
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

School of Information Studies - Faculty 
Scholarship School of Information Studies (iSchool) 

2005 

Effective Work Practices for FLOSS Development: A Model and Effective Work Practices for FLOSS Development: A Model and 

Propositions Propositions 

Kevin Crowston 
Syracuse University 

Hala Annabi 
University of Washington 

James Howison 
Syracuse University 

Chengetai Masango 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/istpub 

 Part of the Library and Information Science Commons 

Recommended Citation Recommended Citation 
Crowston, K., Annabi, H., Howison, J. & Masango, C. Effective work practices for FLOSS development: A 
model and propositions. In Proceedings of the Thirty-Eighth Hawai’i International Conference on System 
Science (HICSS–38). Kona, HI, USA, January. doi: 10.1109/HICSS.2005.222 

This Article is brought to you for free and open access by the School of Information Studies (iSchool) at SURFACE 
at Syracuse University. It has been accepted for inclusion in School of Information Studies - Faculty Scholarship by 
an authorized administrator of SURFACE at Syracuse University. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/istpub
https://surface.syr.edu/istpub
https://surface.syr.edu/ischool
https://surface.syr.edu/istpub?utm_source=surface.syr.edu%2Fistpub%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1018?utm_source=surface.syr.edu%2Fistpub%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Effective Work Practices for FLOSS Development: A Model and Propositions Effective Work Practices for FLOSS Development: A Model and Propositions 

Description/Abstract Description/Abstract 
We review the literature on Free/Libre Open Source Software (FLOSS) development and on software 
development, distributed work and teams more generally to develop a theoretical model to explain the 
performance of FLOSS teams. The proposed model is based on Hackman’s [1] model of effectiveness of 
work teams, with coordination theory [2] and collective mind [3] to extend Hackman’s model by 
elaborating team practices relevant to effectiveness in software development. We propose a set of 
propositions to guide further research. 

Keywords Keywords 
Free/Libre Open Source Software, FLOSS, software development 

Disciplines Disciplines 
Library and Information Science 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 3.0 License. 

This article is available at SURFACE at Syracuse University: https://surface.syr.edu/istpub/130 

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://surface.syr.edu/istpub/130


 

Effective work practices for FLOSS development: A model and propositions1 

 
Kevin Crowston*, Hala Annabi**, James Howison* and Chengetai Masango* 

* Syracuse University School of Information Studies 
crowston@syr.edu, jhowison@syr.edu, cmasango@syr.edu 

 
** University of Washington, The Information School  

hpannabi@u.washington.edu 
 
 

Abstract 

We review the literature on Free/Libre Open Source 
Software (FLOSS) development and on software devel-
opment, distributed work and teams more generally to 
develop a theoretical model to explain the performance of 
FLOSS teams. The proposed model is based on Hack-
man’s [1] model of effectiveness of work teams, with  co-
ordination theory [2] and collective mind [3] to extend 
Hackman’s model by elaborating team practices relevant 
to effectiveness in software development. We propose a 
set of propositions to guide further research. 

 

1.  Introduction 

Free/Libre Open Source Software (FLOSS)2 is a broad 
term used to embrace software developed and released 
under an “open source” license allowing inspection, 
modification and redistribution of the software’s source. 
There are thousands of FLOSS projects, spanning a wide 
range of applications. Due to their size, success and influ-
ence, the Linux operating system and the Apache Web 
Server are the most well known, but hundreds of others 
are in widespread use, including projects on Internet in-
frastructure (e.g., sendmail, bind), user applications (e.g., 
Mozilla, OpenOffice) and programming languages (e.g., 
Perl, Python, gcc).  

Key to our interest is the fact that most FLOSS soft-
ware is developed by self-organizing distributed teams. 
Developers contribute from around the world, meet face-

                                                           
1 This research was partially supported by NSF Grants 03-

41475 and 04–14468. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are 
those of the author(s) and do not necessarily reflect the views 
of the National Science Foundation. 

2  FLOSS software is generally available without charge (“free 
as in beer”). Much (though not all) of it of is also “free soft-
ware”, meaning that derivative works must be made 
available under the same license terms (“free as in speech”, 
thus “libre”). We have chosen to use the acronym FLOSS 
rather than the more common OSS to accomodate this range 
of meanings.  

to-face infrequently if at all, and coordinate their activity 
primarily by means of computer-mediated communica-
tions (CMC) [4, 5]. These teams depend on processes that 
span traditional boundaries of place and ownership. The 
research literature on software development and on dis-
tributed work emphasizes the difficulties of distributed 
software development, but the case of FLOSS develop-
ment presents an intriguing counter-example.  

What is perhaps most surprising about the FLOSS 
process is that it appears to eschew traditional project 
coordination mechanisms such as formal planning, sys-
tem-level design, schedules, and defined development 
processes [6]. As well, many (though by no means all) 
programmers contribute to projects as volunteers, without 
working for a common organization or being paid. This 
heavy reliance on self-organization sets FLOSS teams 
apart from most other distributed teams.  

In this paper, we review the literature on FLOSS de-
velopment and distributed software development more 
generally. We then develop a theoretical model to explain 
the performance of FLOSS teams drawing on research on 
group work. We use the model to propose a set of propo-
sitions to guide further research.  

2.  Current research on FLOSS 

The nascent research literature on FLOSS has ad-
dressed a variety of questions. First, researchers have ex-
amined the implications of FLOSS from economic and 
policy perspectives. For example, some authors have ex-
amined the implications of free software for commercial 
software companies or the implications of intellectual 
property laws for FLOSS [e.g., 7, 8, 9]. Second, various 
explanations have been proposed for the decision by indi-
viduals to contribute to projects without pay [e.g., 10, 11-
14]. These authors have mentioned factors such as per-
sonal interest, ideological commitment, development of 
skills [15] or enhancement of reputation [14]. Finally, a 
few authors have investigated the processes of FLOSS 
development [e.g., 4, 16], which is the focus of this paper.  

Raymond’s [4] bazaar metaphor is the most well-
known model of the FLOSS process. While popular, the 
bazaar metaphor has been broadly criticized. According to 



2 

its detractors, the bazaar metaphor disregards important 
aspects of the FLOSS process, such as the importance of 
project leader control, the existence of de-facto hierar-
chies, the danger of information overload and burnout, 
and the possibility of conflicts that cause a loss of interest 
in a project or forking [17, 18].  

Recent empirical work has begun to illuminate the 
structure and function of FLOSS development teams. 
Gallivan [19] analyzes descriptions of the FLOSS process 
and suggests that teams rely on a variety of social control 
mechanisms rather than on trust. Several authors have 
described teams as having a hierarchical or onion-like 
structure [20, 21], as shown in Figure 1. At the centre are 
the core developers, who contribute most of the code and 
oversee the design and evolution of the project. The core 
is usually small and exhibits a high level of interaction, 
which would be difficult to maintain if the core group 
were large. Surrounding the core are the co-developers. 
These individuals contribute sporadically by reviewing or 
modifying code or by contributing bug fixes. The co-
developer group can be much larger than the core, be-
cause the required level of interaction is much lower. Sur-
rounding the developers are the active users: a subset of 
users who use the latest releases and contribute bug re-
ports or feature requests (but not code). Still further from 
the core are the passive users. The border of the outer 
circle is indistinct because the nature and variety of 
FLOSS distribution channels makes it difficult or impos-
sible to know the exact size of the user population. As 
their involvement with a project changes, individuals may 
move from role to role. However, core developers must 
have a deep understanding of the software and the devel-
opment processes, which poses a significant barrier to 
entry [22-24]. This barrier is particularly troubling be-
cause of the reliance of FLOSS projects on volunteer 
submissions and “fresh blood” [25]. It is important to note 
that this description of a project team (Figure 1) is based 
on a few case studies. While the model has good face 
validity, it has not been extensively tested.  

The other major stream of research ex-
amines factors for the success of FLOSS in 
general (though there have been few sys-
tematic comparison across multiple pro-
jects, e.g., [26]). The popularity of FLOSS 
has been attributed to the speed of devel-
opment and the reliability, portability, and 
scalability of the resulting software as well 
as the low cost [27-33]. In turn, the quality 
of the software and speed of development 
have been attributed to two factors: that 
developers are also users of the software 
and the availability of source code.  

First, FLOSS projects often originate 
from a personal need [34, 35], which at-
tracts the attention of other users and in-
spire them to contribute to the project. 
Since developers are also users of the 

software, they understand the system requirements in a 
deep way, eliminating the ambiguity that often character-
izes the traditional software development process: pro-
grammers know their own needs [36]. (Of course, over-
reliance on this mode of requirements gathering may also 
limit the applicability of the FLOSS model.)  

Second, in FLOSS projects, the source code is open to 
modification, enabling users to become co-developers by 
developing fixes or enhancements. As a result, FLOSS 
bugs can be fixed and features evolved quickly. Active 
users also play an important role [37]. Research suggests 
that more than 50 percent of the time and cost of non-
FLOSS software projects is consumed by mundane work 
such as testing [38]. The FLOSS process enables hun-
dreds of people to work on these parts of the process [39]. 
Intriguingly, it has been argued that the distributed nature 
of FLOSS development may actually lead to more robust 
and maintainable code. Because developers cannot con-
sult each other easily, it may be that they make fewer as-
sumptions about how their code will be used and thus 
write more robust code that is highly modularized [39]. 

It is noteworthy that much of the literature on FLOSS 
has been written by developers and consultants directly 
involved in the FLOSS community. These contributions 
are significant as they point out the economic relevance of 
FLOSS as well as the most striking aspects of the new 
development process. Yet many of these studies seem to 
be animated by partisan spirit, hype or skepticism [40]. 
There are only a few well-documented case studies [e.g., 
41], most of which discuss successes rather than failures. 
Finally, with a few exceptions [e.g., 42, 43], the proposed 
models are descriptive and based on a small number of 
cases. This is both indicative of the relative novelty of the 
issue and the lack of a clear theoretical framework to de-
scribe and interpret the FLOSS phenomenon [44]. Our 
work is intended to fill some of these gaps by providing a 
theoretically-based model of FLOSS development prac-
tices.  

Core developers

Co-developers

Active users

Passive users

Initiator 

Release 
coordinator 

Figure 1. Hypothesized FLOSS development team structure.  



3 

3.  Theory 

We are interested in studying work practices that make 
FLOSS projects more effective. To do so, we have chosen 
to analyze developers as comprising a work team. Much 
of the literature on FLOSS has conceptualized developers 
as forming communities, which is a useful perspective for 
understanding why developers choose to join or remain in 
a project. However, for the purpose of this study, we view 
the projects as entities that have a goal of developing a 
product, whose members are interdependent in terms of 
tasks and roles, and who have a user base to satisfy, in 
addition to having to attract and maintain members. These 
aspects of FLOSS projects suggest analyzing them as 
work teams. Guzzo and Dickson [45, pg. 308] defined a 
work team as “made up of individuals who see them-
selves and who are seen by others as a social entity, who 
are interdependent because of the tasks they perform as 
members of a group, who are embedded in one or more 
larger social system (e.g. community, or organization), 
and who perform tasks that affect others (such as custom-
ers or coworkers)”.  

Given this perspective, we draw on Hackman’s [1] 
model of effectiveness of work teams as a conceptual 
basis for our study. While this model was initially pre-
sented as sets of factors, these factors point to work prac-
tices that are important for team effectiveness. Following 
on Crowston and Kammerer [46], we use coordination 
theory [2] and collective mind [3] to extend Hackman’s 
model by further elaborating team practices relevant to 

effectiveness in software development. In this section, we 
describe these theories, their applicability to FLOSS de-
velopment and develop a set of propositions for future 
work.  

3.1.  Team effectiveness model 

Researchers in social and organizational psychology 
have studied teams and their performance for decades and 
have developed a plethora of models describing and ex-
plaining team behavior and performance. One of the most 
widely used normative models was proposed by Hackman 
[1], shown in Figure 2. Hackman’s [1] model is broadly 
similar to other models [47], such as [48], [49] or [50]. 
However, Hackman’s model seems especially fitting be-
cause of its intended purpose of identifying factors related 
to team effectiveness, broadly defined, and its inclusion of 
team process factors.  

3.1.1 Outputs. Hackman’s [1] model is presented in 
an input-process-output framework. The output explained 
by the model is team effectiveness, which is clearly a key 
variable for our study: if we cannot distinguish more and 
less effective teams, we cannot identify work practices 
related to effectiveness. An attractive feature of Hack-
man’s [1] model is that effectiveness is conceptualized 
along multiple dimensions, not just task output. Hackman 
also includes the team’s continued capability to work to-
gether and satisfaction of individual team members’ per-
sonal needs as relevant outputs. These three types of 
output correspond well to the effectiveness measures for 

Process criteria
of effectiveness

• Level of effort brought 
to bear on the team task

• Amount of knowledge 
and skill applied to task 
work

• Appropriateness of the 
task performance 
strategies used by the 
team

Organizational context
A context that supports 
and reinforces competent 
task work, via:
• Reward system
• Education system
• Information system

Group design
A design that prompts 
and reinforces competent 
work on the task, via:
• Structure of the task
• Composition of the 

group
• Group norms about 

performance processes
Group synergy

Assistance to the group by 
interacting in ways that:
• Reduce process losses
• Create synergistic process 

gains

Material resources
Sufficiency of material 
resources required to 
accomplish the task well 
and on time

Group effectiveness
• Task output acceptable 

to those who receive or 
review it

• Capability of members 
to work together in the 
future is maintained or 
strengthened

• Members’ needs are 
more satisfied than 
frustrated by the group 
experience

 
Figure 2. Hackman’s [1] normative model of group effectiveness.  



4 

FLOSS projects identified by Crowston, Annabi and 
Howison [51], who proposed measures including system 
quality (task output), developer satisfaction (satisfaction 
of individual needs), and number of developers, developer 
turnover and progress of the project through stages of 
development (e.g., alpha to beta to production), all indica-
tive of the continued ability of the team to work together.  

Definition: Effectiveness for FLOSS teams can be 
measured by creation of quality software, continued 
team work and team member satisfaction. 

3.1.2 Inputs. Hackman’s model includes two sets of 
input factors, organizational context and group design. 
Organizational context includes three factors:  
• a reward system that provides challenging objectives 

and consequences for excellent performance and thus 
motivates effort; 

• an educational system that provides outside expertise 
to support appropriate knowledge and skills; and 

• an information system that provides information about 
the situation and likely outcomes of alternative actions 
to enable appropriate task strategies.  

For FLOSS teams though, identifying the organizational 
context is problematic because teams are generally com-
posed of individuals from multiple organizations and con-
texts. This diversity may be advantageous, e.g., if the 
team can take advantage of expertise available in different 
settings. Alternately, it can be argued that the broader 
FLOSS community itself provides the context, e.g., by 
rewarding contributors with recognition. In either case, 
these systems would not be under the control of projects. 
However, to the extent that FLOSS teams are self-
organized, we argue that teams can create their own or-
ganizational contexts. In particular, we propose:  

Proposition: Teams with practices that set challeng-
ing but obtainable goals will be more effective. 
 
Proposition: Teams with practices that reward 
members for contribution will be more effective. 
 
Proposition: Teams with practices that access out-
side expertise will be more effective. 
 
Proposition: Teams with practices that gather in-
formation about the situation and alternative actions 
will be more effective. 

The next set of inputs is team design, which includes 
three promising factors to explore: task structure, team 
composition and team norms.  
• All FLOSS teams perform much the same task, namely 

software development, but we anticipate seeing differ-
ences in the way teams structure the task. For exam-
ple, Harter et al. [52] found that the maturity of the 

software process was related to development quality. 
Some differences may relate to differences in the com-
plexity, uncertainty and scope of the software being 
developed. To analyze task structure, we will use co-
ordination theory (discussed below).  

• Based on the review above, we anticipate seeing dif-
ferences in practices related to team composition. In 
particular, prior research on FLOSS has suggested the 
importance of having contributions from members in 
different roles, such as core members, co-developers 
and active users.  

Proposition: Teams with members contributing in a 
variety of roles will be more effective. 

• Finally, we anticipate differences in the development 
of team norms, in particular, in the way new members 
are socialized into and contribute to teams (as dis-
cussed below).  

3.1.3 Process. The intermediary factors in Hackman’s 
model are three process criteria (i.e., indications that the 
process is working as it should): “the level of effort 
brought to bear on the team task, amount of knowledge 
and skill applied to task work, and appropriateness of the 
task performance strategies used by the group” [1].  
• Prior work has noted that distributed teams often 

need to expend more effort to be effective [53], sug-
gesting the importance of the level of effort in the 
process. Effort is important both individually and col-
lectively. An important factor for the success of 
FLOSS teams is their ability to attract developers.   

Proposition: Teams with members contributing at a 
higher level of effort individually will be more ef-
fective.  
 
Proposition: Teams with practices to attract contri-
butions from more developers will be more effec-
tive. 
 
Proposition: Teams with practices to attract contri-
butions from more active users will be more effec-
tive.  

• Amount of knowledge and skill applied also seem 
critical, though possibly difficult to measure and 
again perhaps not directly under the control of the 
project.  

Proposition: Teams with members who are more 
knowledgeable and skilled will be more effective. 

• We will use coordination theory to analyze task per-
formance strategies, as discussed below. 



5 

3.1.4 Moderating factors. Finally, Hackman proposes 
factors that moderate the relationship between process 
and output, namely material resources, and between 
inputs and process, namely team synergy.  

For software development, relevant material re-
sources would seem to be limited to development tools, 
which are readily available, thanks to systems like 
SourceForge (http://sourceforge.net/) and Savannah 
(http://savannah .gnu.org/), which host thousands of pro-
jects. Therefore, we do not include this factor in our cur-
rent theorizing. For future research, we plan to look for 
ways in which tool use structures team practices.  

The review of software development presented above 
makes clear that practices for the development and main-
tenance of shared mental models will play an important 
role in enabling team synergy. We will apply collective 
mind [3] theory to conceptualize these models, as dis-
cussed below.  

In the remainder of this section, we will discuss the 
two supporting theories we will use to extend Hackman’s 
model, namely coordination theory and collective mind 
theory.  

3.2.  Coordination theory 

We use coordination theory to analyze the structure of 
the tasks and coordination mechanisms used within teams. 
Many software process researchers have stressed the im-
portance of coordination for software development [e.g., 
36, 54]. For example, Kuwabara [55] states that, “coordi-
nation is a crucial element sustaining collective effort 
giving the Linux its integrity that unfolds the seemingly 
chaotic yet infinitely creative process of creation”. The 
knowledge based-view of the firm [56] also emphasizes 
coordination mechanisms as important for integrating the 
knowledge of individuals into an organization’s products, 
rules and routines.  

Coordination theory provides a theoretical framework 
for analyzing coordination in processes. We use the 
model presented by Malone and Crowston [2], who define 
coordination as “managing dependencies.” They analyzed 
processes in terms of actors performing interdependent 
tasks. These tasks might also require or create resources 
of various types. For example, in software development, 
developers might require bug reports into order to create 
patches for the bugs. In this view, actors in organizations 
face coordination problems arising from interdependen-
cies that constrain how tasks can be performed. Interde-
pendencies can be between tasks, between tasks and the 
resources they need or between the resources used. Inter-
dependencies may be inherent in the structure of the prob-
lem (e.g., components of a system may interact with each 
other, constraining how a particular component is de-
signed [57]) or they may result from the assignment of 
tasks to actors and resources (e.g., two engineers working 
on the same component face constraints on the changes 

they can propose without interfering with each other). 
One implication of this view is that an important man-
agement strategy for software development work is to 
minimize dependencies, e.g., by creating software with 
modules that can be worked on independently.  

Proposition: Teams with task structures and prac-
tices that minimize dependencies will be more ef-
fective. 

To overcome the coordination problems created by de-
pendencies, actors must perform additional work, which 
Malone and Crowston [2] called coordination mecha-
nisms, or what Faraj and Xiao [58] call coordination prac-
tices. For example, if particular expertise is necessary to 
fix a bug (a task-actor dependency), then a developer with 
that expertise must be identified and the bug routed to him 
or her to work on. For that to occur teams must have col-
lective mind as discussed in the next section. For any 
given dependency, there may be a range of available 
mechanisms, so project teams are expected to differ in 
their choice of mechanisms. It is unlikely that there is a 
single best set of mechanisms, but rather the fit of the 
selected mechanisms with other team practices is ex-
pected to have implications for effectiveness.  

Proposition: Teams with practices that manage de-
pendencies will be more effective. 

3.3.  Collective mind 

The second theory we apply is collective mind, a the-
ory of the functioning of shared mental models. Shared 
mental models, as defined by Cannon-Bowers & Salas 
[59], “are knowledge structures held by members of a 
group that enable them to form accurate explanations and 
expectations for the task, and in turn, to coordinate their 
actions and adapt their behavior to demands of the task 
and other group members” (p. 228). Without shared men-
tal models, individuals from different teams or back-
grounds may interpret tasks differently, making 
collaboration and communication difficult [60] and di-
minishing individual contributions to the collective goal.  

Shared mental models are expected to lead to better 
team performance in general [59] and for software devel-
opment in particular. Curtis, et al. [61], note that, “a fun-
damental problem in building large systems is the 
development of a common understanding of the require-
ments and design across the project group” (p. 52). They 
go on to say that, “transcripts of group meetings reveal 
the large amounts of time designers spend trying to de-
velop a shared model of the design” (p. 52).  

Proposition: Teams with more highly developed 
shared mental models will be more effective.  



6 

We note though that FLOSS teams are 
hypothesized to have members contribut-
ing in a variety of roles, and shared mental 
models are likely more important for a 
core member than for a peripheral mem-
ber. As well, the need for shared mental 
models may be reduced if there are fewer 
dependencies among the tasks being per-
formed.  

Following on work by Crowston and 
Kammerer [46], we intend to apply Weick 
and Robert’s [3] collective mind theory to 
analyze shared mental models. We have 
chosen this theory for several reasons. 
First, previous conceptions of group mind 
have been controversial because they 
seemed to imply the existence of some 
super-individual entity [62]. By contrast, 
collective mind is described as an individ-
ual’s “disposition to heed,” hence an em-
phasis on “heedful” behaviors. If each 
member of a team has the desire and 
means to act in ways that further the goals 
and needs of the team (i.e., “heedfully”), 
then that team will exhibit behavior that 
might be described as collectively intelli-
gent, even though it is the individuals who 
are intelligent, not the team per se. Sec-
ond, Weick and Roberts [3] suggest that 
collective mind is beneficial for situations 
where there is need for high reliability, 
non-routine work, and interactive com-
plexity (the combination of complex in-
teractions with a high degree of coupling), 
all characteristics of much of software 
development. Finally, the elements of the 
theory fit cleanly into Hackman’s model, 
as we now discuss.  

Weick and Roberts [3] identify three 
overlapping individual behaviours that epitomize collec-
tive mind: 1) contribution (an individual member of a 
team contributes to the team outcome, one of Hackman’s 
process factors), 2) representation (individuals build per-
sonal mental models of the team and its task, which we 
view as an important factor for Hackman’s team synergy) 
and 3) subordination (an individual puts the team’s goals 
ahead of individual goals, a team norm that corresponds 
to Hackman’s team design input). We note though that 
membership in FLOSS teams is generally voluntary, 
meaning that teams may not be able to demand subordina-
tion from team members. They may instead rely on 
alignment between personal and collective goals, which is 
closely related to the development of an effective project 
reward system.  

Proposition: Teams with practices that align indi-
vidual members’ goals and team goals will be more 
effective.  

Although conceptualized separately, these three con-
cepts overlap and reinforce one another to some degree. 
For example, it is difficult to imagine heedful contribu-
tions from even highly talented and motivated individuals 
with weak representations of the team’s needs and struc-
ture. While these actions go on in any group setting, the 
issue for collective mind is how carefully, appropriately 
and intelligently they are done. To the extent they are, the 
team will display collective mind.  

Given the importance of collective mind, we will look 
not only for practices that exhibit it, but also those that 
build and maintain it. For the later purpose, Brown and 
Duguid’s [63] model of communities of practice seems 

Table 1. Summary of concepts in proposed model  
and corresponding phenomena.  

Concepts Specific phenomena 
Code quality 
Project usage 
User satisfaction 
Project recognition 
Continued system development  
Group membership turnover  

Team effectiveness 

Developer satisfaction 
Developer recognition 
Practices that set goals and reward contribu-
tions 
Practices that access outside knowledge 

Organizational  
context 

Practices that access information about task 
and alternatives 
Task structure  
Process activities and dependencies 
Actors and roles 
Composition of team 
Experience 
Cross-membership 

Team design 

Team norms about performance  
Socialization of new members 
Number of developers  
Level of effort of developers (quantity and 
quality) 

Process criteria  

Appropriate coordination mechanisms  
Team communication patterns 

Team synergy Shared mental models (representation) 
Socialization, narration, collaboration 

 



7 

useful. Brown and Duguid [63] suggested three overlap-
ping social processes that underlie work practices: social 
construction, narration, and collaboration. Construction 
(or socialization) addresses the issue of people joining a 
team needing to understand how they fit into the process 
being performed (i.e., their representation, contribution 
and subordination). New members need to be encouraged 
and educated to interact with one another to develop a 
strong sense of “how we do things around here” (i.e., rep-
resentation) [64]. Second, Brown and Duguid [63] stress 
the importance of narration. To keep the collective mind 
strong and viable, important events must be “replayed” 
and reanalyzed, and the history that defines who the group 
is and how it does things (representation) must be con-
tinually reinforced, reinterpreted, and updated and shared 
with newcomer. Because the teams do not meet face-to-
face regular, opportunities for this type of interaction may 
have to be deliberately created. Finally, Brown and 
Duguid [63] stress the importance of collaboration, based 
on narration, thus leading to the team synergy identified 
in Hackman’s model.  

Proposition: Teams with practices that include 
higher levels of socialization, conversation and nar-
ration will display more highly developed shared 
mental models.  

Table 1 summarizes the constructs we will explore in 
future studies of FLOSS development using this model.  

4.  Conclusion 

In this paper, we presented a conceptual model and a 
set of propositions concerning work practices within dis-
tributed FLOSS development teams. Developing a theo-
retical framework consolidating a number of theories to 
understand the dynamics within a distributed team is itself 
a contribution to the study of distributed teams and learn-
ing within organization literature [65].  

We are currently applying the model in a field study of 
FLOSS teams. To ground the concepts developed above, 
we are collecting a wide variety of evidence, including 
logs of ICT-supported interactions, bug reports, code 
changes and project documents, as well as interviews with 
developers. These data will be analyzed primarily through 
content analysis, but also by creating process maps, cog-
nitive maps and social networks.  

Understanding the work practices of teams of inde-
pendent knowledge workers working in a distributed en-
vironment is important to improve the effectiveness of 
distributed teams and of the traditional and non-traditional 
organizations within which they exist. The results of our 
study could serve as guidelines (in team governance, task 
coordination, communication practices, mentoring, etc.) 
to improve performance and foster innovation. Distrib-
uted work teams potentially provide several benefits but 
the separation between members of distributed teams cre-

ates difficulties in coordination and collaboration, which 
may ultimately result in a failure of the team to be effec-
tive [66-69].  

5.  References 

[1] J. R. Hackman, "The design of work teams," in The Hand-
book of Organizational Behavior, J. W. Lorsch, Ed. Englewood 
Cliffs, NJ: Prentice-Hall, 1986, pp. 315–342. 

[2] T. W. Malone and K. Crowston, "The interdisciplinary 
study of coordination," Computing Surveys, vol. 26, pp. 87–119, 
1994. 

[3] K. E. Weick and K. Roberts, "Collective mind in organiza-
tions: Heedful interrelating on flight decks," Administrative 
Science Quarterly, vol. 38, pp. 357–381, 1993. 

[4] E. S. Raymond, "The cathedral and the bazaar," First Mon-
day, vol. 3, 1998. 

[5] P. Wayner, Free For All. New York: HarperCollins, 2000. 

[6] J. D. Herbsleb and R. E. Grinter, "Splitting the organization 
and integrating the code: Conway’s law revisited," in Proceed-
ings of the International Conference on Software Engineering 
(ICSE ‘99). Los Angeles, CA: ACM, 1999, pp. 85–95. 

[7] C. Di Bona, S. Ockman, and M. Stone, "Open Sources: 
Voices from the Open Source Revolution." Sebastopol, CA: 
O'Reilly & Associates, 1999. 

[8] B. Kogut and A. Metiu, "Open-source software develop-
ment and distributed innovation," Oxford Review of Economic 
Policy, vol. 17, pp. 248–264, 2001. 

[9] J. Lerner and J. Tirole, "The open source movement: Key 
research questions," European Economic Review, vol. 45, pp. 
819–826, 2001. 

[10] G. Hertel, S. Niedner, and S. Herrmann, "Motivation of 
Software Developers in Open Source Projects: An Internet-
based Survey of Contributors to the Linux Kernel," University 
of Kiel, Kiel, Germany n.d. 

[11] I.-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, "Eco-
nomic incentives for participating in open source software pro-
jects," in Proceedings of the Twenty-Third International 
Conference on Information Systems, 2002, pp. 365–372. 

[12] J. Bessen, "Open Source Software: Free Provision of Com-
plex Public Goods," Research on Innovation July 2002. 

[13] E. Franck and C. Jungwirth, "Reconciling investors and 
donators: The governance structure of open source," Lehrstuhl 
für Unternehmensführung und -politik, Universität Zürich, 
Working Paper No. 8, June 2002. 

[14] M. L. Markus, B. Manville, and E. C. Agres, "What makes 
a virtual organization work?," Sloan Management Review, vol. 
42, pp. 13–26, 2000. 



8 

[15] J. Ljungberg, "Open Source Movements as a Model for 
Organizing," European Journal of Information Systems, vol. 9, 
2000. 

[16] K. J. Stewart and T. Ammeter, "An exploratory study of 
factors influencing the level of vitality and popularity of open 
source projects," in Proceedings of the Twenty-Third Interna-
tional Conference on Information Systems, 2002, pp. 853–857. 

[17] N. Bezroukov, "Open source software development as a 
special type of academic research (critique of vulgar raymond-
ism)," First Monday, vol. 4, 1999. 

[18] N. Bezroukov, "A second look at the Cathedral and the 
Bazaar," First Monday, vol. 4, 1999. 

[19] M. J. Gallivan, "Striking a balance between trust and con-
trol in a virtual organization: A content analysis of open source 
software case studies," Information Systems Journal, vol. 11, pp. 
277–304, 2001. 

[20] J. Y. Moon and L. Sproull, "Essence of distributed work: 
The case of Linux kernel," First Monday, vol. 5, 2000. 

[21] A. Cox, "Cathedrals, Bazaars and the Town Council," 
http://slashdot.org/features/98/10/13/1423253.shtml, 1998, ac-
cessed 22 March 2004. 

[22] R. T. Fielding, "The Apache Group: A case study of Inter-
net collaboration and virtual communities," 
http://www.ics.uci.edu/fielding/talks/ssapache/overview.htm., 
1997. 

[23] C. Gacek and B. Arief, "The many meanings of Open 
Source," IEEE Software, vol. 21, pp. 34–40, 2004. 

[24] F. Hecker, "Mozilla at one: A look back and ahead," 
http://www.mozilla.org/mozilla-at-one.html, 1999. 

[25] D. Cubranic and K. S. Booth, "Coordinating Open Source 
Software development," presented at Proceedings of the 7th 
IEEE Workshop on Enabling Technologies: Infrastructure for 
Collaborative Enterprises, 1999. 

[26] K. J. Stewart and S. Gosain, "Impacts of ideology, trust, 
and communication on effectivness in open source software 
development teams," presented at Twenty-Second International 
Conference on Information Systems, New Orleans, LA, 2001. 

[27] V. Valloppillil, "Halloween I: Open Source Software," 
http://www.opensource.org/halloween/halloween1.html, 1998. 

[28] K. Crowston and B. Scozzi, "Open source software projects 
as virtual organizations: Competency rallying for software de-
velopment," IEE Proceedings Software, vol. 149, pp. 3–17, 
2002. 

[29] G. C. Prasad, "A hard look at Linux’s claimed 
strengths…," http://www.osopinion.com/Opinions/ Ga-
neshCPrasad/GaneshCPrasad2-2.html, n.d. 

[30] V. Valloppillil and J. Cohen, "Halloween II: Linux OS 
Competitive Analysis," http://www.opensource.org 
/halloween/halloween2.html, 1998. 

[31] J. Hallen, A. Hammarqvist, F. Juhlin, and A. Chrigstrom, 
"Linux in the workplace," IEEE Software, vol. 16, pp. 52–57, 
1999. 

[32] E. Leibovitch, "The business case for Linux," IEEE Soft-
ware, vol. 16, pp. 40–44, 1999. 

[33] B. Pfaff, "Society and open source: Why open source soft-
ware is better for society than proprietary closed source soft-
ware," http://www.msu.edu/user/pfaffben/writings/anp /oss-is-
better.html, 1998. 

[34] G. Moody, Rebel code—Inside Linux and the open source 
movement. Cambridge, MA: Perseus Publishing, 2001. 

[35] P. Vixie, "Software engineering," in Open sources: Voices 
from the open source revolution, C. Di Bona, S. Ockman, and 
M. Stone, Eds. San Francisco: O’Reilly, 1999. 

[36] R. E. Kraut and L. A. Streeter, "Coordination in software 
development," Communications of the ACM, vol. 38, pp. 69–81, 
1995. 

[37] T. O’Reilly, "Lessons from open source software develop-
ment," Communications of the ACM, vol. 42, pp. 33–37, 1999. 

[38] T. Shepard, M. Lamb, and D. Kelly, "More testing should 
be taught," Communication of the ACM, vol. 44, pp. 103–108, 
2001. 

[39] G. K. Lee and R. E. Cole, "The Linux Kernel Development 
As A Model of Open Source Knowledge Creation," Haas School 
of Business, University of California, Berkeley, Berkeley, CA, 
Unpublished manuscript December 2000 2000. 

[40] R. L. Glass, "Of open source, Linux, …and hype," IEEE 
Software, vol. 16, pp. 126–128, 1999. 

[41] A. Mockus, R. T. Fielding, and J. D. Herbsleb, "Two Case 
Studies Of Open Source Software Development: Apache And 
Mozilla," ACM Transactions on Software Engineering and 
Methodology, vol. 11, pp. 309–346, 2002. 

[42] R. Young, "How Red Hat Software stumbled across a new 
economy model and helped improve an industry," in Open 
sources: voices from the open source revolution, C. Di Bona, S. 
Ockman, and M. Stone, Eds. San Francisco: O’Reilly, 1999. 

[43] B. Behlendorf, "Open source as a business strategy," in 
Open sources: Voices from the open source revolution, C. Di 
Bona, S. Ockman, and M. Stone, Eds. San Francisco: O’Reilly, 
1999. 

[44] D. Cubranic, "Open-source software development," pre-
sented at 2nd Workshop on Software Engineering over the 
Internet, Los Angeles, 1999. 



9 

[45] R. A. Guzzo and M. W. Dickson, "Teams in organizations: 
Recent research on performance effectiveness," Annual Review 
of Psychology, vol. 47, pp. 307–338, 1996. 

[46] K. Crowston and E. Kammerer, "Coordination and collec-
tive mind in software requirements development," IBM Systems 
Journal, vol. 37, pp. 227–245, 1998. 

[47] P. S. Goodman, E. C. Ravlin, and L. Argote, "Current 
thinking about groups: Setting the stage for new ideas," in De-
signing Effective Work Groups, P. S. Goodman and Associates, 
Eds. San Francisco, CA: Jossey-Bass, 1986, pp. 1–33. 

[48] H. Kolodny and M. Kiggundu, "Towards the development 
of a sociotechnical systems model in Woodlands Mechanical 
Harvesting," Human Relations, vol. 33, pp. 623–645, 1980. 

[49] D. L. Gladstein, "Groups in context: A model of task group 
effectiveness," Administrative Science Quarterly, vol. 29, pp. 
499–517, 1984. 

[50] V. F. Nieva, E. A. Fleshman, and A. Rieck, "Team Dimen-
sions: Their Identity, Their Measurement, and Their Relation-
ships," Advanced Research Resources Organizations, 
Washington, DC, Final Technical Report for Contract No. 
DAHC19-78-C-0001 1978. 

[51] K. Crowston, H. Annabi, and J. Howison, "Defining Open 
Source Software project success," in Proceedings of the 24th 
International Conference on Information Systems (ICIS 2003). 
Seattle, WA, 2003. 

[52] D. E. Harter and S. Slaughter, "Process maturity and soft-
ware quality: A field study," in Proceedings of the Twenty-First 
International Conference on Information Systems, S. Ang, H. 
Krcmar, W. J. Orlikowski, P. Weill, and J. I. DeGross, Eds. 
Brisbane, Australia, 2000, pp. 407–411. 

[53] R. J. Ocker and J. Fjermestad, "High versus low performing 
virtual design teams: A preliminary analysis of communication," 
in Proceedings of the 33rd Hawaii International Conference on 
System Sciences, 2000, pp. 10 pages. 

[54] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the 
software design process for large systems," CACM, vol. 31, pp. 
1268–1287, 1988. 

[55] K. Kuwabara, "Linux: A bazaar at the edge of chaos," First 
Monday, vol. 5, 2000. 

[56] R. M. Grant, "Prospering in dynamically-competitive envi-
ronments: Organizational capability as knowledge integration," 
Organizational Science, vol. 7, pp. 375–387, 1996. 

[57] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. 
Offutt, "Maintainability of the Linux Kernel," Department of 
Electrical Engineering and Computer Science, Vanderbilt Uni-
versity, http://www.vuse.vanderbilt.edu/%7Esrs 
/preprints/linux.longitudinal.preprint.pdf, 2003, accessed 14 Dec 
2003. 

[58] S. Faraj and Y. Xiao, "Coordination in fast response or-
ganization," presented at Academy of Management Conference, 
Denver, CO, 2002. 

[59] J. A. Cannon-Bowers and E. Salas, "Reflections on shared 
cognition," Journal of Organizational Behavior, vol. 22, pp. 
195–202, 2001. 

[60] D. Dougherty, "Interpretive barriers to successful product 
innovation in large firms," Organization Science, vol. 3, pp. 
179–202, 1992. 

[61] B. Curtis, D. Walz, and J. J. Elam, "Studying the process of 
software design teams," in Proceedings of the 5th International 
Software Process Workshop On Experience With Software 
Process Models. Kennebunkport, Maine, United States, 1990, 
pp. 52–53. 

[62] J. P. Walsh, "Managerial and organizational cognition: 
Notes from a trip down memory lane," Organization Science, 
vol. 6, pp. 280–321, 1995. 

[63] J. S. Brown and P. Duguid, "Organizational learning and 
communities-of-practice: Toward a unified view of working, 
learning, and innovation," Organization Science, vol. 2, pp. 40–
57, 1991. 

[64] M. O'Leary, W. J. Orlikowski, and J. Yates, "Distributed 
work over the centuries: Trust and control in the Hudson's Bay 
Company, 1670–1826," in Distributed Work, P. Hinds and S. 
Kiesler, Eds. Cambridge, MA: MIT Press, 2002, pp. 27–54. 

[65] D. Robey, H. M. Khoo, and C. Powers, "Situated-learning 
in cross-functional virtual teams," IEEE Transactions on Profes-
sional Communication, pp. 51–66, 2000. 

[66] S. L. Jarvenpaa and D. E. Leidner, "Communication and 
trust in global virtual teams," Organization Science, vol. 10, pp. 
791–815, 1999. 

[67] F. Bélanger and R. Collins, "Distributed Work Arrange-
ments: A Research Framework," The Information Society, vol. 
14, pp. 137–152, 1998. 

[68] R. E. Kraut, C. Steinfield, A. P. Chan, B. Butler, and A. 
Hoag, "Coordination and virtualization: The role of electronic 
networks and personal relationships," Organization Science, vol. 
10, pp. 722–740, 1999. 

[69] E. Carmel and R. Agarwal, "Tactical approaches for allevi-
ating distance in global software development," IEEE Software, 
pp. 22–29, 2001. 

 


	Effective Work Practices for FLOSS Development: A Model and Propositions
	Recommended Citation

	Effective Work Practices for FLOSS Development: A Model and Propositions
	Description/Abstract
	Keywords
	Disciplines
	Creative Commons License

	title effective work practices for FLOSS.pdf

