial blood pressure (DBP) were 

measured prior to each set of vascular measures (baseline, HA) using a validated, automated 

oscillometric cuff (EW3109, Panasonic Electric Works, Secaucus NJ).  Pressures were taken in 

duplicate and averaged. If values were different by more than 5 mmHg a third measure was 

obtained and the average of the 2 closest measures were used for subsequent analyses.   

Doppler Ultrasonography 

Images of the left common carotid artery (CCA) and brachial artery (BA) were obtained 

using Doppler ultrasound (ProSound α7, Aloka, Tokyo, Japan) and 7.5-10.0 mHz linear-array 
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probe.  The CCA was imaged distal to the carotid bulb. CCA and BA intima-media thickness 

(IMT) were assessed using a longitudinal view with both near wall and far wall lumen-IMT 

boundaries visible.  Wall thickness was measured across a 5 mm region of interest via semi-

automated digital calipers during systole and diastole (indicated by the R-wave and end of the T-

wave from simultaneous ECG gating). The distance from the lumen-intima interface to the 

media-adventitia interface was measured as the IMT.  IMT was measured across the cardiac 

cycle and at each time point given findings that 1) IMT may change during the cardiac cycle; and 

2) IMT may be altered with changes in vascular tone.135  Systolic and diastolic diameters were 

measured from inside the near-wall IMT to far-wall IMT.  Mean blood velocities (Vm) were 

measured using Doppler-ultrasound and calculated as: Vm = ∫ V(t) dt/FT, where ∫ V(t) dt is the 

velocity-time integral of the velocity waveform and FT is flow time.  Flow and shear rate were 

calculated as π x (1/3 systolic radius + 2/3 diastolic radius)2 x Vm x 60 and 4 x (Vm/systolic 

diameter), respectively.  Pulsatility index (PI) was calculated with a semi-automated flow tracing 

software using the following equation: (Vs-Vd)/mean V, where Vs is the peak systolic velocity, Vd 

diastolic velocity and mean V the mean velocity.   

Wave intensity analysis (WIA) combined with eTracking was used to derive forward and 

reflected wave intensity as measures related to pulsatile cerebrovascular burden and arterial 

stiffness in the CCA.  WIA was performed immediately after carotid applanation tonometry on 

the left CCA.  The distance from the near wall to far wall lumen-intima interface was 

continuously traced using eTracking software, creating a distension waveform almost identical to 

pressure waveforms.136,137   WIA distension waveforms were calibrated against carotid systolic 

and diastolic pressures obtained via applanation tonometry described below.  Flow waveforms 

were measured using range gated color Doppler signals averaged along the Doppler beam.  An 
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insonation angle < 60° was maintained for all measures and sample volume was manually 

adjusted to encompass the entire vessel.  At least 8 carotid waveforms were averaged to gain a 

representative average waveform.  Wave intensity was calculated using time derivatives of blood 

pressure (P) and velocity (U), where wave intensity = (dP/dt x dU/dt); the area under the dP/dt x 

dU/dt curve represents the energy transfer of the wave.138  W1 represents a forward compression 

wave produced by the left ventricle that can travel into the cerebral circulation via the CCA 

which acts to accelerate flow and increase pressure.  The negative area (NA) occurring 

immediately after W1 is a backward travelling compression wave due to reflected waves from the 

periphery (cerebral circulation) that decelerate flow but increase pressure.  Measures of CCA 

wave reflection (i.e. NA) have been reported to be related to altered cerebrovascular tone, as 

changes in cerebral resistance would affect the magnitude and timing of pressure waves being 

reflected from the brain as they travel down the CCA.92,93  The time interval between the R-wave 

on the ECG and W1 is analogous to the pre-ejection period136 and has been used as a proxy of 

peripheral sympathetic activation.139 

Arterial stiffness measures include beta stiffness index (β), and Peterson's pressure-strain 

elastic modulus (Ep) and were calculated as: 

β = ln(PMax/PMin)/[(DMax - DMin)/DMin] 

Ep = (PMax - PMin)/[(DMax - DMin)/ DMin] 

where P and D correspond to pressure and diameter respectively, and Max and Min refer to 

maximum (systolic) and minimum (diastolic) values during the cardiac cycle.   
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Flow mediated dilation 

BA flow mediated dilation (FMD) was assessed in the non-dominant arm during two 

separate protocols; cuff occlusion and mental stress.  BA FMD has been previously reported to 

be a largely endothelial and nitric oxide-dependent process,140 with impaired vasodilation 

occurring from impaired/inhibited nitric oxide synthesis (as occurs in hypoxic conditions or drug 

blockade). The BA was imaged using ultrasonography described above with diameter and 

velocities measured as previously described.  For the cuff-occlusion method, blood flow was 

occluded using a rapid inflator cuff (Hokanson, Bellevue, WA,) placed just below the olecranon 

process, inflated to suprasystolic pressure (>200 mmHg) for 5-minutes.  Blood flow velocity was 

assessed for the first 30 seconds following cuff deflation to obtain peak shear rates.  BA diameter 

was assessed using semi-continuous image capturing synced to the QRS complex from 

simultaneous ECG gating until two minutes post cuff deflation.  Additionally, FMD was also 

measured during the Stroop task (described below) to measure mental stress BA vasodilation, 

which has previously been reported as primarily NO-mediated.116  FMD was calculated as peak 

percent change from baseline for both methods.  

Carotid Blood Pressure Waveform Analysis 

Carotid pressure waveforms were obtained from a 10 s epoch and measured in duplicate 

using applanation tonometry (SphygmoCor, AtCor Medical, Syndey, Australia) on the left CCA.  

Carotid pressure waveforms were calibrated to brachial MAP and DBP.  Pulse pressure (PP) was 

calculated as SBP minus DBP.  Augmentation index was calculated as the difference between 

the early- and late systolic peaks of the pressure waveforms to the total PP expressed as a 

percentage (P2 − P1/PP × 100) and standardized to a heart rate of 75 beats per min (AIx75). 
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Cerebral Blood Flow  

Middle cerebral artery (MCA) blood flow velocity was assessed using a 2-mHz 

transcranial Doppler (TCD) ultrasound probe (DWL Doppler Box-X, Compumedics, Germany) 

applied to the left temporal window.  Mean blood flow velocity (MnV) and pulsatility index 

were measured at a depth of 50-65mm, as is commonly reported for MCA measurements.141,142  

All repeated measurements within each participant were taken at the same depth and position to 

ensure recapture of the same cerebral artery.  The envelope of the velocity spectrum and mean 

velocity was calculated by a standard algorithm implemented on the instrument with use of a fast 

Fourier transform.  MCA PI was calculated via an automated waveform tracking function using 

the same equation described for CCA PI.  Cerebrovascular conductance (CVC) was calculated as 

CVC = Vmean/MAP.   

Vascular Reactivity to Mental Stress 

  A computerized, modified incongruent Stroop color-word interference task (E-Prime, 

Psychology Software Tools Inc, Sharpsburg PA) was used as a means to manipulate cognitive 

load.  This task has been used previously in HA cognitive,32 and cardiovascular stress 

research.143-145  All participants were familiarized with the Stroop task prior to experimental 

testing in order to control for learning effects. The Stroop task was completed in the supine 

position with the head tilted slightly back, thereby optimizing the imaging window of the carotid 

artery.  The viewing display for sea level testing was a specialized wall-mounted 107-cm flat 

screen television that extended over the participant.  Font was displayed approximately 102-cm 

above the participant with 3.0-cm font on a black background.  For HA testing, the Stroop task 

was projected onto the ceiling of the chamber using a computer-interfaced projector (INFO) that 
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displayed the task approximately 160-cm above the participant with 4.5-cm font.  Despite the 

task being displayed farther away from the participant at HA, the ratio between viewing distance 

(cm) and font size (cm) was comparable to sea level (34:1 sea level, 36:1 HA).   

Each trial began with participants presented with a white crosshair in the center of the viewing 

window for approximately 3-seconds. A target word was displayed in incongruous colors (e.g. 

the word “blue” written in the color red; Figure 2), with four names of response colors presented 

similarly (e.g. the word “red” written in the color blue).  The task was to use a response clicker to 

identify the color that the target word was displayed in as fast as possible.  The response colors 

(1-4) corresponded to the remote clicker buttons (1-4) which the participant manipulated using 

the digits on their dominant side (index finger – pinky finger).  This task lasted 4-minutes in 

duration, which has been previously been shown to elicit marked changes in HR and BP.145      

 Participant’s identification accuracy was titrated to 60% in order to produce equivalent 

hemodynamic responses across sea level and HA stroop testing.  This was achieved via 

manipulation of the inter-trial timing intervals (ITI).  For every three consecutive trials answered 

correctly the ITI was decreased by 300 ms (shortest ITI of 400 ms).  Similarly, three consecutive 

missed trials would increase the ITI by 300 ms (longest ITI of 5,000 ms).   If the participant did 

not respond in time, a large “TOO LATE!” prompt was displayed before the next trial was 

displayed.  Percent correct and mean reaction times (RT) for correct response were recorded for 

analysis.  This test has been previously used as a mental stressor, and measure of executive 

function.  

Vascular measures, described above (carotid tonometry, WIA, CBF), were also assessed 

during the 4-minute Stroop task.  Previous data from this laboratory (unpublished) has revealed 

that there are no significant differences between primary outcome measures across three time 
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points during the Stroop task.  Thus, vascular measures were assessed once during the Stroop 

task in the following order; carotid blood pressure, carotid blood flow/WIA, and mental stress-

mediated brachial vasodilation beginning 30-seconds after task initiation.   CBF was averaged 

across two measurements during the task. This provides a novel means of performing vascular 

measures while concomitantly manipulating cerebrovascular reactivity.  Psychological stress 

from cognitive tasks causes arteries to dilate.  Change in cerebrovascular blood flow measured 

during increased brain activity with sensori-motor/cognitive stimulation has been reported to 

reflect changes in cerebral metabolism and was used as a measure of neurovascular coupling.146  

Additionally, mental stress-mediated dilation of the CCA was used as a measure of CCA 

endothelial function.116,147-149  Cerebrovascular reactivity metrics were calculated as percent 

change from baseline.   

The Student Opinion Scale was administered after each Stroop task to measure 

participant motivation for each trial (two subscales: [a] the importance of doing well on the task; 

[b] perceived degree of effort/mental taxation put forth to complete the task).  Scores for each 

subscale can vary from 5-25, with higher scores indicative of full effort/engagement to do well.   

Cognitive Measures 

Computer-based cognitive assessment 

Additional measures of cognitive function were assessed through a computer-based 

program (WebNeuro; Brain Resource, San Francisco CA).  The cognitive tests have been 

described in detail previously,150 brief summaries of the tests are provided below.  
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Sensorimotor domains  

Simple motor tapping test. Participants were required to tap the space bar on the keyboard with 

their dominant index finger as fast as possible for 30 sec. The total number of taps was recorded. 

Choice reaction time test. Participants were required to use the left/right arrow keys to respond as 

fast as possible to two target circles that were illuminated in pseudorandom sequence over a 

series of trials. Trials were administered with a random delay of 2–4 sec between trials.  Mean 

RT was recorded from the trials. 

 

Memory Domain 

Memory recognition/verbal learning task. 20 words were presented for memorization and later 

recognition from memory.  The list contained 20 concrete words from the English language 

(matched for word length and frequency). The list was repeated four times. After each trial, the 

participant was instructed to recognize as many words as possible by deciphering between 20 

sets of words on the screen. In each set, one word was correct and the other 2 were distracter 

words. Approximately 10-minutes after the fourth trial (6 test batteries), a delayed memory 

recognition trial was completed. The number of words correctly recognized during the four trials 

and memory recognition trial were averaged and used to calculate verbal memory index151 

(immediate verbal memory recognition + delayed verbal memory recognition), and verbal 

intrusion index (immediate verbal memory intrusions + delayed verbal memory intrusions). 

 

Social Cognition Domain 

Emotion perception test.  Participants were presented with a succession of faces with diverse 

emotional expressions in order to test emotion recognition.  The mouse was used to identify the 
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emotion that best described the facial expression by clicking on one of 6 emotion words below 

the image (happy, sad, fear, disgust, neutral, angry) as quickly as possible.  The total number of 

correct responses, and reaction time was recorded.  Approximately 10 minutes after completion, 

the participant was asked to recall the faces they had been presented before.  Target faces (from 

the previous trial) were presented next to a new face.  The participant was instructed to select the 

face that they have been presented with before by clicking with the mouse as fast as possible.  

The immediate and delayed emotion recognition accuracy scores were summed, similar to 

memory task performance, to form the emotion recognition index (out of a perfect score of 200), 

and RT’s were averaged for analysis purposes.   

 

Attention Domain 

Digit span test. Participants were presented with a series of digits, separated by a one second 

intervals. The participant was required to enter the digits in the correct forward order using the 

mouse and a number pad displayed on the screen. The number of digits in each sequence 

increased from 3 to 7 with the outcome being the maximum number of digits the participant 

correctly recalled. 

Continuous performance test. To assess sustained attention, a series of letters similar in 

appearance (B, C, D, or G) were presented on the screen (200 msec), separated by 2.5 sec 

intervals.  The participant was instructed to press the space bar as fast as possible if the same 

letter appeared twice in a row.  There were 125 stimuli presented in total (85 non-target letters, 

20 target repeated letters). The number of errors and false positives were recorded.  
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Executive Function Domain 

Switching of attention test. This is a computerized adaptation of the “Trail Making Test” Part 

B152 where the participant was presented with a distribution of 13 numbers (1–13) and 12 letters 

(A–L) on the screen.  The mouse was used to click on the circles for numbers and letters in and 

alternating, ascending sequence (e.g. 1, A, 2, B, 3, C etc.).  Each correct number/letter that 

selected was connected to the preceding number by a line.  This task aims to assess the ability to 

switch attention between mental tasks (number versus letter sequence). The time to completion 

was recorded. 

Verbal interference test.  This task is similar to the Stroop described above and is intended to 

assess the ability to inhibit automatic and irrelevant responses. A target color word (red, yellow, 

green, and blue) was presented one at a time.  Below each target word there were four possible 

responses displayed in black and in fixed format.  The first part of this task required the 

participant to identify the name of each word, ignoring the color of the word, as quickly as 

possible. The second portion required the participant to name the color of each word as quickly 

as possible. The number of correct responses in the minute allotted for each test was recorded.  

Maze test. The participant was presented with an 8 x 8 grid of circles on the screen.  The goal of 

the task was to correctly identify the hidden path through the grid, from the start point (bottom of 

the grid) to the end point (top of the grid).  Grid navigation was controlled via pressing the arrow 

keys (up, down, left, right).  An incorrect move was denoted by a red cross at the bottom of the 

screen, a green tick signified a correct move.  The task aims to quantify how quickly the correct 

route is learned and the ability to remember that route.  A single maze was presented until it was 

completed twice without error. The total maze time was recorded.  This task measures aspects of 

executive function and memory through requiring the correct path to be repeated without errors.  
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Go–no-go test.  Participants were instructed to press spacebar as quickly as possible every time 

the word “press” was displayed in green (go) and not press spacebar if it was colored red (no-

go).  Green was repeated frequently and red repeated less frequently. Stimuli were repetitively 

presented approximately once per second.  This requires inhibition of responses when the target 

is colored red, thereby assessing the capacity to suppress automatic responses (known as 

inhibition). This task measured errors of commission and omission, rate of target detection, and 

response time. 

 

Statistical analyses 

Averaging effect size values from previous literature for cerebral blood flow (0.65)81, 

reaction time (0.48)60 and memory (0.89)7 at HA suggested an effect size of 0.67. Therefore, for 

a power of 0.80 with alpha set as 0.05 for a two-tailed T-test, approximately 20 participants was 

determined to be sufficient to observe similar changes in blood flow and cognitive function at 

HA.   

All data are presented as mean ± standard deviation.  Normality of distribution for 

variables was assessed qualitatively using histograms and Q-Q plots as well as quantitatively 

using the Shapiro-Wilk test.  The effect of altitude exposure was tested using paired T-tests 

between SL and HA.  The effect of NIT was tested using paired T-tests between NIT and PLA at 

HA.  Significance was set a priori at p < 0.05.  Stroop RT’s greater than 2.5 standard deviations 

above or below the mean RT were removed as outliers prior to analyses.  Reactivity scores 

(absolute ∆) were calculated as mental-stress – baseline, for each treatment (PLA, NIT) and 

condition (SL, HA).  
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Chapter IV: Results 

 Participants were young men (23 ± 3 yrs) in overall good health (BMI 24.6 ± 2.8 kg∙m-2, 

body fat 13.3 ± 6.8%, hematocrit 43 ± 3%, hemoglobin 14.7 ± 1.5 g/dL; Table 3).  Twenty-four 

participants were recruited for this study: two participants were lost to follow-up and of the 22 

remaining, 21 completed the trials.  One participant experienced a syncopal episode upon ascent 

to HA and could not complete the study.  One participant was excluded from data analysis due to 

excessive time between trials (>4 weeks), leaving 20 participants with for final analyses (Figure 

2).  The duration of hypoxic exposure (165 ± 8 min, PLA; 161 ± 8 min, NIT) and percent oxygen 

in the hypoxic chamber (11.6 ± 0.1%, PLA; 11.7 ± 0.1%, NIT) were not significantly different 

between treatments (PLA vs NIT; Table 4).  Participants had similar measures of hematocrit and 

hemoglobin at baseline between both PLA and NIT treatments.  HA exposure resulted in similar 

significant decreases in SaO2 and ET-CO2 in both PLA and NIT treatments compared to SL (p < 

0.05).  Symptoms of AMS were greater for NIT (3 ± 2) compared to PLA (2 ± 2) after 

approximately 110 min of hypoxia (p = 0.053), although these differences subsided after 

approximately 137 min of hypoxia (p > 0.05). Salivary nitrite was significantly greater at HA for 

NIT compared to PLA (Table 11; p < 0.05).  Likewise, exhaled NO (collected in a subset of 

participants, n = 9) was significantly greater at HA for NIT compared to PLA (p < 0.05).  In 

combination, these data indicate that levels of nitrate/nitrite/NO bioavailability were different 

between treatments at HA.   

Effect of high altitude on cognitive function 

 There were no differences in cognitive function at SL baseline between PLA and NIT 

treatments (p > 0.05).  A significant effect of HA was detected within the memory and 
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information processing domains (Table 5).  Memory recognition was significantly lower at HA 

compared to SL in both PLA and NIT treatments (p < 0.05).  This was driven by significantly 

greater intrusion errors and significantly lower memory recognition performance in both PLA 

and NIT treatments at HA (p < 0.05).  Information processing performance (accuracy and RT) 

during the verbal interference task was significantly improved in both PLA and NIT treatments 

at HA compared to SL (p < 0.05).  Emotion recognition index was significantly lower in both 

PLA and NIT treatments at HA compared to SL (p < 0.05).  Cognitive performance in the 

remaining cognitive domains were not affected by HA exposure in either PLA or NIT treatments 

(p > 0.05).  There were no differences in cognitive function between PLA and NIT at HA (p > 

0.05), indicating NIT supplementation was not effective in altering cognitive function at HA.   

Effect of high altitude on neurovascular coupling 

 By design, there were no differences in percent correct and percent incorrect between 

treatments (PLA vs NIT) or conditions (SL vs HA) during the Stroop protocol (Table 6).  This 

was achieved by adjusting inter-trial intervals based on task performance to elicit ≈60% accuracy 

(described in the methodology).  Additionally, the total number of questions answered, and mean 

reaction times were similar between both treatments at SL and HA (p > 0.05).  Qualitative data 

on mood state self-reported via questionnaire suggested that participants in both PLA and NIT 

treatments felt they exerted less effort, had less control, and were less happy during the mental-

stress protocol at HA compared to SL (p < 0.05).  There were no differences in perceived arousal 

or importance of the Stroop task between PLA or NIT treatments or between SL and HA (p > 

0.05).   
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 Cerebrovascular reactivity scores during mental stress were calculated as a measure of 

NVC during a cognitive perturbation.  For both PLA and NIT treatments, cerebral reactivity to 

mental stress (∆PI, ∆mV, ∆Conductance; Table 7), were not different at HA compared to SL (p > 

0.05).  Carotid diameter reactivity during mental-stress was significantly lower in both PLA and 

NIT treatments at HA compared to SL (p < 0.05); the carotid artery dilated less during mental 

stress at HA compared to SL. There were no differences in carotid blood pressure, blood flow, 

blood flow pulsatility, or stiffness reactivity to mental stress with ascent to HA compared to SL 

(p > 0.05; Table 8).  Likewise, measures of wave intensity (W1, NA), global wave reflection 

(AIX75), and carotid blood pressure changed similarly during mental-stress at SL and HA in 

both PLA and NIT treatments (p > 0.05).  There were no significant differences in 

cerebrovascular reactivity to mental-stress at HA between NIT and PLA treatments (p > 0.05), 

indicating NIT did not significantly alter NVC at HA compared to PLA.  

Effect of high altitude on cerebrovascular and peripheral vascular function at baseline 

 There were no differences in cerebrovascular or vascular function between PLA or NIT 

treatments at SL baseline (p > 0.05).  Cerebral conductance and cerebral blood flow pulsatility in 

both PLA and NIT treatments were not different at HA compared to SL (p > 0.05; Table 9).  

Mean MCA blood flow velocity for both PLA and NIT treatments was greater at HA compared 

to SL (p < 0.05).     

 Carotid DBP in both PLA and NIT treatments was greater at HA compared to SL (p < 

0.05; Table 10). SBP and MAP were similar in both treatments at HA and SL (p > 0.05).  Mean 

carotid artery diameter and carotid blood flow were greater in both PLA and NIT treatments at 

HA compared to SL (p < 0.05).  Carotid stiffness tended to be lower in both PLA and NIT 
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treatments at HA compared to SL but this was not significant (β-stiffness, p = 0.051; Ep, p = 

0.20).  Carotid blood flow pulsatility, measures of wave reflection (NA, AIX75), and forward 

wave magnitude (W1) were not different at HA compared to SL.  Brachial FMD was 

significantly lower in both PLA and NIT at HA compared to SL (p < 0.05; Table 11).  There 

were no differences in reactive hyperemia stimulus, assessed as area under the hyperemic curve 

for PLA and NIT at HA compared to SL.  There were no significant differences in peripheral or 

cerebrovascular measures between PLA and NIT at HA (p > 0.05), indicating NIT 

supplementation did not alter vascular responses to hypoxia. 
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Chapter V: Discussion 

 This study investigated the effect of acute dietary nitrate supplementation in the form of 

beetroot juice on cerebrovascular and cognitive function at HA.  The overarching hypothesis was 

that nitrate supplementation would result in greater NO formation and act to increase 

vasodilation, blood flow, and oxygen delivery to the cerebrovasculature, thereby optimizing 

NVC and attenuating decrements in cognitive performance following rapid ascent to HA.  The 

primary findings of the study were as follows: although acute nitrate supplementation improved 

markers of NO metabolism (i.e. increased salivary nitrate and exhaled NO), acute nitrate 

supplementation 1) did not prevent reductions in cognitive function at HA; 2) did not prevent 

reductions in NO-mediated vascular reactivity at HA; 3) did not augment carotid or cerebral 

blood flow at HA.  Thus, targeting NO metabolism with acute dietary nitrate supplementation 

may not be efficacious in maintaining cognitive or cerebrovascular function at HA in young, 

healthy men.   

Ascent to HA and the resulting hypoxemia impairs cognitive function,38 with more 

pronounced effects occurring at more severe altitudes.39  This study was conducted at a 

simulated altitude of ≈4,700m based on previous reports that the critical altitude to observe 

changes in cognitive function is between 4,000-5,000m,133 although some studies have observed 

changes well below this threshold.3,41,153  The current study observed significant decreases in 

memory function following approximately 2.5 hours of hypoxia.  Specifically, there were 

reductions in verbal memory and intrusion indexes, resulting from decrements in immediate and 

delayed memory accuracy and greater error rates, respectively.  These decrements in the memory 

domain are consistent with previous reports6,7,52,60,154,155 across a variety of altitudes ranging from 

2,800m153 to 9,449m.154  There was also significant dysfunction with regards to emotion 
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recognition.  Emotion recognition has not previously been assessed at HA, but has recently been 

reported to be fundamentally related to general cognition and may play an integral role in the 

organization of information processing.156  Other domains of cognitive function may not be 

affected by HA.  Performance on simple tasks, such as 2-choice RT and finger tapping, is 

maintained at HA below 6,000m.32  Indeed, we observed no significant changes in finger tapping 

speed, choice RT, or go-no-go tasks.  We also observed no effect of HA on verbal learning rate 

and executive function and this too is consistent with several previous reports.157-159  Recent data, 

obtained after 30-minutes at 5,334m, indicated no significant differences in performance or 

complex RT during the Stroop task,160 consistent with our findings.  This may suggest that 

executive function as a domain may not be sensitive to the acute hypoxia,161 or perhaps requires 

longer exposure or more extreme hypoxia to observe effects.  Taken together and these findings 

confirm general cognitive decrements in select domains under hypoxic conditions. 

Proper cognitive function requires continuous, adequate perfusion and oxygen delivery 

provided by the cerebrovasculature.10,39,61  NVC is a compensatory increase in blood flow to 

brain regions where neurons are active, ensuring adequate blood flow to support neural activity 

during cognitive engagement.15  The ability of the vasculature to respond to stimuli, 

appropriately vasodilate and increase blood flow is partially dependent on NO, a vasoactive 

metabolite released from the endothelium that causes vascular smooth muscle relaxation and 

vasodilation.162  There is a decrease in NO bioavailability during acute HA exposure and this 

may impair the vasculatures ability to vasodilate, thereby affecting NVC.114,115 In support of this, 

our study documented reductions in peripheral endothelial function (brachial FMD) at HA 

compared to SL, consistent with one recent publication.163 The carotid artery also dilated 

significantly less during mental-stress at HA compared to SL in both treatments, suggesting 

37 
 



carotid endothelial dysfunction.164  Thus the goal of this study was to enhance NO availability 

during cognitive tasks via acute consumption of dietary nitrate as a means of improving NVC 

and cognitive function at HA.  Participants consumed a 0.45 g nitrate bolus, a dose which has 

previously been used in HA research and reported to significantly increase plasma nitrate and 

nitrite.26  Under normoxic conditions, nitrate ingestion has been reported to increase regional 

cerebral perfusion in older adults,25 and reduce hyperemic lag times during visual stimulation,30 

indicative of improved NVC.  Additionally, normoxic data would suggest that nitrate 

supplementation can acutely reduce blood pressure,165 and increase brain perfusion25 (although 

this is not a universal finding).30,166 Using semi-quantitative measurements of salivary nitrite, we 

documented significant increases in nitrite approximately 137 minutes after ingestion and HA 

exposure.  This finding was corroborated with measures of exhaled NO in a subset of 

participants (n = 9).  Acute beetroot juice consumption significantly increased nitrite 

bioavailability and exhaled NO, although it was not able to prevent reductions in cognitive 

function that occurred at HA, nor was it able to prevent reductions in NO-mediated vascular 

reactivity or augment NVC.   

Despite aforementioned reductions in vascular endothelial function at HA, the results of 

this study suggest that NVC was largely maintained in this hypoxic setting.  Blood flow is 

ultimately determined by changes in vessel diameter and/or flow velocity with optimal flow 

delivery (i.e. laminar flow versus pulsatile flow) being affected by regional vascular stiffness.  

Impaired mental-stress-mediated carotid dilation did not attenuate carotid or cerebral blood flow 

responsiveness during mental-stress since blood flow reactivity was similar at SL and HA 

between treatments. Similar mental-stress vascular-hemodynamic reactivity scores were also 

observed for carotid stiffness (β-stiffness, Ep) and cerebral vascular tone as indicated by similar 

38 
 



changes in carotid wave reflections92,93 (AIX75, W1, NA) at SL and HA.  Our data revealed a 

trend (p = 0.062) for attenuated reductions in carotid mean blood flow velocities during mental-

stress.  That is, although flow velocity was reduced during mental-stress, it was reduced less at 

HA.  Slightly higher flow velocities may have compensated for the reduced dilation in 

maintaining carotid flow and NVC.  Nearly 80% of the common carotid artery blood flow feeds 

the internal carotid, which in turn provides approximately 80% of the blood supply to the brain at 

rest.167  The carotid reactive hyperemia would beneficially direct blood flow to the cerebral 

vessels and maintain oxygen delivery to the brain in hypoxic conditions.  Indeed, the carotid 

hyperemic response likely fed upstream to the cerebral vessels (i.e. increased CBFv), consistent 

with previous findings.57,81,89  

One reason NVC may have been maintained at HA may be due to compensatory blood 

flow augmentation during the initial hypoxic exposure.  Oxygen availability is a fundamental 

factor in determining blood flow to target organs such as skeletal muscle or the brain. Hypoxic 

conditions result in a hyperemic response,168 the degree of which is proportional to the degree of 

hypoxemia with arterial oxygen content as the primary factor eliciting compensatory dilation169 

and augmented blood flow.170  Ultimately, the compensatory vasodilation ensures oxygen 

delivery is matched to demand in the face of arterial hypoxemia.169  We noted significant 

increases in carotid artery dilation and concomitantly increased blood flow during baseline at HA 

in PLA and NIT treatments.  These findings are congruent with recent, comprehensive studies by 

Lewis et al. (2014) aiming to document the acute effects of hypoxia on measures of peripheral 

vascular163 and cerebrovascular function at HA.171 In line with our findings, they reported 

significant increases in carotid dilation under both normobaric171 and hypobaric hypoxia.163  

Although Lewis et. al (2014) assessed carotid function 72-96 hr after ascending to 5,050m during 
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an expedition,163 our study was conducted using an acute bout of hypoxia in a normobaric 

setting, without potential confounding variables (i.e. fatigue, dehydration or disturbed sleep) and 

noted similar vascular changes that were documented under normobaric hypoxic conditions.171  

Previous simulated HA studies have reported no dilation of the internal carotid artery after only 

15 minutes of hypoxia.172  Together, these data suggest that the carotid vasodilatory response to 

hypoxia may not occur until after 15 minutes of exposure172 but before 120 minutes (as measured 

in this study) and persists following acclimatization (12-14 days after ascent).163   

 Overall, our findings suggest that acute nitrate supplementation may not be an effective 

therapy to combat cerebrovascular and cognitive responses to HA; NO may not be the sole 

modulator of peripheral vascular function under hypoxic conditions.  Numerous vasoactive 

mediators have been implicated in regulating vasodilation beyond NO including prostacyclin, 

endothelium-dependent hyperpolarizing factor, and substance P,173 while reactive hyperemia 

may be primarily determined by inward-rectifying potassium channels.174  Additionally, NO 

inhibition does not affect FMD responses to prolonged hyperemia.140  This suggests that 

sustained hyperemia, comparable to the prolonged hypoxemia-driven hyperemia at HA, is not 

NO-dependent.  Ascent to HA is associated with increased sympathetic drive and catecholamine 

release175,176 which may modulate the cardiovascular response to hypoxia.177  Indeed, recent 

findings have indicated that reductions in peripheral endothelial function at HA may be the direct 

result of HA-induced sympathoexcitation.163  Lewis et al. exquisitely demonstrated that an α1-

adrenoreceptor blockade reverses reductions in brachial FMD under normobaric hypoxic 

conditions,163 likely explaining the peripheral endothelial dysfunction observed in our study at 

HA.  Consistent with previous literature, we found significant indications of enhanced 

sympathetic activation including, increases in diastolic blood pressure,178 heart rate,179-181 and R-
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W1 (a proxy measure of pre-ejection period)136 at HA compared to SL in both treatments.  These 

data suggest that the peripheral endothelial dysfunction observed at HA may be the result of 

increased sympathetic drive rather than reduced NO-availability.   The increase in sympathetic 

drive may explain why we documented no change in blood pressure, or FMD with nitrate 

supplementation, despite the normoxic data supporting these hypotheses mentioned previously.   

 Although peripheral vascular dysfunction at HA appears to be largely mediated by 

sympathetic activation, the factors responsible for the central vascular dysfunction we 

documented at HA have yet to be clearly defined.  One possibility is that the carotid dysfunction 

observed at HA (evident by reduced mental-stress-mediated dilation) may share common 

mechanisms with brachial dysfunction, such as increased sympathetic activation or oxidative 

stress.163  Recent data, however, submits that the elastic and muscular arteries may respond 

differently to the sympathetic activation that occurs with mental-stress and HA.  With mental-

stress-induced sympathoexcitation muscular arteries (i.e. radial artery) may increase in 

stiffness182  while recent unpublished data from our lab indicates elastic arteries such as the CCA 

do not change.  At HA, administration of a α1-blockade does not alter larger, extracranial vessel 

(i.e. internal/common carotid, vertebral arteries) dilation or blood flow,171 suggesting that there 

may be differential effects of sympathetic activation on peripheral versus central vessels at HA.  

Importantly, although sympathoexcitation does not appear to affect carotid function at rest 

during hypoxia, it may still play a role in modulating carotid responses to mental-stress and 

NVC.  Ultimately, the mechanisms responsible for hypoxia-induced cerebrovascular vasodilation 

and hyperemia may be multi-factorial and rely on multiple, redundant pathways similar to those 

observed with the vasodilatory responses to exercise.183  A recent review has suggested these 
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mechanisms may involve NO, adenosine, PaO2, NVC responses to decreased tissue oxygen, and 

anaerobic neuronal metabolism.170  

Methodological Considerations   

 The current study utilized acute ingestion of a nitrate bolus and documented changes in 

nitrate-nitrite-NO availability using measures of salivary nitrite and exhaled NO.  Exhaled NO 

has been reported to be related to AMS symptoms, with lower exhaled NO prevalent in AMS 

positive compared to AMS negative individuals.184,185  In the current study, exhaled NO was 

collected in a subset (n=9) of participants as an exploratory measure to observe the effect of 

nitrate ingestion on pulmonary NO measures at HA.  Relating exhaled NO to symptoms of AMS 

was outside the scope of the current study.  Consistent with previous literature, our data suggests 

that exhaled NO does increase acutely following the ingestion of a nitrate bolus, which may be 

reflective of salivary nitric oxide formation186 and provide insight into changes in plasma 

nitrate.187   

 Salivary nitrite, which we used as a proxy measure of plasma nitrate availability, 

significantly increased following nitrate ingestion at HA.  Although this suggests there were 

changes in plasma nitrate, it was not directly measured and could be viewed as a limitation since 

recent reports suggest concentrations of nitrate may reach 10-fold higher in the saliva than 

plasma.188  The dosage used in our study however has been previously used in acute exercise at 

HA26 and reported to significantly increase plasma nitrite and nitrate concentrations.26  It is 

possible that a greater dose of nitrate might elicit a greater vasoactive response, however it 

should be noted that even the acute dose used in the current study elicited undesirable side 

effects.  Three participants reported severe nausea following consumption of the nitrate, while no 
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reports occurred in the PLA treatment group.  This resulted in one participant vomiting during 

the trial, and one vomiting after leaving the laboratory post-testing.  For these reasons, higher 

doses of nitrate may have a greater chance of eliciting beneficial effects but should be 

approached cautiously as it may make side effects more common or severe.  Additionally, nitrate 

loading studies have revealed no effects on cerebral oxygenation status,23 indicating that 

increased doses may not be more effective.   

 The timing of measures after nitrate ingestion could also impact findings.  The timeline 

utilized in the current study was chosen so that cerebrovascular and cognitive testing would 

occur at approximately 2 hrs post-nitrate ingestion since previous literature suggests peak plasma 

nitrite levels occur between 2-3 hrs post-ingestion (and remain elevated for approximately 2 

additional hours).25,132  We believe our dose was successful in manipulating nitrate 

bioavailability based on previous research using a similar method of nitrate supplementation26 

and the well-documented plasma nitrate/nitrite responses to beetroot juice.165  We do not believe 

the ineffectiveness of nitrate in modulating cardiovascular and cognitive function at HA can be 

explained by an insufficient nitrate dose or the timing of outcome measures.  

This study was conducted under simulated-hypoxia in order to conduct a highly-

controlled investigation on the effects of nitrate on cerebrovascular and cognitive function.  

Specifically, this study utilized a normobaric hypoxic chamber, which may have impacted the 

effectiveness of nitrate supplementation.  Recent data may indicate that nitrate availability may 

be different between normobaric and hypobaric hypoxia.189  Faiss et al. (2013) found that plasma 

nitrate and nitrite availability decreased in hypobaric hypoxia, whereas they were unchanged 

under normobaric hypoxia.189 This suggests that the method of achieving hypoxia may alter the 

availability of nitrate/nitrite/NO and thereby the efficacy of nitrate supplementation.  If there is 
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no decrease in NO-availability in normobaric hypoxic conditions, additional nitrate/NO 

availability may not impact blood flow, vascular function, NVC, or cognitive function.  

Moreover, some data suggest hypobaric hypoxia and normobaric hypoxia are not equivalent 

stimuli190 and hypobaric hypoxia may lead to greater reductions in oxygen saturation and greater 

hypoxemia.3  Therefore, different findings may be revealed if this study were repeated under 

hypobaric hypoxic conditions.   

An alternate explanation may be related to Stroop task training effects.191  Our study 

utilized a separate Stroop task as a mental-stress stimulus to assess NVC prior to cognitive 

testing.  The repeated, additional exposure to the Stroop task may have masked any decrements 

in executive function and cognitive flexibility at HA.    

The current study was largely powered to detect changes in cerebral blood flow and 

memory at HA based on previous literature.7,60,81  The a priori sample size estimations for these 

variables resulted in sufficient power as we observed significant differences at HA in both 

cerebral and carotid blood flow and memory function.  It is, however, possible that some of our 

insignificant findings with the ascent to altitude or effect of nitrate may be due to insufficient 

statistical power.  In order to adequately address this, we conducted post-hoc power calculations 

on select cognitive and vascular measures to obtain measures of effect size and power.  Effect 

size is a statistical measure of the magnitude of difference, or strength of a difference within a 

two groups.  An effect size of 0.20, 0.50, 0.80 would be considered evidence of a small, 

moderate, and large magnitude of difference, respectively.192  Effect size can be combined with 

sample size and error probability to estimate power, defined as the probability that the null 

hypothesis is correctly rejected.  Measures for post-hoc power analyses were selected based on 
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1) a priori hypotheses that the particular variable would change with altitude or nitrate and 2) 

values appeared to differ between conditions or treatments although not statistically.   

Although measures of executive function have been reported to decrease with high 

altitude,32 this is not a universal finding.160,161 In the current study, the ability to accurately 

navigate a maze (a measure of executive function) was not significantly affected by hypoxia.  

Moreover, effect size (PLA, 0.11; NIT, 0.21) and power (PLA, 0.08; NIT, 0.14) were low when 

interrogating the effect of altitude on this measure of executive function (Table 12).  This 

suggests either 1) altitude exposure may not effect executive function, at least in the duration and 

degree of hypoxia used in this study; or 2) altitude may not effect this specific executive function 

task.  Similarly, performance on switching of attention tasks, such as the Trails A-B task, were 

expected to change with altitude, however we noted no significant changes in the average 

connection time during the Trails task.  Post-hoc power analyses indicated that although PLA 

had a moderate effect size and power (0.59 and 0.71, respectively), NIT had a small effect size 

and low power (0.24 and 0.18, respectively).  The data appears to indicate that performance 

during the Trails task improved at HA for PLA but was impaired for NIT.  Indeed, the effect of 

nitrate at altitude on this task was found to have somewhat moderate power (0.45), suggesting 

that differential performance between NIT and PLA may have been revealed if we had a larger 

sample size (n≈50 for a power of 0.80).  The differences in effect size between NIT and PLA 

may have been related to the high variability often observed with reaction times.   

Nitrate supplementation was expected to enhance blood flow and NVC at HA, although 

no such effects were observed in this study.  Post-hoc power analyses indicated that the 

magnitude of difference between PLA and NIT was minimal with respect to MCA blood flow 

reactivity during mental stress (a measure of NVC), with an effect size of 0.07 and power of 
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0.06.  Additionally, the effect of nitrate supplementation on carotid blood flow at rest at HA was 

found to have a small effect size (0.38) and low power (0.37).  This small effect size suggests 

that even with a larger sample (n≈55 to achieve a power of 0.80) the effects would likely lack 

clinical or physiological relevance.  Thus, nitrate supplementation appears to have minimal 

effects on blood flow at HA and insignificant differences observed in this study are likely not 

related to lack of statistical power.   

The cognitive findings of this study may have been affected by: 1) the order in which the 

tasks were presented and 2) practice effects that accompany multiple exposures to a single task.  

The cognitive tasks used in this study were presented in the same order across all trials and thus 

may have altered our cognitive findings and compromised internal validity.  Task performance 

may be confounded by time when tasks are presented in the same order, such that fatigue or 

boredom could affect performance on a given task later in the battery.  Although this is a 

possibility since the order of tasks was not randomized within this study, we do not believe it 

played a large role since post-hoc analyses suggested that performance on tasks in the second 

half of the battery was not different from performance in the first half.  None the less, future 

studies in this area should adopt the proper psychological methodology of randomizing task 

order.   

Practice effects may have also played a role in our cognitive findings at HA.  Practice 

effects occur due to repeated exposure to a task and generally improve task performance.  These 

effects manifest as improved reaction times and accuracy, along with reduced effort to complete 

the task.193  The effect of practice on task performance is multifaceted, affecting information 

processing speed, response caution, and nondecisional processing time to both repeated and new 

stimuli.193  Moreover, it is currently unknown whether these effects are related to familiarity with 
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the task itself or the task stimuli, although it is likely combination of both.193  We attempted to 

reduce practice effects with the mental-stress Stroop task (used during the assessment of NVC) 

by familiarizing participants with the Stroop task prior to experimental testing.  We did not, 

however, familiarize participants with the cognitive battery prior to experimental trials, thus it is 

possible that practice effects may have effected task performance during the cognitive battery.  

Specifically, practice effects may explain the significant increase in visual-interference 

performance and insignificant change in verbal-interference performance with the ascent to HA.  

If a learning effect were present it would have resulted in stepwise increases in performance and 

different baseline values between the first and second visit. This, however, was not observed in 

the current study as there were no differences between visits at baseline. The Stroop task used 

during the mental-stress protocol has been reported to be vulnerable to practice effects,191  thus 

repeated exposure to the mental-stress Stroop task may 1) have masked decrements in cognitive 

battery verbal-interference performance or 2) explain the improved performance on the cognitive 

battery visual-interference task at HA because of their strong similarity to the Stroop task.  

Future HA research should attempt to control for practice effects whenever possible by allowing 

ample familiarization prior to experimental trials.   

Limitations and Future Directions 

This study was conducted under simulated normobaric hypoxia in order to design a 

highly controlled investigation to isolate the effect of acute nitrate supplementation on cognitive 

and cerebrovascular function.  This design brings with it some inherent limitations since 

participants were not exposed to sleep disturbances, dehydration, physical fatigue, or mental-

stress that may accompany expedition-based ascents to HA.  Additionally, the potential 

differences between normobaric hypoxia and hypobaric hypoxia highlighted previously3,190 
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poses a threat to the applicability of our findings to real-life HA scenarios.  The computer-based 

cognitive battery used in this study has been used in over 180 scientific publications, validated 

against traditional paper-and-pencil tests,194 and shows sound test-retest reliability.195  Despite 

these strengths, it is possible the specific tasks selected to interrogate each domain (i.e. Maze 

task, forward digit span etc.) may not have been sensitive to hypoxia and therefore may not have 

detected hypoxia-induced decrements in specific domains.  A recent review by Petrassi et al. 

(2012) on cognitive function at HA suggests that cognitive and psychomotor deficits reported in 

literature are difficult to quantify and reliably reproduce.3  These inconsistencies may be 

explained by the subtlety of cognitive decrements at HA, differences in compensatory 

mechanisms, methodology, test sensitivity, inter-individual variation, and the role of exercise 

which generally compounds the cognitive decrements seen at HA.3   

Our study utilized males which limits the results applicability to other populations.  

Results may differ if this study was conducted in females based on hormonal differences 

introduced by the menstrual cycle and the subsequent timing of measures during the cycle.  

Estrogen has been reported to increase endothelial function, assessed by brachial FMD,196 

principally through enhanced expression of NO synthase.197  Females, however, may experience 

similar decrements in peripheral endothelial function as their male counterparts since 

dysfunction appears sympathetically-mediated at HA,163 rather than low-NO mediated.  In the 

cerebrovasculature, estrogen has been associated with neuroprotective, anti-inflammatory, and 

vasodilatory effects, which may also be related to NO production.198  If NO-production is 

attenuated in hypoxic environments as previously reported,14,115 females may experience greater 

disruption in cerebrovascular hemodynamics because of the loss of estrogen’s protective effects 

that are elicited through NO-mediated mechanisms.  The effects of estrogen on cognitive 
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function appear less defined, as estrogen therapy does not appear effective in reducing incidence 

of mild cognitive impairment in postmenopausal women.199 The role of estrogen in cognitive 

function at altitude, however, has not yet been investigated and is most likely complex, owing to 

estrogens intricate interactions with neurotransmitters systems and dopamine.200  The 

participants in the current study were generally young (23 ± 3 yrs) and healthy.  However, 

investigating the effects of HA on the cognitive and cerebrovascular function is important across 

a large range of ages because vascular response to hypoxia may change with age,3 warranting 

further investigations.  Future research should attempt to elucidate the mechanism responsible 

for the reductions in carotid endothelial function at HA, evident in reduced dilation to mental-

stress compared to SL.   

Strengths of this study should also be noted.  This is the first study to investigate the 

effect of acute nitrate supplementation on cerebrovascular and cognitive function at HA.  Our 

study is also the first to apply novel measures of NVC assessed via simultaneous measurements 

of TCD, carotid blood flow, and carotid WIA during mental-stress (elicited by a cognitive 

challenge) in a highly-controlled hypoxic chamber.  The change in hemodynamics during a 

mental-stress task that requires cognitive engagement serves as a novel means to assess NVC in 

the cerebrovasculature.   

Implications 

 Military deployment in high altitude (HA) environments have increased in mountainous 

terrain such as Afghanistan and  Northern Iraq.4  These fighting units are often rapidly deployed 

to HA for combat operations4 permitting little time to prepare the body for exposure to HA-

hypoxia.  Our data demonstrates that an acute dose of nitrate prior to ascent to HA does not 
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significantly alter cognitive function or novel measures of cerebrovascular function and may not 

be efficacious as a means to reduce hypoxia-induced cognitive decrements on military personnel, 

at least not in the dosage used in this study.  Importantly, previous HA nitrate administration 

studies have noted significant effects on muscular oxygenation status but not cerebral status,23 

and on time trial performance and steady state oxygen consumption,26 suggesting perhaps 

differential effects of nitrate supplementation on the skeletal muscle and brain.  Recent findings 

implicate sympathetic-drive as a contributing factor to the vascular dysfunction observed at 

HA163 which may suggest that adrenergic blockades may alter NVC and cognitive function at 

HA.   

 In conclusion, both the NIT and PLA treatments experienced significant increases in 

cerebrovascular blood flow, reductions in brachial endothelial function, and decrements in 

memory performance at HA compared to SL.  Our novel assessment of NVC revealed carotid 

artery endothelial dysfunction in both treatments, manifesting as an attenuated vasodilator 

response to mental-stress at HA compared to SL. These data provide new insight into endothelial 

dysfunction that occurs not only in the periphery but the central vasculature as well while at HA.  

Ultimately we found that acute nitrate supplementation does not alter cognitive or 

cerebrovascular function at HA compared to a nitrate-depleted placebo.    
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Illustrative Materials 

 

Figure 1: Neurovascular coupling under normal conditions (normoxia) 

  Adapted from Attwell et al. (2010). 

  nNOS, neuronal nitric oxide synthase; NO, nitric oxide 
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Figure 2: Study design. 
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Figure 3: Enrollment and participant drop-out. 
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Table 1: Cognitive domains.  
Domain Description Example test 

Attention/concentration Ability to focus on/accomplish goal-oriented task Calculations/ visual search 

Language Ability to understand and use oral/written language.   Word search/ fluency 

Visiospatial skills Ability to comprehend shapes/forms and their 
interpretation 

Reproduction of shapes/ 
images 

Psychomotor skills Ability to perform gross/fine motor skills Peg board, finger tapping test 

Memory Ability to store/retrieve information (short/long 
term/semantic memory) 

digit span/free recall 

Orientation Ability to correctly orient date, place, name Orientation task 

Executive function Ability to conceptualize, evaluate, and complete 
goal-oriented tasks 

  

  Components   
 Information processing Reaction time 
 Attentional control Stroop, PASAT 
 Cognitive flexibility Stroop, Trails B 
  Working memory Digit span forward 
Adapted from Davis et al. 2013, Logue et al. 2013, Burnett et al. 2013. 
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Table 2: Effects of HA on cognitive performance.    
Study Design Tests Cognitive domain Results 

Crow et al. (1971) S-HA; 610 m, 2438 m, 3658 m Digit recall Memory ↓ Accuracy at peak 

Bolmont et al. (2000) 
S-HA; sea level to 8,848 m in 31 
days 

Binary visual RT Executive function No change  
Peg board task Psychomotor skills ↓ Motor skills 

Dykiert et al. (2010) E-HA; 76 m to 5,565 m in 17 days 4-Choice RT Executive function ↓ CRT 

Wang et al. (2013) E-HA; 402 m to 3,561 m in 1 day PASAT Executive function ↓ Performance 

  DSST Executive function ↓ number correct (ns) 

  Free recall Memory ↓ Word recall 
  OST Executive function No change 

McCarthy et al. (1995) S-HA; 2134 m, 3658 m RT Executive function ↑ RT, ↓ accuracy 

Du et al. (1999) 
S-HA; 300 m, 2800 m, 3600 m, 
4400 m  Memory tasks Memory ↓ Accuracy at 4,400 m 

van der Post et al. (2002) S-HA; SaO2 97%, 90%, 80% Word recognition Memory ↓ Accuracy at SaO2 80% 

  Corsi block tapping  Memory No change 
  Visual search Executive function No change 
  Binary visual RT Executive function ↓ Accuracy, ↑ RT at SaO2 80% 

Li et al. (2012) E-HA; <300 m to 3,900 m within 5 
days 

Auditory memory Memory ↓ Performance 
 Dexterity Psychomotor skills ↓ Performance 
  4-Choice RT Executive function ↓ Accuracy, ↑ RT 

    Visual perception Visiospatial skills No change 

S, simulated; E, expedition; HA, high altitude; SaO2, arterial O2 saturation; RT, reaction time; PASAT, paced auditory serial addition test; DSST, 
digital symbol substitution test; OST, operation span task; ns, non-significant 
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Table 3: Descriptive characteristics (n = 20). 
  Mean ± SD 
Age (yrs) 23 ± 3 
Height (cm) 181.1 ± 5.8 
Weight (kg) 79.82 ± 9.72 
BMI (kg/m2) 24.3 ± 3.0 
Body fat (%) 13.3 ± 6.8 
Hematocrit (%) 43 ± 3 
Hemoglobin (g/dl) 14.7 ± 1.5 
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Table 4: Time at high altitude, blood measures, and AMS across condition (mean ± SD). 
  Placebo Nitrate 
Total time at HA (min) 165 ± 8 161 ± 8 
%O2 at cognitive testing 11.6 ± 0.1 11.7 ± 0.1 
Baseline hemoglobin (g/dL) 14.5 ± 0.9 14.3 ± 1.1 
Baseline hematocrit (%) 42 ± 3 43 ± 3 
AMS, 110 min 2 ± 1 3 ± 2 
AMS, 137 min 3 ± 2 3 ± 2 
HA, high altitude; vasc, vascular testing; cog, cognitive testing; AMS, acute mountain 
sickness score.  
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Table 5: Cognitive performance and reaction times by cognitive domain across condition and altitude (mean ± SD).  
      Placebo Nitrate 
Domain Task Construct SL HA SL HA 
Memory 
  

Memory Recognition Learning Rate 0 ± 1 0 ± 1 0 ± 1 0 ± 1 
Verbal Memory Index 75 ± 9 70 ± 10* 75 ± 5 71 ± 10* 
Verbal Intrusion Index 5 ± 9 10 ± 10* 5 ± 5 9 ± 10* 

Working Memory 
Capacity 

Digit Span 
(Forward) 

Recall Span (forwards) 7 ± 1 7 ± 2 7 ± 1 6 ± 1 
Trials Correct (forwards) 9 ± 2 9 ± 3^ 9 ± 2 7 ± 3^ 

Attention and 
Concentration 

Continuous 
Performance Test 

RT (ms) 560.29 ± 200.25 518.56 ± 127.83 467.20 ± 69.27 538.91 ± 185.50 
Commission Errors 2 ± 5 2 ± 2 1 ± 2 3 ± 6 
Ommission Errors 1 ± 1 1 ± 1 0 ± 1 1 ± 1 

Information 
Processing 
Efficiency 

Switching of 
Attention (Part 2) 

Duration (ms) 38783 ± 6742 35235 ± 6463 38765 ± 7160 40163 ± 11671 
Connection Time (ms) 1508 ± 285 1382 ± 258 1483 ± 274 1580 ± 455 
Accuracy 0 ± 1 1 ± 1 1 ± 2 1 ± 1 

Response Speed Motor Tapping Tapping Speed 200 ± 25 199 ± 23 206 ± 23 197 ± 22 
Information 
Processing 
Efficiency 

Choice RT Choice RT (ms) 343.35 ± 73.64 346.52 ± 31.85 328.72 ± 34.56 350.52 ± 26.52 
Visu-I (Word) # Correct w/ Visu-Int 17 ± 5 20 ± 4* 17 ± 5 19 ± 5* 

RT w/ Visu-Int (ms) 1186 ± 321 969 ± 156* 1108 ± 214 1056 ± 306* 
Verb-I (Color) # Correct w/ Verb-Int 17 ± 4 17 ± 3 18 ± 5 17 ± 5 

RT w/ Verb-Int (ms) 1156 ± 278 1146 ± 212 1139 ± 285 1124 ± 208 
Executive 
Function 

Maze Trials Completed 7 ± 3 8 ± 3 8 ± 2 8 ± 2 
Completion Time (ms) 114988 ± 42270 113379 ± 52528 107712 ± 32708 117845 ± 42424 
Path Learning Time (ms) 94322 ± 38855 94159 ± 53061 88668 ± 30494 97255 ± 38098 
Accuracy 30 ± 14 28 ± 11 29 ± 12 31 ± 10 
Number of Overruns 14 ± 8 12 ± 5 13 ± 7 15 ± 7 

Impulsivity Go/No-Go Speed 292.02 ± 44.96 282.58 ± 60.81 287.57 ± 44.13 274.77 ± 44.03 
Commission Errors 5 ± 4 5 ± 3 5 ± 2 7 ± 3 
Ommission Errors 1 ± 2 1 ± 2 1 ± 3 2 ± 3 

Emotion 
Identification 

Emotion Recognition Emotion Recognition Index 175.42 ± 8.96 172.77 ± 11.06* 176.35 ± 6.23 170.18 ± 11.20* 
Average RT (ms) 1671.38 ± 318.10 1593.84 ± 518.05 1620.17 ± 281.33 1528.67 ± 256.00 

SL, sea level; HA, high altitude; scr, score; int, intrusions; RT, reaction time; Visu-Int, visual interference; Verb-Int, verbal interference 
* p < 0.050 vs within-treatment SL; ^ trend, p < 0.100 vs within-treatment SL   
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Table 6: Stroop task performance and emotional responses across treatments and altitude (mean ± SD). 
  Placebo Nitrate 
  SL HA SL HA 
Total questions 110 ± 8 110 ± 9 112 ± 8 112 ± 8 
Correct (%) 67 ± 13 64 ± 12 67 ± 15 67 ± 13 
Incorrect (%) 33 ± 13 36 ± 12 33 ± 15  33 ± 13 
Mean correct RT 1044 ± 165 1033 ± 172 998 ± 141 992 ± 132 
Happiness 7 ± 1 6 ± 2* 7 ± 1 6 ± 1* 
Perceived  control 7 ± 1 7 ± 2* 7 ± 1 6 ± 2* 
Arousal 4 ± 2 4 ± 2 3 ± 1 4 ± 2 
Effort 23 ± 2 22 ± 4* 23 ± 2 21 ± 5* 
Importance 24 ± 3 22 ± 3 24 ± 3 22 ± 4 
SL, sea level; HA, high altitude; RT, reaction time  
* p < 0.05 vs within-treatment SL    
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Table 7: Cerebral mental-stress-mediated reactivity across treatments and altitude (mean ± SD).  
  Placebo Nitrate 
  SL HA SL HA 
Mean velocity (m/s) + 5 ± 6 + 5 ± 9 + 7 ± 7 + 6 ± 7 
PI -0.01 ± 0.06 -0.01 ± 0.10 -0.04 ± 0.08 -0.03 ± 0.07 
Conductance -0.02 ± 0.08 + 0.01 ± 0.10 -0.04 ± 0.10 + 0.02 ± 0.12 
HR (bpm) + 8 ± 11 + 7 ± 8 + 6 ± 8 + 5 ± 7 
SaO2 (%) + 0 ± 2 + 0 ± 5 + 0 ± 2 + 1 ± 4 
SL, sea level; HA, high altitude; PI, pulsatility index; HR, heart rate; SaO2, arterial oxygen 
saturation. 
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Table 8: Carotid artery mental-stress-mediated reactivity across treatments and altitude (mean ± SD). 
  Placebo Nitrate 
  SL HA SL HA 
SBP (mmHg) + 6 ± 9 + 5 ± 10 + 1 ± 8 + 4 ± 11 
DBP (mmHg) + 10 ± 6 + 4 ± 7 + 6 ± 6 + 7 ± 8 
MAP (mmHg) + 9 ± 6 + 5 ± 6 + 4 ± 4 + 5 ± 8 
Mean diameter (mm) + 0.16 ± 0.15 + 0.00 ± 0.20* + 0.17 ± 0.19 + 0.07 ± 0.26* 
MnV (cm∙s-1) - 0.8 ± 3.1 - 0.4 ± 3.6^ - 2.0 ± 3.6 + 0.5 ± 3.1^ 
PI  - 0.01 ± 0.17 - 0.01 ± 0.25 - 0.09 ± 0.24 - 0.07 ± 0.24 
Blood flow (ml∙s-1) + 16.3 ± 66.7 - 10.9 ± 91.6 - 0.8 ± 67.6 + 28.3 ± 90.2 
β-stiffness  - 0.7 ± 1.0 - 0.2 ± 1.6 - 0.7 ± 1.2 - 0.4 ± 1.2 
Ep (kpa) - 4 ± 14 - 2 ± 21 - 6 ± 15 - 3 ± 15 
AIX75 (%) + 9 ± 12 + 5 ± 16 + 7 ± 10 - 3 ± 15 
W1 (mmHg∙m∙sec-3) + 0.69 ± 7.06 + 0.03 ± 5.11 - 1.15 ± 4.40 + 0.61 ± 7.17 
NA (mmHg∙m∙sec-2) - 17.605 ± 45.738 + 5.748 ± 22.545 - 17.326 ± 43.514 - 14.390 ± 51.243 
SL, sea level; HA, high altitude; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean 
arterial pressure; PI, pulsatility index; Ep, elastic modulus; AIX75, augmentation index at 75 bpm; W1, forward 
wave magnitude; NA, reflected wave magnitude. 
* p < 0.050 vs within-condition SL; ^ trend p = 0.062 vs within-condition SL 
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Table 9: Cerebral hemodynamics at baseline across treatments and altitude (mean ± SD). 
  Placebo Nitrate 
  SL HA SL HA 
Mean velocity (m∙s-1) 66 ± 15 74 ± 20† 68 ± 16 75 ± 18† 
PI 0.83 ± 0.14 0.78 ± 0.11 0.84 ± 0.17 0.79 ± 0.13 
Conductance 0.80 ± 0.19 0.87 ± 0.26 0.82 ± 0.19 0.90 ± 22 
HR (bpm) 56 ± 9 64 ± 8† 54 ± 7 64 ± 11† 
ETCO2 (mmHg) 39 ± 2 33 ± 2† 39 ± 3 34 ± 2† 
SaO2 (%) 98 ± 2 75 ± 6† 98 ± 2 75 ± 7† 
SL, sea level; HA, high altitude; PI, pulsatility index; HR, heart rate; ETCO2, end-tidal 
CO2; SaO2, arterial oxygen saturation 
† p < 0.05 vs within-treatment SL    

 

  

62 
 



 

 

 

Table 10: Carotid measures of vascular function during baseline and mental stress across condition and altitude (mean ± SD). 
  Placebo Nitrate 
  SL HA SL HA 
SBP (mmHg) 106 ± 11 108 ± 11 107 ± 7 106 ± 11 
DBP (mmHg) 68 ± 6 74 ± 7† 70 ± 6 71 ± 8† 
MAP (mmHg) 83 ± 7 87 ± 6 84 ± 6 85 ± 9 
Mean diameter (mm) 5.91 ± 0.46 6.60 ± 0.47† 5.75 ± 0.48 6.54 ± 0.45† 
PI  1.99 ± 0.33 1.92 ± 0.42 2.09 ± 0.31 1.96 ± 0.31 
Blood flow (ml∙s-1) 621.0 ± 89.9 786.5 ± 139.7† 602.0 ± 88.1 746.5 ± 126.3† 
β-stiffness  4.4 ± 1.2 3.7 ± 1.4^ 3.9 ± 1.0 3.5 ± 1.1^ 
Ep (kpa) 50 ± 14 45 ± 19 45 ± 12 41 ± 15 
R-W1 (ms) 112 ± 22 106 ± 19 119 ± 28 106 ± 17 
AIX75 -27 ± 12 -29 ± 11 -28 ± 13 -29 ± 13 
W1  (mmHg∙m∙s-3) 10.61  ± 5.50 12.51 ± 8.19 9.87 ± 4.88 11.64 ± 5.39 
NA (mmHg∙m∙s-2) 66.532 ± 62.625 54.054 ± 68.902 54.335 ± 46.900 55.940 ± 42.460 
SL, sea level; HA, high altitude; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PI, 
pulsatility index; Ep, elastic modulus; AIX75, augmentation index at 75 bpm;  W1, forward wave magnitude; NA, reflected 
wave magnitude. 
 † p < 0.05 vs within-treatment SL; ^ p = 0.051 vs within-treatment SL 
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Table 11: Measures of nitric oxide bioavailability and brachial vascular measures across treatments and altitude (mean ± SD). 
  Placebo Nitrate 
  SL HA SL HA 
Salivary nitrate (AU) 0.1 ± 0.2 0.2 ± 0.3 0.1 ± 0.2 2.7 ± 1.0 §* 
Ex NO (ppb; n = 9) 19 ± 5 20 ± 5 16 ± 6 35 ± 9 §* 
Brachial SBP (mmHg) 114 ± 10 114 ± 10 113 ± 9 112  ± 12 
Brachial DBP (mmHg) 68 ± 6 74 ± 7* 70 ± 6 72 ± 8* 
Brachial MAP (mmHg) 83 ± 7 86 ± 6 84 ± 6 84 ± 8 
Average BL diameter (mm) 4.00 ± 0.48 4.07 ± 0.43 3.95 ± 0.47 4.08  ± 0.45 
FMD (%) 6.22 ± 3.62 4.87 ± 3.22* 8.13 ± 3.14 5.52 ± 3.14* 
Reactive hyperemia AUC 697.14 ± 221.81 736.59 ± 161.74 675.09 ± 194.39 726.36 ± 249.41 
SL, sea level; HA, high altitude; Ex NO, exhaled nitric oxide; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MAP, mean arterial pressure; BL, baseline; FMD, flow mediated dilation; AUC, area under the curve. 
§ p < 0.05 vs Placebo-HA; * p < 0.05 vs within-treatment SL 
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Table 12: Effect sizes and statistical power for the effect of altitude and nitrate across select variables.   
  Effect of HA Effect of nitrate at HA 

 Placebo Nitrate Placebo vs Nitrate 
Variable Effect size Power Effect size Power Effect size Power 
Switching-attention connection 
time 0.59 0.71 0.24 0.18 0.43 0.45 
Maze accuracy 0.11 0.08 0.21 0.14 0.29 0.24 
MCA blood flow 0.77 0.90 0.96 0.98 0.07 0.06 
CCA blood flow 1.49 1.00 1.25 1.00 0.38 0.37 
∆MCA blood flow 0.03 0.05 0.14 0.09 0.07 0.06 
∆CCA blood flow 0.23 0.16 0.26 0.20 0.26 0.20 
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Appendix 1 

 

EXERCISE SCIENCE 
820 COMSTOCK AVENUE 
201 WOMEN’S BUILDING 

SYRACUSE, NY 13210 
(315)-443-2114 

 
Effects of Beetroot Juice Supplementation on High Altitude Cognitive and 

Vascular Function  

 
Principal Investigator: Kevin Heffernan, Ph.D. 
Telephone: 315-443-9801 
Email: ksheffer@syr.edu 
IRB Protocol #: 13-370 
 

We are inviting you to participate in a research study.  Involvement in the study is voluntary, so 
you may choose to participate or not to participate.  This sheet will explain the study to you and 
please feel free to ask questions about the research if you have any. I will be happy to explain 
anything in detail if you wish.  

Purpose 
Normal brain function relies on oxygen supply.  At high altitudes the amount of oxygen 

you inhale and deliver to your body decreases, impairing your body’s ability to function normally.  
This negatively affects your ability to think and process problems.  Research has shown that at 
high altitude your reaction time slows down, you lose some of your fine motor skills and your 
ability to remember things is decreased.  This may be the result of decreased blood flow and 
oxygen delivery to the brain when you are thinking or processing information.  These effects are 
very problematic for people who are exposed to high altitude, such as military personnel or 
mountaineers. 
 The purpose of this study is to investigate whether or not supplementing with beetroot juice 
before ascending to high altitude will increase oxygen delivery to the brain when you are thinking 
and performing cognitive tasks, resulting in increased brain function.  Beetroot juice is a natural, 
vegetable juice that comes from beets, a vegetable commonly found in salads.  It has high amounts 
of nitrate, a molecule that can be broken down into the body into a compound that can cause your 
blood vessels to expand and deliver more blood and oxygen.  In this study, we will have you 
perform a series of cognitive tests and will measure your blood vessels both in a normal 
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environment (i.e. no change in altitude) and in a simulated high altitude chamber after consuming 
beetroot juice.  This will be done over 3 visits that are described below.  Understanding if a natural 
supplement, like beetroot juice, can help brain function at high altitude has important benefits for 
the health and safety of people who work at high altitude.   
 
 Who can participate?  

• Men and women between the ages of 18-30.  

  

Do I have to participate? 

• Your participation in this study is voluntary, which means you get to decide whether or not you 
want to participate 

• Make sure that you read this entire form before making a decision and take as much time as you 
need.  

• Feel free to ask as many questions about the study as you want. If you do not understand a term 
in the form, ask, and a researcher will explain it for you. 

• If you decide to participate in the study you will be asked to sign a consent form. 

• Do not sign the consent form until all of your questions have been answered and you understand 
what will happen in the study. 

• Your signature means that you agree to participate in this study. 

• You can ask for a copy of this form whether or not you agree to take part in the study. 

• Your decision not to be in this research study will not result in any loss of benefits to which you 
are otherwise entitled. 

Can I Withdraw From The Study Once It Has Started? 

• At any time you may remove yourself from the study without giving any reason.  

• If you are a student, withdrawing from the study will not affect your grade in courses in any way.  

What Can I Expect From Participating?  

For this study, you will need to visit the Human Performance Laboratory and Altitude Simulation 
Laboratory, located in the Women’s Building at Syracuse University once for study screening and 
twice for the study.  The screening will take about 45 minutes and each study visit will take 
approximately 4 hours.   

• At the screening visit you will be asked to fill out and sign this consent form, Health History 
Questionnaire, and a vision and colorblindness examination.  Additionally, we will measure your 
height using a large ruler that is mounted against a wall.  With your shoes still off, we will ask 
you to stand upright with your back against this wall for a few moments as we measure your 
height.   
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• We will ask you to give us a small urine sample so that we can check the function of your 
kidneys.  We will provide a small sample container and escort you to the restroom.   

• We will then estimate your body composition (percent body fat) using a BodPod that will require 
you to wear tight fitting, minimal clothing for greatest accuracy in estimations.  You will be 
asked to sit quietly in a chamber that resembles a giant egg for approximately two, 60-second 
intervals. This machine measures your body volume to estimate body fat.  

• We will also have you perform a brief cognitive test to measure basic brain function. We will 
also have you practice one on the computer in order to become familiar with it.   

• We will take you down to the altitude chamber (it will not be on, so we will still be at normal 
altitude) to familiarize you with the chamber and answer any questions you might have.  In total, 
the screening visit will take approximately 45 minutes. 

• We will send you home with a 3-day dietary recall survey and a list of certain foods that we will 
request you avoid for the 3-4 days before each of your next scheduled visits.   

• For the two study visits we will ask you to arrive not having eaten within the past 3 hours (we 
will provide a snack (granola bar and juice) at the end of testing). Blood pressure can be affected 
by exercise and consuming food, caffeine or alcohol.  Therefore, we will please ask you to refrain 
from exercising or consuming alcohol or caffeine (including caffeinated coffee, tea, soda or 
energy drinks) on the day that you will come into the lab.   

• You will be asked to lie down and rest for 10 minutes. Following rest, we will place a blood 
pressure cuff around upper arm (bicep). We will also measure your heart rate using ECG.  Three 
electrodes (stickers) will be placed on you.  One will be placed on your left shoulder, one on the 
lower left rib and one on the lower right rib.  These stickers can be easily peeled off when the 
study is over. Following this we will check blood pressure in your wrist (radial artery), neck 
(carotid artery) and upper leg (femoral artery).  To do this, we will use a very sensitive blood 
pressure machine that looks like a pen with a little watch battery at the end.  We will gently place 
this pen on top of your skin over wrist followed by your neck and upper leg. This measurement 
is non-invasive (no needles/no blood) and will take less than 10 minutes.  From this information, 
we can estimate artery elasticity.   

• We will measure how reactive your vessels are by imaging the artery in your arm using an 
ultrasound probe which is a small device (about the size of a deodorant stick) that we will set on 
the surface of your arm.  We will inflate a cuff around your forearm to about 200 mmHg, similar 
to the highest pressure used when your blood pressure is measured at the Doctor’s office, for 5 
minutes.  We will then release your artery and measure how it responds to the release in blood 
flow.   

•  Next we will measure your neck blood flow and brain blood flow using two non-invasive (no 
needles, no blood) techniques, Doppler ultrasound and blood flow sensors. Ultrasound probes 
will be placed on your neck and on the side of your face (between eye and ear) to assess neck 
artery stiffness and blood flow and brain blood flow. Blood flow sensors will be placed on the 
forehead to assess brain blood flow.  

• Then we will give you a cognitive task to complete, which will be displayed on a monitor. You 
will use hand clickers to respond to questions on the monitor for 5-10 minutes. During these 
cognitive tasks we will continue to measure artery stiffness and blood flow using the ultrasound 
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probes and blood flow sensors. This test will give us information about how your arteries react 
to the thinking required to answer the cognitive test. This 4 minute test will be repeated after a 
short break, requiring a total of about 15 minutes. 

• We will also measure your hemoglobin and hematocrit by obtaining a small drop of blood from 
your fingertip (finger prick).   

• We will also have you stick a small test strip under your tongue for 3-5 seconds to absorb a small 
amount of saliva. This test is designed to give us a general idea of how much of a certain molecule 
you have present in your saliva.  We believe this molecule (nitrite) may have an effect on your 
blood vessels. 

• We will have you exhale into a mouthpiece for a brief amount of time.  The mouthpiece will be 
attached to a small machine (approximately the size of a mini gum ball machine) that measures 
the amount of a certain molecule (nitric oxide) in your lungs.  We think this molecule may affect 
your blood vessels.   

• You will complete a computer-administered cognitive and mental status tests. These tests may 
require between 25-30 minutes for completion. You will be seated at a computer for these tests, 
which are designed to assess your memory, attention, reflexes and problem solving skills.  This 
test covers a wide range of brain function because we want to see what part of your brain function 
might change with exposure to high altitude.   

• Before beginning the next portion of the visit you will be permitted a bathroom break.  You will 
then be given a small, approximately 2.3 ounces (70 mL) juice drink to consume before entering 
the altitude simulation chamber.  You will relax in the altitude chamber at an approximate 
altitude of 14,000 ft for 1 hour and 45 minutes.  At high altitudes there is less oxygen available 
for your body, so your body compensates by increasing the rate of your breathing and how 
quickly your heart beats.  Understand that if you begin to feel these symptoms, they are natural 
and are not dangerous.   

• During this time we will attach a clip to your finger and will also attach a small cord to your 
forehead using a headband in order to measure blood oxygen saturation.  Every 30-minutes you 
are in the altitude chamber we will give you a short survey to see how you are feeling physically.   

•  After 1 hour and 45 minutes, we will conduct the same measures we did outside of the chamber, 
finger stick blood sample, saliva strip testing, blood pressure and blood flow measures, and 
cognitive testing.   

• Upon completion of the testing we will escort you out of the altitude chamber and will take a 
few final blood pressures on your upper arm and monitor your oxygen saturation until it has 
reached your pre-chamber levels. At this point you will be permitted to leave.   

• If you wish to withdraw from the study at any time you are free to do so.   
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Estimated study timeline for participants.  

Visit 1 (≈ 45 min) Visit 2-3 (≈ 4 hours each) 

Item Time (min) Item Time (min) 

Consent form 15 Blood pressure 
10 

Color vision testing 

5 

Blood flow 

Height Vascular reactivity 10 

Urine sample Finger stick 

5 Body composition 5 Expiration test 

Cognitive test practice 10 Saliva test strip 

Cognitive testing 10 Cognitive testing 45 

   Consume juice beverage   

   Enter altitude chamber 105 

  Repeat above procedures 65 

 
Can I be excluded from participation for any reason? 

• Based on answers to the above mentioned health history questionnaire, you may be excluded 
from the study.  If you regularly experience any signs or symptoms that suggest you may have a 
medical condition and your health care provider is not aware that you are experiencing these 
symptoms, we will exclude you from the study and ask that you contact your health care 
provider.  We also will exclude you if you have known allergies to beets, a primary ingredient 
of the juice drink we ask you to consume, or if you have a history of losing consciousness.   

• If you are experiencing any signs or symptoms of a serious/significant health condition at the 
time of consent (i.e. severe chest pain, leg pain, dizziness, feelings of heart palpitations) we will 
contact emergency medical services immediately and you will not be able to participate in the 
study. 

What Benefits Can I Expect From Participating?  

• A benefit from this study is helping us understand if we can increase the cognitive performance 
of those who work in high altitude conditions. 

• You may feel good about helping others with their research study by participating in this 
research study. 
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• You will receive information on your blood pressure, body composition, 
hemoglobin/hematocrit and cognitive function. 

• These tests are not being used to diagnose a problem (NOT for medical/clinical purposes). 
These tests are for research purposes only.  If you have high blood pressure we will inform 
you to go the university health center or go see your health care provider.   

Are There Any Potential Risks From Participating In This Study? 

• There are some risks associated with portions of this study. 

• We will use a small amount of gel to help us measure your brain blood flow. There is a small 
risk that this gel may get in your eye.  To protect against this happening, we will use the least 
amount of gel possible to obtain our measurements.  Also, all measures will be made with you 
in a stationary position, lying down.  We will remind you to remain still as we take this 
measure to ensure that the gel does not come into contact with your eye. If gel does come into 
contact with your eye, it may cause slight discomfort (slight drying) but it is not permanent. 
The gel is water soluble and actually designed to be used for eye exams therefore it rinses out 
easily.  We will escort you quickly to an eye fountain to rinse out your eye.   

• Communicating with the researcher throughout the protocol will reduce risks.  

• If at any point you are uncomfortable or feel pain anywhere, please tell us immediately.   

• You may experience discomfort from the finger stick to test your blood lipids, hematocrit and 
hemoglobin. This will only be done two or three times and no more than that. We will use 
different fingers each time to reduce discomfort. If desired we can also place ice on the finger 
prior to the finger stick to reduce discomfort from the pinch. 

• There is a small risk of infection associated with the finger stick. However, we will reduce this 
risk by ensuring that equipment is clean and sterile and the finger stick technician will wear lab 
coat, gloves, will clean the finger with alcohol swabs and will clean the area with a disinfectant 
wipe afterwords.   

• There is some risk of discomfort with the measurement of vessel reactivity.  This technique 
uses a blood pressure cuff inflated around the forearm to pressures around 200 mmHg.  This 
pressure may become uncomfortable over the 5 minute duration.  You may feel as though your 
arm is “falling asleep,” and may feel a numb or tingling sensation in the hand.  This feeling 
will subside almost immediately when the cuff is released from the forearm.   

• There is some risk of developing a headache and nausea at high altitude, known as acute 
mountain sickness (AMS).  Importantly, this occurs more frequently with prolonged exposure 
to high altitude and intense exercise, the duration of the current study is short enough (and does 
not include exercise) so we do not anticipate the development of these complications.  As a 
precautionary measure, however, we will monitor your blood oxygen saturation and administer 
a survey to document any symptoms of acute mountain sickness.  If you end up presenting 
multiple symptoms based on the survey we may remove you from the altitude chamber.  
Additionally, we will monitor your blood oxygen saturation until it returns to normal values 
after exiting the chamber.   

• There is a small risk of losing consciousness after entering the altitude chamber.  We will 
minimize this risk by having you sit upon entering the chamber while your body initially 
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adjusts to the changes in altitude and by keeping a technician nearby during any major changes 
in body position (i.e. moving from lying down to standing). Additionally, we will investigate 
whether you have a history of losing consciousness prior to testing.  If you have a history of 
losing consciousness you may be excluded from participating.   

• There is minimal risk with consuming beetroot juice.  It is possible you may experience gastric 
distress if you are allergic to beetroot juice.  Beetroot juice has been shown to lower blood 
pressure after consuming it.  This could potentially result in light-headedness or dizziness upon 
changes in body position (such as lying to standing).  These risks are minimized because you 
will not be exercising while in the altitude chamber.  As a precautionary measure, we will 
measure and monitor your blood pressure following the conclusion of testing and exiting the 
altitude chamber.  You will be released once blood pressure has returned to normal values to 
pre-chamber values.   

• In the event of illness or physical injury resulting from taking part in this research study, 
medical treatment will not be compensated for.  You will be responsible for any costs not paid 
by your insurance company.  No other compensation is offered by Syracuse University.  You 
have not waived any of your legal rights by signing this form. 

Are There Any Costs? 

• There will be no costs to you for participating in this study. 

Who Can See Information About This Study? 

• The research records from this study will be confidential. Confidentiality means that it is our 
responsibility to keep any information you provide private and safe. 

• Only members of the trained research staff for this study with training in research ethics may 
look over your research records.  

• The paperwork, results and records will be kept in a locked filing cabinet that only the 
researchers with training in research ethics will have access to.  

• You will be given a study identification number (coded numbers, known only by primary 
researchers) and this will be entered into all research computers used to collect your blood 
pressure and blood flow.  Your name will not appear anywhere on these computers or the data 
output from these computers.   

• All information stored on computers requires a password access it.  Only members of the 
research team with training in research ethics will have this password.  

• The data and research record will be stored for up to 10 years.  

• Your individual results will not be used in any way (we will average all results and display 
group averages only when presenting findings in papers and presentations) 

What Are My Rights In This Study? 

• If at any point you wish to withdraw yourself from the study you may.  

• You do not give up any of your legal rights by participating in this study. 
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Who Can I Contact For Questions Or More Information? 

• If there are research related injuries or if you have any questions, concerns, or complaints about 
this study at any time, please feel free to contact:  

o Dr. Kevin Heffernan at ksheffer@syr.edu or call his office at 315-443-9801.  

• If you have any questions about your rights as a research participant, you have questions, 
concerns, or complaints that you wish to address to someone other than the investigator, if you 
cannot reach the investigator, or have experienced research related injuries, contact the 
Syracuse University Institutional Review Board at 315-443-3013.  

 

By signing below you indicate that you have read and fully understood this informed consent form.  
You are fully aware of the purpose and procedures of this study as well as the risks, discomforts, 
and benefits associated with the experimental protocol and that you sign this document freely and 
voluntarily.  

All of my questions have been answered, I am 18 years of age or older, and I wish to participate 
in this research study.  I have received a copy of this consent form.  

 

_________________________________________    _________________________ 
Signature of participant                                                                    Date  
 
_______________________________________     
Printed name of participant     

                                                                    
_________________________________________    _________________________ 
Signature of researcher                                                                   Date  
 
_________________________________________     
Printed name of researcher           
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Appendix 2 

 

Human Performance Lab Health Screening Form 

Date__________  

Age _______  

Gender ______                       

Please answer the following questions as honestly as you can. Your patterns of responses will determine 
whether you may participate in the study. 

 

Known Diseases (Medical Conditions) 

1. List the medications and dietary supplements you take on a regular basis. (Include 
prescription and non-prescription, aspirin, vitamins/minerals, nutrition supplements 
[Ensure, Boost, etc.])  

________________________________________________________________________ 

________________________________________________________________________ 

________________________________________________________________________ 

 

2. Has your health care provider ever told you have diabetes?    No Yes 
3. Do you have acute or terminal illness (if so, please explain below)?   No   Yes 

 -
___________________________________________________________________________
_ 

4.   Have you ever had a stroke, heart attack or heart trouble?    No   Yes 

5.  Has your health care provider ever told you that you have a heart murmur?  No  Yes  

6.  Have you had a head injury in the past 3 months?                                          No   Yes 

7.   Do you have asthma /take asthma medication?     No  Yes 

8.   Has your health care provider ever told you that you have  
      kidney or liver disease?        No  Yes 

9.  Has your health care provider ever told you that you have  
      chronic pulmonary or respiratory disease?                                                 No  Yes 

     10.  Has your health care provider ever told you that you have  
            peripheral artery disease?        No  Yes 
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     11.  Has your health care provider ever told you that you have  
            high blood pressure?          No  Yes 

     12.  Has your health care provider ever told you that you have  
     high cholesterol?                                      No       Yes 

     13.  Do you smoke cigarettes on a daily basis?                 No  Yes  

      If yes to #13, how many packs per day _________________ 

      If yes to #13, how long have you been smoking _________________ 

 

 

     14.  Have you lost or gained weight in the previous 6 months?    No   Yes 

If yes, how much weight? _______  

     15.  Has a first degree relative (e.g. father, mother, sister, brother, or child)  
        suffered from a heart attack or diagnosed cardiovascular disease?   No   Yes 
 

Relative Age Did they pass away? 

   

   

 

 

16. Do you often have pains in your heart, chest, neck, jaw, arms or other areas   

 especially during exercise?       No Yes  

17. Do you regularly get pains in you calves or lower legs during exercise 

 which are not due to soreness or stiffness?     No Yes 

18. Do you experience swelling or accumulation of fluid in or around your ankles?  

No Yes 

19. Do you often feel faint or have spells of severe dizziness during exercise? No Yes 

20. Do you often get the feeling that your heart is beating faster, racing, 

  or skipping beats, either at rest or during exercise?    No Yes 

21. If you answered YES to question(s) 17-21, does your health care provider  
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       know that you have this/these symptom(s)?              No       Yes  

 

22. If you answered YES to question(s) 16-20, are you currently experiencing this/these  

      symptom(s) RIGHT NOW?                             No        
Yes 

 

23.  With which hand do you write?                                                                           Left       Right 

 

24. How do you define your race/ethnicity? ___________________________________ 

 

25.   What is the highest grade/level of schooling/education completed? 

       8th Grade         Some HS         HS         some college      college        graduate school 

 

26.  Do you have a known allergy to beets?       No   Yes 

27.  Do you know of any reason you should not travel to high altitude?   No   Yes 

 If you answered YES to question 27, please explain below. 

______________________________________________________________________ 

 

28. Have you traveled to any location above >2,500 m (8,200 ft; i.e. higher  No  Yes 

      than Denver, CO) in the past 2 years? 

If you answered YES to question 28, please explain below. 
_______________________________________________________________________ 

29.  About how many hours of sleep did you get last night? 
__________________________________ 

30.  Please describe your current physical activity: 

Mode: resistance exercise, running, cycling, swimming, other _____________________ 
________________________________________________________________________ 

Sports: _______________________ 

Days per week _________________        Minutes per day __________________ 
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31.  Additional:   

Please circle all that apply 

Allergies Fibromyalgia Polio Flu 

Anemia Attention Deficit 
Hyperactivity Disorder 

Reflux or Ulcers Seizures 

 

Anxiety Glaucoma Liver Disease Concussion 

Arthritis Lupus Bone Disease Eczema 

Asthma Meningitis Leg/foot Ulcers Epilepsy 

Cataracts Chronic Lyme Disease Diverticulitis  Headaches/Migraine 

Chronic 
Bronchitis 

Gout Infection Urinary Tract 
Infection 

Lung Disease Thyroid 
(underactive/overactive) 

Cold Kidney Stones 

 

Menstrual Status (answer these questions only if you are a female) 

32. At what age did you have your first menstrual period? ___________ 

33. What was the date of your last menstrual period?______________ 

34. Have you ever been amenorrheic (only 1-2 periods in a year)? ________  If yes, for how 
long?________ 

35. If your last menstrual cycle was greater than 28 days ago and/or you have a history of 
amenorrhea are you currently under the care of a health care provider? ___________ 

36. Do you use oral contraceptives or hormone replacement therapy? ________ 

Which kind? ____________________ What dose?______ If yes, for how long? ____________ 

Do you take the withdrawal/Placebo pills?___________ 

37. Do you use Depo-Provera for birth control? _________ 

If yes, for how long have you used this method?_________ 
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38. Have you ever experienced menstrual irregularity?_____ Please describe (i.e. number of 
skipped menses, or prolonged menses): _____________________ How long did this 
occur?__________ 

39. Do you currently experience a menstrual cycle? _______  

If yes, how many periods in a year do you have? _______ and how many days between periods? 
_______ 

If no, how many years ago did you have a regular menstrual cycle (10-12 a year)?_________ 

Answer question 40 if you are a male 

40.  Do you regularly use erectile dysfunction medication (i.e. Viagra, Levitra)? No  Yes 
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Appendix 3 

Nitrate Food Frequency Questionnaire 

Item Serving 
Never 

once 
per 

week 

2-4 
per 

week 

5-6 per 
week Daily 

Once 
per 

month 

Once 
per 3 

months 

Once 
per 
year 

Broccoli 5 florets                 

Cauliflower 1/2 cup                 

Spinach 1 cup                 

Beets 1 cup                 
Beetroot 
juice 1 cups                 

Radishes 1 cup                 

Turnips 1 cup                 

Carrots 
1 
normal/   
10 baby                  

Lettuce 1 cup                 

Kale 1 cup                 

Arugula 1/2 cup                 

Cabbage 1 cup                 

Fennel 1 bulb                 

Parsley 1 cup                 

Leeks 1 cup                 
Processed 
meats (hot 
dogs) 

1 link 
                

Cured meats 
(sausage/cold 
cuts) 

1 slice 
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