Syracuse University

SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1994

Developing Modular Application Builders to Exploit MIMD Parallel
Resources

C. Thornborrow
University of Edinburg, Edinburgh Parallel Computer Center

C. Faigle
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

6‘ Part of the Computer Sciences Commons

Recommended Citation

Thornborrow, C. and Faigle, C., "Developing Modular Application Builders to Exploit MIMD Parallel
Resources" (1994). Northeast Parallel Architecture Center. 75.

https://surface.syr.edu/npac/75

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.


https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/75?utm_source=surface.syr.edu%2Fnpac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Developing Modular Application Builders to Exploit MIMD Parallel
Resources

C. Thornborrow, A. J. 5. Wilson

Edinburgh Parallel Computing Centre
University of Edinburgh
Edinburgh, Scotland EH9 3J7Z

Abstract

Modular application builders (MABs), such as AVS
and Iris FExplorer[6, 7] are increasingly being used
wm the wisualisation community. Such systems can
already place compute intensive modules on supercom-
puters in order to utilise their power. This paper
details two major projects at EPCC which attempted
to fully integrate the MAB concept with a distributed
memory MIMD (DM-MIMD) environment.

The work presented was driven by two goals, effi-
cient use of the resource and ease of use by program-
mer and end user.

We present a model of MABs and describe the ma-
jor problems faced, giving solutions to them through
two case studies.

1 Introduction

Many modular application builders (MABs) have
been built recently and their popularity 1s growing. It
is often the case that the users of MABs wish to util-
ise parallel supercomputers within the environment.
A few years ago, this was only possible by writing
a special module that, typically, used socket connec-
tions to talk to a remote supercomputer and executed
a single module on that platform. There i1s though,
much demand for a closer integration of parallel su-
percomputers and networks of workstations running a
MAB.

Recently, there have been developments in these
areas. CM/AVS allows users of Thinking Machines
CMb Supercomputer to use array data types with AVS
in a parallel manner. Modules may be written that de-
scribe data distribution in arrays and, if required, the
layout of this data over the processors. Within an in-
dividual module, the support for parallel processing

C. Faigle

Northeast Parallel Architectures Center
Syracuse University
Syracuse, NY.

is purely SPMD. We define SPMD to mean many
identical processes, potentially at different localities
within their instruction streams, working on different
areas of data.

There have been two projects with MABs at EPCC.
The first aimed to produce a prototype library that
could hook into an existing MAB. It was to allow use of
parallel machines and facilitate distributed data mod-
els. The second was independent of the restraints of
existing systems and was free to concentrate more on
efficient use of resources in a more rigid model of com-
putation. These two projects are described in detail
in the following sections. Differences in the desired
functionality of the systems,; and the resulting imple-
mentations, are highlighted. Finally, conclusions and
recommendations for further or repeat projects are
presented.

2 Abstract model

In order to discuss current MABs we will first need
to define our terminology. This is a new field with
few accepted definitions. The following are for ease of
discussion within this paper and are not, necessarily,
generally accepted terms.

MVE (Modular Visualisation Environment): A
package for data visualisation, consisting of a user
interface allowing linking of modules in a pipeline.
MVESs are a subset of MABs specifically geared to sci-
entific visualisation.

MODULE: An entity which may be utilised in a
pipeline. This can be thought of as a filter perform-
ing a function on input data to produce output data.
It may also have a user interface. It may itself be a
pipeline of modules.

USER: The person utilising the MAB. They may use
the modules available or write new ones. A user who



writes new modules is termed the writer.
PIPELINE: This is a set of modules and links
between these modules. This implicitly defines the
types of input, the functions performed on this input
and the resulting types of output, e.g. an Explorer
map definition.

PARALLEL MODULE: This is a module whose
implementation consists of more than one concurrent
process.

TRIGGERING: The firing of a module. This may
be explicit with a given signal or implicit with certain
inputs determining the firing.
SYNCHRONISATION: The method by which a
MAB guarantees association of logical groups of data
flowing through the pipeline.

2.1 Serial model of MABs

The MAB is considered to be a set of modules which
can be connected to form pipelines. The function of
the pipeline is implicitly defined by the function of
each module and their connectivity. We refer to data
flowing through the pipeline as meaning that it passes
from one module to another in the order defined by
the entry point and the links between modules. Typ-
ically there is a module in the pipeline, usually the
last module, which renders the data.

There are two forms of parallelism in a serial MAB.
The first, functional parallelism, is a facet of the fact
that different modules may concurrently operate on
different workstations. MABs are designed such that
the user is encouraged to write modules that perform
one function, in this way, different modules have dif-
fering functionality. Thus, we refer to a pipeline as
having functional parallelism.

The second is the ability to ‘hook’ a parallel plat-
form into a serial MAB. This is usually accomplished
as described in the introduction to this paper. It is
not a natural feature of the serial MAB and is con-
sidered serial as the data communication into and out
of the modules is through one point and thus serial in
nature.

2.2 Parallel environment

The parallel environment is considered to be a mul-
tiple instruction, multiple data surface with distrib-
uted memory (DM-MIMD). A parallel module is con-
sidered to be a collection of processes, each running
identical code but, potentially, operating on a differ-
ent area of the overall data. We refer to this as data
parallelism.

There are two useful broad categories of communic-
ation within a parallel MAB utilising an SPMD model
of programming. Intramodule is the communication
type of two processes of the same module whilst in-
termodule is the communication type of two processes
of different modules.

3 Serial to parallel migration

There are three main issues to be addressed when
moving from the serial model of MABs to the parallel
model.

Data Distribution: The method by which data is
split up into smaller chunks for processing in parallel
and then gathered again for further serial processing.
Data distribution also covers the splitting and gather-
ing of the data as it flows between parallel modules.
Synchronisation: The method by which the MVE
implicitly triggers modules upon the arrival of data
at the module. Keeping logically associated blocks of
data (such as a ‘frame’ in apE [10]) associated as they
flow through the pipeline is also part of synchronisa-
tion. These are intimately linked for it 1s usually the
case that if frames of data become mixed or lost then
it 1s due to incorrect triggering of modules within the
pipeline. In the parallel environment, the sychronisa-
tion is complicated by the splitting of a module into
processes. Data distribution must not lead to frames
of data becoming seperated.

Mapping: The problem of how a description of mod-
ule placement on hardware resources can be achieved.
In other words, mapping covers the issues of how to
describe and implement the parallelism of a module.
The mapping of modules to resources will have a great
influence on how efficiently the parallel pipeline will
execute as a bad mapping may substantially increase
the amount of message passing and decrease processor
utilisation.

4 The MVE project

The MVE project at EPCC is a prototype library
aimed at existing MVE systems to facilitate the use
of DM-MIMD resources within such systems. The
work was based on previous work done by Chris
Thornborrow[1, 2]. The project firstly examined the
design of existing systems in order to sublimate a
model of the systems and thus attempt to address gen-
eric issues common to most systems. The library was
named the NEVIS library[3]. There was, at develop-
ment time, no existing MVE which was stable, freely



available and small. It was thus necessary to write
libraries, or wrappers, to imitate most of the com-
mon features of such systems. Into these prototype
libraries, the NEVIS library would be slotted, thus
demonstrating that, given a full system, DM-MIMD
integration would be possible.

4.1 The design criteria

The two main criteria were ease of use and effi-
ciency. Ease of use applies both for the writer and the
user of the system. That the project was to fit within
existing MVEs, or at least potentially do so, meant it
had several other design criteria.

It was to be expected that seperate modules would
be precompiled to executable object code and use lib-
raries to communicate. The effect is that all the MVE
project could aim to do was to extend the libraries.
Existing systems encouraged the breakdown of func-
tionally parallel units into seperate modules. It thus
seemed natural to support an SPMD programming
model within a module. The library must support the
triggering rules of modules within existing MVEs and
maultiple frames of data. There should be fan-in and
fan-out from as many input ports and output ports as
required by the user.

In [2], Chris Thornborrow categorised the com-
monly occuring types of data in MVEs and demon-
strated that these can be automatically distributed
in a parallel environment. However, only arrays and
single valued entities, known as parameters, were im-
plemented in the prototype.

4.2 The efficiency criterion

The design should attempt to keep processors busy
constantly. In order to keep processors busy, it is ne-
cessary to supply them with data as quickly as pos-
sible. A naive approach to data distribution within a
parallel MAB is shown in diagram 1. It can be seen
that the data must be gathered after each module and
then split again for the next module. The task of the
source 18 to divide data up amongst the workers and
the task of the sink is to gather output data and make
it into one coherent whole for the next modules source
to distribute again. It is obvious there is a bottleneck
and unnecessary inefficiency as parallel communica-
tion links are available.

To avoid this, it was decided to split the source and
sink processes up, associating one process with each of
the worker processes. In practice, it was possible to
make these processes linked libraries and thus avoid
context switching. The scheme 1s depicted in figure 2.

Vor ker s Vor ker s Vor ker's

Module A Module B Module C

Figure 1: Three Parallel Modules Demonstrating Pos-
sible Bottlenecks

?

Sour ce Si nk Bottleneck Removed => Sour ce Si nk

Wor ker s Connectivity Problems Wor ker s

Parallel Module Parallel Module

Figure 2: Splitting the Source and Sink

Thus each sink is responsible for splitting data from
its associated process to forward to the correct sources
of the next module. These sources then gather all such
inputs from the previous module into one chunk of
data. This gathering enables the data to be forwarded
to the normal triggering routines of the MVE.

There are three interesting consequences of this
scheme :

Role Swapping: The source and sink have now
swapped roles. The sink library now splits data for
the next module and the source library now gathers
data into one chunk ready for forwarding to the worker
process.

Loose Synchrony: As each process is essentially dis-
tinct from others in the same module, they trigger at
slightly different times. This enables us to keep pro-
cessors busier than in the naive approach.
Synchronisation: As long as the splitting and gath-
ering of data work correctly, correct synchronisation
of the module is guaranteed. This is tricky to see, but
relies on the fact that the data that is forwarded to the
existing MVE libraries in a serial form (i.e. each pro-
cess only sees what it would, if it were running singly
on a smaller data set).

In practice, the pipeline was found to execute cor-
rectly and to run faster with the distributed source



and sink.
4.3 Ease of use criterion

It was decided the code should look as similar to
serial code as possible. The number of processors was
to be input by the user, not the writer who could only
supply a default. Assigning numbers of processes to
each module automatically is impossible without some
knowledge of the data and the execution rate of mod-
ules as Thornborrow shows in [1], thus no automation
was attempted. It was decided to attempt to hide as
much message passing as possible.

Intermodule: The NEVIS library was designed to
hide all such communication, as existing MAB wrap-
pers hide socket connections between workstations.
Thus, the library becomes part of the communications
wrapper of an existing MVE.

Intramodule: The NEVIS library was not origin-
ally intended to deal with this, another project at
EPCC, called the Parallel Utilities Library Key Tech-
nology Project (PUL)[5] developed libraries to sup-
port the parallel programming paradigms of regular
domain decomposition and scattered spacial decom-
position. These hide the message passing totally from
the user.

Thus, using the PUL and NEVIS libraries in con-
junction within the MVE project, all message passing
could be hidden from the writer of parallel modules.

4.4 Module writers interface

It was possible to use few parallel calls. In the
pseudo-code below, extra lines of code are highlighted
with a plus sign at the start. Note that the line that
indicates processing of the data has a code dependent
number of message passing calls as processing the data
requires. If the PUL libraries were utilised then there
would be no message passing calls here.

main {
+ Initialise the Message Passing System
+ Initialise the NEVIS library

Declare all the ports for this module

loop until finished
Receive from input ports
nv_receive_ports(stderr);

Read input port data
Create header and data space for output data
Fill in header fields
+ Process data
Put data on output port

Send output ports
nv_send_ports(stderr)
repeat

+ Exit NEVIS
+ Exit message passing system

4.5 Analysis of the MVE project

Data distribution

Only arrays have to be mapped across processes in the
prototype. There are two problems to be solved:

Specification: Suppose a module performs a reduc-
tion operation on a 2D data set, down to a 1D data
set. If all the values in the Y axis are to be reduced to
one value for each entry in the X axis, it makes little
sense to split the data into square chunks across pro-
cesses and introduce the need for communication of
partial sums. Instead we would wish to assign strips
of data to processes and avoid communication totally.
To this end, the writer needs to specify the data dis-
tribution over processes. In the NEVIS library this
was achieved by allowing the writer to specify which
dimensions data should not be split across. This tech-
nique was used because the default is to split across
all dimensions as equally as possible. The data split is
decided dynamically, given the prefered type of data
split by the writer and the number of processes by the
user. A piece of code can be written that determin-
istically returns a mapping of data space to processes
given the number of processes, the dimensions and size
of the data in each dimension and the type of data split
required, specified from a fixed set of possibilities.

Re-mapping: As data flows from one module to an-
other, 1t is re-mapped to the correct processes in the
next module. This is achieved by each module having
knowledge about its immediate downstream modules.
For each of these modules, the code described above
is called with the size and dimensions of the data to
be output, the number of processes of the downstream
module and the prefered data split of the downstream
module. This is fine if the size of the output data is
known apriori. If it is not, then we effectively have
1D data (it is impossible to assign dimensions of data
if we do not know their size). This does not mean
the data has no spacial co-ordinates, simply that the
data shape itself 1s 1D. Data may thus be split into
chunks by each process individually and forwarded on
a round-robin basis to the next module. If the num-
ber of processes of the modules is different, then each
process would begin it’s round robin distribution at a
different process. This scheme allows loose synchrony
of processes even when the data size is unknown, and,
given small enough chunks of data, ensures a fairly
even distribution of data in the downstream module.



Synchronisation

It has already been shown that synchronisation is
guaranteed by the correct operation of the splitting
and gathering libraries. The standard firing libraries
of the existing MVE may be utilised. Loose synchrony
of the processes is achieved, which 1s useful for effi-
clency.

Mapping

Some work has gone into automatic efficient mapping
of processes and is detailed in [2]. This is still in the
theoretical stage. In the prototype, mapping was one
process per processor (excepting processes for the mes-
sage passing and PUL libraries).

5 The Euphrates project

Euphrates is one of a series of collaborative pro-
jects between EPCC and the petroleum industry. A
previous project developed a number of new 3D seis-
mic processing techniques and implemented these on
DM-MIMD platform [8]. The goal of the Euphrates
project was to take these developments and present
them in a form suitable for use in operating compan-
1es.

The approach taken was to build a system in which
a scientist could interactively prototype a processing
sequence, running small jobs to test that the desired
effect was achieved, and then submit a batch job,
which would then execute on a much larger, produc-
tion, data set.

In order to achieve this within the time available 1t
was decided to take advantage of existing MABs. A
number of modules were prepared for such systems
to allow users to interactively prototype their pro-
cessing sequence which may then be saved in the map
file format specific to that particular MAB. This 1is
then translated into Euphrates Map Language (EML)
a MAB-independent format. Finally, a batch job is
created from this map description. This is achieved
by generating source code which links against separ-
ate libraries which provide the required application
functionality and a framework in which to parallelise
this.

5.1 The design criteria
Once again the two main criteria for design were

ease of use, for writer and user, and efficiency. Ease of
use was particularly important as the system was for

use by geoscientists who had no wish to become pro-
grammers, let alone parallel programmers. It must be
possible to process very large seismic images (a typ-
ical 3D seismic survey of around 10,000 Km lines will
occupy around 920 Gbytes). Infact, arbitrarily large
data sets must be coped with. Modules do not com-
municate through libraries, but rather are linked, in
sequence, from a single piece of source code, gener-
ated at the time the pipeline is instanced. Also, it
was only necessary to support a single frame of data
flowing through the system. It must be possible to
have fan-in and fan-out between modules. The tar-
get architectures are networks of workstations such as
Suns and RS6000s, and more closely coupled machines
such as Meiko Computing surfaces, so the system had
to be portable.

5.2 Implementation

Euphrates translates a description of an application
in EML into an equivalent program for a DM-MIMD
computer. In common with many geophysical applica-
tions, the functionality initially targeted featured pro-
cessing of a regular mesh of values by finite difference
operations. Previous work at EPCC indicated that
the most effective method for parallelising such oper-
ations was to introduce data parallelism.

Clearly this task is too difficult to be tackled in the
general case since this would amount to the construc-
tion of an all-purpose parallelising compiler for DM-
MIMD computers. Instead the approach taken was to
define a class of operations which would be suppor-
ted and a module developers interface. Any operation
which falls into this class, and which is programmed
in accordance with the module developers interface,
will be automatically, and correctly, parallelised by
Euphrates.

Characterising operations

Operations on meshes can be discussed in terms of
the task which must be performed at each site on the
mesh and the perspective of the operation as a whole.
Three properties of tasks can be identified which are
key indicators of the efficiency which can be expected
from a parallel implementation. These properties are
the spatial dependence of each task, which describes
the dependence of a task at one site upon information
from other sites; the activity of the operation which de-
scribes the distribution of tasks across the mesh; and
precedence which describes the order in which tasks
must be executed. Operations which have local spa-
tial dependence, global activity and no precedence re-



The conceptual pipeline has four
modules A,B,C and D.

L | O A single Process configured
on one processor

= Typical Parallel Communications

MVE Project : Each parallel module has a
number of replicated processes

Euphrates : Each process has a call
to each module

Figure 3: A Comparison of a 16 Processor Configura-
tion of a 4 module Pipeline by the MVE project and
Euphrates

lations are the easiest to parallelise and are termed
regular since a regular geometric decomposition may
be expected to provide an efficient parallelisation.
The perspective of an operation may be global or
local. Global operations, such as a global sum or max-
imum, require all tasks to be completed before another
operation can begin. This is not the case for opera-
tions with a local perspective and so a sequence of
these operations may be applied to a large data set on
a tile by tile basis allowing overlap of file I/O and com-
putation and greatly reducing memory requirements.

5.3 The Efficiency criterion

Euphrates chose to tackle regular operations only,
since these were the easiest to parallelise, and use
could be made of the PUL library [5] which supports
regular decomposition. Only fully occupied 3D rectan-
gular meshes are currently supported, although voxels
may have any aspect ratio.

Regular operations may be effectively parallelised
by the SPMD approach. Fuphrates follows this ap-
proach and, in order to minimise context switching,
combines the entire functionality of the pipeline into
one application process per processor. This approach
is best illustrated in comparison to the MVE project
approach and is depicted in figure 3.

Providing arbitrary connectivity

The order in which calls to application modules are
made is determined during the translation by analyz-
ing the topology of the input map. Arbitrary con-

nectivity can be achieved by ensuring that the mod-
ules are sorted into an order where each module only
uses data output from a module which occurs earlier
in the list. This process also checks for cyclicity; maps
which contain feedback loops cannot be supported
since there is no user interaction and such an applica-
tion, once set running, would run forever.

5.4 Ease of use criterion

The module developers interface is remarkably
simple. Developers are required to provide a C func-
tion call, and a plain text file which describes the argu-
ments to this call. In this plain text file arguments are
associated with ports and are described as either input
or output, parameter or data. Parameters may be of
any type, but arguments corresponding to data ports
may only be of one type; a C data structure which de-
scribes an array, and an arbitrary region of this array.
Modules must not alter input data arrays, and must
write data to fill the indicated region of output data
arrays.

In terms of our two categories of message passing
found in SPMD code, we find the following:

Intramodule: The writer is forced to use the PUL
libraries and thus no explicit message passing code
need be written, simply calls to manipulate areas of
data.

Intermodule: These calls cease to exist as they are
implicit in the source code generated from the EML
description of the pipeline. Data is simply passed as
pointers from one C function call (module) to another.

5.5 Processing arbitrarily large images

The need to process large images with limited
amounts of memory available at each node, and no
virtual memory system, led to a decision not to sup-
port operations with a global perspective. Such op-
erations would have required Euphrates to implement
an equivalent to a global memory paging system for
DM-MIMD systems. This was considered inappropri-
ate since current and future DM-MIMD systems seem
likely to based around commodity processors and will
either have virtual memory systems on each node or
have a global address space.

Instead Euphrates pre-calculates the memory re-
quirements of an application in terms of the maximum
number of images which will exist at any one time dur-
ing one run of the application. Given this information,
and an upper limit on the amount of memory available
at each node, it is possible to process arbitrarily large



images using regular operations with local perspective.
This is achieved by dividing the input images into re-
gions and then processing each region in turn. This
decomposition is termed the primary decomposition in
order to distinguish it from the secondary decompos-
ttton in which a primary region is distributed over a
number of processors. Both the primary and second-
ary decomposition are performed at run-time, allowing
the same DM-MIMD executable to run on a systems
with varying numbers of processors and with varying
amounts of memory per processor, without requiring
retranslation or recompilation.

5.6 Analyzing Euphrates

By moving out of the MAB environment before par-
allelising, Euphrates sidesteps many of the complica-
tions that the MVE project has to deal with.

Data Mapping

Euphrates assumes that each module employs the
same data distribution. This allows Euphrates to per-
form the primary decomposition and to manage all
associated file I/O. Because the functionality of an en-
tire application is combined into one process there is
only one splitting and one gathering event per primary
region.

Synchronisation

Issues of module triggering do not arise, since each
module is executed only once and in a predetermined
order. There is no triggering library level, as trigger-
ing is implicitly defined by the source code generated
from the EML which calls each of the modules in turn.
Similarly 1t is not possible for multiple frames of data
to become disassociated, since only one frame of data
is processed at a time.

Mapping

Mapping issues disappear completely since there is
only one kind of application process and Euphrates
assumes one application process will be placed on each
processor. However, the user may easily modify this,
so that a more powerful processor receives more than
one process. Intramodule message passing is handled
by the PUL libraries. These support non-blocking
boundary exchange which enforces loose synchrony
among the processes.

6 Results and conclusions

A model of MABs has been presented. Using
this the issues relevant to parallelising an MAB have
been discussed. Two projects at EPCC with differing
design considerations, but both addressing these same
issues have been presented.

6.1 Synchronisation

It was surprising to find that there appear to be few
synchronisation problems when parallelising MABs.
In the Euphrates project, this is a natural function
of the fact that source code calls are used to trigger
modules, which are in effect, simply libraries. In the
MVE project, an extra layer of library was used to
forward data to existing libraries that trigger modules
upon data arriving or being present at a port. As long
as the new library guarantees that it has gathered all
data necessary to begin execution on a per process
basis, then the processes may execute with loose syn-
chrony.

6.2 Data distribution

It would seem that enforcing an SPMD model of
parallel programming is both sufficient for the needs
of writers and convenient for system builders. As-
suming this, there are two factors, splitting of data
and gathering. In the MVE project, it was discovered
that as long as data sizes and shapes are known, to-
gether with the number of processes of each module
then data distribution can be automated. The writer
can give guidelines for splitting of data over processes
within a module.

During the MVE project it became apparent that
if the size of data to be output by a module is not
known, then data distribution becomes complicated
if we wish to maintain loose synchrony of the next
module’s processes. We suggested that an intelligent
round-robin scheme of distribution be used to forward
data to the next module or modules. When data or-
dering is important, such as the data for a histogram
where each entry has a meaning depending on its po-
sition, we had to collecte a complete data set before
forwarding to the next module when the PUL libraries
were used.

6.3 Mapping
When dealing with SPMD programming models,

there are two broad categories of message passing. In-
tramodule message passing cannot easily be controlled



by the system. If intramodule data access patterns
are of a fixed kind (as in the Euphrates project) then
assumptions can be made and libraries developed to
support this. The second category of message passing
is intermodule. Again, if the patterns are known op-
timisations can be made, however, once again, if we
are dealing with a general parallel MAB then the situ-
ation is less clear. Tests using a package called D3[9],
written by Mike Norman of EPCC| strongly suggest
that co-location of processes from different modules
on the same processor would improve efficiency.

If the model of possible SPMD processing is limited,
then great efficiency can be achieved by ordering the
pipeline, removing cycles and then compiling down the
pipeline into a single process which is then replicated
once per processing element. This scheme presupposes
that the data distribution is the same in each module.

6.4 Dynamic module addition

Neither the Euphrates project, nor the MVE pro-
ject were dynamic in nature. In other words, once a
pipeline was configured, 1t was impossible to add a
module to the pipeline, or remove one. This is remin-
iscent of apE but neither AVS, nor Iris Explorer work
in this way. In order to facilitate this within the MVE
project, it would be necessary to use a dynamic mes-
sage passing system, one that supported the creation
and deletion of processes. Interestingly, MPI appears
to have no support for this.

7 Future work

There are a number of issues left to resolve. The
first problem for the MVE project is that it does not
deal with arbitrarily large data sets. This was not a
big priority because it was felt that future machines
would have virtual memory at each node, or that there
would be a global address space which would mean
that the system as a whole might run out of memory
but that an individual process would not.

It is not yet clear how co-location of processes of the
MVE project would improve throughput. The proto-
type used a small number of processes for each mod-
ule, but each had a dedicated processor. This meant
that whenever data was split or gathered, it was sent
in a message, rather than being a pointer passed from
one module to another, as would be the case should
two processes be co-located. This would reduce in-
termodule communication costs. However, the more
co-location that occurs, the more competition there is
for memory between the modules. Thus the modules

themselves must be split into more processes, spread
over more processing elements. This the intramodule
and intermodule message passing occuring. A proper
investigation of this would be useful.

8 Acknowledgements

The Euphrates team were Andrew Wilson, Gor-
don Cameron, lan Flockhart and Chris Thornborrow.
The project was managed by Nick Radcliffe. The
MVE project was developed by Chris Thornborrow
and Chris Faigle, who also wrote the NEVIS library
code during a Summer Scholarship Programme place-
ment at EPCC. The project was managed by Matthew
White.

References

[1] Chris Thornborrow “Utilising MIMD Parallelism
m Modular Visualisation Environments”, Pro-
ceedings of 10th Eurographics U.K. Conference
(1992)

[2] Chris Thornborrow “EPCC-KTP-NEVIS-MVE-
CONCEPTS”, EPCC Technical Report (1992)

[3] Chris Faigle “The NEVIS Prototype User’s and
Developer’s Guide”, EPCC Summer Scholarship
Programme Report (1992)

[4] Andrew J.S. Wilson “Euphrates-P Concepts Doc-
ument”, EPCC Internal Report (1992)

[5] Simon Chapple “PUL-RD User’s Guide” EPCC
Technical Report (1992)

[6] “IRIS Explorer User’s Guide (Beta Draft)”, SGI
Confidential Document (1991)

[7] “IRIS FExplorer Module Writer’s Guide (Beta
Draft)”, SGI Confidential Document (1991)

[8] A.J.S. Wilson, M.G. Norman, and J.G. Mills
“Bodyscan: A Transputer Based 3D Image Ana-
lysis Package”, EPCC Technical Report (1990)

[9] M. G. Norman “A Parallel 3D Graphics Util-
ity for Parallel Programs.” Applications of
Transputers, Vol 1 (1990)

@&

[10] The Ohio Supercomputer Graphics Project “apF
Version 2.0 Users Manual”, Ohio State Uni-
versity (1990)



	Developing Modular Application Builders to Exploit MIMD Parallel Resources
	Recommended Citation

	tmp.1286293687.pdf.xQ1Nw

