
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

Signals that are efficiently transmitted and easily detected in their 

signaling environment are favored by natural selection.  Anthropogenic 

disturbance can rapidly alter the signaling environment, and recent studies have 

shown that acoustic and visual signals change in response to these altered 

habitats. Although these studies provide important insight into the effects of 

urbanization on animal signals and have served as experiments testing the role of 

the environment in shaping signal design, several key aspects of how signal 

design can be influenced by environmental changes remain unclear. 

Previous studies have focused on signals used between adults, such as 

those used in mate choice, yet other signals should be similarly affected by 

anthropogenic disturbance.  Thus, one facet of my research examines how 

anthropogenic disturbance can influence parent-offspring communication.  I 

tested whether nestling mouth coloration in Eastern bluebirds (Sialia sialis) was 

a signal of quality, and if a parents ability to discriminate among the mouth 

coloration of their nestlings was affected by level of human disturbance. I found 

that the perceived color contrast of nestling mouths against its nest was 

significantly correlated with nestling body condition, suggesting that it may be 

signal of nestling quality. Additionally, I found that the parent’s ability to 

perceived a difference in color contrast of a nestling’s mouth among nest-mates 

was lower in disturbed habitats, than in undisturbed habitats, showing less 

discriminability among nestlings in disturbed habitats. These results suggest that 



parent-offspring communication can be affected by anthropogenic disturbance 

which may reduce a parent’s ability to preferentially invest in high quality young. 

Past research on anthropogenic disturbance and signaling has focused on 

the response of single signals, yet most organisms communicate using signals 

from multiple sensory systems (i.e., multimodal signals).  Thus, I examined how 

anthropogenic disturbance can simultaneously influence components of 

multimodal signals in Eastern bluebirds. I measured the visual and acoustic 

environment at different disturbance levels and related them to male plumage 

and song characteristics.  I found that in areas with high levels of anthropogenic 

noise, males sing at a higher minimum frequency, presumably to avoid overlap 

with low frequency background noise. I also found that the visual background is 

altered in disturbed sites; however, plumage characteristics did not covary with 

the altered habitats. These results suggest that human disturbance is interfering 

with both visual and acoustic signals, yet only acoustic signals have responded to 

the changes.   

Few studies on anthropogenic disturbance directly explore the explicit 

evolutionary mechanisms underlying the changes in signal design. Thus, in the 

final chapter of my dissertation, I explored how selection on traits varied across 

habitats with different levels of disturbance. To do this, I determined paternity of 

nestlings using microsatellite. Then, I determined the major factors influencing 

rates of extra-pair paternity (i.e., proportion of nestlings within a nest that were 

sired by other males), and tested whether these factors varied with disturbance 



levels. I found that the minimum frequency of song, and the brightness of the 

male’s chestnut breast are important predictors of extra-pair paternity rate 

across all disturbance levels. Additionally, I found an interaction between 

disturbance level and the minimum frequency of song in relation to extra-pair 

paternity. This interaction effect was due to differences in selection pressure on 

the minimum frequency of song in relation to habitat disturbance. Males that sing 

in higher minimum frequencies have lower rates of extra-pair paternity, in 

disturbed areas, but higher rates of extra-pair paternity in undisturbed areas. 

These results suggest that selection on signals vary across disturbance levels and 

this could drive the observed changes in the design of signals. Potential 

consequences of these changes include the possibility of long-term differentiation 

between bluebird populations living in disturbed and undisturbed habitats, and a 

shift in important traits across the entire species. 
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INTRODUCTION 
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There is tremendous diversity of animal signals throughout the natural world. This 

diversity is hypothesized to be the product of natural selection acting on signal design. Signal 

design is determined by two components: strategic design, which deals with the content of 

the signal, and signal efficacy, which deals with the effective transmission and reception of 

the signal in its physical habitat (Guilford and Dawkins 1991). Natural selection on signal 

design often favors signals that serve as reliable indicators of need, health, or quality of the 

signaler, whereas natural selection on signal efficacy favors signals that are easy to detect, 

discern, and remember (Guilford and Dawkins 1991). Detectability is the ease with which a 

signal is discriminated from background noise, and selection on detectability often deals with 

signals that are used for long-range communication. Discriminability addresses the ability to 

distinguish one signal from another and to place it in a discrete category. That is, selection 

favors signals that allow receivers to easily differentiate among individuals in a group. 

Lastly, memorability addresses the receivers’ ability to remember a signal. For instance, 

selection should favor warning signals that are memorable because both the predator and 

prey gain from the predator quickly learning that bearers of the signal are unpalatable 

(Guilford and Dawkins 1991). Hence, selection on detectability, discriminabilty, and 

memorability should alter signal design when the signaling environment is altered (Searcy 

and Nowicki 2005; Patricelli and Blickley 2006).  

Several correlative studies have shown that the design of visual and acoustic signals 

covary with their distinct signaling environment, providing support for the hypothesis that 

natural selection on signal efficacy can account for signal diversity across taxa and habitats 

(Slabbekoorn and Smith 2002a; Podos and Nowicki 2004; Thery 2006). For example, in a 

comparative study of 20 bird species from both relatively dark (e.g., closed) and relatively 
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light (e.g., open) habitats, species in darker habitats were found to have plumage richer in 

long-wavelengths, thus maximizing the chromatic contrast of plumage from the darker 

habitat (McNaught and Owens 2002). Likewise, in the little greenbul Andropadus virens, 

individuals living in habitats with higher amplitude of low frequency noise sing songs with 

higher minimum frequencies to avoid song-masking (Slabbekoorn and Smith 2002b). 

Nevertheless, testing the ideas of signaling theory experimentally has been difficult (Rowe 

and Skelhorn 2004). 

 

Anthropogenic Disturbance as an Experiment 

 

 With a growing global population, the amount of human-disturbed land throughout 

the world is rapidly increasing (Meyer and Turner 1992; Foley et al. 2005). Moreover, 

anthropogenic disturbance can quickly change an organism’s signaling environment, 

providing a unique opportunity to experimentally explore how signals evolve in response to a 

changing signaling environment. Many recent studies have found predictable changes in 

signal design in response to noise pollution across several taxa including birds, mammals, 

and amphibians (Table 1.1). For instance, the neotropical treefrog Dendropsophus 

triangulum acoustic call rate (i.e., signals more often) in areas that are louder due to 

anthropogenic noise (Kaiser and Hammers 2009). Additionally, a handful of studies have 

examined how human-induced eutrophication affects visual communication in fish, and how 

human introduction of chemicals (i.e., pesticides, fertilizers, heavy metals) can lead to 

disruption of chemical signaling in fish and amphibians (Table 1.1). In general, these studies 

provide unique insights into the role of signaling environment in signal design. However, 
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they mainly focus on sexual signals from single modalities, and have not explored the 

potential mechanisms driving the changes in signal design. Here I examine how 

anthropogenic disturbance can influence (1) signals that function in parent-offspring 

communication, (2) signals in multiple sensory modalities (i.e., “multimodal signals”) and 

(3) selection pressures on signals. 

 

Signal Function 

 

Most theoretical and empirical studies of the effects of anthropogenic noise on animal 

signals have focused on communication between adults, especially in the context of mate 

choice, even though signals used for other purposes should be similarly disrupted by human 

disturbance (Patricelli et al. 2006; Slabbekoorn and Ripmeester 2008). For instance, nestlings 

signal their need to parents through begging calls, and increased noise caused by 

anthropogenic disturbance should interfere with these begging calls by making difficult for 

parents to hear their young. So far this has not been tested in the field, but some studies show 

that nestlings increase the amplitude of their begging calls in response to increases in ambient 

noise from natural causes (i.e., wind, water movement; Leonard and Horn 2005, 2008). 

Likewise, aposematic or warning coloration may also be affected by human disturbance. Due 

to studies concentrating on signals used in mate choice, we lack an overall understanding of 

how all types of signals can be affected by human disturbance. 

 

Multimodal Communication 
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Studies on anthropogenic disturbance and signaling have also overwhelmingly 

addressed only the response of signals in one signaling modality, yet most species 

communicate in multiple sensory modalities ("multimodal signals"; reviewed in Partan and 

Marler 1999; Candolin 2003; Hebets and Papaj 2005; Partan and Marler 2005). Multimodal 

signals are used for both inter- and intraspecific communication (Candolin 2003; Hebets and 

Papaj 2005) and are used by a variety of taxa, including: amphibians (e.g., foot-flagging 

frogs, Grafe and Wanger 2007; squirrel treefrogs, Taylor et al. 2007), birds (reviewed in 

Hebets and Papaj 2005; cowbirds, O'Loghlen and Rothstein 2010), mammals (e.g., grey 

squirrels, Partan et al. 2010; primates, Slocombe et al. In Press), crustaceans (e.g., crayfish,  

Aquiloni et al. 2009), insects (e.g., ants, Holldobler 1999; butterflies, Papke et al. 2007; bees, 

Barth et al. 2008; tiger moths, Ratcliffe and Nydam 2008), and arachnids (e.g., wolf spiders, 

Gordon and Uetz 2011).  

Two major hypotheses address the purpose of multimodal signals. The Multiple 

Message Hypothesis posits that the different signals provide different messages, and the 

Redundant Signaling Hypothesis posits that different signals redundantly provide the same 

message (Candolin 2003; Hebets and Papaj 2005). In both cases, signals can either be 

assessed sequentially or simultaneously (Candolin 2003). The interaction and function of 

multimodal signals may affect how they evolutionarily respond to anthropogenic disturbance. 

For instance, if signals are providing multiple messages, then disruption of either signal 

should lead to selection favoring changes in the affected signals. However, in the case of 

redundant signals, it is possible that disruption of one signal is compensated for by the 

second signal, and thus selection may not favor shifts in overall signal design. Indeed, it has 

been hypothesized ("efficacy backup hypothesis", Candolin 2003) that the purpose of 
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redundant signals is to “back up” the other signal when environmental conditions limit the 

transmission of one of the signals. For example, males of the wolf spider Schizocosa retrorsa 

attract females with seismic and visual signals. Experimental masking of seismic signals did 

not alter male mating success, suggesting that females only needed one signal type to make 

mating decisions (Hebets and Uetz 1999). Alternatively, multimodal signals may convey 

different messages or have different functions. For instance, over 90% of bird species use 

multimodal signals (Hebets and Papaj 2005). Bird song is thought to be used primarily in 

long-distance communication (Catchpole and Slater 2003), while plumage coloration may be 

used at closer range. Thus each signal may have a different function in conspecific 

communication and may be assessed sequentially (Candolin 2003).  Consequently, in the 

study of anthropogenic disturbance, it is important to study multimodal signals, as 

multimodal signaling theory may yield insight about why certain signals change, and others 

do not. 

 

Mechanism of Selection Acting on Signal Design 

 

Signals are used for a variety of purposes such as signal alarms, attracting mates, 

begging for food, and conveying social dominance (Searcy and Nowicki 2005). The 

functions of signals are important for both the signaler and the receiver. Thus changes in 

signals or signaling efficacy in response to anthropogenic disturbance may have negative 

effects on individuals. In signals that function in mate choice, especially those that indicate 

mate quality, disruptions of signals could lead to individuals being unable to accurately 

assess their potential mates. In cases where signals are disrupted, selection should favor 



 7 

signals to change. Previous work has shown that signals can change in response to 

communication disruption (references above), yet we know little about the explicit 

mechanisms that favor the change or the biological consequences of these signal changes 

(Rabin et al. 2003; Patricelli and Blickley 2006; Slabbekoorn and Ripmeester 2008). The 

changes in signals that have been observed in response to anthropogenic disturbance may be 

the result of changes in selection pressure. Potential consequences of these changes in 

selection pressure due to anthropogenic disturbances include the possibility of long-term 

differentiation between disturbed and undisturbed habitats. This may result if selection favors 

different traits in disturbed and undisturbed areas.  Another potential consequence could be a 

shift in important traits across the entire species, which may result if human expansion 

continues and the majority of habitat for a species is affected by human disturbance. 

Uncovering how human disturbance can influence communication, and determining 

the biological consequences of these changes, is complicated. Thus far studies have mainly 

focused on the response of signals of a single modality used in mate choice, and have yet to 

explore the biological consequences of changes in signals and signal efficacy in nature. In 

my research I explore 1) how human disturbance can influence parent-offspring 

communication, 2) how multimodal signals respond to anthropogenic disturbance, and 3) 

how changes in signaling efficacy caused by anthropogenic disturbance can influence the 

selection acting on signals and how this can affect signal design.  
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CHAPTER II 

 

 

THE EFFECTS OF ANTHROPOGENIC DISTURBANCE ON NESTLING MOUTH 

COLORATION IN THE EASTERN BLUEBIRD, SIALIA SIALIS 
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SUMMARY 

The perception of signals depends on the sensory parameters of the receiver and 

the environment in which signals are produced, transmitted, and received. Signal 

design should evolve in response to changes to signaling environment. Indeed, recent 

work suggests that signal design evolves in response to rapid changes in the signaling 

environment, including those induced by humans. However, little is known about how 

these changes are actually perceived by the intended receivers, and, more important, 

how these changes can potentially alter a receiver’s ability to discern among signalers. 

Nestling birds have bright mouth coloration, which can be used by parents as indicators 

of health and thus to allocate resources adaptively. I examined nestling mouth 

coloration of Eastern bluebirds in disturbed, intermediate, and undisturbed areas and 

tested whether mouth coloration is a reliable signal of nestling quality, and examined 

how human disturbance of the visual signaling habitat can influence the utility of this 

signal. I found a positive association between nestling body condition and 

conspicuousness of mouth coloration, suggesting that mouth coloration can be used by 

parents to assess offspring quality and allocate resources accordingly. In addition, I 

found that changes in ambient light among habitats of different disturbance levels 

resulted in a reduction of the perceived variation among nestlings in mouth coloration 

(discernability). Consequently, anthropogenic induced changes in light may prevent 

parents from optimally allocating food based on the variation in quality among their 

young. The results suggest that anthropogenic disturbance can reduce the utility of 

signals.  
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INTRODUCTION: 

There is a tremendous diversity of animal signals in the natural world which serve a 

variety of purposes including warning others of danger, attracting mates, begging for food, 

and signaling dominance (reviewed in Johnstone 1997; Searcy and Nowicki 2005). 

Understanding this diversity requires recognition that signals have two major components: 1) 

the content of the signal (e.g., strategic design), and 2) the physical design of the signal, 

which optimizes transmission and detection in its environment (e.g., efficacy Guilford and 

Dawkins 1991). For example, in parent-offspring communication, strategic design may be 

the result of evolutionary pressure on offspring to effectively communicate their need to 

parents, whereas signal efficacy may be a result of natural selection favoring begging signals 

that are easily detectable from the background. Moreover, it is critically important that 

receivers not only detect the signal from the background noise but also discern variation in 

the signal to allow discrimination (Guilford and Dawkins 1991). Changes in the signaling 

environment can therefore affect the efficacy, and thus the utility, of signals. 

An increasing global population has caused cities to continue to expand, and more 

land has become influenced by human disturbance (Meyer and Turner 1992; Foley et al. 

2005). Many studies have shown that human disturbance can influence the signaling 

environment and interfere with animal communication (reviewed in Rabin et al. 2003; 

Patricelli and Blickley 2006; Slabbekoorn and Ripmeester 2008). Most studies of the effects 

of anthropogenic disturbance on animal signals have focused on signaling between adults, 

especially signals used in mate choice, even though signals used for other purposes should be 

similarly disrupted by human disturbance (Patricelli et al. 2006). For instance, increased 

noise caused by anthropogenic disturbance could interfere with nestling begging calls, 
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making it harder for parents to hear their young. This has not been tested in the field, yet 

there is some evidence that nestlings increase the amplitude of their begging calls in response 

to increases in ambient noise from natural causes (i.e., wind, water movement; Leonard and 

Horn 2005, 2008). 

 In addition to begging calls (Horn and Leonard 2008), nestlings often have 

conspicuously colored mouths that are thought to play a role in parent-offspring 

communication and influence parental feeding decisions (Wright and Leonard 2002; Wiebe 

and Slagsvold 2009). Bright mouth coloration is hypothesized to serve three non-mutually 

exclusive functions. First, it may make nestlings more conspicuous from the nest, allowing 

for more efficient feeding ("detectability hypothesis"; Kilner and Davies 1998; Heeb et al. 

2003; Wiebe and Slagsvold 2009). This hypothesis is supported by the observation that 

species that nest in dark areas, such as cavity nesters, often have paler mouth coloration than 

those in open nests (Kilner and Davies 1998; Hunt et al. 2003). Second, mouth coloration 

may distinguish conspecific young from brood parasites ("recognition hypothesis"; Schuetz 

2005). Finally, the spectral properties of nestling mouth color may signal the nestling’s 

overall health or condition ("quality signal hypothesis"; Kilner 1997; Wiebe and Slagsvold 

2009). For example, the barn swallow Hirundo rustica nestling mouth coloration indicates 

quality and influences parental allocation of food (de Ayala et al. 2007), as parents allocate 

food according to the reproductive value of their young (Clutton-Brock 1991). Regardless of 

which hypothesis is most relevant, nestling mouth coloration is clearly important in parent-

offspring communication and, if the perception of nestling mouth and flanges (i.e., the outer 

rim of the mouth) coloration is disrupted, it may influence the parents’ ability to feed or to 
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selectively invest in particular offspring. The effects of human disturbance on visual begging 

signaling (e.g., nestling mouth coloration) have not yet been studied. 

Eastern bluebirds nest in cavities, and their nestlings have bright mouth coloration 

that reflect both in the ultraviolet and long wavelength range. Although little is known about 

the function of nestling mouth coloration in Eastern bluebirds in other cavity nesting birds, 

bright mouth coloration serve as an important signal in parent-offspring communication 

(Kilner and Davies 1998; Heeb et al. 2003; Wiebe and Slagsvold 2009). Here I explore 1) the 

function of bright mouth color as a reliable signal of nestling condition and 2) the effects of 

human disturbance on the discernability of these potential signals.  

 

METHODS: 

 

Field site and field methods 

I studied Eastern bluebirds at 11 sites in New York and Connecticut from April – August 

2009 and 2010 (Figure 2.1). In 2009 I studied 5 sites in Central New York, and in 2010 I 

studied 6 sites in the Southeastern New York and 1 site in Southern Connecticut (Figure 2.1). 

Sites varied significantly in levels of human disturbance, density of nest-boxes, and the 

number of nesting adults. I used ambient noise as a measure of human disturbance (see 

below), and study sites ranged from quiet fields (mean Leq = 49.5 dBA) to sites near noisy 

roads (mean Leq = 69.8 dBA). Beginning in mid-March, each site was visited at least once a 

week. Boxes were checked for signs of nesting, and after the nestlings were five days old 

they were banded with a metal USGS band for identification, blood samples were taken, and 

measurements including tarsus length (mm) and mass (g) were taken for each nestling. Body 
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condition was calculated for each nestling using the residuals from the regression of mass on 

tarsus length (Bize et al. 2006).  

 

Ambient noise 

Using a sound pressure level (SPL) meter (Larson-Davis 824 Sound Level Meter), I 

measured ambient noise for thirty seconds within each pairs’ nesting area between 0800 and 

1000, during the period of highest activity in Eastern bluebirds (Gowaty and Plissner 1998). 

As previous studies have shown that anthropogenic noise is highest in amplitude at low 

frequencies and have used low frequency ambient noise as a quantitative measure of 

disturbance (Slabbekoorn and Ripmeester 2008), I focused on low frequency ambient noise 

(Leq of 0-4 kHZ) for my analyses. However, using full spectrum ambient noise (Leq of 0-20 

kHz) gave qualitatively similar results. SPL measurements were averaged across each site. 

Based on the frequency distribution of low frequency ambient noise, sites were classified into 

disturbed (mean = 42.743 dBA, SE = 2.209), intermediate (mean = 33.951 dBA, SE = 0 

.255), or undisturbed sites (mean = 28.246 dBA, SE=0.326) (Figure 2.2). Low frequency 

ambient noise (Leq 0-4) was significantly different between disturbed (D), intermediate (I) 

and undisturbed (U) sites (F = 28.141, d.f. = 2,8, p < 0.001).  

 

Measurement of nestling mouth reflectance and nest reflectance, and ambient light  

Ten scans of nest material, and three reflectance scans of each nestling’s flanges (i.e., 

the external rim around the mouth; Figure 2.3) and mouth were taken using an Ocean Optics 

USB2000 spectrophotometer (Ocean Optics In., Dunedin, FL, USA) and a Xenon flash light 

source (Ocean Optics PX-2; as in Uy and Stein 2007). A black anodized aluminum sheath 
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with a 45 tip surrounded the micron fiber-optic probe. Each scan was standardized with a 

97% reflecting spectralon white standard (Labsphere) and a dark current reading. CLR: 

Colour Analysis Program v. 1.05 (Montgomerie 2008) was used to compile raw reflectance 

data. The multiple scans for nest, mouth and flanges were later averaged for each individual. 

To quantify the intensity and spectral properties of light illuminating nestlings, I 

measured the irradiance of ambient light inside each nest-box with an Ocean Optics USB 

2000 spectrophotometer (Dunedin, FL) and a cosine corrected sensor (Ocean Optics CC-3-

UV) pointed towards the opening of the nest box. To allow for comparisons across nests and 

sites, irradiance measurements were calibrated with a standard light source (LiCor 1800-02, 

LiCor Environmental, Lawrence, KS, USA). 

 

Modeling nestling mouth coloration 

To determine how conspicuous nestlings are from their background and how 

discriminable they are from each other, I modeled the contrast between nestlings and their 

background, and nestlings against each other, using generalized Passerine eye parameters, a 

Weber fraction of 0.05 and known cone densities of blue tits Parus caeruleus (Vorobyev and 

Osorio 1998; Hunt et al. 1999; Endler and Mielke 2005).  

 

Calculation of quantum catch of each cone: In this model the quantum catch of each avian 

cone (i.e., ultraviolet-wavelength sensitive (UWS), short-wavelength sensitive (SWS), 

medium-wavelength sensitive (MWS), and long-wavelength sensitive (LWS)) in response to 

a color patch (i.e., area of color) is calculated by multiplying the reflectance of the color 

patch (i.e., mouth, gape, and nest material) by the ambient light illuminating the color patch 
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(irradiance), and then by the spectral sensitivities of each cone. The quantum catches were 

then transformed using a von Kries transformation, which is calculated by dividing the 

quantum catch for each color patch by the quantum catch of a pure white object, which 

controls for color constancy (Vorobyev et al. 1998). 

 

Calculation of chromatic contrast: To estimate the perceived conspicuousness of nestling 

mouth coloration against the nestling background, and the discriminability of mouth 

coloration among nestlings, I calculated the chromatic contrast by finding the difference 

between the quantum catch of each cone for the two color patches being compared (e.g., 

mouth vs. nest, nestling’s mouth vs. another nestling’s mouth), and weighting these 

differences by receptor noise (Vorobyev et al. 1998). The resulting measurement is Delta S 

(S), which measures the contrast in color between the two color patches irrespective of 

brightness. 

 

Calculation of achromatic contrast: To measure achromatic contrast (e.g., brightness 

contrast) between two patches, I calculated the quantum catch of the avian double cones in 

response to both color patches being compared. Double cones are a separate class of 

photoreceptors that are used by birds for achromatic visual tasks (e.g., pattern recognition). 

Because the principal and accessory members that make up the double cone contain MWS 

and LWS pigments (Hart and Vorobyev 2005), the spectral absorbance of double cones was 

approximated by combining the spectral absorbance of MWS and LWS single cones (Osorio 

et al. 1999). The procedure for calculating the quantum catch of double cones is the same as 

the calculations for single cones (see above). Achromatic contrast was then calculated as the 
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difference in quantum catch by the double cones stimulated by two color patches factoring in 

neural noise (as in Loyau et al. 2007). The resulting measurement is Delta fQ (fQ). 

Both S and fQ are measured in “just noticeable differences” (jnd). Jnd’s greater 

than 1.0 indicate that the bird can likely distinguish the two color patches (Vorobyev and 

Osorio 1998; Cassey et al. 2008). This estimate is based on a Weber fraction of 0.05 which 

was determined from behavioral experiments on the Pekin robin, Leiothrix lutea that tested 

the ability of individuals to distinguish between different colored screens (Maier 1992). 

 

Plotting quantum catch in tetrahedral space: Since there was a difference in the chromatic 

contrast of nestling mouth color in relation to disturbance level, I further explored whether it 

was the ambient light illuminating the nestling and/or the intrinsic color of the nestling’s 

mouth was responsible for the change in discriminability. Thus, I plotted the quantum catch 

of each cone (see above) in response to ambient light, and in response to nestling mouth 

reflectance in tetrahedral space using Avicol v.5 (Gomez 2006). This method uses a 

tetrahedral (height of 1) representation of the stimulation of each of the four avian cones, 

with each vertex representing one of the avian cones, and then compares them to the 

achromatic origin (Appendix 1, Figure A.1). This provides a measure of chroma (r), and 

latitudinal () and longitudinal () hue for both ambient light, as well as for nestling mouth 

reflectance (Appendix A, Figure A.1; for more details see Endler and Mielke 2005). Chroma 

measures the purity of the color, and is the distance of the color patch/ambient light from the 

achromatic origin. Latitudinal hue, is the angle between the y-axis and the vector from the 

achromatic origin to the point plotted in tetrahedral space, which describes color in the uv-

color range. Longitudinal hue is the angle between the x-axis and the vector from the 
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achromatic origin to the point plotted in tetrahedral space, which describes color in the visual 

color range of humans (Appendix A, Figure 2.1). 

 

Statistical analysis  

Regression analysis was used to determine whether mouth and flange color were 

predicted by body condition, while controlling for both site and disturbance level by entering 

these into the model as covariates. Additionally, I ran this regression without any covariates 

and obtained similar results. 

  To test whether if disturbance level influenced the discernability of nestling mouth 

coloration, I used nested ANOVAs for each of the color patches (i.e., Flanges ∆S and ∆fQ, 

and Mouth ∆S and ∆fQ) with disturbance level as a main effect, and site nested within 

disturbance level. Nested ANOVAs were also used to examine the relationship between the 

color properties of irradiance and mouth color, such as hue ( and ) and chroma (r) between 

disturbed, intermediate, and undisturbed sites. All statistical analysis were two-tailed and 

were conducted in SPSS Statistics 19.0 (Chicago, IL).  

 

RESULTS: 

Flanges and mouth coloration in relation to body condition 

Nestling mouth and flanges reflect light in both the ultraviolet and long wavelength (Figure 

2.4). There was a significant relationship between body condition and mouth ∆S (r=0.315, 

d.f.=38, p=0.053; Figure 2.5), but not between body condition and flanges ∆S (r= 0.19, 

d.f.=38, p=0.213), flanges ∆fQ (r=-0.127, d.f.=38, p=0.451), or mouth ∆fQ (r=0.088, d.f.=38, 
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p=0.568). Site and disturbance level did not significantly affect any of the relationships 

between body condition and mouth and flanges coloration. 

 

Discernability between nestlings and disturbance level 

There was a significant relationship between disturbance level and mouth ∆S (Wald 


2
=6.169, d.f.=2,7, p=0.046), but not between disturbance level and flanges ∆S (Wald 


2
=2.228, d.f.=2,7, p=0.328), flanges ∆fQ (Wald 

2
=0.870, d.f=2,7, p=0.647), and mouth 

∆fQ (Wald 
2
=0.393, d.f.=2, p=0.821) (Figure 2.6). 

 

Irradiance and mouth reflectance in comparison to disturbance level 

When examining the color properties of irradiance separately, I found that longitudinal hue 

(; Wald 
2
=8.287, d.f.=2,7, p=0.016) and chroma (r; Wald 

2
=15.767, d.f.=2,7, p<0.001) 

differed significantly between sites differing in disturbance. Longitudinal hue was highest in 

intermediate areas (mean=0.628 radians), intermediate in undisturbed areas (mean=0.335 

radians) and lowest in disturbed areas (mean = 0.070 radians), indicating that ambient light is 

more orange in color in disturbed areas and more yellow in undisturbed areas. Because this 

pattern does not coincide with the pattern found in the changes in discernability across 

disturbance levels, it is unlikely that the hue of irradiance is an important factor influencing 

discernability. However, chroma was found to be highest in undisturbed areas (mean = 

0.228), intermediate in intermediate areas (mean=0.200), and lowest in disturbed areas 

(mean=0.162), which is consistent with the pattern I found in discriminability in nestling 

mouth color. Latitudinal hue (; Wald 
2
=5.091, d.f.=2,7, p=0.078) and brightness (Wald 
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
2
=1.493, d.f.=2,7, p=0.496) were not significantly different between the three disturbance 

levels. 

With respect to mouth reflectance, there was a significant difference in latitudinal hue 

() between disturbance levels (Wald 
2
=6.710, d.f.=2,7, p=0.035). Intermediate sites had the 

highest  (mean=-0.603 radians), followed by disturbed sites (mean=-0.640 radians), and 

then undisturbed sites (mean=-0.677 radians), suggesting that intermediate sites have the 

highest UV reflectance. As this is inconsistent with the pattern found in measures of 

discernability it is unlikely to play an important role in the differences in discernability across 

disturbance levels. Additionally, visual examination of the average reflectance spectra of the 

mouth suggests little difference in color properties across disturbance levels (Figure 2.7). The 

other spectral properties of nestling mouths did not vary across disturbance levels (, Wald 


2
=4.945, d.f.=2,7, p=0.084; r, Wald 

2
=2.123, d.f.=2,7, p=-0.346; brightness, Wald 


2
=2.225, d.f.=2, p=0.329). 

 

DISCUSSION: 

I found a relationship between nestling body condition and the perceived chromatic 

contrast of mouth color, suggesting that nestling mouth coloration may serve as signal of 

nestling quality to parents. Like many other Passerine species, Eastern bluebird nestlings 

have bright mouth coloration that reflects both ultraviolet and long-wavelength light (Figure 

2.4). Our finding that neslting mouth color is related to body condition of nestling is 

consistent with the quality-signalling hypothesis, and is consistent with other studies that 

have found relationships between offspring quality and mouth coloration (e.g., de Ayala et al. 

2007). I did not find a relationship between flanges coloration and body condition, 
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suggesting that flanges coloration may not signal offspring quality, but may instead serve in 

detectability or recognition. These results are consistent with a recent study that found that 

mouth color in the barn swallow Hirundo rustica serves as an indicator to parents of nestling 

condition, but flanges coloration does not (de Ayala et al. 2007). However, de Ayala et al 

(2007) did find that nestlings with brighter flanges coloration received more food from their 

parents, suggesting that flanges color does serve as an important signal, perhaps as a potential 

target for parents.  

Using generalized Passerine optical parameters and spectral data on signal and natural 

ambient light, I found that the perceived discriminability of nestlings’ mouth coloration 

varied among disturbed, intermediate, and undisturbed sites. Specifically, nestling mouth 

color was least discriminable in disturbed habitats, followed by intermediate, and then 

undisturbed habitats (Figure 2.6). A visual examination of the average irradiance within each 

disturbance level shows that mean irradiance for disturbed habitats has lower values in 400-

520 nm range than undisturbed and intermediate sites (Figure 2.8), suggesting lower chroma 

in blue-to-yellow light. As the second peak for nestling mouth coloration occurs at ca. 510 

nm (Figure 2.4), the reduction in chroma in ambient light in disturbed areas makes the 

second peak of nestling mouth color less discernable in disturbed areas. Moreoever, I did not 

find a change in mouth color across disturbance levels that coincided with the changes in 

discernability among nestlings. Thus, the change in discriminability found between 

disturbance levels is likely due to changes in the spectral property of ambient light 

illuminating the nestlings, and not the intrinsic properties of mouth color. The difference in 

discriminability between nestlings from disturbed and undisturbed sites was 1.508 just 

noticable differences (jnds). Since birds can discriminate between objects that differ by 
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greater than 1.0 jnds, the perceived difference in discernability among nestlings in disturbed 

and undisturbed habitats should be biologically relevant. For example, the cuckoo finch 

Anomalospiza imberbis can discriminate the eggs of conspecific brood parasites that were 

less than 1 jnd from their own (Spottiswoode and Stevens 2010). This provides evidence that 

a contrast difference of 1 jnd can be significant in discriminability in birds. Thus the decrease 

of 1.508 jnds may affect a parent’s ability to discriminate among their young. However, as 

the average jnd between neslings’ mouth chromatic contrast in disturbed habitats was 4.198 

jnds, the difference in ambient light does not fully disrupt the ability of parents to distinguish 

between the nestlings within the nests but it should decrease their ability to do so.  

It is hypothesized that parents preferentially feed nestlings that are in better condition 

since they should have a higher reproductive value to the parent (Clutton-Brock 1991; 

Godfray 1991, 1995). Thus, disruption of signals of quality will influence the parent’s ability 

to effectively discriminate and preferentially allocate resources among young, which could 

negatively affect the reproductive success of parents. Experiments examining how decreased 

discriminability can influence parental feeding are needed to test how decreases in 

discriminability caused by anthropogenic distubances will affect optimal allocation of limited 

resources. 

 

Conclusions  

Previous studies find that anthropogenic disturbance can lead to changes in signaling. 

For instance, in many bird species, increased ambient noise is correlated with changes in 

song characteristics including an increased minimum frequency (reviewed in Rabin et al. 

2003; Patricelli et al. 2006; Slabbekoorn and Ripmeester 2008). Additionally, comparative 
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studies have found that bird species with darker nests often have brighter mouth coloration 

(Kilner and Davies 1998; Hunt et al. 2003). If the same processes are at work in 

microevolutionary scales, the color of nestling mouths may shift to overcome the effects of 

disturbance. However, this depends on the assumption that bluebirds born in disturbed areas 

return to disturbed areas, that a decrease in discriminability amongst nestlings decreases 

fitness, and that nestling mouth coloration has a strong genetic basis. Testing these critical 

assumptions will provide insights into the potential evolutionary response of nestling mouth 

color to changes in signaling environment. 
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CHAPTER III 

 

THE EFFECTS OF ANTHROPOGENIC DISTURBANCE ON MULTIMODAL SIGNALS 

IN THE EASTERN BLUEBIRD, SIALIA SIALIS 
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SUMMARY: 

Natural selection favors signals that are conspicuous and thus easily 

distinguished from background noise. Alterations to a signaling environment that 

decrease the effective transmission of a signal should therefore lead to changes in the 

design of these signals. Anthropogenic disturbance can cause rapid changes to the 

signaling environment, and recent work shows that indeed anthropogenic noise can 

lead to changes in acoustic signals. Most species rely on signals in more than one 

sensory modality (“multimodal signaling”) and little is known about how multimodal 

signals change in response to a changing signaling environment. This chapter examines 

how anthropogenic disturbance can affect multimodal signals in the Eastern bluebird, 

Sialia sialis, a Passerine that uses song and plumage color in conspecific 

communication. I studied the song and plumage characteristics of Eastern bluebirds in 

disturbed, intermediate and undisturbed habitats. I found that disturbed sites have 

higher levels of low frequency ambient noise, and, that male bluebirds at these sites sing 

at a higher minimum frequency. Additionally, I found that the visual background 

differs between disturbed and undisturbed sites, with disturbed sites having less 

chromatic (i.e., less pure in color) background, and backgrounds greener in color than 

the yellower undisturbed sites. Although there are differences in the visual background 

between disturbance levels, I do not find concurrent changes in plumage 

characteristics. Using the spectral properties of plumage patches and the visual habitat, 

along with published Passerine sensory eye parameters, I modeled how males will be 

perceived in disturbed, intermediate, and undisturbed sites, and find that the 

conspicuousness of male’s uv-blue color patch is lowest in disturbed habitats, 
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intermediate in undisturbed habitats, and highest in intermediate habitats. Therefore 

the results suggest that Eastern bluebirds have responded to anthropogenic changes in 

acoustic but not visual environment. The difference in response to changes in signaling 

environment may reflect differences in the functions of the signals, or differences in 

how plumage and song characteristics are inherited. 
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INTRODUCTION: 

There is an astounding diversity of animal signals throughout the natural world. 

These signals include sexual displays, aggressive behaviors, begging signals, and alarm calls 

(Johnstone 1997; Searcy and Nowicki 2005). This diversity of signals is mediated by 

selection working on two major components of signal design: natural selection on strategic 

design which favors signals that serve as reliable indicators of need, health, danger, and 

quality, and natural selection on signal efficacy which favors signals that are easily 

discernable, detectable, and memorable (Guilford and Dawkins 1991). Many correlative 

studies have found that signal structure is related to the signaling background (Slabbekoorn 

and Smith 2002a; Podos and Nowicki 2004; Thery 2006). For example, in a comparative 

study of 20 bird species from dark (e.g., closed) and light (e.g., open) habitats, species in 

darker habitats were found to have plumage richer in long-wavelengths, thus maximizing 

their chromatic contrast with the darker habitat (McNaught and Owens 2002). Likewise, 

analysis of intraspecific variation in the little greenbul, Andropadus virens, revealed that 

individuals living in habitats with louder low frequency noise sing songs at a higher 

minimum frequencies to avoid song-masking (Slabbekoorn and Smith 2002b). Direct 

experiments testing how signals change in different signaling environments are rare (Rowe 

and Skelhorn 2004). 

Changes in the environment driven by industrialization and urban development can 

serve as an experiment that allows us to examine how populations respond to rapid changes 

in signaling conditions. Recent work has shown that noise pollution can alter the design of 

acoustic signals in birds (Patricelli and Blickley 2006; Slabbekoorn and Ripmeester 2008), 

frogs (Sun and Narins 2005), and mammals (Goold 1996; Miller et al. 2000; Foote et al. 
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2004; Schaub et al. 2008). Likewise, human-induced eutrophication in lakes can lead to 

significant changes in how animals communicate (Seehausen et al. 1997; Engstrom-Ost and 

Candolin 2007). Research on the effects of anthropogenic disturbance on communication has 

focused on signals used in one sensory modality.  However, many species communicate 

using a suite of signals from multiple modalities (i.e., “multimodal signals”). 

Multimodal signals are used by species from a variety of taxa including: amphibians 

(Grafe and Wanger 2007; Taylor et al. 2007), birds (Hebets and Papaj 2005; O'Loghlen and 

Rothstein 2010), mammals (Partan et al. 2010; Slocombe et al. In Press), crustaceans 

(Aquiloni et al. 2009), insects (Holldobler 1999; Papke et al. 2007; Barth et al. 2008; 

Ratcliffe and Nydam 2008), and arachnids (Gordon and Uetz 2011). There are two main 

hypotheses explaining the function of multimodal signals: multiple messages, in which the 

signals convey different messages, and redundant signaling, in which the signals reinforce 

the same information by redundancy (Candolin 2003; Hebets and Papaj 2005). In both cases, 

signals can either be assessed sequentially or in unison (Candolin 2003). It is essential when 

studying anthropogenic disturbance on signal design to explore not just the response of a 

single signal, but the response of a suite of signals. Moreover, the function of a signal and the 

way it is assessed may influence how it responds to a change in signaling environment. Here 

I explore the effects of anthropogenic disturbance on the design of visual and acoustic signals 

in the Eastern bluebird, Sialia sialis. 

Eastern bluebirds live in a variety of open habitats ranging from very quiet to noisy 

areas nest-boxes for Eastern bluebirds are often placed along busy highways and interstates 

(e.g., Interstate-90 in NY State). Because of this variation in nesting habitat, bluebirds are 

exposed to a wide range of both visual and acoustic signaling conditions.  Based on past 
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research in other species suggesting that signals can change in response to changes in 

signaling conditions, I predicted that changes to the visual and acoustic signaling 

environment would lead to changes in visual and acoustic signals in the Eastern bluebird. 

Since Eastern bluebirds have a low frequency song (1.5 - 3.5 kHz; Gowaty and Plissner 

1998), low frequency anthropogenic noise is predicted to drive changes in frequency 

components of Eastern bluebirds’ song including shifts in minimum frequency, peak 

frequency, and potentially maximum frequency. Eastern bluebird’s ancestral habitat 

consisted of open areas including fire-maintained savannas, openings in forest with water 

(e.g., ponds), large openings in forests, and exposed areas of hills (Kiviat 1982 in Gowaty 

and Plissner 1998), whereas habitats currently range from open “natural” habitats (e.g., 

abandoned fields), to more heterogeneous visual habitats (e.g., areas with roads, trees, and 

buildings). Plumage coloration including the blue coloration of their back, rump, wings and 

tail, as well as the chestnut breast coloration, has been found to play an important role in the 

reproductive success of bluebirds (Siefferman and Hill 2003). Since plumage serves as an 

important signal, I predicted that the more heterogeneous visual habitat in disturbed areas 

may lead to changes in visual signals. 

 

METHODS: 

Field site and field methods 

I studied Eastern bluebirds at 11 sites in New York and Connecticut from April – August 

2009 and 2010. In 2009, I studied 5 sites in central New York, and in 2010, I studied 6 sites 

in southeastern New York and 1 site in southwestern Connecticut (Figure 2.1). Sites varied 

significantly in levels of human disturbance. I used ambient noise as a measure of human 
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disturbance (see methods below), and my sites range from quiet fields (mean Leq = 49.5 

dBA), to sights near noisy roads (mean Leq = 69.8 dBA).  

Beginning in mid-March, each site was visited at least once per week. Nest-boxes 

were checked for signs of nesting, and surrounding areas were checked for the presences of 

adult bluebirds. Once a pair of bluebirds began defending a nest-box, mist nets or box traps 

were used to capture the breeding pair. I banded each individual with unique, plastic color 

bands and a metal USGS band for identification.  

 

Ambient noise 

Using a sound pressure level (SPL) meter (Larson-Davis 824 Sound Level Meter), I 

measured ambient noise for thirty seconds within each pairs’ nesting area between 0800 and 

1000, the period of highest song activity in Eastern bluebirds (Gowaty and Plissner 1998). 

Because I was interested in how increased anthropogenic noise could affect Eastern bluebird 

song, I examined ambient noise that would mask their song’s known frequency range (1.5-

3.5 kHz) (Gowaty and Plissner 1998). Additionally, previous studies have shown that 

anthropogenic noise is highest in amplitude at low frequencies, thus I focused on low 

frequency ambient noise (Leq of 0-4 kHz). However, using full spectrum ambient noise (Leq 

of 0-20 kHz) gave similar results. SPL measurements were averaged across each site. Based 

on the frequency distribution of low frequency ambient noise, sites were classified into 

disturbed (mean = 42.743 dBA, SE = 2.209), intermediate (mean = 33.951 dBA, SE = 0 

.255), or undisturbed sites (mean = 28.246 dBA, SE=0.326) (Figure 2.2). Low frequency 

ambient noise (leq 0-4) was significantly different between disturbed (D), intermediate (I) 

and undisturbed (U) sites sites (F = 28.141, d.f. = 2,8, p < 0.001). 
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Song measurements 

For each male, 15 minutes of continuous song was recorded using a Marantz PMD670 digital 

recorder (Mahwah, NJ) set to 16-bit PCM, 48 kHz sampling rate, and a Sennheiser (Old 

Lyme, CT) unidirectional microphone. Song files were analyzed in Raven Pro 1.3 (Cornell 

Lab of Ornithology, Ithaca, NY). I measured the maximum frequency (Fmax), minimum 

frequency (Fmin), peak frequency (Fpeak), and frequency bandwidth (Fbw) for each song bout 

within a haphazardly chosen one-minute portion of each males’ song (Figure 3.1). I then took 

the average of each song characteristics for each site. 

 

Measurement of the visual habitat: ambient light and visual background 

I measured radiance and irradiance of each male’s signaling environment. Down-welling 

irradiance measures the intensity and spectral properties of light over 180 degrees, which 

characterizes the ambient light that illuminates birds and their visual background (e.g., trees, 

grass, etc. Endler 1993). Irradiance measurements were taken with an Ocean Optic USB 

2000 (Ocean Optics, Dunedin, FL), and a cosine corrected sensor (Ocean Optics CC-3-UV) 

pointed upwards above each pair’s nest-box. Radiance collects light that reflects over 1 

steridean degree from objects that make up the bird’s visual background (Endler 1993; Leal 

and Fleishman 2002). In essence, this measures light that is being reflected back by objects 

being illuminated by the ambient light. Because the visual background is composed of many 

objects that vary in reflectance, I took 16 radiance measurements using a fused silica 

collimating lens (Ocean Optics 74-UV) in a spherical arrangement, with one measurement 

every 45 degrees. The 16 radiance scans were then averaged for each territory, providing a 
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measure of the average visual background. To allow for comparison across territories and 

sites, radiance and irradiance measurements were calibrated using a standard light source 

(LiCor 1800-02, LiCor Environmental, Lawrence, KS, USA).  

 

Measurement of plumage characteristics 

I used an Ocean Optics USB2000 spectrophotometer (Ocean Optics In., Dunedin, FL, USA) 

and a Xenon flash light source (Ocean Optix PX-2, as in Uy and Stein 2007) to measure the 

plumage reflectance of each male’s color patches, including the head, back, breast, belly, 

rump, tail, and wings. The micron fiber-optic probe was surrounded by a black anodized 

aluminum sheath with a 45 degree tip. Each scan was standardized with a 97% reflecting 

spectralon white standard (Labsphere) and a dark current reading. Three scans were taken for 

each patch, which were averaged for each individual. 

 

Modeling the visual signaling environment, plumage reflectance, and the perceived 

conspicuous of males using avian eye parameters 

To avoid making assumptions about the avian visual system, I modeled the plumage color 

(i.e., reflectance) of males, visual background (i.e., radiance), and ambient light (i.e., 

irradiance) using avian eye parameters and plotted in tetrahedral space (see below).  

Since the successful transmission of signals requires individuals to be able to 

distinguish signals from the background, I also calculated the conspicuousness of males 

against their signaling background to get a non-biased measure of how anthropogenic 

disturbance may be changing the conspicuousness of birds. For all calculations, I used 

generalized higher Passerine eye parameters, a Weber fraction of 0.05 and known cone 
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densities of blue tits Parus caeruleus (Vorobyev and Osorio 1998; Hunt et al. 1999; Endler 

and Mielke 2005).  

 

Calculation of quantum catch of each cone: In this model the quantum catch of each of the 

four avian cones (i.e., ultraviolet-sensitive (UVS), shortwave-sensitive (SWS), mediumwave-

sensitive (MWS), and longwave-sensitive (LWS) cones) in response to stimulation of color 

patches was calculated by multiplying the reflectance of the color patch (e.g., breast), by the 

ambient light illuminating the color patch (irradiance), and then by the spectral sensitivities 

of each cone. Similarly, to calculate the quantum catch of each avian cone in response to 

stimulation by the visual background, the radiance was multiplied by the spectral sensitivities 

of each cone. These quantum catches were then transformed using a von Kries 

transformation, which was calculated by dividing the quantum catch for each color patch by 

the quantum catch of a pure white object, which controls for color constancy. 

 

Plotting quantum catch in tetrahedral space: To compare plumage color, visual background 

and ambient light across disturbance levels, I plotted the quantum catch of each cone (see 

above) in response to the signal when illuminated by white light in tetrahedral space using 

Avicol v.5 (Gomez 2006). This method plots the cone stimulation on a tetrahedron with a 

height of 1, with each vertex representing one of the four avian cones. The origin or center of 

the tetrahedron represents achromatic objects (Appendix 1; Figure A.1).  This provides a 

measure of chroma (r), and latitudinal () and longitudinal () hue for ambient light, as well 

as plumage reflectance (Appendix A, Figure A.1; for more details see Endler and Mielke 

2005). Chroma measures the purity of the color, and is the distance of the color 
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patch/ambient light from the achromatic origin. Latitudinal hue, is the angle between the y-

axis and the vector from the achromatic origin to the point plotted in tetrahedral space, which 

describes color in the ultraviolet range. Longitudinal hue is the angle between the x-axis and 

the vector from the achromatic origin to the point plotted in tetrahedral space, which 

describes color in the visual color range of humans (Appendix A, Figure A.1). 

 

Calculation of chromatic contrast: To estimate the perceived conspicuousness of male 

plumage against the signaling background, I calculated the chromatic contrast by finding the 

difference between the quantum catch of each cone for the two color patches being compared 

(i.e., plumage reflectance and background radiance), and weighting these differences by 

receptor noise (Vorobyev et al. 1998). The resulting measurement is Delta S (S), which 

measures the chromatic contrast between the two color patches irrespective of brightness. 

 

Calculation of achromatic contrast: To measure achromatic contrast (e.g., brightness 

contrast) between two patches I calculated the quantum catch of the combination of avian 

double cones in response to both the plumage signal, and the background signal.  Double 

cones, a separate class of photoreceptors, are used by birds for achromatic visual tasks (e.g., 

pattern recognition). Because the principal and accessory members that make up the double 

cone contain MWS and LWS pigments (Hart and Vorobyev 2005), the spectral absorbance of 

double cones was approximated by combining the spectral absorbance of MWS and LWS 

single cones (Osorio et al. 1999). The procedure for calculating the quantum catch of double 

cones is the same as the calculations for single cones. Achromatic contrast was then 

calculated as the difference in quantum catch by the double cones stimulated by the signal 
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and the background factoring in neural noise (as in Loyau et al. 2007). The resulting 

measurement is Delta fQ (fQ). 

Both S and fQ are measured in “just noticeable differences” (jnd). Jnd’s greater 

that 1.0 indicate that the bird can likely distinguish the two color patches (Vorobyev and 

Osorio 1998; Cassey et al. 2008). This estimate is based on a Weber fraction of 0.05 which 

was determined from the behavioral experiments on the Pekin robin, Leiothrix lutea which 

tested the ability of individuals to distinguish between different colored screens (Maier 

1992). 

 

Statistical analysis 

To test for a relationship between low frequency ambient noise and song characteristics I 

calculated Pearson correlation coefficients between the average Fmin, Fmax, Fpeak, and Fbandwidth 

for each site, and the average low frequency ambient noise (Leq 0-4). In order to determine if 

the visual habitat was changing in relation to human disturbance, I compared the average 

brightness and spectral properties of ambient light (irradiance), and visual background 

(radiance) per site between habitat types (disturbed, intermediate, and undisturbed) using a 

one-way ANOVA. In order to determine how changes in the visual background may 

influence plumage coloration, I calculated Pearson correlation coefficients between 

background characteristics (i.e., radiance longitudinal hue and radiance chroma) that varied 

across sites and each of the male plumage characteristics. To determine how the perception 

of a visual signal is affected by anthropogenic changes in the visual environment, I used the 

measures of perceived plumage conspicuousness (see above) and compared them across 
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disturbance level using an ANOVA. All statistical analyses were done using SPSS/PASW 

Statistics 18 (Chicago, IL). All tests of significance are two-tailed. 

 

RESULTS: 

Effects of ambient noise on song characteristics 

There was a significant relationship between the amplitude of low frequency ambient noise 

and Fmin (r = 0.705, d.f. = 10, p = 0.015; Figure 3.2), but not with the other song 

characteristics (Fmax  r = 0.281, d.f. = 10, p = 0.403; Fpeak r = -0.137,  d.f. = 10, p = 0.689; 

Fbandwidth r = -0.023, d.f. = 10, p = 0.942).  

 

Visual background in relation to disturbance 

Latitudinal hue (; F = 0.697, d.f. = 2,8 p = 0.530), and brightness (F = 0.061, d.f. = 2,8, 

p=0.942) of the visual background (radiance scans) did not differ across sites of varying 

disturbance level. I did, however, find trends in the relationship between disturbance level 

and longitudinal hue (; F = 3.342, d.f. = 2,8, p = 0.096), and chroma (r; F = 3.610, df. = 2,8, 

p= 0.084). Undisturbed sites had an average longitudinal hue of 1.039 radians (i.e., more 

yellow color), intermediate sites had an average of 1.977 radians (i.e,. green/blue color) and 

disturbed sites had an average of 1.700 radians (i.e., more green in color). This suggests that 

undisturbed sites have a more yellow visual background, whereas intermediate and disturbed 

sites have a more green background. Chroma refers to the purity of the color, and 

undisturbed sites had the highest chroma (mean = 0.148 , SE = 0.004), the intermediate sites 

had a intermediate chroma (mean = 0.131, SE = 0.009), and the disturbed site had the lowest 

chroma (mean = 0.148, SE = 0.011). Finally, I found no significant differences between 
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disturbance level and ambient light longitudinal hue (; F = 0.892, d.f. = 2,8, p = 0.452), 

latitudinal hue (; F = 0.614, d.f. = 2,8, p = 0.568), chroma (r; F = 0.806, d.f. = 2,8, p = 

0.484), and brightness (F = 0.966, d.f. = 2,8, p = 0.426).  

 

Plumage characteristics in relation to changes in visual habitat 

To test if plumage coloration varied with changes in the visual environment caused by 

disturbance level, I compared plumage coloration to both the hue (i.e., color) and chroma 

(i.e., purity) of the visual background, which varied with respect to disturbance level. I found 

no significant correlations between the spectral properties of the visual background, and 

plumage in males (Table 2.1). 

 

Modeling conspicuousness of plumage patches 

Objects that differ from the visual background will be more conspicuous than those that 

match the visual background. Hence, to estimate perceived conspicuousness of male 

plumage, I calculated the perceived chromatic contrast (S) and brightness contrast (fQ) of 

each plumage color patch against the visual background. I found that the S of the blue color 

patch was significantly different between sites of varying disturbance levels (Figure 3.3; F = 

3.881, d.f. = 2,8, p = 0.06), with disturbed sites having the lowest average S (mean = 21.006 

jnd, SE = 3.128), the intermediate sites having the highest average S (mean = 33.321 jnd, 

SE = 4.651), and the undisturbed sties having an intermediate average S (mean = 27.0622 

jnd, SE = 1.364). I did not find significant relationships between chestnut S (F = 0.412, d.f. 

= 2,8, p = 0.676), chestnut fQ (F = 0.331, d.f. = 2,8, p = 0.727), or the uv-blue patche fQ 

(F = 0.347, d.f. = 2,8, p = 0.717) and levels of disturbance. 
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DISCUSSION: 

Ambient noise and song characteristics  

As predicted, ambient noise did have an impact on the minimum frequency of male’s song. 

Eastern bluebird songs range from 1.5 to 3.5 kHz, which overlaps with low frequency 

anthropogenic noise. Males in noisier habitats were found to sing at a significantly higher 

minimum frequency, presumably to reduce overlap with ambient noise. This result adds to 

the growing body of evidence showing that birds sing at a higher minimum frequency in 

areas with increased urban ambient noise (Patricelli and Blickley 2006; Slabbekoorn and 

Ripmeester 2008). I did not find a relationship between low frequency ambient noise and the 

other song variables: Fmax, Fbandwidth, and Fpeak. The lack of relationship between low 

frequency ambient noise and peak frequency of song was particularly surprising as peak 

frequency is the frequency at which the most energy is exerted, and is therefore often thought 

to be one of the most important components of song (Hu and Cardoso 2010). For Eastern 

bluebirds the peak frequency is 2.518  0.053 kHz, which well falls within the 0-4 kHz range 

where human ambient noise is loudest. Additionally, in a few other species the peak 

frequency has shifted upwards when exposed to anthropogenic disturbance (Hu and Cardoso 

2010). 

 

Visual background and plumage characteristics 

Eastern bluebirds generally live in open grassy habitats (Gowaty and Plissner 1998), but their 

habitat may vary in visual background and ambient light. The results show that in disturbed 

areas the visual background for Eastern bluebird territories is less chromatic (i.e., pure in 

color) than in both intermediate and undisturbed habitats. Additionally, I find that the hue or 
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color of intermediate and disturbed habitats are shifted towards the green – blue spectrum, 

whereas the hue of undisturbed habitats is shifted towards the yellow spectrum. This 

difference is likely due to more developed habitats having many small fragmented spaces 

bordered by trees, roads, and buildings. Ancestral bluebird habitat, in contrast, was likely 

more open (Gowaty and Plissner 1998). Interestingly, I did not find a change in male 

plumage despite the differences in color and chroma of the visual background across levels 

of disturbance. One possibility for this lack of change in plumage color is that the changes in 

the visual habitat may not affect the overall conspicuousness of male plumage. I did find that 

the changes in the visual habitat do affect the conspicuousness of the uv-blue plumage 

coloration of males. Specifically in disturbed habitats, uv-blue plumage is significantly less 

conspicuous than in undisturbed and intermediate habitats. However, the conspicuousness of 

the chestnut coloration of the breast does not change with habitat type. The brightness of both 

the uv-blue and the chestnut plumage of male Eastern bluebirds have been found to be 

reliable predictors of reproductive success (Siefferman and Hill 2003).  Considering its 

importance, it is surprising that plumage color did not change despite the loss of 

conspicuousness in disturbed sites. 

One potential explanation for the different responses of plumage and song to 

anthropogenic disturbance is that they function differently. Multimodal signals are thought to 

sometimes convey information at different physical distances (Backwell and Passmore 1996; 

Gibson 1996; Suk and Choe 2002). This may be the case in Eastern bluebirds since song is 

likely used in long-range communication, and thus may be assessed before plumage 

characteristics are assessed (i.e., sequential assessment, Candolin 2003). If song is disrupted, 

females may not be able to locate males, and would not assess their plumage characteristics. 
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If this is the case, then selection for a higher frequency song may be stronger than that on 

plumage characteristics, which are likely assessed at shorter ranges. 

 Additionally, if song and plumage are redundant signals, the loss in conspicuousness 

in plumage may not greatly affect the function of the signal if song serves as a backup. 

Redundant signals are thought to serve as backups for signals so that in unfavorable 

environments the content of the signal is still received.  Because, redundant signals are 

thought to be most useful when both signals are distinguishable (Hebets and Papaj 2005), 

selection should favor a change in plumage as well. Therefore, long-term studies on 

anthropogenic disturbance and signaling could help to illuminate how multimodal signals 

may respond to disruption. 

Many changes in song in response to anthropogenic disturbance have been attributed 

to phenotypically plastic, short-term adjustments in song characteristics like frequency and 

timing (Patricelli and Blickley 2006; Warren et al. 2006; Wood and Yezerinac 2006). 

However, as song is learned, young raised in disturbed habitats are likely to learn the altered 

song. Thus song learning may increases the ability of a species to adjust its’ song when 

exposed with a changing acoustic environment (Patricelli and Blickley 2006; Slabbekoorn 

and Ripmeester 2008).  Since plumage coloration is inherited genetically (Paxton 2009), it 

likely cannot adjust to a changing signaling environment as rapidly as a learned 

characteristic. Thus the difference we see between response in visual and acoustic signals 

may be the result of a time lag in the response of visual signals to visual disruption. 

Another potential explanation for the lack of change in plumage coloration in 

response to visual habitat alteration is that the signal content, which likely conveys an 

important aspect or quality of the signaler, may be more important that signal efficacy and is 
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thus under strong stabilizing selection not to change. In Eastern bluebirds, plumage has been 

shown to be an important signal, and males with brighter uv-blue, and breast coloration have 

a higher reproductive success and provide more parental care (Siefferman and Hill 2003).  

This pattern suggests that plumage may be an important signal in female mate choice, and if 

the signal is not completely disrupted, but instead just harder to perceive, selection on signal 

strategic design (e.g., content) may be stronger than selection on signal efficacy (i.e., 

effective transmission). 

To further understand how human disturbance influences multimodal communication, 

we need to understand how these signals are being used by conspecifics and how selection 

may lead to changes in these signals.  Very little research has examined how human induced 

changes in the environment can lead to changes in selection pressures, which can lead to 

changes in signals. Determining the function of signals and the selection pressures on signals 

may allow us to figure out why some signals in some modalities change while others do not. 

Additionally, research focusing on the consequences of signal change is essential, as the 

consequences of changes in signals and signaling efficacy caused by anthropogenic 

disturbance remains an open question.   
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CHAPTER IV 

 

THE INTERACTION BETWEEN CHANGES IN SIGNAL DESIGN AND THE 

OPERATION OF SEXUAL SELECTION IN RESPONSE TO ANTHROPOGENIC 

DISTURBANCE IN THE EASTERN BLUEBIRD, SIALIA SIALIS  
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SUMMARY: 

 Natural selection favors signals that are most conspicuous in the environment in 

which they are produced, transmitted, and received. A critical assumption of this 

hypothesis is that conspicuous signals enhance the fitness of the signaler. Observations 

of signal design rapidly changing in response to anthropogenic disturbances provide 

clear evidence that selection acts on signals to maximize detectability. However, with 

the exception of laboratory experiments, no study to date, has established selection 

mediating changes in signal design in response to anthropogenic disturbances. My 

previous work on Eastern bluebirds indicates that males sing at a higher pitch in areas 

with high levels of low frequency ambient noise, but I did not find a change in male 

plumage color in response to changes in the visual habitat resulting from anthropogenic 

disturbance. Here, I explored how changes in the signaling environment influence the 

operation of sexual selection, as measured by the proportion of young in a nest not sired 

by the social mate (extra-pair paternity, EPP), and how this, in turn, may drive changes 

in signal design. I examined the plumage and song characteristics as well as the rate of 

extra-pair paternity of Eastern bluebirds in disturbed, intermediate, and undisturbed 

areas. I found that the minimum frequency of song, and the brightness of male chestnut 

breast are significant predictors of EPP rate across all levels of disturbance. However, I 

found that rates of EPP differed with varying disturbance levels, and that the direction 

of sexual selection on minimum frequency of male songs varied across disturbance 

level, with males that have higher minimum frequency of song having a lower rate of 

EPP in disturbed areas but higher rates of EPP in undisturbed areas. I did not find any 

significant differences in selection on plumage traits or conspicuousness across different 
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disturbance levels. My results show that anthropogenic disturbances can have 

important consequences on selection acting on sexual signals (operation of sexual 

selection), which, in turn, can drive changes in signal design.  

 

 

 

 

 

 



 44 

INTRODUCTION: 

 There are a tremendous variety of signals in the natural world. The design of these 

diverse signals is a result of selection on two major components: strategic design, which 

deals with the content of the signal, and signal efficacy, which deals with the efficient 

transmission of the signal (Guilford and Dawkins 1991). Natural selection on strategic design 

often favors signals that serve as reliable indicators of need, health, danger, and quality while 

natural selection on efficacy favors signals that are easily discernable, detectable and 

memorable (Guilford and Dawkins 1991). Work comparing signals to their signaling 

environment supports the hypothesis that signals have evolved to be conspicuous in their 

particular signaling environment (reviewed in Slabbekoorn and Smith 2002a; Podos and 

Nowicki 2004; Thery 2006). However, experimentally documenting natural selection 

diversifying signal design is rare (Searcy and Nowicki 2005). 

Changes in the signaling environment driven by anthropogenic disturbances can serve 

as an experiment to determine how signal design responds to a new signaling environment 

(Patricelli and Blickley 2006). Recent work monitoring populations in altered habitats 

suggest that anthropogenic disturbances can indeed influence signal design (reviewed in 

Rabin et al. 2003; Patricelli and Blickley 2006; Slabbekoorn and Ripmeester 2008). For 

instance, recent work suggests that noise pollution can alter acoustic signals in several animal 

groups, including birds, amphibians and mammals (Table 1.1). Additionally, work on visual 

signaling in fish suggests that human-induced eutrophication can similarly affect visual 

communication (Table 1.1). These studies highlight the importance of understanding how 

organisms cope with a changing environment, but few have attempted to understand how 

selection actually acts on traits in disturbed habitats (but see Seehausen et al. 1997; 
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Engstrom-Ost and Candolin 2007).  Here I focus on understanding how human disturbance 

can influence the operation of sexual selection, how this may serve as a mechanism for 

changes in signals, and how this may affect the evolutionary trajectory of a species. 

Both the visual and acoustic signaling environment for Eastern bluebirds has been 

altered by human disturbance (Chapter III). Additionally, males have been demonstrated to 

sing at a higher minimum frequency to avoid low frequency anthropogenic noise (Chapter 

III). However, no change in plumage coloration was found in response to changes in the 

visual background. To explore how changes in signal design may result from changes in the 

breeding biology of Eastern bluebirds, I assayed variation in the rate of successful paternity 

of young in a nest for each male as a measure of sexual selection.  

Eastern bluebirds are considered socially monogamous yet males and females often 

participate in extra-pair copulations (EPCs;  Griffith et al. 2002). EPCs may allow females, 

especially those with low quality social mates, to choose higher quality sires (i.e., good 

genes) that provide genetic benefits to her offspring (reviewed in Moller and Briskie 1995; 

Jennions and Petrie 2000; Griffith et al. 2002; Kokko and Morrell 2005). The choice of an 

extra-pair mate is often mediated by sexual signals (Smith et al. 1991; Hoi and HoiLeitner 

1997; Kempenaers et al. 1997), and extra-pair paternity (EPP) rate has been shown to 

increase the variation in reproductive success among males, thus increasing the opportunity 

for sexual selection (Byers et al. 2004; Albrecht et al. 2007; Dolan et al. 2007; Balenger et al. 

2009). Using extra-pair paternity rate as a measure of sexual selection, I explored how 

anthropogenic-caused changes in signaling efficacy may influence the operation of sexual 

selection, and how this can lead to changes in signal design. 
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METHODS: 

Field site and methods 

I studied Eastern bluebirds at 11 sites in New York and Connecticut from April – 

August 2009 and 2010 (Figure 2.1). In 2009, I studied 5 sites in central New York, and in 

2010 I studied 6 sites in the southern New York and 1 site in southwestern Connecticut 

(Figure 2.1). Sites varied significantly in levels of human disturbance and density of 

nestboxes, and nesting adults. My sites ranged from very quiet sites (mean Leq = 49.5 dBA), 

to sights near noisy highways and interstates (mean Leq = 69.8 dBA), and I used ambient 

noise to classify sites as disturbed, intermediate and disturbed) (See Chapter III Methods for 

details on measurement of ambient noise). 

Throughout the breeding season, beginning in mid-March, each nest-box was visited 

at least once a week. Boxes were checked for signs of nesting, and areas were checked for 

the presence of adult bluebirds. Once a pair of bluebirds began defending a nestbox, mist nets 

or box traps were used to capture the breeding pair. I banded each individual with unique, 

plastic color bands and a metal USGS band for identification purposes and I took 

measurements including: mass (g), flattened wing chord length (mm), tarsus length (mm), 

and tail length (mm). In addition, blood samples were taken for each adult. The brachial vein 

of the bird was punctured using a 30G needle, and 0.2 cc of blood was collected using a 

microcapillary tube. Blood was then transferred to a 1.5 ml vial filled with Longmire solution 

(Longmire et al. 1991). 

Nestboxes were visited at least once per week.  After day five, one toenail of each 

nestling was clipped just past the vascular tissue (Busch et al. 2000) and a drop of blood was 

collected in a microcapillary and then transferred into a 1.5 ml vial filled with Longmire 
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Buffer (Longmire et al. 1991). Parents were assigned the social parents of a nest if they were 

observed feeding the nestlings on more than one occasion. 

Additionally, GPS points were taken at each nestbox using a Garmin Etrex Legend cx 

(Garmin International Inc., Olathe, KS). These points were then uploaded into ArcGIS 9.1 

(ESRI Corporation, Redlands, CA) for mapping and estimating the density of mating pairs at 

each site. 

 

Measurement of acoustic and visual signals and signaling environment  

 Song characteristics and ambient noise were measured as in Chapter III.  Plumage 

characteristics, the visual background, and ambient light was measured as in Chapter III.  In 

addition, to determine how visual signals are perceived by conspecifics, I modeled the 

conspicuousness of males in their signaling habitat (details described in Chapter III). 

 

Paternity analysis 

DNA was extracted from samples stored in Longmire buffer using the Qiagen DNeasy tissue 

kit and then subjected to polymerase chain reaction to amplify fragments containing five 

microsatellite markers (Smex 1, 5, 6, 8, 12; Ferree et al. 2008). Fragments were sized on a 

ABI 3730xl DNA analyzer at the Cornell University Life Sciences Core Laboratory Center, 

and were scored using Genemapper Software 3.0 (Applied Biosystems, Foster City, CA). 

Cervus 3.0 (Kalinowski et al. 2010) was used to calculate genotype frequencies and to run 

the paternity analysis. Genotype frequencies were calculated for all of the individuals for 

each year, and for parentage analysis with all males at a site treated as candidate fathers. 
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Offspring were considered extra-pair if they mismatched at two or more loci from the social 

father. 

 

Statistical analyses 

To check for a field site effect, a contingency chi-square analysis was used to compare the 

proportion of extra-pair young (EPY) at each site. I found no significant difference across 

sites ( 
2  

=  31.22, d.f. = 30, 0.25 < p < .5). Since there was no site effect I excluded site from 

my model explaining variation in EPY. In order to analyze the probability of having an extra-

pair young in a brood I used generalized linear models (GLM; R Development Core Team 

2010) with binomial errors and a logit link function, to determine which variables predicted 

the extra-pair paternity rate. The dependent variable was the proportion of extra-pair 

offspring in the brood. The main effects were: nearest neighbor distance, plumage 

characteristics of the social father, song characteristics of the social father, and disturbance 

level (i.e., disturbed, intermediate, or undisturbed). Additionally, I checked for interactions 

between song and plumage characteristics and disturbance levels because I was interested in 

determining if disturbance could lead to changes in what characteristics were related to extra-

pair paternity. Because I had many explanatory variables, I only included significant 

interactions between signals and disturbance in the final model. In order to examine if male 

conspicuousness was influencing extra-pair paternity rate, I used a second GLM with 

binomial errors and a logit link function explaining proportion of extra-pair young, with 

plumage conspicuousness and interactions between plumage and disturbance level as 

explanatory variables. I only included significant interaction terms in the final model. All test 

of hypotheses were two-tailed. 
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RESULTS: 

Extra-pair paternity analysis 

Cervus frequency analysis revealed that all five of the loci were in Hardy-Weinberg 

equilibrium and none were found to be in linkage disequilibrium. The average number of 

alleles for all primers and for both years was 12.4 (Table 4.1). For both 2009 and 2010, the 

exclusionary power of detecting extra-pair paternity with a known mother (n=227) was 0.98 

at a 95% confidence interval, and the exclusionary power of detecting extra-pair paternity 

without a known mother (n=19) was 0.97 at a 95% confidence interval. Based on mismatches 

between known mother and offspring, I calculated a typing error of 0.9%. This is likely due 

to human error, mutation, or null alleles.  

 

Extra-pair paternity and site differences 

Paternity analysis revealed that 22 of 188 offspring (11.7 %) were the result of extra-pair 

paternity, and that 15 of 47 nests (31.9%) contained extra-pair young (EPY). Of the 15 nests 

with EPY, eleven nests had 1 EPY, one nest had 2 EPY, and three nests had 3 EPY. Site 

averages range from 0 - 20.6% of nestlings being EPY and from 0 – 50% of nests containing 

EPY. These numbers are consistent with another study of extra-pair paternity in Eastern 

bluebirds (Stewart et al. 2010). 

 

Predictors of extra-pair paternity across disturbance levels 

The best predictors of EPP rate were minimum frequency of song and breast brightness 

(Table 2). Males with a higher minimum frequency (e.g., pitch) and those with a brighter 
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chestnut breast had a lower extra-pair paternity rate. I found no relationship between 

proportion of EPP and nearest neighbor distance or other plumage characteristics (Table 2). 

 

Anthropogenic disturbance and extra-pair paternity 

Extra-pair paternity rates differed significantly between disturbed and undisturbed sites, with 

disturbed sites having lower rates of EPP than undisturbed sites (Table 4.3). Within these 

sites, there were no significant relationships between plumage characteristics and disturbance 

level and the level of extra-pair paternity. There was, however, a significant interaction 

between the minimum frequency of song and disturbance level in relation to extra-pair 

paternity (Table 4.3). In the undisturbed habitats, the proportion of EPP young was higher for 

males with a higher minimum frequency song note. However, in the intermediate and 

disturbed sites the proportion of EPP young was lower for males with a higher minimum 

frequency (Figure 4.3). 

 

Visual Conspicuousness and extra-pair paternity 

There were no significant relationships between the conspicuousness of male plumage and 

extra-pair paternity rate (Table 4.4).  Additionally, there wertr no significant interactions 

between male plumage characteristics and extra-pair paternity across disturbance levels.  

 

DISCUSSION: 

Human disturbance, extra-pair paternity and selection on signals 

The results show that sexual selection on the minimum frequency of song differs 

between disturbed and undisturbed habitats. In undisturbed habitats, I found a positive 
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relationship between minimum frequency of song and extra-pair paternity rate (undisturbed r 

= 347.8 ± 299.7). Comparative studies have found that the frequency of song that birds sing 

at is related to their body mass, with birds with a larger mass singing at a lower frequency 

(Ryan and Brenowitz 1985). Thus low frequency song may serve as an indicator of male 

condition. So in undisturbed habitats, selection may favor lower frequency songs because 

they serve as a quality indicator. In contrast to undisturbed habitats, in intermediate and 

disturbed habitats, I found a negative relationship between minimum frequency of song and 

EPP rate (disturbed r = -146.4 ± 140.8; intermediate r = -424.2 ± 168.6; Figure 4.1), 

suggesting that males with a higher minimum frequency were less likely to be cuckolded 

than those with a lower minimum frequency. In these sites, the songs of males that sing at a 

low pitch may be masked by anthropogenic noise, and hence are not as attractive to females. 

This change in phenotypic selection between habitat types suggest that selection against 

songs with low minimum frequency may have resulted in the changes that we see in 

minimum frequency of song in response to anthropogenic noise, thus providing a putative 

link between the selective mechanism and observed changes in signal design mediated by 

urbanization. 

Additionally, extra-pair paternity rate was found to be higher in undisturbed sites, 

than in disturbed sites (p = 0.012; Table 4.3). This could be explained if birds in undisturbed 

habitat have closer neighbors, but nearest neighbor distance was not a predictor of EPP rate. 

Alternatively, disturbed habitats tend to be more fragmented, whereas undisturbed habitats 

are more open. Thus, there may be fewer opportunities for extra-pair matings in disturbed 

areas because there are more barriers (e.g., tree, buildings, etc.) that isolate breeding pairs. 
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This different in EPP rate shows that the intensity of sexual selection is greater in 

undisturbed than disturbed habitats. 

 

Overall predictors of extra-pair paternity 

In addition to differences in selection on low frequency ambient noise, several signals 

that predicted rates of EPP across sites regardless of level of disturbance were identified. I 

found that males with a brighter chestnut breast and those with a higher minimum frequency 

of song were subject to lower levels of extra-pair paternity across all disturbance levels. 

However, the relationship observed between EPP and low frequency song across disturbance 

sites, is the result of the strong relationship between the two in intermediate and disturbed 

areas, and not in undisturbed (Figure 4.1). Previous research has shown a relationship 

between breast color and brightness with male provisioning rate, first egg date, and fledgling 

mass (Siefferman and Hill 2003). Thus my results, in combination with this previous 

research, suggest that breast coloration may serve as an honest indicator of male quality and 

may increase male reproductive success through lowered EPP.  

In addition, previous studies of Eastern bluebirds show that males with hue shifted 

more towards uv-blue range sire more offspring (Siefferman and Hill 2003). Yet, I found no 

relationship between extra-pair paternity rate and uv-blue plumage characteristics. This result 

suggests that female may rely on different characteristics when choosing a social mate, 

versus when soliciting extra-pair matings. These results support and add to work suggesting 

that plumage coloration plays an important role in sexual selection in Eastern bluebirds and 

other bird species (Siefferman and Hill 2003). 
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Conclusions 

The selection for higher minimum frequency of song in intermediate and disturbed 

habitats provides a mechanism for previous results showing an upward shift in pitch in 

response to low frequency anthropogenic noise. The lack of change in selection pressure on 

plumage characteristics across disturbance levels, is consistent with the lack of change in 

plumage characteristics in response to anthropogenic-caused changes in the visual signaling 

environment. Although the visual habitat did change due to anthropogenic disturbance, it 

does not affect the conspicuousness of breast coloration, which I found to be a good predictor 

of EPP rate. Whereas I found that the anthropogenic-caused visual habitat changes reduces 

the conspicuousness of uv-blue plumage. Since uv-blue plumage was not an important 

predictor of EPP rate, there may not be selection on the signal to change in a changing visual 

environment, as it may not convey important information. Thus, the lack of difference in 

selection pressure on plumage characteristics between disturbance levels is consistent with 

any observed changes I found in plumage characteristics in response to anthropogenic 

changes in the visual signaling environment. 

Persistent differences in the direction of sexual selection between disturbed and 

undisturbed habitats provide the potential for population divergence between birds living in 

the two habitat types. For example, populations of dark-eyed junco that stopped migrating in 

the 1980s show considerable morphological differentiation from populations that remain 

migratory (Rasner et al. 2004; Yeh and Price 2004), indicating that populations can 

differentiate in a relatively short time period. Because most Passerine songs are thought to be 

learned, if birds that are born in noisy habitats learn songs from their fathers, they too will 

have higher minimum frequency of songs (Slabbekoorn and Ripmeester 2008). If habitat 
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imprinting occurs, in which individuals return to habitats similar to those in which they were 

raised, then population divergence between the different habitat types with respect to song 

may occur (reviewed in Davis and Stamps 2004; Slabbekoorn and Ripmeester 2008). If the 

pressures causing the changes (i.e., ambient noise) are consistent, the direction of selection 

will likely remain consistent over time. Therefore it is possible that populations may diverge 

over time (Slabbekoorn et al. 2010). More research on habitat imprinting, specifically in 

anthropogenic habitats, is necessary to determine if this is a possibility. 

Alternatively if humans continue to expand and alter natural habitats, it may limit the 

amount of land that is undisturbed, which could lead to selection in all areas for a higher 

minimum frequency of song.  Thus one would expect that over time, as ambient noise 

continues to increase, Eastern bluebirds would continue to increase the minimum frequency 

of their song.  This research is unique in that it shows that human disturbance cannot only 

lead to a change in signal design, but also provides a potential mechanism for that change. 

Continued research on how anthropogenic disturbance influences signals and selection on 

signal, and the consequences of these changes are needed to gain a fuller understanding of 

how humans are affecting communication and the breeding biology of birds. 
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APPENDIX A 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (A) tetrahedral plot of an Eastern bluebirds’ chestnut breast reflectance (point on 

left), and uv-blue patch reflectance (point on right), (B) measurements extracted from 

AVICOL (figure from Gomez 2006). 
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Table 1.1: Known changes in signals and signaling efficacy in response to anthropogenic 

disturbance. 

Mode Taxa Cause Effect Study 

Acoustic 
 

Birds 
 

Urban 
Ambient 
Noise 
 
 

Increased pitch 
in higher noise 

(Multiple species, 
Rheindt 2003; Great tit, 
Slabbekoorn and Peet 
2003; House finch, 
Fernandez-Juricic et al. 
2005; Song sparrow, 
Wood and Yezerinac 
2006) 
 

Increased 

amplitude in 

higher noise 

(Nightengales, Brumm 
2004) 

Changes in 

timing in 

signaling 

(Blue, and great tits, 
Bergen and Abs 1997; 
Robins, Fuller et al. 
2007) 

Increased level 

of vocal activity 
(Serins, Díaz et al. 2011) 

Amphibians Airplane 

Noise 
Call 
suppression 
during noise 
 

(anurans, Sun and 
Narins 2005) 

Road Noise Increased pitch 
in higher noise 

(Brown tree frog, Parris 
et al. 2009) 

Increased 
signaling rate 

(Neotropical treefrog, 
Kaiser and Hammers 
2009) 

Mammals Boat Noise 

and Sonar 
Increase 
duration of 
signal 

(Humpback whales, 
Miller et al. 2000; Killer 
whales, Foote et al. 
2004) 
 

Signal more 
often 
 

(Beluga whales, Lesage 
et al. 1999) 

Increase 
frequency to 
avoid noise 
 

(Beluga whale, Lesage 
et al. 1999; Right whale, 
Parks et al. 2007) 

Decrease (Bottlenose dolphins, 
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duration of 
signal 
 

Buckstaff 2004; 
Dugongs, Sakamoto et 
al. 2006) 

Increase 
amplitude of 
signal 
 

(Beluga whale, Scheifele 
et al. 2005; Right 
whales, Parks et al. 
2011) 

Road noise Frequency shift 
to avoid urban 
noise 
 

(Ground squirrel, Rabin 
et al. 2003) 

Visual Fish Human-

induced 

eutrophication 

Increased 
display activity 
in hazy water 
 

(Sticklebacks, 
Engstrom-Ost and 
Candolin 2007) 

No longer use 
signal 

(Cichlids, Seehausen et 
al. 1997) 

Birds Decreased 
availability 
of 
carotenoid-
rich (i.e.,  
caterpillars) 
food source 
as a result of 
air pollution 
levels 

Paler coloration (Great tit, Eeva et al. 
1998) 

Chemical Fish Heavy metals 
and 
pesticides 

Impairs 
response to 
signal 
 

(Chinook salmon, Scholz 
et al. 2000; 
Pikeminnow, Beyers 
and Farmer 2001) 

Fertilizers Impairs 
response to 
signal 

(Swordtail, Fisher et al. 
2006) 
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Table 3.1: Correlation between male plumage and radiance characteristics across sites of 

varying disturbance levels, d.f.=10. 

 UV-Blue 

Brilliance 

UV-Blue 

Theta 

UV-Blue 

Phi 

UV-Blue 

Chroma 

Chestnut 

Brilliance 

Chestnut 

Theta 

Chestnut 

Phi 

Chestnut 

Chroma 

Radiance 

Hue (theta) 

r=-0.254 

p=0.479 

r=0.303 

p=0.895 

r=-0.134 

p=0.711 

r=0.514 

p=0.128 

r=-0.437 

p=0.207 

r=-0.262 

p=0.465 

r=-0.467 

p=0.174 

r=0.195 

p=0.590 

Radiance 

Chroma (r) 

r=-0.196 

p=0.587 

r=0.199 

p=0.581 

r=-0.007 

p=0.984 

r=0.254 

p=0.128 

r=-0.145 

p=0.690 

r=0.400 

p=0.252 

r=-0.409 

p=0.240 

r=-0.101 

p=0.782 
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Table 4.1: Five microsatellite loci used in paternity analysis, primer sequences, number of 

alleles, observed heterozygosity, and the probability of exclusion. All five loci are in Hardy-

Weinberg equilibrium. 

 
Locus 

 
Sequence (5’ 3’) 

No. of Alleles 
2009, 2010 

Heterozygosity 
observed 

2009, 2010  

Probability 
of exclusion 
2009, 2010 

Smex1 F:AAGTGCATTCTCTGAAGAAAAG 
R:GTTTCTCCAAAGTTGTCAGTTTATCACA 

12, 11 0.558, 0.698 0.481, 0.555 

Smex5 F:CACAGCACCTCCTCTCCTA 
R:GTTTCTTCAGCAACAGGGATTCAC 

21, 14 0.756, 0.750 0.639, 0.587 

Smex6 F:GAAGCTAACGTAACCAATCTG 
R:GTTTGTTCAGCACCAACATATACAGAAG 

15, 16 0.811, 0.841 0.777, 0.776 

Smex8 F:AGCATCACCCACTCACTCACT 
R:GTTTGTACCACGGGGATTCCTATTATG 

7, 8 0.719, 0.777 0.558, 0.595 

Smex12 F:GGATGAGAAGGGGGACAT 
R:GTTCTTGGGCTGACTTGTTGATG 

9, 11 0.860, 0.811 0.707, 0.690 
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Table 4.2: Coefficient of variation of plumage and song characteristics across disturbance 

levels. 

Variable F-value d.f. p-value 

UV-blue brightness  
 

0.113 2, 8 0.894 

UV-blue longitudinal hue (theta) 
 

0.559 2, 8 0.559 

UV-blue latitudinal hue (phi) 
 

0.085 2, 8 0.920 

UV-blue chroma (r) 
 

2.485 2, 8 0.108 

Chest brightness 
 

2.752 2, 8 0.123 

Chest longitudinal hue (theta) 
 

0.670 2, 8  0.538 

Chest latitudinal hue (phi) 
 

2.485 2, 8 0.145 

Chest chroma (r) 
 

0.542 2, 8 0.602 

Fmin 
 

0.507 2, 8 0.620 

Fmax 
 

0.010 2, 8 0.990 

Fpeak 
 

1.064 2, 8 0.389 
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Table 4.3: Results of GLM model testing factors explaining proportion of extra-pair young. 

This model has an AIC = 68.991, and explains 71% of the total variance. Significant 

relationships (p<0.05) are marked with an *.  

 

Factor Estimate Standard 
Error 

Z-value P-Value 

Disturbed v. Intermediate -22.637 17.871 -1.267 0.205 

Disturbed v. Undisturbed -72.661 28.962 -2.509 0.012* 

Minimum Frequency -0.024 0.010 -2.284 0.022* 

Maximum Frequency -0.006 0.005 -1.056 0.291 

Peak Frequency -0.005 0.008 -0.613 0.540 

Nearest Neighbor 0.003 0.002 1.231 0.218 

UV-Blue Brightness -2.958 13.197 -0.224 0.822 

Chestnut Brightness -59.872 29.159 -2.053 0.040* 

UV-Blue Chroma (r) -14.751 20.665 -0.714 0.475 

Chestnut Chroma (r) -45.974 43.802 -1.050 0.294 

UV-Blue longitudinal hue () 42.922 33.648 1.276 0.202 

UV-Blue latitudinal hue () -5.651 11.884 -0.476 0.634 

Chestnut longitudinal hue () 13.870 13.057 1.062 0.288 

Chestnut latitudinal hue () 18.490 19.025 0.972 0.331 

Disturbed (D v. I) X Minimum 

Frequency 

0.014 0.011 1.266 0.206 

Disturbed (D v. U) X Minimum 

Frequency 

0.043 0.018 2.452 0.014* 
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Table 4.4: Results of GLM model testing plumage conspicuousness explaining proportion of 

extra-pair young. This model has an AIC = 109.89 and explains 5.5% of the total variance. 

Significant relationships (p<0.05) are marked with an *.  

 

Factor Estimate Standard 
Error 

Z value P-Value 

Chestnut Breast S -0.013 0.034 -0.387 0.699 

Chestnut Breast fQ -0.064 0.052 -1.226 0.220 

Rump S  -0.047 0.032 -1.480 0.139 

Rump fQ 0.054 0.047 1.153 0.249 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

Figure legends 

 

Fig. 2.1  Map of sites studied in 2009 and 2010. Sites 1-4 were classified as  

undisturbed, sites 5-7 were classified as intermediate, and sites 8-11 were  

classified as disturbed 

Fig. 2.2 Low frequency ambient noise across sites.  Sites correspond with sites number 

in Fig. 2.1 

Fig.  2.3 Nestling mouth and flanges 

Fig. 2.4  Mean ( S.D.) nestling mouth and flanges reflectance in Eastern bluebird 

nestlings 

Fig. 2.5  Regression of mouth chromatic contrast on body condition (R=0.315, 

d.f.=38, p=0.05) 

Fig. 2.6 Mean ( S.E.) discernability (just noticeable differeneces) of nestlings’ 

gapes among nestlings across habitat types  

Fig. 2.7  The average mouth reflectance for each disturbance level 
 
Fig. 2.8 The average brightness-corrected irradiance for each disturbance level 

Fig. 3.1 A typical Eastern bluebird song 

Fig. 3.2  Regression between minimum frequency of song and low frequency ambient 

noise across 11 sites (r = 0.705, p = 0.015). Error bars represent standard error 

Fig. 3.3  Average chromatic contrast of uv-blue coloration across habitat type. Error 

bars represent standard error 

Fig. 4.1          The relationships between minimum frequency and extra-pair paternity 

                       across the three sites (A = undisturbed; B = intermediate; C = disturbed).    

                       A trendline has been added to show the general pattern 
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Figure 2.1 

 

 

 

 



 65 

Figure 2.2 

 

 

 

 

 

 

 

 

 

 

 



 66 

Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 
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Figure 2.7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 71 

Figure 2.8 
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 4.1 
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