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We analyze the behavior of a suspension of active polar particles under shear. In the absence of
external forces, orientationally ordered active particles are known to exhibit a transition to a state of
non-uniform polarization and spontaneous flow. Such a transition results from the interplay between
elastic stresses, due to the liquid crystallinity of the suspension, and internal active stresses. In the
presence of an external shear we find an extremely rich variety of phenomena, including an effective
reduction (increase) in the apparent viscosity depending on the nature of the active stresses and the
flow-alignment property of the particles, as well as more exotic behaviors such as a non-monotonic
stress/strain-rate relation and yield stress for large activities.

I. INTRODUCTION

Colonies of swimming bacteria, in vitro mixtures of cy-
toskeletal filaments and motor proteins, and vibrated
granular rods are examples of active systems composed
of interacting units that consume energy and collectively
generate motion and mechanical stresses. Due to their
elongated shape, active particles can exhibit orientational
order at high concentration and have been likened to “liv-
ing liquid crystals” [1]. Their rich collective behavior in-
cludes nonequilibrium phase transition and pattern for-
mation on mesoscopic scales. It has been modeled by con-
tinuum equations built by modifying the hydrodynamics
of liquid crystals to include nonequilibrium terms that
account for the activity of the system [2–4], or derived
from specific microscopic models [5, 6].

A striking property of confined active liquid crystals is
the instability of the uniform aligned homogeneous state
and the onset of spontaneously flowing states, both sta-
tionary and oscillatory [7, 8]. This occurs because local
orientational order generates active stresses that are in
turn balanced by flow, yielding a state that can support
local inhomogeneities in the flow velocity and the local
alignment, while maintaining a net zero force. Loosely
speaking, a confined active liquid crystal “shears itself”
even in the absence of externally applied forces. It is
then not surprising that the rheology of such active liq-
uid crystals in response to an external shear will be very
rich.

Phenomenological work by Hatwalne and collabora-
tors [9] first pointed out that activity lowers the linear
bulk viscosity of tensile suspensions, such as most swim-
ming bacteria, while it enhances the viscosity of con-
tractile systems, and that this enhancement may become
very large near the isotropic-nematic transition. A semi-
microscopic model of contractile suspensions of motor-
filaments mixtures confirmed these results and predicted
an actual divergence of the viscosity of contractile sus-
pensions at the transition [10]. Recent numerical studies
of active nematic films by Cates et al. [11] have confirmed

that this result survives when the effect of boundaries is
included. In addition, it was found that tensile nematic
suspensions can enter a regime of vanishing apparent vis-
cosity in proximity of the isotropic-nematic phase tran-
sition. Such a “superfluid” window was interpreted by
the authors of Ref. [11] as the appearance of bulk shear
bands accommodating a range of macroscopic shear-rates
at zero stress. Finally, the predicted activity-induced
thinning of bacterial suspensions has been demonstrated
in recent experiments in Bacillus subtilis [12–14].

Active particles exert forces on the surrounding fluid,
resulting in local tensile or contractile stresses propor-
tional to the amount of orientational order, σαij ∼ αninj ,
where α is proportional to the force exerted by the active
particles on the fluid and n a unit vector denoting the di-
rection of broken orientational symmetry. The sign of α
determines whether the flow generated by the active par-
ticles is tensile (α < 0) or contractile (α > 0). In the case
of swimming organisms, the former situation describes
“pushers”, i.e., most bacteria (e.g., E. Coli), while the
latter corresponds to “pullers” (e.g., Chlamydomonas)
(see Fig. 1). An important distinction between uniaxial
active particles concerns the possibility of forming phases
with or without a non-zero macroscopic polarization. Ap-
olar particles are fore-aft symmetric and can form ne-

FIG. 1: (color online) Schematic example of the flow field
surrounding a tensile (left) and contractile (right) swimming
microorganism.
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matic phases in which macroscopic quantities are invari-
ant for n → −n. Polar particles can also form phases
characterized by a non-zero macroscopic polarization in
the direction of a polar director p in which they undergo
collective motion with mean velocity v ∼ β p, with β
is the typical self-propulsion velocity. This directed mo-
tion occurring in polar suspensions contributes to a non-

equilibrium local stress of the form σβij ∼ β (∂ipj + ∂jpi).

Most theoretical work has focused on the rheology of
active nematic (β = 0), while the shear response of ac-
tive polar suspensions is far less explored [12, 14]. We
find that for a fixed value of β, the behavior of active
suspensions depends on the interplay between the local
contractile/tensile stresses, embodied in the parameter α,
and the flow-aligning behavior of liquid crystalline par-
ticles, described by the flow alignment parameter, λ [?
]. Rod-shaped particles typically have λ > 0, spherical
particles have λ = 0, while the case λ < 0 describes disk-
shaped molecules such as those found in discotic liquid
crystals. In passive liquid crystals the magnitude of λ
controls how the director field responds to a large shear
flow away from boundaries. For |λ| > 1 the director tends
to align to the flow direction at an angle θ0 such that
cos 2θ0 = 1/λ, while for |λ| < 1 it forms rolls throughout
the systems. These regimes are known as “flow-aligning”
and “flow-tumbling” respectively. Understanding of the
complex rheology of polar and nematic active suspensions
requires exploring the full parameter space, including the
important role of boundary conditions. One of the im-
portant results of this work is a remarkable exact duality
that holds in the regime where the stress-strain relation
is linear and shows that tensile (α < 0) rod-shaped flow-
aligning particles (λ > 1) are rheologically equivalent
to contractile (α > 0) discotic flow-tumbling particles
(−1 ≤ λ < 0). Using this result, we present below a
unified description of the linear rheology of active sus-
pensions of both polar and apolar particles. Some of the
results are summarized in the “phase diagram” of Fig. 2.
This figure shows that the rheological properties of an ac-
tive film subject to an external shear are closely related
to the onset of spontaneous flow in the absence of shear,
highlighting the parallel role played in active system by
mechanical driving forces, such as a macroscopic strain
rate, and internal active driving forces proportional to α
and β.

An unsheared active film exhibits a transition from the
homogeneous aligned state to a “spontaneously flowing”
state, characterized by spatially inhomogeneous velocity
and director profiles [7]. The transition occurs at a criti-
cal activity αc1 in a film bounded by one no-slip substrate
and a surface that can freely slide, and at a larger value,
αc2 > αc1, in a film bounded by two no-slip planes. The
lines separating regions of different shades in Fig. 2 are
the boundaries αc1(β, λ) [see Eq. (8) below] separating re-
gions of spontaneous flow (|α| > αc1) from regions where
the homogeneous aligned state is stable (|α| < αc1). In-
terestingly, when the film is subject to an external shear,
we find that the flow properties change their qualitative

FIG. 2: (color online) The figure displays the regions of pa-
rameters where spontaneous flow occurs in an unsheared ac-
tive film on a substrate. The regions of spontaneous flow
are bounded by the critical activity αc1(β) given in Eq. (8)
(solid and dashed lines) and are shaded orange, with lighter
shades corresponding to increasing values of β. The same
critical activity also separates the regions |α| < αc1 where
the theoretical stress-strain curves are monotonic and the ac-
tive suspension is either thinned or thickened by activity at
small shear rates, as indicated, from the regions |α| > αc1

where the theoretical stress-strain curves are nonmonotonic,
with possible “superfluid” or hysteretic behavior.

behaviour at exactly these same critical values of activ-
ity. For αc1 < |α| < αc2, the theoretical stress-strain
rate curves obtained from our one dimensional model are
nonmonotonic (see Fig. 8) and the active suspension is
strongly non-Newtonian. We suggest a number of dif-
ferent interpretations of the nonmonotonic part of the
stress-strain rate curve shown in Fig. 7. These include
macroscopic “superfluid-like” behaviour [11] with zero ef-
fective viscosity, yield-stress behaviour or hysteresis. Fi-
nally, for |α| > αc2, the theoretical stress-strain curve has
a discontinuous jump at zero strain rate, corresponding
to a finite “spontaneous stress” in the absence of applied
shear [10].

II. THE MODEL

Our model of active suspension consists of a two-
dimensional film of rod-like particles of length ` confined
to a channel of infinite length along the x axis and finite
thickness L along the y axis (see Fig. 3). Because of
the chosen geometry, the system is invariant for trans-
lations along the x axis. The total density of the sus-
pension, ρ = Mc + ρsolvent, with c the concentration of
active particles and M their mass, is assumed to be con-
stant, thus ∇ · v = 0, with v the flow velocity. We as-
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FIG. 3: (color online) Schematic representation of a quasi-
one-dimensional film of thickness L. In our model the film is
sitting on a non-slipping surface and is sheared from the top
at constant velocity v0. The polar rods form an angle θ with
respect to the infinite direction x of the film. Because of the
quasi-one-dimensional geometry, the system is invariant for
translations along the x axis.

sume that the film is sheared at a constant (macroscopic)
rate γ̇ by keeping the lower plate at y = 0 fixed, while
the upper plate at y = L is moved at constant veloc-
ity v0. The macroscopic shear-rate is defined then as

γ̇ = v0/L =
∫ L
0

(dy/L)u, where the rate-of-strain ten-
sor uij = (∂ivj + ∂jvi)/2 has only non-zero components
uxy = uyx = ∂yvx/2 ≡ u/2. Theoretical stress-strain
curves are obtained by fixing the macroscopic strain rate
γ̇ and calculating the resulting stress σ.

We consider a polarized active suspension and focus
only on spatial variations in the direction of the polar-
ization P. The hydrodynamic equations for an active
polar suspension have been formulated by incorporating
the active contributions (proportional to the rate of en-
ergy consumed by the active units) into the hydrody-
namic equations of a passive polar liquid crystalline film.
Some of the active contributions, discussed above, are
not allowed by the conditions which define liquid crystal
systems at equilibrium and hence are intrinsic to active
systems. Other terms have the same form as those of
passive polar liquid crystals and can simply be included
by modifying the prefactors of the terms obtained from
a passive systems. As such, the modified “passive” con-
tributions to the equations of motion can be described
starting from the non-equilibrium analogue of the Frank
free-energy of a suspension of polar particles in a solvent:

F =

∫
r

{C
2

(
δc

c0

)2

+
a2
2
|P|2 +

a4
4
|P|4 +

K1

2
(∇ ·P)2

+
K3

2
(∇×P)2+B1

δc

c0
∇·P+B2|P|2∇·P+

B3

c0
|P|2P·∇c

}
,

with C the compressional modulus and K1 and K3

the splay and bend elastic constant. The parameters
ai, Bi,Ki, C are understood to have both passive and ac-
tive contributions. In the following we will take K1 =
K3 = K. The last three terms in the expression of the
free-energy couple concentration and splay and are also
present in equilibrium polar suspensions.

The dynamics of the concentration and the polariza-
tion are described by

∂tc = −∇ · [c(v + cβ1P) + Γ′h + Γ′′f ] , (1a)

[∂t + (v + cβ2P) · ∇]Pi + ωijPj

= λuijPj + Γhi + Γ′fi , (1b)

with ωij = (∂ivj − ∂jvi)/2 the vorticity tensor, h =
−δF/δP the molecular field and f = −∇(δF/δc). The
flow velocity satisfies the Navier-Stokes equation [19]:

ρ(∂t + v · ∇)vi = ∂jσij , (2)

with ∇ · v = 0 to guarantee incompressibility, and stress
tensor given by dissipative, reversible and active contri-

butions, σij = 2ηuij + σrij + σαij + σβij , with

σαij =
αc2

Γ

(
PiPj + δij

)
, (3a)

σβij =
β3c

2

Γ

[
∂iPj + ∂jPi + δij∇ ·P

]
, (3b)

σrij = −Πδij −
λ

2
(Pihj + Pjhi) +

1

2
(Pihj − Pjhi) , (3c)

where Π is the pressure, η the shear viscosity, and we
have assumed an isotropic viscosity tensor. We now con-
sider a solution deep in the polarized state and neglect
fluctuations in the magnitude of the polarization, i.e.,
assume |P| =

√
−a2/a4. For simplicity we also redefine

units so that |P| = 1. The condition P = constant deter-
mines the longitudinal part h‖ = p · h of the molecular
field that can then be eliminated from the hydrodynamic
equations. The details associated with imposing the con-
stancy of the magnitude of the polarization and deriving
the hydrodynamic equations solely in terms of the polar
director p = P/|P| are given in Appendix A. With this
choice, the hydrodynamic equations for p and c can be
written in the form

∂tc+∇ ·c(v+β1cp) = ∂i [Dij∂jc+ λγ′uklpkplpi] , (4a)

[∂t + (v + β2cp) ·∇]pi + ωijpj

= δTij

[
λujkpk +

w

c0
∂ic−

γ′w

c0
∂j∇ · p + κ∇2pj

]
, (4b)

with γ′ = Γ′/Γ, κ = ΓK, w = Γ(B1 − B3) and δTij =
δij − pipj the transverse projection operator. Dij is an
effective diffusion tensor given by

Dij = D1δij +D2pipj , (5)

where D1 = D− γ′w/c0 and D2 = γ′w/c0−Dξ. Finally,
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filaments/motors (∼) swimmers (∼)

β1 m̃u0`
2 vsp/c

β2 −m̃u0`
2 vsp/c

w m̃u0`
2 −vsp/c

α m̃u1`
2 f`3/(ζc)

β3 m̃u0`
2 vsp/c

TABLE I: Estimates of active parameters for two types of
active suspensions: (i) mixtures of cytoskeletal filaments and
cross-linking motor proteins [5, 6, 16], with m̃ a dimensionless
density of crosslinking motor clusters , u0 the speed at which
motor proteins walk on filaments, in turn proportional to the
rate of ATP consumption, and |u1| ∼ u0`m, with `m the size
of a motor cluster; and (ii) swimming microorganisms [15],
where vsp ∼ (f/ζ) ε is the self-propulsion speed of an individ-
ual organisms, with f the force that swimmers exert on the
fluid, ε < 1 a dimensionless number determined by the shape
of the swimmer and ζ ∼ 1/Γ is the longitudinal friction coeffi-
cient of a rod-like swimmer of length `. For both systems the
precise values of parameters obtained from each microscopic
model differ from the above by numericsl constants of order
unity.

the reversible part of the stress tensor σrij becomes:

σrij = −δijΠ + λpipjpk

[
w

c0Γ
∂kc+K∇2pk

]
− λ

2

[
w

c0Γ
(pi∂jc+ pj∂ic) +K(pi∇2pj + pj∇2pi)

]
+

1

2

[
w

c0Γ
(pi∂jc− pj∂ic) +K(pi∇2pj − pj∇2pi)

]
− λΓ′ξ pipj(Dpk∂kc+ wpk∂k∂lpl) +

λ2

Γ
pipjuklpkpl .

The equations for an active suspension have been written
down phenomenologically and also derived from various
semi-microscopic models. The structure of of the equa-
tions is generic and applies to a broad class of “living
liquid crystals”. The parameters in the equations are
of course system and model specific. In motor/filament
mixtures activity arises from clusters of motor proteins
crosslinking pairs of filaments. The active couplings are
therefore of order c2 in this case [5, 6]. In suspensions of
swimming microorganisms, activity can be described in
terms of the active force f that each swimmer exerts on
the surrounding fluid. In this case the active couplings
arise even at the single-swimmer level and are of order
c [15]. Estimates for the active parameters obtained from
semimicroscopic models are summarized in Table I. The
equations for an active nematic can be obtained from
those of a polar systems by setting βi = w = 0. In the
following we assume β1 = β3 = −β2 = β, as appropriate
for motor filament-systems.

It is convenient to work with dimensionless quantities.
Spatial variables are normalized with the length ` of the
rods. Thus y → y/`. Temporal variables are normalized

with the time scale of splay and bending fluctuations,
thus t → t/τ where τ = `2/κ. A mass scale is set by
τ/Γ. All the other quantities are normalized accordingly.
In these units the hydrodynamic equations for the rods
concentration φ = c/c0, with c0 the mean density, and
the director/polarization angle θ, with p = (cos θ, sin θ),
for the geometry of interest are

ρ(∂t + vy∂y)vx = ∂yσxy (6a)

∂tφ = ∂y
{
βφ2 sin θ +D(θ)∂yφ+ λu sin θ sin 2θ

}
, (6b)

∂tθ = −βφ sin θ∂yθ + w cos θ∂yφ+K(θ)∂2yθ

+w cos θ sin θ(∂yθ)
2 − u(1− λ cos 2θ) , (6c)

where D(θ) = D(1− ξ sin2 θ)−w cos2 θ is a diffusion co-
efficient, K(θ) = 1−w cos2 θ describes the energy cost of
bend and splay deformations, and λ is the flow-alignment
parameter. In a steady state the stress tensor σxy ≡ σ is
constant across the film and it is given by

σ = u
[
η + λ2 sin2 2θ

]
+ λw sin2 θ sin 2θ(∂yθ)

2

+ [w − λw0 − λ(w − w0) cos 2θ] cos θ∂yφ

+ αφ2 sin 2θ − 2βφ2 sin θ∂yθ , (7)

with η the bare viscosity and w0 a constant proportional
to the ratio between the translational and orientational
diffusion coefficients (i.e. w0 ∼ D/K). Our goal is to
study the relation between the induced shear stress σ
and the applied shear rate γ̇ as a function of the two
fundamental active parameters α and β representing the
magnitude of the internal contractile/tensile stress and
the velocity scale of directed motion. In order to con-
struct a σ vs γ̇ map, we integrate Eqs. (6) numerically
with boundary conditions vx(0) = 0 and vx(L) = v0,
θ(0) = θ(L) = 0 and jy(0) = jy(L) = 0 which im-
plies φ′(0) = φ′(L) = 0. As initial conditions we choose
θ(y, 0) = 0 and φ(y, 0) = 1.

In the absence of applied shear, active polar and ne-
matic films exhibit a transition from a quiescent (vx = 0)
aligned (θ = 0) state to a state of spontaneous flow, with
both inhomogeneous alignment and velocity profiles. The
critical value of activity where the instability occurs de-
pends on boundary conditions. For a film bounded by a
no-slip substrate and a surface that can freely slide it is
given by [8]:

αc1(β, λ) =
(π
L

)2 η(1− w)

2φ20(1− λ)
+
βw[η + (1− λ)2]

2(1− λ)(D − w)
, (8)

and the spontaneously flowing state has σ = 0. For a
film bounded by two no-slip surfaces the critical value is
αc2 = 4αc1 and the spontaneously flowing state is charac-
terized by a finite value of σ. The regions of spontaneous
flow in the (λ, α) plane are displayed in shades of orange
in Fig. 2. In these regions the film exhibits strongly non-
linear rheology, with nonmonotonic stress-strain curves,
as described below.
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FIG. 4: Stress (σ) vs strain (γ̇) for an active nematic (β =
w = 0) suspension for various α. Flow-tumbling system with
λ = 0.1 are marked by circles and flow-aligning systems with
λ = 1.9 by triangles. Other parameters are set L/` = 5,
η = 1, φ0 = 1, D = 1 and ξ = 0.3. The inset shows the
comparison with the analytical result given in Eq. (9).

III. LINEAR RHEOLOGY OF WEAKLY
ACTIVE SYSTEMS

For |α| < αc1, corresponding to the gray regions of Fig. 2,
the stress strain curves are monotonic and remain lin-
ear over a broad range of γ̇, as shown in Fig. 4. Non-
Newtonian behavior sets in at smaller values of γ̇ with
increasing α. As the value of α is increased the slope of
the linear portion of the stress-strain curves for α < αc1
decreases with increasing α, indicating that contractile
active stresses lower the effective viscosity of the system.
The effective linear viscosity can be calculated analyti-
cally by solving Eqs. (6c) and (6b) perturbatively in σ
by expanding the fields θ and φ as θ = θ0 +σθ1 +σ2θ2 . . .
and φ = φ0+σφ1+σ2θ2 . . . The quantities θ0 and φ0 rep-
resents here the stationary solution of the hydrodynamic
equations in absence of shear flow. If the suspension is in
an aligned state at t = 0, when the shear is switched on,
then θ0 = 0 and φ0 = const. We note, however, that this
perturbation analysis breaks down in the region α > αc1
of spontaneous flow, as in that case both θ, φ are spatially
varying even at σ = 0. It is straightforward to solve Eqs.
(6c) and (6b) to first order in σ. We then obtain the lin-
ear apparent viscosity defined as ηapp = limγ̇→0 σ/γ̇ and
given by

ηapp =
η(1 + ζ)

ζ + tanc
(
kL
2

) , (9)

where tanc(x) = tan(x)/x and

ζ =
ηwβ

(1− λ)[βw(1− λ)− 2α(D − w)]
, (10a)

k2 =
2αφ20(1− λ)

η(1− w)
− βwφ20

(1− w)(D − w)

[
1 +

(1− λ)2

η

]
,

(10b)

For passive system α = β = w = 0, and ηapp = η,
as expected. For active nematic, β = w = 0 and the
apparent viscosity is simply

ηapp =
η

tanc
(
k
2
L
`

) , (11)

with k =
√

2αφ20(1− λ)/η. If α(1 − λ) < 0, k is imag-
inary and the tan function at the denominator of ηapp
is replaced by its hyperbolic counterpart. Since tanh(x)
increases more slowly than x, the resulting apparent vis-
cosity will increase. If α(1 − λ) > 0, k is real and since
the tan(x) function grows more rapidly than x we ex-
pect then a rapid decrease in the apparent viscosity as
|α| is increased. This shows that the linear rheology of
pullers/contractile systems with λ < 1 are the same as
those of pushers/tensile systems with λ > 1. From Eq.
(9) it is indeed simple to prove that the apparent viscosity
ηapp is invariant under the transformation

ηapp(α, β, λ) = ηapp(−α, β, 2− λ) . (12)

Thus flow-aligning pullers with λ = 1 + ε (for 0 ≤
ε < 1) will exhibit the same apparent viscosity of ow-
tumbling pushers with λ = 1 − ε: ηapp(−|α|, β, 1 + ε) =
ηapp(|α|, β, 1 − ε). This duality is displayed in the top
frame of Fig. 6 that shows the linear apparent viscosity of
active nematic suspensions as a function of |α| for several
values of λ. The solid curves (red online) show that both
contractile/flow tumbling suspensions and tensile/flow
aligning ones are thinned by activity. The dashed curves
(blue online) refer to either contractile/flow aligning sus-
pensions or tensile/flow tumbling ones and show that

FIG. 5: Schematic example of the flow field surrounding a
tensile/flow-aligning (right) and contractile/flow-tumbling ac-
tive particle. For the choice of the parameters α and λ given
in Eq. (12) the two flows are identical, leading to an equal
apparent viscosity.
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FIG. 6: (color online) Apparent viscosity ηapp for active ne-
matic (top) and polar (bottom) suspensions. Solid/red lines
represent flow-tumbling systems (λ < 1) while dashed/blue
lines flow-aligning systems (λ > 1). The corresponding val-
ues of λ are indicated next to the lines. In the bottom plot
α was set to zero. The top frame emphasizes the duality
discussed in the text.

these systems are thickened by activity. Bacteria such
as E-Coli are pushers (α < 0) and generally elongated
in shape, corresponding to λ > 1. Our results therefore
confirm the activity-induced thinning of bacterial suspen-
sions first predicted by Hatwalne et al [9] and recently
observed in [13]. In contrast, algae like Chamydomonas
that propel themselves from the front (and are therefore
pullers, with α > 0). Whether they are thickened or
thinned by activity depends intimately on their shape,
i.e. on whether they can be described as objects with
λ > 1 or λ < 1. Similarly, motor/filament mixtures
are generally contractile (α > 0) are are expected to be
thickened or thinned by activity depending on the effec-
tive value of λ.

This duality has a simple interpretation. Active con-
tractile (tensile) particles produce an ingoing (outgoing)
flow in the surrounding fluid, but while flow-aligning par-
ticles orient at a positive angle with respect to the flow
direction, flow-tumbling particles orient at a negative an-
gle under a small applied shear (see Fig. 5). As a re-
sult, the average flow fields produced in the surround-
ing fluid are identical in the two cases and produce the
same resistance to the imposed shear flow. This equiv-
alence holds only for small applied shear stresses. For

large shear-rates the configuration of the director field of
a flow-tumbling suspension is dramatically different from
that of flow-aligning one and the similarity between the
two flow-fields no longer holds.

IV. NONLINEAR RHEOLOGY OF STRONGLY
ACTIVE SYSTEMS

The linear apparent viscosity given by Eq. (11) van-
ishes at α = αc1, suggesting the onset of a superfluid-
like behaviour above this critical value of activity [11].
For α > αc1, the linearized approximation breaks down
and the stress versus (average) strain rate curve ob-
tained by numerical solution of the equations is nonlin-
ear and nonmonotonic, as shown in Fig. 8. We empha-
size that the flow profiles are always inhomogeneous with
varying velocity gradients and director orientation. For
αc1 < α < αc2 the theoretical stress versus macroscopic
(average) strain rate curve goes through the origin and
exhibits a region of negative dσ/dγ̇, that would in princi-
ple be mechanically unstable. What would be measured
in an experiment would, however, depend critically on
details of the experimental procedure and the particular
apparatus. To study the steady state rheology there are
in general two natural classes of experiments: either (i)
one tunes the stress σ and measures the resulting strain
rate γ̇ or (ii) one does a sweep through the values of strain
rate γ̇ and measures the stress σ. If the stress-strain rate
curve is monotonic, the two procedures are expected to
yield the same result. However, this is no longer the case
as soon as the response exhibits nonmonotonicity.

An important question, then, is what is the shape of
the stress-strain rate curve that would be obtained exper-
imentally for α > αc1 in an experiment where one tunes
the macroscopic strain rate γ̇. Several scenarios are pos-
sible, as shown in Fig. 7 for a non-monotonic curve with
maximum/minimum at ±σm.

(i) One scenario, suggested recently [11] based on nu-
merical studies in the proximity of the isotropic-nematic
phase transition and for small value of the active stress
α is the appearance of bulk shear bands accommodat-
ing a range of macroscopic shear-rates at zero stress.
This would correspond to the bulk stress-strain curve
displayed in the top right frame of Fig. 7 and charac-
terized as “superfluid” behavior. In the simplest picture
the sheared suspension would separate in bands of con-
stant and opposite strain rates, each with zero stress.
For the systems studied here (deep in the ordered phase,
either nematic or polar), we find that the equations of
motion provide no mechanism for selecting a particular
value of the stress plateau and are unable to find a stable
stress-plateau at any value of |σ| < σm (including σ = 0,
see Fig. 7). Furthermore we always find flow profiles
with continuously varying gradients of fluid velocity for
all values of macroscopic strain-rate γ̇ implying that the
picture of two bands of constant strain rate would be at
best an idealisation.



7

(ii) An alternative scenario that is observed in
other driven systems, such as charge density waves in
anisotropic metals [17] and collections of motor pro-
teins [18], is shown in the bottom right frame of Fig. 7.
In this case the system is expected to exhibit hysteresis,
with regions that accommodate coexistence of a range of
macroscopic strain rates, corresponding to the constant
value ±σ0 of applied stress. In general σ0 may coincide
with σm or may be lower, with the system exhibiting
“early swtching”. The width of the horizontal hysteretic
region of the stress-strain curve decreases with increasing
α. In this picture the particular steady-state behaviour
observed will depend on the initial conditions and par-
ticular flow history of each sample.

(iii) Another possibility is that the system shows a
yield-stress like behaviour with a yield stress ±σy whose
sign is determined by the direction of the flow. The value
of the yield stress could also be anywhere in the “unsta-
ble” range of stress: σy ≤ σm.

(iv) Finally, there is one more possibility: that he
theoretical curve would indeed be reproduced by an ex-
periment which scanned through different values of the
macroscopic strain rate. The theoretical curve has been
calculated by fixing γ̇ and calculating the corresponding

FIG. 7: The top left frame display a typical theoretical stress-
strain curve of a nematic active suspension in the region
αc1 < |α| < αc2. The theoretical curve is obtained by tun-
ing γ̇ and calculating the resulting σ and exhibits a region
of dσ/dγ̇ < 0. The other three frames show three possi-
ble experimental stress-strain curves obtained by tuning σ
and measuring γ̇ that could be consistent with the theoretical
curve. The top right frame displays the “superfluid” scenario
suggested in [11], with bulk shear bands accommodating dif-
ferent macroscopic shear rates and zero net stress, so that
the apparent viscosity of the system is simply zero. The bot-
tom left frame shows a yield-stress like behaviour with a yield
stress σy = σm. The last scenario is described in the bottom
right frame and corresponds to a hysteretic stress-strain curve
where the suspension can accommodate a range of macro-
scopic strain rates maintaining a constant total stress ±σ0.

FIG. 8: Stress-strain curves of a nematic suspension (β =
w = 0) obtained by numerical solution of the active hydro-
dynamic equations for several values of α. αc1 = 0.219 and
αc2 = 0.877 for the parameters chosen in the numerical solu-
tion.

FIG. 9: Yield-stress σc as a function of α for a nematic
suspension (β = w = 0) obtained by numerical solution of
the active hydrodynamic equations.

value of σ under the assumption that there are variations
in the director and flow field only in the gradient direc-
tion (i.e. perpendicular to the plates). If this assumption
is valid, every point on this curve does therefore represent
a stable state corresponding to this procedure.

For α > αc2 the stress-strain curve intercepts the γ̇ = 0
axis at a finite value σc = σ(γ̇ = 0) of the strain rate. The
active suspension has a nonzero spontaneous stress even
in the absence of applied forces, as indeed observed in the
spontaneous flow regime of an active suspension confined
between two stationary no-slip planes. In other words,
a finite force must be applied to the active suspension
to keep it from sliding even at zero mean strain rate.
This spontaneous stress σc is shown as a function of α in
Fig. 9. The sign of the stress determines the direction of
spontaneous flow.

We now speculate on the possible behavior of the sys-
tem for each of the scenarios sketched above as α goes
through αc2. The behavior is shown schematically in
Fig. 10. (i) In the superfluid scenario, the response of
the suspension to an applied macroscopic strain rate will
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FIG. 10: Possible scenarios for the transition to the yield
stress regime at α > αc2. The non-monotonic curve obtained
numerically is shown in the top left frame. In the superfluid
scenario (top-right) the plateau at σ = 0 divides into two dis-
connected branches terminating at σ = ±σc. In this case the
yield stress is expected to grow monotonically from zero. In
the yield stress scenario (bottom-left), there is already a non-
zero stress at γ̇ = 0 and thus the yield stress simply continues
increasing with no qualitative change in the behaviour at αc2.
In the hysteretic scenario (bottom-right), the loop intersect
the positive σ axis at ±σ0, with σc ≤ σ0 ≤ σm.

show yield stress behavior. The system would smoothly
go from the zero-stress plateau to a yield stress which
increases from zero at αc2. (ii) In the hysteretic scenario
the minimum height of the hysteretic loop becomes 2σc
i.e. σc ≤ σ0 ≤ σm. (iii) In the yield-stress scenario the
system already shows yield stress behaviour which con-
tinues for α > αc2. (iv) In the non-monotonic scenario,
the non-monotonic stress-strain rate curve shows a jump
at γ̇ whose magnitude increases from zero at αc2.

V. DISCUSSION AND CONCLUSIONS

We have studied the rheological behavior of a thin film
of polar and apolar active material. For weakly active
systems, in the regime of the linear rheology, we have
confirmed analytically the prediction of Hatwalne and
collaborators [9] that activity can lower the linear bulk
viscosity of tensile suspensions of swimmers as well as
enhance the viscosity of contractile systems. We have
shown that this result applies also for finite systems, in
the presence of boundaries.

An important new result of our work is the role of
the shape of the active particles in controlling the rhe-
ological behavior. We find a remarkable exact duality
that holds in the regime where the stress-strain rate rela-
tion is linear and shows that tensile (α < 0) rod-shaped
flow-aligning particles (λ > 1) are rheologically equiva-
lent to contractile (α > 0) discotic flow-tumbling par-

ticles (−1 ≤ λ < 0). This means that activity lowers
the linear viscosity of both tensile, rod shaped particle
and contractile, disc shaped particle suspensions, while
it increases the linear viscosity of contractile, rod-shaped
particle and tensile, discotic particle suspensions.

For strongly active systems we find that the rheolog-
ical response is intrinisically nonlinear. The regime of
linear rheology at small strain rates vanishes beyond a
critical value of activity. In this strongly active regime,
we explore a number of possible scenarios for the non-
linear rheology which include a “superfluid” phase with
vanishing viscosity, hysteresis, yield-stress behavior and
non-monotonic behavior. Our one-dimensional analysis
does not, however, allow us to determine which of these
scenarios is more likely. It is of course possible that allow-
ing for variations of the director and flow field in higher
dimensions or allowing for variations in the magnitude of
the order parameter would yield a criterion for selecting
one of the proposed scenarios.
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Appendix A: Derivation of Eqs. (3)

In this section we show some details of the derivation
of the modified “passive” terms in the equation for the
director field p in the polarized state, when fluctuations
in the magnitude of the order parameters are neglected.
The equation for the full vector order parameter P has
the form

[∂t + v · ∇]Pi = λuijPj + Γhi + Γ′fi . (A1)

Eq. (A1) can be separated in two equations for the
magnitude P = |P| of the polarization and its direction
p = P/P , using

∂tP = pi∂tPi , (A2)

∂tpi =
1

P
δTij∂tPj , (A3)

where δTij = δij−pipj is a transverse projection operator,
with the result

∂tP = P (λuijpipj) + Γ′f‖ + Γh‖ ,

[∂t + v · ∇]pi + ωijpj = λδTijujkpk +
1

P
(Γ′f⊥i + Γh⊥i ) ,
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where we have defined

h‖ = p · h , h⊥i = δTijhj , f‖ = p · f , f⊥i = δTijfj .

In the ordered state, fluctuations in the magnitude P of
the polarization are overdamped and will be neglected.
We can assume, on the other hand, to be deeply in the
polarized state and that P =

√
−a2/a4 is constant. For

simplicity we redefine the units so that P = 1. The
condition P = const determines the longitudinal part h‖
of the molecular field. This requires

h‖ = − 1

Γ
[Γ′f‖ + λuijpipj ] .

The above expression can be now used to eliminate h‖
from the density j = Γ′h + Γ′′f appearing at the right-
hand side of Eq. (1a). Expressing hi = pih‖ + h⊥i and

fi = pif‖ + f⊥i we obtain

ji = piΓ
′′(1− ξ)f‖− γ′λuklpkplpi + Γ′h⊥i + Γ′′f⊥i , (A4)

where ξ = (Γ′)2/(ΓΓ′′) is a dimensionless parameter and
γ′ = Γ′/Γ. Similarly, the stress tensor σrij becomes

σrij = −δijΠ−
λ

2
[pih

⊥
j + pjh

⊥
i ]

+
1

2
[pih

⊥
j − pjh⊥i ]− λpipjh‖ . (A5)

The longitudingal and transverse parts of the driving
force fi are given by

f‖ = −C
c20

p · ∇c− B1 −B3

c0
p · ∇(∇ · p) ,

f⊥i = δTij

[
−C
c20
∂jc−

B1 −B3

c0
∂j∇ · p

]
.

Similarly, the transverse part of the molecular field is
given by

h⊥i = δTij

[
B1 −B3

c0
∂jc+ (K1 −K3)∂j∇ · p +K3∇2pj

]
.

Replacing the explicit expressions of h‖, h⊥i , f‖ and f⊥i
in Eqs. (A4) and (A5), we finally obtain

ji = −
[
D (1− ξ) pipj −

γ′w

c0
δTij

]
∂jc− γ′λuklpkplpi ,

where w = Γ(B1−B3) is a velocity and we have neglected
terms of second and higher order in the hydrodynamic
fields. Finally, the reversible part of the stress tensor is
given by

σrij = −δijΠ + λpipjpk

[
B1 −B3

c0
∂kc+ (K1 −K3)∂k∇ · p +K3∇2pk

]

− λ

2

[
B1 −B3

c0
(pi∂jc+ pj∂ic) + (K1 −K3)(pi∂j + pj∂i)∇ · p +K3(pi∇2pj + pj∇2pi)

]
+

1

2

[
B1 −B3

c0
(pi∂jc− pj∂ic) + (K1 −K3)(pi∂j − pj∂i)∇ · p +K3(pi∇2pj − pj∇2pi)

]
− λΓ′ξ pipj(Dpk∂kc+ wpk∂k∂lpl) +

λ2

Γ
pipjuklpkpl .

Taking K1 = K3 = K leads to the equations given in
Sec. I.
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