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Abstract

This paper extends an existing logic, LN, to some of the generalized quan­

tifiers of natural language. In contrast to the usual approach, this extension

does not require the identity relation. Sommers has suggested that the identity

is unnecessary in a logic that properly treats singular terms. This paper lends

support to Sommers position.

LN is a logic designed for natural language reasoning (see [3]). This paper

defines an extension, LNQ, of that logic to include the cardinal quantifiers,

at least D, and the second-order quantifier, most. Because of the limited

expressiveness of first-order languages, a complete axiomatization for most is

not possible. However incompleteness does not negate the usefulness of the

axiomatization for natural language reasoning. Theorems, generalizing those

of [3], are given. These theorems establish the properties of monotonicity,

conservativity, and conversion for LNQ.

These results are of interest in connection with Sommers position that by

endowing singular terms with "wild quantity," identity as a logical operator is

not needed. This in turn results in a logic that is simpler and more closely

conforms to natural language.
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1 Introduction £N, a logic designed for natural language reasoning, was pre-

sented in [3]. This paper defines an extension, £NQ, of that logic to include the

cardinal quantifiers, at least n, and the second-order quantifier, most. Because

of the limited expressiveness of first-order languages, a complete axiomatization for

most is not possible. Incompleteness does not negate the usefulness of the axioma­

tization for natural language reasoning however. Theorems, generalizing those of [3],

are given. These theorems establish the properties of monotonicity, conservativity,

and conversion for L,NQ.

The extension is also of interest in another connection. Sommers has taken the posi­

tion (see "Do We Need Identity?" in [4]) that by endowing singular terms with "wild

quantity," e.g., recognizing that some Socrates is human is logically equivalent to

all Socrates is human, identity as a logical operator is not needed. Elimination of

the identity relation results in a simpler logic, and one that more closely conforms to

natural language.

£N incorporates a version of Sommers' position. It has no identity relation. It defines

certain predicates as singular. Semantically, singular predicates denote singleton sets

of individuals. Syntactically, they are endowed with wild quantity (by axiom 82) and

existential import (by axiom SI). It is shown in [3] that the expressiveness of the

logical identity relation can be attained in L,N through the use of schemas.

In a first-order language with identity, the cardinal quantifiers are usually introduced

by definition (e.g., [1]). The quantifier most cannot be introduced in this way. In
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£NQ, both are established by axiom schemas.

Of course, either approach is available in a first-order language with identity. But the

demonstration in this paper that L,NQ, a first-order language without identity, has

sufficient expressiveness to axiomatize these quantifiers lends support to Sommers'

position on the identity relation.
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2 Definition of the Language The alphabet of 'cNQ consists of the following.

1. Predicate symbols P = S U (UjEW n j ) where n j = {Rf : i E w}, S = {Si : i E

w}, and S and the Rj are mutually disjoint.

2. Selection operators {(k1 , ... , kn ) : n E (w - {O}), ki E (w - {O}), 1 ~ i ~ n}.

3. Quantifiers some, {k : k E (w - {OJ)}, and most.

4. Boolean operators nand -.

5. Parentheses ( and ).

L,NQ is partitioned into sets of n-ary expressions for nEw. These sets are defined to

be the smallest satisfying the following conditions.

1. Each Si E S is a unary expression.

2. For all nEw, each Hi E 'Rn is a n-ary expression.

3. For each predicate symbol P E 'P of arity m, (k1 , ••• ,km)P is a n-ary expression

4. If X is a n-ary expression then (X) is a n-ary expression.

5. If X is a m-ary expression and Y is a I-ary expression then (X n Y) is a n-ary

expression where n = max(/, m).

6. If X is a unary expression and Y is a (n + l)-ary expression then (someXY)

. .
IS a n-ary expreSSIon.
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7. If X is a unary expression and Y is a (n + 1)-ary expression then (kXY) is a

n-ary expression for each k E (w - {O}).

8. If X is a unary expression and Y is a (n + l)-ary expression then (mostXY) is

a n-ary expreSSIon.

In the sequel, superscripts and parentheses are dropped whenever no confusion can

result. Metavariables are used as follows: S ranges over S; Rn ranges over R n; P

ranges over P; X, Y, Z, W, V range over £NQ; and X n , yn, zn, W n,V n range over n­

ary expressions of £NQ. Applying subscripts to these symbols does not change their

ranges.

An interpretation of L,NQ is a pair I = (V, F) where V is a finite nonempty set and

F is a mapping defined on P satisfying:

1. for each Si E S, F(Si) = {(d)} for some (not necessarily unique) d E V, and

Let 0: = (d1 , d2 , • •• ) E VW (a sequence of individuals). Then X E £NQ is satisfied by

a in I (written I FaX) iff one of the following holds:

1. X E P with arity nand (d1 , ••• ,dn ) E F(X)

2. X = (k1 , ... , km)P where PEP with arity m and (dkt , •• ·, dkm ) F P

3. X = Y and I ~a Y
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4. X = Y n Z and I Fa Y and I Fa Z

5. X = sarneyl zn+l and for some d E V, (d) F yl and (d) F zn+l

6. X = kylzn+l and card({d E V: (d) F yl and (d) F zn+l}) ~ k

7. X = mostylzn+l and card({d E V: (d) F yl and (d) F zn+l}) > card({d E

V: (d) FyI and (d) ~ zn+l})

where I ~a X is an abbreviation for not(I FaX) and (dil , .. - ,din) F X is an

abbreviation for I F(di l, ...,din ,dl ,d2, ... ) x.

X is true in I (written I F X) iff I FaX for every a E 'I'JW. X is valid (written

F X) iff X is true in every interpretation of L,NQ- A O-ary expression of LNQ is called

a sentence. A set r of sentences is satisfied in I iff each X E r is true in I.

The following abbreviations are introduced to improve readability.

1. k- := (n, ... , l)Rn

2. X U Y := eX nY)

3. X ~ Y := (X n Y)

4. X =Y:= (X ~ Y) n (Y ~ X)

5. T:= (So ~ So)

6. sameXnsomeXn _ 1 ··· someX1Y := (someXn(someXn _ 1 ... (someX1Y) ... )
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7. someXty; 0 Y;-t 0··· 01;2 := (some· .. (some(someXtY;)Y;_l)··· 1;2)

8. aIIX1y:= someXIY

9. noX1Y := someXlY

10. !kX1y:= kX1y n (k+l)X1Y

11. kX1y:= kXIY

It is easy to see that:

1. I F~ X U Y iff (I FaX or I Fa Y)

2. I FaX ~ Y iff (I Fa X implies I Fa Y)

3. I FaX =Y iff (I Fa X iff I Fa Y)

4. I Fa T for every I and a

5. I Fa someX1 Y; 0 • • • 0 y l2 iff for some d E V, (d) F Xl and (d) F Y; 0 · · • 0 yl2

where 0 denotes composition of relations in I

6. I Fa allX1y iff for all d E V, (d) F Xl implies (d) F Y

7. I Fa noX1y iff for all d E V, (d) F Xl implies (d) ~ y

8. I Fa !k.X"ly iff card({d E V: (d) F Xl and (d) F V}) = k

9. I Fa kxly iff card({d E V: (d) F Xl and (d) F V}) < k
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3 Axiomatization of £NQ The axiom schemas of £NQ are the following.

BT. Every schema that can be obtained from a tautologous Boolean wff by uniform

substitution of nullary metavariables of £NQ for sentential variables, n for /\,

and - for ...,

C1. SOmeSin ••• someSil (kt , ... , km)P C someSi
km

••• someSi
k1

P where P is of

arity m and n = max(kj )l'5j'5m

02. someSin ••• someSi t (kt , ... , km}P C SOmeSikm ... someSi
k1

P where P is of

arity m and n = max(kj)l<j<m

81. someSS

82. someSin ••• someSil (someSXn+l) =SOmeSin • • • someSil someSXn+1

D someS· ... someS· (Xmnyl) = (someS· ... someS- XmnsomeS· ... someS· yl)• In II - 1m II ,( 11

where n = max(l, m)

EG. (someSX1nsomeS· ... someS- someSyn+l) C someS· ... someS· someX1yn+l
In '1 - In 11

KG1. someS- .. -someS· someXlyn+l = someS· .. · someS' lx1yn+l
In 11 - In '1

KG2. (someSXl n someSin • • • someSil someSyn+l n SOmeSin • • • someSiI k(X l n

MGl. (someSX1 n allBin • · · aliBil allX1 yn+l) £: someSin • • • someSi1 mostX1 yn+l

s· n~)yn+l) C someS· ... someS· mostX1 yn+l
I J - In 11
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The inference rules of L,NQ are the following.

MP. From XO and X O ~ yo infer yo

El. From (ZO n someSXI n someSin •• .someSi1someSyn+I), where S does not

occur in Xl , yn+l, or ZO, and is distinct from Si1, ... , Sin' infer (ZO n SOmeSin · · ·

someS- someXlyn+l)
11

KI. From (ZO n someSXl n someSin • • • someSi1someSyn+1 n SOmeSin · · · someSt1

k{Xl n S)yn+l), where S does not occur in Xl, yn+l, or ZO, and is dis-

tinct from Si1, ... , Sin' infer (ZO n SOmeSin • • • someSi1 (k+1)XIyn+l ) for each

k E (w - {OJ)

not occur in Xl, yn+l, or ZO, and are distinct from Si1 , ... , Sin' infer (ZO n SOmeSin · · ·

The set T of theorems of L,NQ is the smallest set containing the axioms and closed

under MP, EI, KI, and MI.

Axiom 52 can also be written

In view of this "wild quantity" of singular predicates, SOmeSin • • • someSi1 allSXn+1

and SOmeSin · · · someSi1 someSXn+1 will usually be written simply Sin · · · Si1 SXn+1 •
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The following theorem establishes the soundness of this axiomatization.

THEOREM 1 X E T only if F X.

proof: Observe that by the definition of satisfaction, (:F(Si1 ), • •• , :F(Sin )} F X n iff

and the definition of validity, it is not difficult to show that the axioms are valid

and that validity is preserved by the inference rules. Details will be given only for

MGl, MG2 and MI. In this proof, C1 := {d : (d) F X}, C~ := {d : (d) F X n Sj},

C~' := {d : (d) F X n Sj n Si}, and C2 := {d : (d, :F(Si1 ),· • • ,:F(Sil)) F V}.

(i) Claim: MGl is valid.

proof: I F SX n Sin ... Si1 allXY iff I F SX and I F Sin ... Sil allXY iff

(:F(S)) F X and Vd E 1): (d) F X implies (d,:F(Si l ), ••• ,:F(Sil )) F Y. There-

fore card(CI n C2 ) 2:: 1 and card(CI n C2 ) = O. Hence I F Sin · · · Sit mostXY.

(ii) Claim: MG2 is valid.

(:F(Si)) F X, (F(Si), :F(Si1 ),···, :F(Sin)) F Y, and card(C~'nC2 ) > card(C~' n

C2 ). Since F(81) fj. C~' but :F(Si) E C~, card(C~ n C2 ) = card(Cr n C2 ) + 1 >

card(C~' n C2 ) + 1 = card(Cf n C2 ) + 1. Therefore, for any value of F(Sj),

I l- S· ... S· mostXYI In 11 •

(iii) Claim: MI preserves validity.
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proof: Suppose F (ZO n SiX n Sin ... SitSiY n (Sin ... SitaliXY U Sin··· Sit

most(X n Si n Sj)Y)), where Si and Sj do not occur in X, Y, or ZO, and

are distinct from Sit' ... , Sin' but there exist interpretations I such that I F

ZO n Sin··· SitmostXY. Thus card(C1 n C2 ) > card(C1 n C2 ) ~ O. Since Si

is fresh (i.e., has no other occurrences), there is an interpretation such that

:F(Si) E C1 n C2 • Therefore, I F SiX and I F Sin · · · Sit SiY. Now there are

two cases to consider.

(a) card(C1 nC2 ) = o.

Then I ~ Sin · · · Sit XY, i.e., I F Sin · · · Sit XY, which contradicts the assump­

tion.

(b) card(C1 nC2 ) > o.

Then card(C1 nC2 ) > 1. Since Sj is fresh, there is an interpretation such that

F(Sj) E C1 nc2 • Therefore, card(C~'nC2) = card(C1 nC2 ) -1 and card(C~/nC2)=

card(C1 nC2 ) -1. Hence I F Sin ... Silmost(X n Si n Sj)Y, which again con­

tradicts the assumption.

o

The axiomatization is not complete however. Indeed the quantifier most cannot be

axiomatized in a first-order language. This is easily shown as follows. (See also [1].)

Suppose most is axiomatizable in LNQ. Let X = mostTB and let r be a set

of sentences such that for any interpretation I of LNQ, I F X iff I F r. Let

n = {O, 1,2, ... , n -I} and Wodd = {I, 3, 5, ...}. For each nEw, define interpretation
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In = (n, F n), where Fn(B) = {O} U n n Wodd. Obviously, for each nEw, In F r.

Now define I = TInewIn/F, where F is a nonprincipal ultrafilter (e.g., an extension

of the Frechet filter to an ultrafilter). By Los's Theorem (e.g., see [2]), I F r. Since

F contains no singletons, !kTT cannot be satisfied in I for any k. Therefore I is

infinite. Moreover, ((2k + l)/F) F B for every k E w. Since both T and B denote

infinite sets in I, it follows that I ~ mostTB, a contradiction.

If the quantifier most were eliminated, the axiomatization of the remainder of £NQ

would be complete. The proof closely follows that given in [3]. Alternatively, if inter­

pretations are restricted to some fixed finite upper bound (e.g., by adding the axiom

NTT), the axiomatization is complete. Of course, this is tantamount to accepting

incompleteness. In any event, incompleteness does not negate the usefulness of the

axiomatization for reasoning about natural language discourse.
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4 Theorems The theorems presented in [3] can be generalized to apply to LNQ.

Since the proofs closely follow those given in [3], the theorems will be stated without

proof.

The main results are two monotonicity theorems. These theorems establish the mono­

tonicity properties of quantifiers. They subsume the resolution principle. In addition,

other properties of natural language quantifiers, including conservativity, are proved.

Before stating the first monotonicity theorem, some definitions are needed.

An occurrence of a subexpression Y in an expression W has positive (negative) polarity

if that occurrence of Y lies in the scope of an even (odd) number of - operations in

W, unless that occurrence of Y is a subexpression of V in mostV Z, in which case Y

has both positive and negative polarity.

An occurrence of a subexpression ym, where m ~ 1, is governed by X in W if

W is someXym, someXym, someX(ym n Zl), kxym, kXym, kx(ym n Zl),

mostxym, mostXym, mostX{ym n Z'), or the complement of one of these ex­

pressions. An occurrence of ym is governed by X n · · · Xl in W, where 1 ~ n :s; m,

if V is governed by X n in Wand that occurrence of ym is governed by X n - 1 ... Xl

in V. An occurrence of ym in (kl , .. . ,km}ym is governed by X km ·· ·Xk1 in W if

(kl , ... , km}ym is governed by X n ··· Xl in W, where n = max(ki)l$i$m.

THEOREM 2 (First Monotonicity Theorem) Let ym occur in W with positive (respec­

tively, negative) polarity. Let (aIIT)m(ym ~ Zl) (respectively, (aIIT)m(Zl ~ ym)),
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where 1 ::; m. Let W' be obtained from W by (i) substituting Zl for that occurrence

of ym, (ii) substituting (k1 , ... ,k1) for selection operator (k1 , ... ,km ) on ym, if any,

and (iii) eliminating all occurrences of governing subexpressions that no longer gov­

ern after the substitutions in (i) and (ii). Finally, let someTX for every governing

subexpression X with an occurrence of negative polarity that was eliminated in (iii).

Then (aIIT)h(W ~ W'), where h is the arity ofW.

From previous definitions, it follows that if the expression allYX occurs with positive

(negative) polarity, then the occurrence of Y has negative (positive) polarity while

the occurrence of X has positive (negative) polarity; if the expression noYX occurs

with positive (negative) polarity, then the occurrence of Y and the occurrence of X

both have negative (positive) polarity; if the expression !kYX occurs with either pos­

itive or negative polarity, then the occurrence of Y and the occurrence of X have both

positive and negative polarity; if the expression kYX occurs with positive (negative)

polarity, then the occurrence of Y and the occurrence of X both have negative (pos­

itive) polarity; if the expression Y ~ X occurs with positive (negative) polarity, then

the occurrence of Y has negative (positive) polarity while the occurrence of X has

positive (negative) polarity; if the expression Y U X occurs with positive (negative)

polarity, then the occurrence of Y and the occurrence of X both have positive (neg­

ative) polarity; and if the expression Y =X occurs with either positive or negative

polarity, then the occurrence of Y and the occurrence of X have both positive and

negative polarity. With these provisions, Theorem 2 applies to expressions contain­

ing occurrences of defined operators. In this connection, singular predicates require
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special mention. Since allSX := someSX =someSX - someSX, any occurrence

of a singular predicate can be taken to have either positive or negative polarity.

Before the second monotonicity theorem can be presented, a definition is needed.

A subexpression ym will be said to occur disjunctively in expression W iff (i) W =

allXn ••• allx1ym U Z where n ~ m; or (ii) W = allXn • - - allXk+1 (Zl U Z2) where

o~ k ~ nand ym occurs disjunctively in Zl-

THEOREM 3 (Second Monotonicity Theorem) Let ym occur disjunctively in W, gov­

erned by X k - - · Xl" Let W' be obtained from W by replacing that occurrence of

ym with Zl (l ~ m) and deleting all occurrences of allXi that no longer govern

a subexpression. Let sameTXi for every allXi that was deleted. Then (allT)h((W n

aIIXk ••• allX1(ym ~ Zl)) ~ W'), where h is the arity of w.

It is easy to see (from the equivalence (ym ~ Zl) =(ym U Zl)) that this theorem

corresponds to the resolution principle in conventional logic.. A corollary provides a

rule corresponding to unit resolution.

COROLLARY 4 (Cancellation Rule) Let ym occur disjunctively in W, governed by

X k • • • Xl. Let W' be obtained from W by deleting that occurrence of ym and all

occurrences of allXi that no longer govern a subexpression.. Let someTXi for every

allXi that was deleted. Then (alIT)h( (W nallXk • .... allX1 ym) ~ W'), where h is the

arity ofW. 0

The final theorems establish the property of conservativity and the the rules for
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conversion in the case of unary predicates.

THEOREM 5 (Conservativity) (schema) (i) (aIIT)m-lsomeXym =(aIIT)m-lsomeX(ymn

X) (ii) (aIIT)m-lallxym = (alIT)m-laIIX(ymnX) (iii) (aIIT)m-1kxym - (aIIT)m-1kX(ymn

X) (iv) (allT)m-1mostxym =(aIIT)m-1mostx(ym n X). 0

THEOREM 6 (Conversion) For unary expressions X and Y J (i) someXY = someYX

(ii) allXY = all(Y) X (iii) kXY =kYX 0
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5 Conclusion This paper generalizes the language .eN to include the cardinal

quantifiers and the second-order quantifier most. The axiomatization of LN is appro­

priately extended and the theorems establishing quantifier properties also extended.

The paper does not go on to prove other results involving these quantifiers, since

they are for the most part quite straightforward. For example, the common-sense

expectations such as

(kXY n 2kXT) ~ mostXY

are easily obtained.

The main interest lies in the demonstration that a first-order language without iden­

tity has sufficient expressiveness to define these natural language quantifiers.
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