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PRESENTATIONS OF RINGS WITH NON-TRIVIAL

SEMIDUALIZING MODULES

DAVID A. JORGENSEN, GRAHAM J. LEUSCHKE, AND SEAN SATHER-WAGSTAFF

Abstract. Let R be a commutative noetherian local ring. A finitely gen-
erated R-module C is semidualizing if it is self-orthogonal and satisfies the
condition HomR(C, C) ∼= R. We prove that a Cohen-Macaulay ring R with
dualizing module D admits a semidualizing module C satisfying R ≇ C ≇ D if
and only if it is a homomorphic image of a Gorenstein ring in which the defin-
ing ideal decomposes in a cohomologically independent way. This expands on
a well-known result of Foxby, Reiten and Sharp saying that R admits a dual-
izing module if and only if R is Cohen–Macaulay and a homomorphic image
of a local Gorenstein ring.

1. Introduction

Throughout this paper (R,m, k) is a commutative noetherian local ring.
A finitely generated R-module C is self-orthogonal if ExtiR(C,C) = 0 for all

i > 1. Examples of self-orthogonal R-modules include the finitely generated free R-
modules and the dualizing module of Grothendieck. (See Section 2 for definitions
and background information.) Results of Foxby [10], Reiten [17] and Sharp [21]
precisely characterize the local rings which possess a dualizing module: the ring R
admits a dualizing module if and only if R is Cohen–Macaulay and there exist a
Gorenstein local ring Q and an ideal I ⊂ Q such that R ∼= Q/I.

The point of this paper is to similarly characterize the local Cohen–Macaulay
rings with a dualizing module which admit certain other self-orthogonal modules.
The specific self-orthogonal modules of interest are the semidualizing R-modules,
that is, those self-orthogonal R-modules satisfying HomR(C,C) ∼= R. A free R-
module of rank 1 is semidualizing, as is a dualizing R-module, when one exists. We
say that a semidualizing is non-trivial if it is neither free nor dualizing.

Our main theorem is the following expansion of the aforementioned result of
Foxby, Reiten and Sharp; we prove it in Section 3. It shows, assuming the existence
of a dualizing module, that R has a non-trivial semidualizing module if and only if R
is Cohen-Macaulay and R ∼= Q/(I1 + I2) where Q is Gorenstein and the rings Q/I1
and Q/I2 enjoy considerable cohomological vanishing over Q. Thus, it addresses
both of the following questions: what conditions guarantee that R admits a non-
trivial semidualizing module, and what are the ramifications of the existence of
such a module?
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2 JORGENSEN, LEUSCHKE, AND SATHER-WAGSTAFF

Theorem 1.1. Let R be a local Cohen–Macaulay ring with a dualizing module.

Then R admits a semidualizing module that is neither dualizing nor free if and only

if there exist a Gorenstein local ring Q and ideals I1, I2 ⊂ Q satisfying the following

conditions:

(1) There is a ring isomorphism R ∼= Q/(I1 + I2);
(2) For j = 1, 2 the quotient ring Q/Ij is Cohen–Macaulay and not Gorenstein;

(3) For all i ∈ Z, we have the following vanishing of Tate cohomology modules:

T̂or
Q

i (Q/I1, Q/I2) = 0 = Êxt
i

Q(Q/I1, Q/I2);
(4) There exists an integer c such that ExtcQ(Q/I1, Q/I2) is not cyclic; and

(5) For all i > 1, we have TorQ
i (Q/I1, Q/I2) = 0; in particular, there is an

equality I1 ∩ I2 = I1I2.

A prototypical example of a ring admitting non-trivial semidualizing modules is
the following.

Example 1.2. Let k be a field and set Q = k[[X,Y, S, T ]]. The ring

R = Q/(X2, XY, Y 2, S2, ST, T 2) = Q/[(X2, XY, Y 2) + (S2, ST, T 2)]

is local with maximal ideal (X,Y, S, T )R. It is artinian of socle dimension 4, hence
Cohen–Macaulay and non-Gorenstein. With R1 = Q/(X2, XY, Y 2) it follows that
the R-module Ext2R1

(R,R1) is semidualizing and neither dualizing nor free; see [22,
p. 92, Example].

Proposition 4.1 shows how Theorem 1.1 can be used to construct numerous rings
admitting non-trivial semidualizing modules. To complement this, the following
example shows that rings that do not admit non-trivial semidualizing modules are
easy to come by.

Example 1.3. Let k be a field. The ring R = k[X,Y ]/(X2, XY, Y 2) is local with
maximal ideal m = (X,Y )R. It is artinian of socle dimension 2, hence Cohen–
Macaulay and non-Gorenstein. From the equality m

2 = 0, it is straightforward to
deduce that the only semidualizing R-modules, up to isomorphism, are the ring
itself and the dualizing module; see [22, Prop. (4.9)].

2. Background on Semidualizing Modules

We begin with relevant definitions. The following notions were introduced inde-
pendently (with different terminology) by Foxby [10], Golod [12], Grothendieck [13,
14], Vasconcelos [22] and Wakamatsu [23].

Definition 2.1. Let C be an R-module. The homothety homomorphism is the
map χR

C : R → HomR(C,C) given by χR
C(r)(c) = rc.

The R-module C is semidualizing if it satisfies the following conditions:

(1) The R-module C is finitely generated;
(2) The homothety map χR

C : R → HomR(C,C), is an isomorphism; and

(3) For all i > 1, we have ExtiR(C,C) = 0.

An R-module D is dualizing if it is semidualizing and has finite injective dimension.

Note that the R-module R is semidualizing, so that every local ring admits a
semidualizing module.
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Fact 2.2. Let C be a semidualizing R-module. It is straightforward to show that
a sequence x = x1, . . . , xn ∈ m is C-regular if and only if it is R-regular. In
particular, we have depthR(C) = depth(R); see, e.g., [18, (1.4)]. Thus, when R
is Cohen–Macaulay, every semidualizing R-module is a maximal Cohen–Macaulay
module. On the other hand, if R admits a dualizing module, then R is Cohen–
Macaulay by [20, (8.9)]. As R is local, if it admits a dualizing module, then its
dualizing module is unique up to isomorphism; see, e.g. [5, (3.3.4(b))].

The following definition and fact justify the term “dualizing”.

Definition 2.3. Let C and B be R-modules. The natural biduality homomor-

phism δB
C : C → HomR(HomR(C,B), B) is given by δB

C (c)(φ) = φ(c). When D is a
dualizing R-module, we set C† = HomR(C,D).

Fact 2.4. Assume that R is Cohen–Macaulay with dualizing module D. Let C
be a semidualizing R-module. Fact 2.2 says that C is a maximal Cohen–Macaulay
R-module. From standard duality theory, for all i 6= 0 we have

ExtiR(C,D) = 0 = ExtiR(C†, D)

and the natural biduality homomorphism δD
C : C → HomR(C†, D) is an isomor-

phism; see, e.g., [5, (3.3.10)]. The R-module C† is semidualizing by [7, (2.12)].
Also, the evaluation map C ⊗R C† → D given by c⊗ φ 7→ φ(c) is an isomorphism,

and one has TorR
i (C,C†) = 0 for all i > 1 by [11, (3.1)].

The following construction is also known as the “idealization” of M . It was
popularized by Nagata, but goes back at least to Hochschild [15], and the idea
behind the construction appears in work of Dorroh [8]. It is the key idea for the
proof of the converse of Sharp’s result [21] given by Foxby [10] and Reiten [17].

Definition 2.5. LetM be anR-module. The trivial extension ofR byM is the ring
R⋉M , described as follows. As an additive abelian group, we haveR⋉M = R⊕M .
The multiplication in R⋉M is given by the formula

(r,m)(r′,m′) = (rr′, rm′ + r′m).

The multiplicative identity on R ⋉ M is (1, 0). We let ǫM : R → R ⋉ M and
τM : R⋉M → R denote the natural injection and surjection, respectively.

The next assertions are straightforward to verify.

Fact 2.6. Let M be an R-module. The trivial extension R⋉M is a commutative
ring with identity. The maps ǫM and τM are ring homomorphisms, and Ker(τM ) =
0⊕M . We have (0⊕M)2 = 0, and so Spec(R⋉M) is in order-preserving bijection
with Spec(R). It follows that R ⋉M is quasilocal and dim(R ⋉M) = dim(R). If
M is finitely generated, then R⋉M is also noetherian and

depth(R⋉M) = depthR(R ⋉M) = min{depth(R), depthR(M)}.

In particular, if R is Cohen–Macaulay and M is a maximal Cohen–Macaulay R-
module, then R⋉M is Cohen–Macaulay as well.

Next, we discuss the correspondence between dualizing modules and Gorenstein
presentations given by the results of Foxby, Reiten and Sharp.
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Fact 2.7. Sharp [21, (3.1)] showed that if R is Cohen–Macaulay and a homomor-
phic image of a local Gorenstein ring Q, then R admits a dualizing module. The
proof proceeds as follows. If g = depth(Q) − depth(R) = dim(Q) − dim(R), then

ExtiQ(R,Q) = 0 for i 6= g and the module Extg
Q(R,Q) is dualizing for R.

The same idea gives the following. Let A be a local Cohen–Macaulay ring with
a dualizing module D, and assume that R is Cohen–Macaulay and a module-finite
A-algebra. If h = depth(A) − depth(R) = dim(A) − dim(R), then ExtiA(R,D) = 0

for i 6= h and the module ExthA(R,D) is dualizing for R.

Fact 2.8. Independently, Foxby [10, (4.1)] and Reiten [17, (3)] proved the converse
of Sharp’s result from Fact 2.7. Namely, they showed that if R admits a dualizing
module, then it is Cohen–Macaulay and a homomorphic image of a local Gorenstein
ring Q. We sketch the proof here, as the main idea forms the basis of our proof of
Theorem 1.1. See also, e.g., [5, (3.3.6)].

Let D be a dualizing R-module. It follows from [20, (8.9)] that R is Cohen–
Macaulay. Set Q = R ⋉ D, which is Gorenstein with dim(Q) = dim(R). The
natural surjection τD : Q→ R yields an presentation of R as a homomorphic image
of the local Gorenstein ring Q.

The next notion we need is Auslander and Bridger’s G-dimension [1, 2]. See also
Christensen [6].

Definition 2.9. A complex of R-modules

X = · · ·
∂X

i+1

−−−→ Xi
∂X

i−−→ Xi−1

∂X
i−1

−−−→ · · ·

is totally acyclic if it satisfies the following conditions:

(1) Each R-module Xi is finitely generated and free; and
(2) The complexes X and HomR(X,R) are exact.

An R-module G is totally reflexive if there exists a totally acyclic complex of R-
modules such that G ∼= Coker(∂X

1 ); in this event, the complex X is a complete

resolution of G.

Fact 2.10. An R-moduleG is totally reflexive if and only if it satisfies the following:

(1) The R-module G is finitely generated;
(2) The biduality map δR

G : G→ HomR(HomR(G,R), R), is an isomorphism; and

(3) For all i > 1, we have ExtiR(G,R) = 0 = Exti
R(HomR(G,R), R).

See, e.g., [6, (4.1.4)].

Definition 2.11. Let M be a finitely generated R-module. Then M has finite

G-dimension if it has a finite resolution by totally reflexive R-modules, that is, if
there is an exact sequence

0 → Gn → · · · → G1 → G0 →M → 0

such that each Gi is a totally reflexive R-module. The G-dimension of M , when it
is finite, is the length of the shortest finite resolution by totally reflexive R-modules:

G-dimR(M) = inf



n > 0

∣∣∣∣∣∣

there is an exact sequence of R-modules
0 → Gn → · · · → G0 →M → 0

such that each Gi is totally reflexive



 .
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Fact 2.12. The ring R is Gorenstein if and only if every finitely generated R-
module has finite G-dimension; see [6, (1.4.9)]. Also, the AB formula [6, (1.4.8)]
says that if M is a finitely generated R-module of finite G-dimension, then

G-dimR(M) = depth(R) − depthR(M).

Fact 2.13. Let S be a Cohen–Macaulay local ring equipped with a module-finite
local ring homomorphism τ : S → R such that R is Cohen–Macaulay. Then
G-dimS(R) <∞ if and only if there exists an integer g > 0 such that Exti

S(R,S) =
0 for all i 6= g and ExtgS(R,S) is a semidualizing R-module; when these conditions
hold, one has g = G-dimS(R). See [7, (6.1)].

Assume that S has a dualizing module D. If G-dimS(R) < ∞, then R ⊗S D is

a semidualizing R-module and TorS
i (R,D) = 0 for all i > 1; see [7, (4.7),(5.1)].

Our final background topic is Avramov and Martsinkovsky’s notion of Tate co-
homology [4].

Definition 2.14. Let M be a finitely generated R-module. Considering M as a
complex concentrated in degree zero, a Tate resolution of M is a diagram of degree

zero chain maps of R-complexes T
α
−→ P

β
−→M satisfying the following conditions:

(1) The complex T is totally acyclic, and the map αi is an isomorphism for i≫ 0;
(2) The complex P is a resolution of M by finitely generated free R-modules,

and β is the augmentation map

Remark 2.15. In [4], Tate resolutions are called “complete resolutions”. We call
them Tate resolutions in order to avoid confusion with the terminology from Defi-
nition 2.9. This is consistent with [19].

Fact 2.16. By [4, (3.1)], a finitely generated R-module M has finite G-dimension
if and only if it admits a Tate resolution.

Definition 2.17. Let M be a finitely generated R-module of finite G-dimension,

and let T
α
−→ P

β
−→ M be a Tate resolution of M . For each integer i and each

R-module N , the ith Tate homology and Tate cohomology modules are

T̂or
R

i (M,N) = Hi(T ⊗R N) Êxt
i

R(M,N) = H−i(HomR(T,N)).

Fact 2.18. Let M be a finitely generated R-module of finite G-dimension. For

each integer i and each R-module N , the modules T̂or
R

i (M,N) and Êxt
i

R(M,N)
are independent of the choice of Tate resolution of M , and they are appropriately
functorial in each variable by [4, (5.1)]. If M has finite projective dimension, then

we have T̂or
R

i (M,−) = 0 = Êxt
i

R(M,−) and T̂or
R

i (−,M) = 0 = Êxt
i

R(−,M) for
each integer i; see [4, (5.9) and (7.4)].

3. Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into two pieces. The first piece is the fol-
lowing result which covers one implication. Note that, if pdQ(Q/I1) or pdQ(Q/I2)
is finite, then condition (3) holds automatically by Fact 2.18.

Theorem 3.1 (Sufficiency of conditions (1)–(5) of Theorem 1.1). Let R be a local

Cohen–Macaulay ring with dualizing module. Assume that there exist a Gorenstein

local ring Q and ideals I1, I2 ⊂ Q satisfying the following conditions:
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(1) There is a ring isomorphism R ∼= Q/(I1 + I2);
(2) For j = 1, 2 the quotient ring Q/Ij is Cohen–Macaulay, and Q/I2 is not

Gorenstein;

(3) For all i ∈ Z, we have T̂or
Q

i (Q/I1, Q/I2) = 0 = Êxt
i

Q(Q/I1, Q/I2);
(4) There exists an integer c such that ExtcQ(Q/I1, Q/I2) is not cyclic; and

(5) For all i > 1, we have TorQ
i (Q/I1, Q/I2) = 0; in particular, there is an

equality I1 ∩ I2 = I1I2.

Then R admits a semidualizing module that is neither dualizing nor free.

Proof. For j = 1, 2 set Rj = Q/Ij . Since Q is Gorenstein, we have G-dimQ(R1) <

∞ by Fact 2.12, so R1 admits a Tate resolution T
α
−→ P

β
−→ R1 over Q; see Fact 2.16.

We claim that the induced diagram T⊗QR2

α⊗QR2

−−−−−→ P⊗QR2

β⊗QR2

−−−−−→ R1⊗QR2 is
a Tate resolution of R1⊗QR2

∼= R over R2. The condition (5) implies that P ⊗QR2

is a free resolution of R1⊗QR2
∼= R over R2, and it follows that β⊗QR2 is a quasi-

isormorphism. Of course, the complex T ⊗Q R2 consists of finitely generated free
R2-modules, and the map αi ⊗Q R2 is an isomorphism for i ≫ 0. The condition

T̂or
Q

i (R1, R2) = 0 from (3) implies that the complex T ⊗Q R2 is exact. Hence, to
prove the claim, it remains to show that the first complex in the following sequence
of isomorphisms is exact:

HomR2
(T ⊗Q R2, R2) ∼= HomQ(T,HomR2

(R2, R2)) ∼= HomQ(T,R2).

The isomorphisms here are given by Hom-tensor adjointness and Hom cancellation.
This explains the first step in the next sequence of isomorphisms:

Hi(HomR2
(T ⊗Q R2, R2)) ∼= Hi(HomQ(T,R2)) ∼= Êxt

−i

Q (R1, R2) = 0.

The second step is by definition, and the third step is by assumption (3). This
establishes the claim.

From the claim, we conclude that g = G-dimR2
(R) is finite; see Fact 2.16.

It follows from Fact 2.13 that ExtgR2
(R,R2) 6= 0, and that the R-module C =

ExtgR2
(R,R2) is semidualizing.

To complete the proof, we need only show that C is not free and not dualizing.
By assumption (4), the fact that Exti

R2
(R,R2) = 0 for all i 6= g implies that

C = ExtgR2
(R,R2) is not cyclic, so C 6∼= R.

There is an equality of Bass series IR2

R2
(t) = teIC

R (t) for some integer e. (For

instance, the vanishing Exti
R2

(R,R2) = 0 for all i 6= g implies that there is an
isomorphism C ≃ Σ

gRHomR2
(R,R2) in D(R), so we can apply, e.g., [7, (1.7.8)].)

By assumption (2), the ring R2 is not Gorenstein. Hence, the Bass series IR2

R2
(t) =

teIC
R (t) is not a monomial. It follows that the Bass series IC

R (t) is not a monomial,
so C is not dualizing for R. �

The remainder of this section is devoted to the proof of the following.

Theorem 3.2 (Necessity of conditions (1)–(5) of Theorem 1.1). Let R be a local

Cohen–Macaulay ring with dualizing module D. Assume that R admits a semidu-

alizing module C that is neither dualizing nor free. Then there exist a Gorenstein

local ring Q and ideals I1, I2 ⊂ Q satisfying the following conditions:

(1) There is a ring isomorphism R ∼= Q/(I1 + I2);
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(2) For j = 1, 2 the quotient ring Q/Ij is Cohen–Macaulay with a dualizing

module Dj and is not Gorenstein;

(3) For all i ∈ Z, we have T̂or
Q

i (Q/I1, Q/I2) = 0 = Êxt
i

Q(Q/I1, Q/I2) and

T̂or
Q

i (Q/I2, Q/I1) = 0 = Êxt
i

Q(Q/I2, Q/I1);
(4) The modules HomQ(Q/I1, Q/I2) and HomQ(Q/I2, Q/I1) are not cyclic;

(5) For all i > 1, we have Exti
Q(Q/I1, Q/I2) = 0 = Exti

Q(Q/I2, Q/I1) and

TorQ
i (Q/I1, Q/I2) = 0; in particular, there is an equality I1 ∩ I2 = I1I2;

(6) For j = 1, 2 we have G-dimQ/Ij
(R) <∞; and

(7) There exists an R-module isomorphism D1 ⊗Q D2
∼= D, and for all i > 1 we

have TorQ
i (D1, D2) = 0.

Proof. For the sake of readability, we include the following roadmap of the proof.

Outline 3.3. The ring Q is constructed as an iterated trivial extension of R. As
an R-module, it has the form Q = R⊕C ⊕C† ⊕D where C† = HomR(C,D). The
ideals Ij are then given as I1 = 0⊕0⊕C†⊕D and I2 = 0⊕C⊕0⊕D. The details for
these constructions are contained in Steps 3.4 and 3.5. Conditions (1), (2) and (6)
are then verified in Lemmas 3.6–3.8. The verification of conditions (4) and (5)
requires more work; it is proved in Lemma 3.12, with the help of Lemmas 3.9–3.11.
Lemma 3.13 contains the verification of condition (7). The proof concludes with
Lemma 3.14 which contains the verification of condition (3).

The following two steps contain notation and facts for use through the rest of
the proof.

Step 3.4. Set R1 = R⋉C, which is Cohen–Macaulay with dim(R1) = dim(R); see
Facts 2.2 and 2.6. The natural injection ǫC : R → R1 makes R1 into a module-finite
R-algebra, so Fact 2.7 implies that the module D1 = HomR(R1, D) is dualizing for
R1. There is a sequence of R-module isomorphisms

D1 = HomR(R1, D) ∼= HomR(R⊕C,D) ∼= HomR(C,D) ⊕ HomR(R,D) ∼= C† ⊕D.

It is straightforward to show that the resulting R1-module structure on C† ⊕D is
given by the following formula:

(r, c)(φ, d) = (rφ, φ(c) + rd).

The kernel of the natural epimorphism τC : R1 → R is the ideal Ker(τC) ∼= 0 ⊕ C.
Fact 2.8 implies that the ring Q = R1 ⋉ D1 is local and Gorenstein. The R-

module isomorphism in the next display is by definition:

Q = R1 ⋉D1
∼= R⊕ C ⊕ C† ⊕D.

It is straightforward to show that the resulting ring structure on Q is given by

(r, c, φ, d)(r′, c′, φ′, d′) = (rr′, rc′ + r′c, rφ′ + r′φ, φ′(c) + φ(c′) + rd′ + r′d).

The kernel of the epimorphism τD1
: Q→ R1 is the ideal

I1 = Ker(τD1
) ∼= 0 ⊕ 0 ⊕ C† ⊕D.

As a Q-module, this is isomorphic to the R1-dualizing module D1. The kernel of
the composition τC ◦ τD1

: Q→ R is the ideal Ker(τCτD1
) ∼= 0 ⊕ C ⊕ C† ⊕D.

Since Q is Gorenstein and depth(R1) = depth(Q), Fact 2.12 implies that R1 is to-

tally reflexive as a Q-module. Using the the natural isomorphism HomQ(R1, Q)
∼=
−→

(0 :Q I1) given by ψ 7→ ψ(1), one shows that the map HomQ(R1, Q) → I1 given by
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ψ 7→ ψ(1) is a well-defined Q-module isomorphism. Thus I1 is totally reflexive over
Q, and it follows that HomQ(I1, Q) ∼= R1.

Step 3.5. Set R2 = R ⋉ C†, which is Cohen–Macaulay with dim(R2) = dim(R).
The injection ǫC† : R → R2 makes R2 into a module-finite R-algebra, so the mod-
ule D2 = HomR(R2, D) is dualizing for R2. There is a sequence of R-module
isomorphisms

D2 = HomR(R2, D) ∼= HomR(R⊕C†, D) ∼= HomR(C†, D)⊕HomR(R,D) ∼= C⊕D.

The last isomorphism is from Fact 2.4. The resulting R2-module structure on C⊕D
is given by the following formula:

(r, φ)(c, d) = (rφ, φ(c) + rd).

The kernel of the natural epimorphism τC† : R2 → R is the ideal Ker(τC†) ∼= 0⊕C†.
The ring Q′ = R2 ⋉D2 is local and Gorenstein. There is a sequence of R-module

isomorphisms

Q′ = R2 ⋉D2
∼= R⊕ C ⊕ C† ⊕D

and the resulting ring structure on R⊕ C ⊕ C† ⊕D is given by

(r, c, φ, d)(r′, c′, φ′, d′) = (rr′, rc′ + r′c, rφ′ + r′φ, φ′(c) + φ(c′) + rd′ + r′d).

That is, we have an isomorphism of rings Q′ ∼= Q. The kernel of the epimorphism
τD2

: Q→ R2 is the ideal

I2 = Ker(τD2
) ∼= 0 ⊕ C ⊕ 0 ⊕D.

This is isomorphic, as a Q-module, to the dualizing module D2. The kernel of the
composition τC† ◦ τD2

: Q→ R is the ideal Ker(τC†τD2
) ∼= 0 ⊕ C ⊕ C† ⊕D.

As in Step 3.4, the Q-modules R2 and HomQ(R2, Q) ∼= I2 are totally reflexive,
and HomQ(I2, Q) ∼= R2.

Lemma 3.6 (Verification of condition (1) from Theorem 3.2). With the notation

of Steps 3.4–3.5, there is a ring isomorphism R ∼= Q/(I1 + I2).

Proof. Consider the following sequence of R-module isomorphisms:

Q/(I1 + I2) ∼= (R⊕ C ⊕ C† ⊕D)/((0 ⊕ 0 ⊕ C† ⊕D) + (0 ⊕ C ⊕ 0 ⊕D))

∼= (R⊕ C ⊕ C† ⊕D)/(0 ⊕ C ⊕ C† ⊕D))
∼= R.

It is straightforward to check that these are ring isomorphisms. �

Lemma 3.7 (Verification of condition (2) from Theorem 3.2). With the notation

of Steps 3.4 and 3.5, each ring Rj
∼= Q/Ij is Cohen–Macaulay with a dualizing

module Dj and is not Gorenstein.

Proof. It remains only to show that each ring Rj is not Gorenstein, that is, that
Dj is not isomorphic to Rj as an Rj-module.

For R1, suppose by way of contradiction that there is an R1-module isomorphism
D1

∼= R1. It follows that this is an R-module isomorphism via the natural injection
ǫC : R → R1. Thus, we have R-module isomorphisms

C† ⊕D ∼= D1
∼= R1

∼= R⊕ C.
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Computing minimal numbers of generators, we have

µR(C†) + µR(D) = µR(C† ⊕D) = µR(R⊕ C) = µR(R) + µR(C)

= 1 + µR(C) 6 1 + µR(C)µR(C†) = 1 + µR(D).

The last step in this sequence follows from Fact 2.4. It follows that µR(C†) = 1,
that is, that C† is cyclic. From the isomorphism R ∼= HomR(C,C), one concludes
that AnnR(C) = 0, and hence C† ∼= R/AnnR(C†) ∼= R. It follows that

C ∼= HomR(C†, D) ∼= HomR(R,D) ∼= D

contradicting the assumption that C is not dualizing for R. (Note that this uses
the uniqueness statement from Fact 2.2.)

Next, observe that C† is not free and is not dualizing for R; this follows from
the isomorphism C ∼= HomR(C†, D) contained in Fact 2.4, using the assumption
that C is not free and not dualizing. Hence, the proof that R2 is not Gorenstein
follows as in the previous paragraph. �

Lemma 3.8 (Verification of condition (6) from Theorem 3.2). With the notation

of Steps 3.4–3.5, we have G-dimRj
(R) = 0 for j = 1, 2.

Proof. To show that G-dimR1
(R) = 0, it suffices to show that Exti

R1
(R,R1) = 0

for all i > 1 and that HomR1
(R,R1) ∼= C; see Fact 2.13. To this end, we note that

there are isomorphisms of R-modules

HomR(R1, C) ∼= HomR(R⊕ C,C) ∼= HomR(C,C) ⊕ HomR(R,C) ∼= R⊕ C ∼= R1

and it is straightforward to check that the composition HomR(R1, C) ∼= R1 is an
R1-module isomorphism. Furthermore, for i > 1 we have

Exti
R(R1, C) ∼= ExtiR(R⊕ C,C) ∼= Exti

R(C,C) ⊕ Exti
R(R,C) = 0.

Let I be an injective resolution of C as an R-module. The previous two displays
imply that HomR(R1, I) is an injective resolution of R1 as an R1-module. Using

the fact that the composition R
ǫC−→ R1

τC−−→ R is the identity idR, we conclude that

HomR1
(R,HomR(R1, I)) ∼= HomR(R ⊗R1

R1, I) ∼= HomR(R, I) ∼= I

and hence

Exti
R1

(R,R1) ∼= Hi(HomR1
(R,HomR(R1, I))) ∼= Hi(I) ∼=

{
0 if i > 1

C if i = 0

as desired.1

The proof for R2 is similar. �

The next three results are for the proof of Lemma 3.12.

Lemma 3.9. With the notation of Steps 3.4 and 3.5, one has TorR
i (R1, R2) = 0

for all i > 1, and there is an R1-algebra isomorphism R1 ⊗R R2
∼= Q.

1Note that the finiteness of G-dimR1
(R) can also be deduced from [16, (2.16)].
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Proof. The Tor-vanishing comes from the following sequence of R-module isomor-
phisms

TorR
i (R1, R2) ∼= TorR

i (R⊕ C,R ⊕ C†)

∼= TorR
i (R,R) ⊕ TorR

i (C,R) ⊕ TorR
i (R,C†) ⊕ TorR

i (C,C†)

∼=

{
R⊕ C ⊕ C† ⊕D if i = 0

0 if i 6= 0.

The first isomorphism is by definition; the second isomorphism is elementary; and
the third isomorphism is from Fact 2.4.

Moreover, it is straightforward to verify that in the case i = 0 the isomorphism

R1 ⊗R R2
∼= Q has the form α : R1 ⊗R R2

∼=
−→ Q given by

(r, c) ⊗ (r′, φ′) 7→ (rr′, r′c, rφ′, φ′(c)).

It is routine to check that this is a ring homomorphism, that is, a ring isomorphism.
Let ξ : R1 → R1 ⊗R R2 be given by (r, c) 7→ (r, c) ⊗ (1, 0). Then one has αξ =
ǫD1

: R1 → Q. It follows that R1 ⊗R R2
∼= Q as an R1-algebra. �

Lemma 3.10. Continue with the notation of Steps 3.4 and 3.5. In the tensor

product R ⊗R1
Q we have 1 ⊗ (0, c, 0, d) = 0 for all c ∈ C and all d ∈ D.

Proof. Recall that Fact 2.4 implies that the evaluation map C ⊗R C† → D given
by c′ ⊗ φ 7→ φ(c′) is an isomorphism. Hence, there exist c′ ∈ C and φ ∈ C† such
that d = φ(c′). This explains the first equality in the sequence

1 ⊗ (0, 0, 0, d) = 1 ⊗ (0, 0, 0, φ(c′)) = 1 ⊗ [(0, c′)(0, 0, φ, 0)]

= [1(0, c′)] ⊗ (0, 0, φ, 0) = 0 ⊗ (0, 0, φ, 0) = 0.
(3.10.1)

The second equality is by definition of the R1-module structure on Q; the third
equality is from the fact that we are tensoring over R1; the fourth equality is from
the fact that the R1-module structure on R comes from the natural surjection
R1 → R, with the fact that (0, c) ∈ 0 ⊕ C which is the kernel of this surjection.

On the other hand, using similar reasoning, we have

1 ⊗ (0, c, 0, 0) = 1 ⊗ [(0, c)(1, 0, 0, 0)] = [1(0, c)] ⊗ (1, 0, 0, 0)

= 0 ⊗ (1, 0, 0, 0) = 0.
(3.10.2)

Combining (3.10.1) and (3.10.2) we have

1 ⊗ (0, c, 0, d) = [1 ⊗ (0, 0, 0, d)] + [1 ⊗ (0, c, 0, 0)] = 0

as claimed. �

Lemma 3.11. With the notation of Steps 3.4 and 3.5, one has TorR1

i (R,Q) = 0
for all i > 1, and there is a Q-module isomorphism R⊗R1

Q ∼= R2.

Proof. Let P be an R-projective resolution of R2. Lemma 3.9 implies that R1⊗RP
is a projective resolution of R1 ⊗R R2

∼= Q as an R1-module. From the following
sequence of isomorphisms

R⊗R1
(R1 ⊗R P ) ∼= (R⊗R1

R1) ⊗R P ∼= R⊗R P ∼= P

it follows that, for i > 1, we have

TorR1

i (R,Q) ∼= Hi(R ⊗R1
(R1 ⊗R P )) ∼= Hi(P ) = 0
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where the final vanishing comes from the assumption that P is a resolution of a
module and i > 1.

This reasoning shows that there is an R-module isomorphism β : R2

∼=
−→ R⊗R1

Q.
This isomorphism is equal to the composition

R2

∼=
−→ R⊗R R2

∼=
−→ R⊗R1

(R1 ⊗R R2)
∼=

−−−−−→
R⊗R1

α
R⊗R1

Q

and is therefore given by

(3.11.1) (r, φ) 7→ 1 ⊗ (r, φ) 7→ 1 ⊗ [(1, 0) ⊗ (r, φ)] 7→ 1 ⊗ (r, 0, φ, 0).

We claim that β is a Q-module isomorphism. Recall that the Q-module structure
on R2 is given via the natural surjection Q→ R2, and so is described as

(r, c, φ, d)(r′, φ′) = (r, φ)(r′, φ′) = (rr′, rφ′ + r′φ).

This explains the first equality in the following sequence

β((r, c, φ, d)(r′, φ′)) = β(rr′, rφ′ + r′φ) = 1 ⊗ (rr′, 0, rφ′ + r′φ, 0).

The second equality is by (3.11.1). On the other hand, the definition of β explains
the first equality in the sequence

(r, c, φ, d)β(r′, φ′) = (r, c, φ, d)[1 ⊗ (r′, 0, φ′, 0)]

= 1 ⊗ [(r, c, φ, d)(r′, 0, φ′, 0)]

= 1 ⊗ (rr′, r′c, rφ′ + r′φ, r′d+ φ′(c))

= [1 ⊗ (rr′, 0, rφ′ + r′φ, 0)] + [1 ⊗ (0, r′c, 0, r′d+ φ′(c))]

= 1 ⊗ (rr′, 0, rφ′ + r′φ, 0).

The second equality is from the definition of the Q-modules structure on R⊗R1
Q;

the third equality is from the definition of the multiplication in Q; the fourth
equality is by bilinearity; and the fifth equality is by Lemma 3.10. Combining these
two sequences, we conclude that β is a Q-module isomorphism, as claimed. �

Lemma 3.12 (Verification of conditions (4)–(5) from Theorem 3.2). With the

notation of Steps 3.4 and 3.5, the modules HomQ(R1, R2) and HomQ(R2, R1) are

not cyclic. Also, one has Exti
Q(R1, R2) = 0 = Exti

Q(R2, R1) and TorQ
i (R1, R2) = 0

for all i > 1; in particular, there is an equality I1 ∩ I2 = I1I2.

Proof. Let L be a projective resolution of R over R1. Lemma 3.11 implies that the
complex L ⊗R1

Q is a projective resolution of R ⊗R1
Q ∼= R2 over Q. We have

isomorphisms

(L ⊗R1
Q) ⊗Q R1

∼= L⊗R1
(Q⊗Q R1) ∼= L⊗R1

R1
∼= L

and it follows that, for i > 1, we have

TorQ
i (R2, R1) ∼= Hi((L ⊗R1

Q) ⊗Q R1) ∼= Hi(L) = 0

since L is a projective resolution.
The equality I1 ∩ I2 = I1I2 follows from the direct computation

I1 ∩ I2 = (0 ⊕ 0 ⊕ C† ⊕D) ∩ (0 ⊕ C ⊕ 0 ⊕D) = 0 ⊕ 0 ⊕ 0 ⊕D = I1I2

or from the sequence (I1 ∩ I2)/(I1I2) ∼= TorQ
1 (Q/I1, Q/I2) = 0.

Let P be a projective resolution of R1 overQ. From the fact that TorQ
i (R2, R1) =

0 for all i ≥ 1 we get that P ⊗Q R2 is a projective resolution of R over R2. Since
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the complexes HomQ(P,R2) and HomR2
(P ⊗QR2, R2) are isomorphic, we therefore

have the isomorphisms

ExtiQ(R1, R2) ∼= ExtiR2
(R,R2)

for all i ≥ 0. By the fact that G-dimR2
(R) = 0, we conclude that

Exti
Q(R1, R2) ∼=

{
C† if i = 0

0 if i 6= 0.

Since C is not dualizing, the module HomQ(R1, R2) ∼= Ext0Q(R1, R2) ∼= C† is not
cyclic.

The verification for HomQ(R2, R1) and ExtiQ(R2, R1) is similar. �

Lemma 3.13 (Verification of condition (7) from Theorem 3.2). With the notation

of Steps 3.4 and 3.5, there is an R-module isomorphism D1 ⊗Q D2
∼= D, and for

all i > 1 we have TorQ
i (D1, D2) = 0.

Proof. There is a short exact sequence of Q-module homomorphisms

0 → D1 → Q
τD1−−→ R1 → 0.

For all i > 1, we have TorQ
i (Q,R2) = 0 = TorQ

i (R1, R2), so the long exact sequence

in TorQ
i (−, R2) associated to the displayed sequence implies that TorQ

i (D1, R2) = 0
for all i > 1. Consider the next short exact sequence of Q-module homomorphisms

0 → D2 → Q
τD2−−→ R2 → 0.

The associated long exact sequence in TorQ
i (D1,−) implies that TorQ

i (D1, D2) = 0
for all i > 1.

It is straightforward to verify the following sequence of Q-module isomorphisms

R⊗R1
D1

∼=

(
R⋉ C

0 ⊕ C

)
⊗R⋉C (C† ⊕D) ∼=

C† ⊕D

(0 ⊕ C)(C† ⊕D)
∼=
C† ⊕D

0 ⊕D
∼= C†

and similarly

R⊗R2
D2

∼= C.

These combine to explain the third isomorphism in the following sequence:

D1 ⊗Q D2
∼= R⊗Q (D1 ⊗Q D2) ∼= (R ⊗Q D1) ⊗R (R ⊗Q D2) ∼= C† ⊗R C ∼= D.

For the first isomorphism, use the fact that Dj is annihilated by Dj = Ij for j = 1, 2
to conclude that D1 ⊗Q D2 is annihilated by I1 + I2; it follows that D1 ⊗Q D2 is
naturally a module over the quotient Q/(I1 + I2) ∼= R. The second isomorphism is
standard, and the fourth one is from Fact 2.4. �

Lemma 3.14 (Verification of condition (3) from Theorem 3.2). With the notation

of Steps 3.4–3.5, we have T̂or
Q

i (R1, R2) = 0 = Êxt
i

Q(R1, R2) and T̂or
Q

i (R2, R1) =

0 = Êxt
i

Q(R2, R1) for all i ∈ Z.

Proof. We verify that T̂or
Q

i (R1, R2) = 0 = Êxt
i

Q(R1, R2). The proof of the other
vanishing is similar.

Recall from Step 3.4 that R1 is totally reflexive as a Q-module. We construct
a complete resolution of R1 over Q by splicing a minimal Q-free resolution P of
R1 with its dual P ∗ = HomQ(P,Q). Using the fact that R∗

1 is isomorphic to I1,
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the first syzygy of R1 in P , we conclude that X∗ ∼= X . This explains the second
isomorphism in the next sequence wherein i is an arbitrary integer:

T̂or
Q

i (R1, R2) ∼= Hi(X ⊗Q R2) ∼= Hi(X
∗ ⊗Q R2)

∼= Hi(HomQ(X,R2)) ∼= Êxt
−i

Q (R1, R2).
(3.14.1)

The third isomorphism is standard, since each Q-module Xi is finitely generated
and free, and the other isomorphisms are by definition.

For i > 1, the complex X provides the second steps in the next displays:

Êxt
−i

Q (R1, R2) ∼= T̂or
Q

i (R1, R2) ∼= TorQ
i (R1, R2) = 0

T̂or
Q

−i(R1, R2) ∼= Êxt
i

Q(R1, R2) ∼= Exti
Q(R1, R2) = 0.

The first steps are from (3.14.1), and the third steps are from Lemma 3.12.

To complete the proof it suffices by (3.14.1) to show that Êxt
0

Q(R1, R2) = 0. For
this, we recall the exact sequence

0 → HomQ(R1, Q) ⊗Q R2
ν
−→ HomQ(R1, R2) → Êxt

0

Q(R1, R2) → 0

from [4, (5.8(3))]. Note that this uses the fact that R1 is totally reflexive as a

Q-module, with the condition Êxt
−1

Q (R1, R2) = 0 which we have already veri-
fied. Also, the map ν is given by the formula ν(ψ ⊗ r2) = ψr2

: R1 → R2 where
ψr2

(r1) = ψ(r1)r2. Thus, to complete the proof, we need only show that the map
ν is surjective.

As with the isomorphism α : HomQ(R1, Q)
∼=
−→ I1, it is straightforward to show

that the map β : HomQ(R1, R2) → C† given by φ 7→ φ(1) is a well-defined Q-
module isomorphism. Also, from Lemma 3.12 we have that I1I2 = 0 ⊕ 0 ⊕ 0 ⊕D,
considered as a subset of I1 = 0⊕0⊕C†⊕D ⊂ R⊕C⊕C†⊕D = Q. In particular,
the map σ : I1/I1I2 → C† given by (0, 0, f, d) 7→ f is a well-defined Q-module
isomorphism.

Finally, it is straightforward to show that the following diagram commutes:

HomQ(R1, Q) ⊗Q R2

α⊗QR2 ∼=

��

ν
// HomQ(R1, R2)

β ∼=

��

I1 ⊗Q R2
=

// I1 ⊗Q Q/I2
δ
∼=

// I1/I1I2
σ
∼=

// C†.

From this, it follows that ν is surjective, as desired. �

This completes the proof of Theorem 3.2. �

4. Constructing Rings with Non-trivial Semidualizing Modules

We begin this section with the following application of Theorem 3.1.

Proposition 4.1. Let R1 be a local Cohen–Macaulay ring with dualizing module

D1 6∼= R1 and dim(R1) > 2. Let x = x1, . . . , xn ∈ R1 be an R1-regular sequence with

n > 2, and fix an integer t > 2. Then the ring R = R1/(x)t has a semidualizing

module C that is neither dualizing no free.
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Proof. We verify the conditions (1)–(5) from Theorem 3.1.
(1) SetQ = R1⋉D1 and I1 = 0⊕D1 ⊂ Q. Consider the elements yi = (xi, 0) ∈ Q

for i = 1, . . . , n. It is straightforward to show that the sequence y = y1, . . . , yn is
Q-regular. With R2 = Q/(y)t, we have R ∼= R1 ⊗Q R2. That is, with I2 = (y)t,
condition (1) from Theorem 3.1 is satisfied.

(2) The assumption D1 6∼= R1 implies that R1 is not Gorenstein. It is well-known

that type(R2) =
(
t+n−2
n−1

)
> 1, so R2 is not Gorenstein.

(3) By Fact 2.18, it suffices to show that pdQ(R2) < ∞. Since y is a Q-regular

sequence, the associated graded ring ⊕∞
i=0(y)i/(y)i+1 is isomorphic as a Q-algebra

to the polynomial ringQ/(y)[Y1, . . . , Yn]. It follows that the Q-moduleR2
∼= Q/(y)t

has a finite filtration 0 = Nr ⊂ Nr−1 ⊂ · · · ⊂ N0 = R2 such that Ni−1/Ni
∼=

Q/(y) for i = 1, . . . , r. Since each quotient Ni−1/Ni
∼= Q/(y) has finite projective

dimension over Q, the same is true for R2.
(4) The following isomorphisms are straightforward to verify:

R2 = Q/(y)t ∼= [R1/(x)t] ⋉ [D1/(x)tD1] ∼= R⋉ [D1/(x)tD1].

Since x is R1-regular, it is also D1-regular. Using this, one checks readily that

HomQ(R1, R2) ∼= {z ∈ R2 | I1z = 0} = 0 ⊕ [D1/(x)tD1].

Since D1 is not cyclic and x is contained in the maximal ideal of R1, we conclude
that HomQ(R1, R2) ∼= D1/(x)tD1 is not cyclic.

(5) The Q-module R1 is totally reflexive; see Facts 2.12–2.13. It follows from [6,

(2.4.2(b))] that TorQ
i (R1, N) = 0 for all i > 1 and for all Q-modules N of finite flat

dimension; see also [2, (4.13)]. Thus, we have TorQ
i (R1, R2) = 0 for all i > 1. �

Remark 4.2. One can use the results of [3] directly to show that the ring R in
Proposition 4.1 has a non-trivial semidualizing module. (Specifically, the relative
dualizing module of the natural surjection R1 → R works.) However, our proof
illustrates the concrete criteria of Theorem 3.1.

We conclude by showing that there exists a Cohen–Macaulay local ring R that
does not admit a dualizing module and does admit a semidualizing module C such
that C 6∼= R. The construction is essentially from [22, p. 92, Example].

Example 4.3. Let A be a local Cohen–Macaulay ring that does not admit a dualiz-
ing module. (Such rings are known to exist by a result of Ferrand and Raynaud [9].)
Set R = A[X,Y ]/(X,Y )2 ∼= A⋉ A2 and consider the R-module C = HomA(R,A).
Since R is finitely generated and free as an A-module, Fact 2.13 shows that C is a
semidualizing R-module. The composition of the natural inclusion A→ R and the
natural surjection R→ A is the identity on A.

If R admitted a dualizing module D, then the module HomR(A,D) would be a
dualizing A-module by Fact 2.7, contradicting our assumption on A. (Alternately,
since A is not a homomorphic image of a Gorenstein ring, we conclude from the
surjection R → A that R is not a homomorphic image of a Gorenstein ring.)

We show that C 6∼= R. It suffices to show that HomR(A,C) 6∼= HomR(A,R). We
compute:

HomR(A,C) ∼= HomR(A,HomA(R,A)) ∼= HomA(R ⊗R A,A) ∼= HomA(A,A) ∼= A

HomR(A,R) ∼= {r ∈ R | (0 ⊕A2)r = 0} = 0 ⊕A2 ∼= A2

which gives the desired conclusion.
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d’Algèbre Commutative dirigé par Pierre Samuel, vol. 1966/67, Secrétariat mathématique,
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Norm. Sup. (4) 3 (1970), 295–311. MR 0272779 (42 #7660)

10. H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284
(1973). MR 48 #6094

11. A. A. Gerko, On the structure of the set of semidualizing complexes, Illinois J. Math. 48

(2004), no. 3, 965–976. MR 2114263
12. E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984),

62–66, Algebraic geometry and its applications. MR 85m:13011
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