
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1994

Developing Modular Application Builders to Exploit MIMD Parallel Developing Modular Application Builders to Exploit MIMD Parallel

Resources Resources

C. Thornborrow
University of Edinburg, Edinburgh Parallel Computer Center

C. Faigle
Syracuse University, Northeast Parallel Architectures Center

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Thornborrow, C. and Faigle, C., "Developing Modular Application Builders to Exploit MIMD Parallel
Resources" (1994). Northeast Parallel Architecture Center. 75.
https://surface.syr.edu/npac/75

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/75?utm_source=surface.syr.edu%2Fnpac%2F75&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Developing Modular Application Builders to Exploit MIMD ParallelResourcesC. Thornborrow, A. J. S. Wilson C. FaigleEdinburgh Parallel Computing Centre Northeast Parallel Architectures CenterUniversity of Edinburgh Syracuse UniversityEdinburgh, Scotland EH9 3JZ Syracuse, NY.AbstractModular application builders (MABs), such as AVSand Iris Explorer[6, 7] are increasingly being usedin the visualisation community. Such systems canalready place compute intensive modules on supercom-puters in order to utilise their power. This paperdetails two major projects at EPCC which attemptedto fully integrate the MAB concept with a distributedmemory MIMD (DM-MIMD) environment.The work presented was driven by two goals, e�-cient use of the resource and ease of use by program-mer and end user.We present a model of MABs and describe the ma-jor problems faced, giving solutions to them throughtwo case studies.1 IntroductionMany modular application builders (MABs) havebeen built recently and their popularity is growing. Itis often the case that the users of MABs wish to util-ise parallel supercomputers within the environment.A few years ago, this was only possible by writinga special module that, typically, used socket connec-tions to talk to a remote supercomputer and executeda single module on that platform. There is though,much demand for a closer integration of parallel su-percomputers and networks of workstations running aMAB.Recently, there have been developments in theseareas. CM/AVS allows users of Thinking MachinesCM5 Supercomputer to use array data types with AVSin a parallel manner. Modules may be written that de-scribe data distribution in arrays and, if required, thelayout of this data over the processors. Within an in-dividual module, the support for parallel processing

is purely SPMD. We de�ne SPMD to mean manyidentical processes, potentially at di�erent localitieswithin their instruction streams, working on di�erentareas of data.There have been two projects with MABs at EPCC.The �rst aimed to produce a prototype library thatcould hook into an existing MAB. It was to allowuse ofparallel machines and facilitate distributed data mod-els. The second was independent of the restraints ofexisting systems and was free to concentrate more one�cient use of resources in a more rigid model of com-putation. These two projects are described in detailin the following sections. Di�erences in the desiredfunctionality of the systems, and the resulting imple-mentations, are highlighted. Finally, conclusions andrecommendations for further or repeat projects arepresented.2 Abstract modelIn order to discuss current MABs we will �rst needto de�ne our terminology. This is a new �eld withfew accepted de�nitions. The following are for ease ofdiscussion within this paper and are not, necessarily,generally accepted terms.MVE (Modular Visualisation Environment): Apackage for data visualisation, consisting of a userinterface allowing linking of modules in a pipeline.MVEs are a subset of MABs speci�cally geared to sci-enti�c visualisation.MODULE: An entity which may be utilised in apipeline. This can be thought of as a �lter perform-ing a function on input data to produce output data.It may also have a user interface. It may itself be apipeline of modules.USER: The person utilising the MAB. They may usethe modules available or write new ones. A user who

writes new modules is termed the writer.PIPELINE: This is a set of modules and linksbetween these modules. This implicitly de�nes thetypes of input, the functions performed on this inputand the resulting types of output, e.g. an Explorermap de�nition.PARALLEL MODULE: This is a module whoseimplementation consists of more than one concurrentprocess.TRIGGERING: The �ring of a module. This maybe explicit with a given signal or implicit with certaininputs determining the �ring.SYNCHRONISATION: The method by which aMAB guarantees association of logical groups of data
owing through the pipeline.2.1 Serial model of MABsThe MAB is considered to be a set of modules whichcan be connected to form pipelines. The function ofthe pipeline is implicitly de�ned by the function ofeach module and their connectivity. We refer to data
owing through the pipeline as meaning that it passesfrom one module to another in the order de�ned bythe entry point and the links between modules. Typ-ically there is a module in the pipeline, usually thelast module, which renders the data.There are two forms of parallelism in a serial MAB.The �rst, functional parallelism, is a facet of the factthat di�erent modules may concurrently operate ondi�erent workstations. MABs are designed such thatthe user is encouraged to write modules that performone function, in this way, di�erent modules have dif-fering functionality. Thus, we refer to a pipeline ashaving functional parallelism.The second is the ability to `hook' a parallel plat-form into a serial MAB. This is usually accomplishedas described in the introduction to this paper. It isnot a natural feature of the serial MAB and is con-sidered serial as the data communication into and outof the modules is through one point and thus serial innature.2.2 Parallel environmentThe parallel environment is considered to be a mul-tiple instruction, multiple data surface with distrib-uted memory (DM-MIMD). A parallel module is con-sidered to be a collection of processes, each runningidentical code but, potentially, operating on a di�er-ent area of the overall data. We refer to this as dataparallelism.

There are two useful broad categories of communic-ation within a parallel MAB utilising an SPMD modelof programming. Intramodule is the communicationtype of two processes of the same module whilst in-termodule is the communication type of two processesof di�erent modules.3 Serial to parallel migrationThere are three main issues to be addressed whenmoving from the serial model of MABs to the parallelmodel.Data Distribution: The method by which data issplit up into smaller chunks for processing in paralleland then gathered again for further serial processing.Data distribution also covers the splitting and gather-ing of the data as it
ows between parallel modules.Synchronisation: The method by which the MVEimplicitly triggers modules upon the arrival of dataat the module. Keeping logically associated blocks ofdata (such as a `frame' in apE [10]) associated as they
ow through the pipeline is also part of synchronisa-tion. These are intimately linked for it is usually thecase that if frames of data become mixed or lost thenit is due to incorrect triggering of modules within thepipeline. In the parallel environment, the sychronisa-tion is complicated by the splitting of a module intoprocesses. Data distribution must not lead to framesof data becoming seperated.Mapping: The problem of how a description of mod-ule placement on hardware resources can be achieved.In other words, mapping covers the issues of how todescribe and implement the parallelism of a module.The mapping of modules to resources will have a greatin
uence on how e�ciently the parallel pipeline willexecute as a bad mapping may substantially increasethe amount of message passing and decrease processorutilisation.4 The MVE projectThe MVE project at EPCC is a prototype libraryaimed at existing MVE systems to facilitate the useof DM-MIMD resources within such systems. Thework was based on previous work done by ChrisThornborrow[1, 2]. The project �rstly examined thedesign of existing systems in order to sublimate amodel of the systems and thus attempt to address gen-eric issues common to most systems. The library wasnamed the NEVIS library[3]. There was, at develop-ment time, no existing MVE which was stable, freely

available and small. It was thus necessary to writelibraries, or wrappers, to imitate most of the com-mon features of such systems. Into these prototypelibraries, the NEVIS library would be slotted, thusdemonstrating that, given a full system, DM-MIMDintegration would be possible.4.1 The design criteriaThe two main criteria were ease of use and e�-ciency. Ease of use applies both for the writer and theuser of the system. That the project was to �t withinexisting MVEs, or at least potentially do so, meant ithad several other design criteria.It was to be expected that seperate modules wouldbe precompiled to executable object code and use lib-raries to communicate. The e�ect is that all the MVEproject could aim to do was to extend the libraries.Existing systems encouraged the breakdown of func-tionally parallel units into seperate modules. It thusseemed natural to support an SPMD programmingmodel within a module. The library must support thetriggering rules of modules within existing MVEs andmultiple frames of data. There should be fan-in andfan-out from as many input ports and output ports asrequired by the user.In [2], Chris Thornborrow categorised the com-monly occuring types of data in MVEs and demon-strated that these can be automatically distributedin a parallel environment. However, only arrays andsingle valued entities, known as parameters, were im-plemented in the prototype.4.2 The e�ciency criterionThe design should attempt to keep processors busyconstantly. In order to keep processors busy, it is ne-cessary to supply them with data as quickly as pos-sible. A n�aive approach to data distribution within aparallel MAB is shown in diagram 1. It can be seenthat the data must be gathered after each module andthen split again for the next module. The task of thesource is to divide data up amongst the workers andthe task of the sink is to gather output data and makeit into one coherent whole for the next modules sourceto distribute again. It is obvious there is a bottleneckand unnecessary ine�ciency as parallel communica-tion links are available.To avoid this, it was decided to split the source andsink processes up, associating one process with each ofthe worker processes. In practice, it was possible tomake these processes linked libraries and thus avoidcontext switching. The scheme is depicted in �gure 2.

1

2

N

Source Sink

Workers

1

2

N

Source Sink

Workers

1

2

N

Source Sink

Workers

Module A Module B Module C

Bottleneck !Figure 1: Three Parallel Modules Demonstrating Pos-sible Bottlenecks
1

2

N

Source

Workers

Sink

Parallel Module

1

2

Source

Workers

Sink

Parallel Module

?

?

?

?

Bottleneck Removed =>

Connectivity Problems

MFigure 2: Splitting the Source and SinkThus each sink is responsible for splitting data fromits associated process to forward to the correct sourcesof the next module. These sources then gather all suchinputs from the previous module into one chunk ofdata. This gathering enables the data to be forwardedto the normal triggering routines of the MVE.There are three interesting consequences of thisscheme :Role Swapping: The source and sink have nowswapped roles. The sink library now splits data forthe next module and the source library now gathersdata into one chunk ready for forwarding to the workerprocess.Loose Synchrony: As each process is essentially dis-tinct from others in the same module, they trigger atslightly di�erent times. This enables us to keep pro-cessors busier than in the n�aive approach.Synchronisation: As long as the splitting and gath-ering of data work correctly, correct synchronisationof the module is guaranteed. This is tricky to see, butrelies on the fact that the data that is forwarded to theexisting MVE libraries in a serial form (i.e. each pro-cess only sees what it would, if it were running singlyon a smaller data set).In practice, the pipeline was found to execute cor-rectly and to run faster with the distributed source

and sink.4.3 Ease of use criterionIt was decided the code should look as similar toserial code as possible. The number of processors wasto be input by the user, not the writer who could onlysupply a default. Assigning numbers of processes toeach module automatically is impossible without someknowledge of the data and the execution rate of mod-ules as Thornborrow shows in [1], thus no automationwas attempted. It was decided to attempt to hide asmuch message passing as possible.Intermodule: The NEVIS library was designed tohide all such communication, as existing MAB wrap-pers hide socket connections between workstations.Thus, the library becomes part of the communicationswrapper of an existing MVE.Intramodule: The NEVIS library was not origin-ally intended to deal with this, another project atEPCC, called the Parallel Utilities Library Key Tech-nology Project (PUL)[5] developed libraries to sup-port the parallel programming paradigms of regulardomain decomposition and scattered spacial decom-position. These hide the message passing totally fromthe user.Thus, using the PUL and NEVIS libraries in con-junction within the MVE project, all message passingcould be hidden from the writer of parallel modules.4.4 Module writers interfaceIt was possible to use few parallel calls. In thepseudo-code below, extra lines of code are highlightedwith a plus sign at the start. Note that the line thatindicates processing of the data has a code dependentnumber of message passing calls as processing the datarequires. If the PUL libraries were utilised then therewould be no message passing calls here.main {+ Initialise the Message Passing System+ Initialise the NEVIS libraryDeclare all the ports for this moduleloop until finishedReceive from input portsnv_receive_ports(stderr);Read input port dataCreate header and data space for output dataFill in header fields+ Process dataPut data on output portSend output portsnv_send_ports(stderr);repeat+ Exit NEVIS+ Exit message passing system}

4.5 Analysis of the MVE projectData distributionOnly arrays have to be mapped across processes in theprototype. There are two problems to be solved:Speci�cation: Suppose a module performs a reduc-tion operation on a 2D data set, down to a 1D dataset. If all the values in the Y axis are to be reduced toone value for each entry in the X axis, it makes littlesense to split the data into square chunks across pro-cesses and introduce the need for communication ofpartial sums. Instead we would wish to assign stripsof data to processes and avoid communication totally.To this end, the writer needs to specify the data dis-tribution over processes. In the NEVIS library thiswas achieved by allowing the writer to specify whichdimensions data should not be split across. This tech-nique was used because the default is to split acrossall dimensions as equally as possible. The data split isdecided dynamically, given the prefered type of datasplit by the writer and the number of processes by theuser. A piece of code can be written that determin-istically returns a mapping of data space to processesgiven the number of processes, the dimensions and sizeof the data in each dimension and the type of data splitrequired, speci�ed from a �xed set of possibilities.Re-mapping: As data
ows from one module to an-other, it is re-mapped to the correct processes in thenext module. This is achieved by each module havingknowledge about its immediate downstream modules.For each of these modules, the code described aboveis called with the size and dimensions of the data tobe output, the number of processes of the downstreammodule and the prefered data split of the downstreammodule. This is �ne if the size of the output data isknown apriori. If it is not, then we e�ectively have1D data (it is impossible to assign dimensions of dataif we do not know their size). This does not meanthe data has no spacial co-ordinates, simply that thedata shape itself is 1D. Data may thus be split intochunks by each process individually and forwarded ona round-robin basis to the next module. If the num-ber of processes of the modules is di�erent, then eachprocess would begin it's round robin distribution at adi�erent process. This scheme allows loose synchronyof processes even when the data size is unknown, and,given small enough chunks of data, ensures a fairlyeven distribution of data in the downstream module.

SynchronisationIt has already been shown that synchronisation isguaranteed by the correct operation of the splittingand gathering libraries. The standard �ring librariesof the existing MVE may be utilised. Loose synchronyof the processes is achieved, which is useful for e�-ciency.MappingSome work has gone into automatic e�cient mappingof processes and is detailed in [2]. This is still in thetheoretical stage. In the prototype, mapping was oneprocess per processor (excepting processes for the mes-sage passing and PUL libraries).5 The Euphrates projectEuphrates is one of a series of collaborative pro-jects between EPCC and the petroleum industry. Aprevious project developed a number of new 3D seis-mic processing techniques and implemented these onDM-MIMD platform [8]. The goal of the Euphratesproject was to take these developments and presentthem in a form suitable for use in operating compan-ies.The approach taken was to build a system in whicha scientist could interactively prototype a processingsequence, running small jobs to test that the desirede�ect was achieved, and then submit a batch job,which would then execute on a much larger, produc-tion, data set.In order to achieve this within the time available itwas decided to take advantage of existing MABs. Anumber of modules were prepared for such systemsto allow users to interactively prototype their pro-cessing sequence which may then be saved in the map�le format speci�c to that particular MAB. This isthen translated into Euphrates Map Language (EML)a MAB-independent format. Finally, a batch job iscreated from this map description. This is achievedby generating source code which links against separ-ate libraries which provide the required applicationfunctionality and a framework in which to parallelisethis.5.1 The design criteriaOnce again the two main criteria for design wereease of use, for writer and user, and e�ciency. Ease ofuse was particularly important as the system was for

use by geoscientists who had no wish to become pro-grammers, let alone parallel programmers. It must bepossible to process very large seismic images (a typ-ical 3D seismic survey of around 10,000 Km lines willoccupy around 920 Gbytes). Infact, arbitrarily largedata sets must be coped with. Modules do not com-municate through libraries, but rather are linked, insequence, from a single piece of source code, gener-ated at the time the pipeline is instanced. Also, itwas only necessary to support a single frame of data
owing through the system. It must be possible tohave fan-in and fan-out between modules. The tar-get architectures are networks of workstations such asSuns and RS6000s, and more closely coupled machinessuch as Meiko Computing surfaces, so the system hadto be portable.5.2 ImplementationEuphrates translates a description of an applicationin EML into an equivalent program for a DM-MIMDcomputer. In commonwith many geophysical applica-tions, the functionality initially targeted featured pro-cessing of a regular mesh of values by �nite di�erenceoperations. Previous work at EPCC indicated thatthe most e�ective method for parallelising such oper-ations was to introduce data parallelism.Clearly this task is too di�cult to be tackled in thegeneral case since this would amount to the construc-tion of an all-purpose parallelising compiler for DM-MIMD computers. Instead the approach taken was tode�ne a class of operations which would be suppor-ted and a module developers interface. Any operationwhich falls into this class, and which is programmedin accordance with the module developers interface,will be automatically, and correctly, parallelised byEuphrates.Characterising operationsOperations on meshes can be discussed in terms ofthe task which must be performed at each site on themesh and the perspective of the operation as a whole.Three properties of tasks can be identi�ed which arekey indicators of the e�ciency which can be expectedfrom a parallel implementation. These properties arethe spatial dependence of each task, which describesthe dependence of a task at one site upon informationfrom other sites; the activity of the operation which de-scribes the distribution of tasks across the mesh; andprecedence which describes the order in which tasksmust be executed. Operations which have local spa-tial dependence, global activity and no precedence re-

A

B

C

D

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

A
B
C
D

The conceptual pipeline has four
modules A,B,C and D.

MVE Project : Each parallel module has a
 number of replicated processes Euphrates : Each process has a call

 to each module

Typical Parallel Communications

A single Process configured
on one processor

Figure 3: A Comparison of a 16 Processor Con�gura-tion of a 4 module Pipeline by the MVE project andEuphrateslations are the easiest to parallelise and are termedregular since a regular geometric decomposition maybe expected to provide an e�cient parallelisation.The perspective of an operation may be global orlocal. Global operations, such as a global sum or max-imum, require all tasks to be completed before anotheroperation can begin. This is not the case for opera-tions with a local perspective and so a sequence ofthese operations may be applied to a large data set ona tile by tile basis allowing overlap of �le I/O and com-putation and greatly reducing memory requirements.5.3 The E�ciency criterionEuphrates chose to tackle regular operations only,since these were the easiest to parallelise, and usecould be made of the PUL library [5] which supportsregular decomposition. Only fully occupied 3D rectan-gular meshes are currently supported, although voxelsmay have any aspect ratio.Regular operations may be e�ectively parallelisedby the SPMD approach. Euphrates follows this ap-proach and, in order to minimise context switching,combines the entire functionality of the pipeline intoone application process per processor. This approachis best illustrated in comparison to the MVE projectapproach and is depicted in �gure 3.Providing arbitrary connectivityThe order in which calls to application modules aremade is determined during the translation by analyz-ing the topology of the input map. Arbitrary con-

nectivity can be achieved by ensuring that the mod-ules are sorted into an order where each module onlyuses data output from a module which occurs earlierin the list. This process also checks for cyclicity; mapswhich contain feedback loops cannot be supportedsince there is no user interaction and such an applica-tion, once set running, would run forever.5.4 Ease of use criterionThe module developers interface is remarkablysimple. Developers are required to provide a C func-tion call, and a plain text �le which describes the argu-ments to this call. In this plain text �le arguments areassociated with ports and are described as either inputor output, parameter or data. Parameters may be ofany type, but arguments corresponding to data portsmay only be of one type; a C data structure which de-scribes an array, and an arbitrary region of this array.Modules must not alter input data arrays, and mustwrite data to �ll the indicated region of output dataarrays.In terms of our two categories of message passingfound in SPMD code, we �nd the following:Intramodule: The writer is forced to use the PULlibraries and thus no explicit message passing codeneed be written, simply calls to manipulate areas ofdata.Intermodule: These calls cease to exist as they areimplicit in the source code generated from the EMLdescription of the pipeline. Data is simply passed aspointers from one C function call (module) to another.5.5 Processing arbitrarily large imagesThe need to process large images with limitedamounts of memory available at each node, and novirtual memory system, led to a decision not to sup-port operations with a global perspective. Such op-erations would have required Euphrates to implementan equivalent to a global memory paging system forDM-MIMD systems. This was considered inappropri-ate since current and future DM-MIMD systems seemlikely to based around commodity processors and willeither have virtual memory systems on each node orhave a global address space.Instead Euphrates pre-calculates the memory re-quirements of an application in terms of the maximumnumber of images which will exist at any one time dur-ing one run of the application. Given this information,and an upper limit on the amount of memory availableat each node, it is possible to process arbitrarily large

images using regular operations with local perspective.This is achieved by dividing the input images into re-gions and then processing each region in turn. Thisdecomposition is termed the primary decomposition inorder to distinguish it from the secondary decompos-ition in which a primary region is distributed over anumber of processors. Both the primary and second-ary decomposition are performed at run-time, allowingthe same DM-MIMD executable to run on a systemswith varying numbers of processors and with varyingamounts of memory per processor, without requiringretranslation or recompilation.5.6 Analyzing EuphratesBy moving out of the MAB environment before par-allelising, Euphrates sidesteps many of the complica-tions that the MVE project has to deal with.Data MappingEuphrates assumes that each module employs thesame data distribution. This allows Euphrates to per-form the primary decomposition and to manage allassociated �le I/O. Because the functionality of an en-tire application is combined into one process there isonly one splitting and one gathering event per primaryregion.SynchronisationIssues of module triggering do not arise, since eachmodule is executed only once and in a predeterminedorder. There is no triggering library level, as trigger-ing is implicitly de�ned by the source code generatedfrom the EML which calls each of the modules in turn.Similarly it is not possible for multiple frames of datato become disassociated, since only one frame of datais processed at a time.MappingMapping issues disappear completely since there isonly one kind of application process and Euphratesassumes one application process will be placed on eachprocessor. However, the user may easily modify this,so that a more powerful processor receives more thanone process. Intramodule message passing is handledby the PUL libraries. These support non-blockingboundary exchange which enforces loose synchronyamong the processes.

6 Results and conclusionsA model of MABs has been presented. Usingthis the issues relevant to parallelising an MAB havebeen discussed. Two projects at EPCC with di�eringdesign considerations, but both addressing these sameissues have been presented.6.1 SynchronisationIt was surprising to �nd that there appear to be fewsynchronisation problems when parallelising MABs.In the Euphrates project, this is a natural functionof the fact that source code calls are used to triggermodules, which are in e�ect, simply libraries. In theMVE project, an extra layer of library was used toforward data to existing libraries that trigger modulesupon data arriving or being present at a port. As longas the new library guarantees that it has gathered alldata necessary to begin execution on a per processbasis, then the processes may execute with loose syn-chrony.6.2 Data distributionIt would seem that enforcing an SPMD model ofparallel programming is both su�cient for the needsof writers and convenient for system builders. As-suming this, there are two factors, splitting of dataand gathering. In the MVE project, it was discoveredthat as long as data sizes and shapes are known, to-gether with the number of processes of each modulethen data distribution can be automated. The writercan give guidelines for splitting of data over processeswithin a module.During the MVE project it became apparent thatif the size of data to be output by a module is notknown, then data distribution becomes complicatedif we wish to maintain loose synchrony of the nextmodule's processes. We suggested that an intelligentround-robin scheme of distribution be used to forwarddata to the next module or modules. When data or-dering is important, such as the data for a histogramwhere each entry has a meaning depending on its po-sition, we had to collecte a complete data set beforeforwarding to the next module when the PUL librarieswere used.6.3 MappingWhen dealing with SPMD programming models,there are two broad categories of message passing. In-tramodule message passing cannot easily be controlled

by the system. If intramodule data access patternsare of a �xed kind (as in the Euphrates project) thenassumptions can be made and libraries developed tosupport this. The second category of message passingis intermodule. Again, if the patterns are known op-timisations can be made, however, once again, if weare dealing with a general parallel MAB then the situ-ation is less clear. Tests using a package called D3[9],written by Mike Norman of EPCC, strongly suggestthat co-location of processes from di�erent moduleson the same processor would improve e�ciency.If the model of possible SPMD processing is limited,then great e�ciency can be achieved by ordering thepipeline, removing cycles and then compiling down thepipeline into a single process which is then replicatedonce per processing element. This scheme presupposesthat the data distribution is the same in each module.6.4 Dynamic module additionNeither the Euphrates project, nor the MVE pro-ject were dynamic in nature. In other words, once apipeline was con�gured, it was impossible to add amodule to the pipeline, or remove one. This is remin-iscent of apE but neither AVS, nor Iris Explorer workin this way. In order to facilitate this within the MVEproject, it would be necessary to use a dynamic mes-sage passing system, one that supported the creationand deletion of processes. Interestingly, MPI appearsto have no support for this.7 Future workThere are a number of issues left to resolve. The�rst problem for the MVE project is that it does notdeal with arbitrarily large data sets. This was not abig priority because it was felt that future machineswould have virtual memory at each node, or that therewould be a global address space which would meanthat the system as a whole might run out of memorybut that an individual process would not.It is not yet clear how co-location of processes of theMVE project would improve throughput. The proto-type used a small number of processes for each mod-ule, but each had a dedicated processor. This meantthat whenever data was split or gathered, it was sentin a message, rather than being a pointer passed fromone module to another, as would be the case shouldtwo processes be co-located. This would reduce in-termodule communication costs. However, the moreco-location that occurs, the more competition there isfor memory between the modules. Thus the modules

themselves must be split into more processes, spreadover more processing elements. This the intramoduleand intermodule message passing occuring. A properinvestigation of this would be useful.8 AcknowledgementsThe Euphrates team were Andrew Wilson, Gor-don Cameron, Ian Flockhart and Chris Thornborrow.The project was managed by Nick Radcli�e. TheMVE project was developed by Chris Thornborrowand Chris Faigle, who also wrote the NEVIS librarycode during a Summer Scholarship Programme place-ment at EPCC. The project was managed by MatthewWhite.References[1] Chris Thornborrow \Utilising MIMD Parallelismin Modular Visualisation Environments", Pro-ceedings of 10th Eurographics U.K. Conference(1992)[2] Chris Thornborrow \EPCC-KTP-NEVIS-MVE-CONCEPTS", EPCC Technical Report (1992)[3] Chris Faigle \The NEVIS Prototype User's andDeveloper's Guide", EPCC Summer ScholarshipProgramme Report (1992)[4] Andrew J. S. Wilson \Euphrates-P Concepts Doc-ument", EPCC Internal Report (1992)[5] Simon Chapple \PUL-RD User's Guide" EPCCTechnical Report (1992)[6] \IRIS Explorer User's Guide (Beta Draft)", SGICon�dential Document (1991)[7] \IRIS Explorer Module Writer's Guide (BetaDraft)", SGI Con�dential Document (1991)[8] A.J.S. Wilson, M.G. Norman, and J.G. Mills\Bodyscan: A Transputer Based 3D Image Ana-lysis Package", EPCC Technical Report (1990)[9] M. G. Norman \A Parallel 3D Graphics Util-ity for Parallel Programs." Applications ofTransputers, Vol 1 (1990)[10] The Ohio Supercomputer Graphics Project \apEVersion 2.0 Users Manual", Ohio State Uni-versity (1990)

	Developing Modular Application Builders to Exploit MIMD Parallel Resources
	Recommended Citation

	tmp.1286293687.pdf.xQ1Nw

