Syracuse University **[SURFACE](https://surface.syr.edu/)**

[Mathematics - Faculty Scholarship](https://surface.syr.edu/mat) [Mathematics](https://surface.syr.edu/math) Mathematics

11-23-2009

Presentations of Rings with Non-Trivial Semidualizing Modules

David A. Jorgensen University of Texas at Arlington

Graham J. Leuschke Syracuse University

Sean Sather-Wagstaff North Dakota State University

Follow this and additional works at: [https://surface.syr.edu/mat](https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Jorgensen, David A.; Leuschke, Graham J.; and Sather-Wagstaff, Sean, "Presentations of Rings with Non-Trivial Semidualizing Modules" (2009). Mathematics - Faculty Scholarship. 36. [https://surface.syr.edu/mat/36](https://surface.syr.edu/mat/36?utm_source=surface.syr.edu%2Fmat%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact [surface@syr.edu.](mailto:surface@syr.edu)

PRESENTATIONS OF RINGS WITH NON-TRIVIAL SEMIDUALIZING MODULES

DAVID A. JORGENSEN, GRAHAM J. LEUSCHKE, AND SEAN SATHER-WAGSTAFF

ABSTRACT. Let R be a commutative noetherian local ring. A finitely generated R-module C is semidualizing if it is self-orthogonal and satisfies the condition Hom $_R(C, C) \cong R$. We prove that a Cohen-Macaulay ring R with dualizing module D admits a semidualizing module C satisfying $R \not\cong C \not\cong D$ if and only if it is a homomorphic image of a Gorenstein ring in which the defining ideal decomposes in a cohomologically independent way. This expands on a well-known result of Foxby, Reiten and Sharp saying that R admits a dualizing module if and only if R is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring.

1. INTRODUCTION

Throughout this paper (R, \mathfrak{m}, k) is a commutative noetherian local ring.

A finitely generated R-module C is self-orthogonal if $\text{Ext}^i_R(C, C) = 0$ for all $i \geqslant 1$. Examples of self-orthogonal R-modules include the finitely generated free Rmodules and the dualizing module of Grothendieck. (See Section [2](#page-2-0) for definitions and background information.) Results of Foxby [\[10\]](#page-15-0), Reiten [\[17\]](#page-15-1) and Sharp [\[21\]](#page-15-2) precisely characterize the local rings which possess a dualizing module: the ring R admits a dualizing module if and only if R is Cohen–Macaulay and there exist a Gorenstein local ring Q and an ideal $I \subset Q$ such that $R \cong Q/I$.

The point of this paper is to similarly characterize the local Cohen–Macaulay rings with a dualizing module which admit certain other self-orthogonal modules. The specific self-orthogonal modules of interest are the *semidualizing* R-modules, that is, those self-orthogonal R-modules satisfying $\text{Hom}_{R}(C, C) \cong R$. A free Rmodule of rank 1 is semidualizing, as is a dualizing R -module, when one exists. We say that a semidualizing is *non-trivial* if it is neither free nor dualizing.

Our main theorem is the following expansion of the aforementioned result of Foxby, Reiten and Sharp; we prove it in Section [3.](#page-5-0) It shows, assuming the existence of a dualizing module, that R has a non-trivial semidualizing module if and only if R is Cohen-Macaulay and $R \cong Q/(I_1 + I_2)$ where Q is Gorenstein and the rings Q/I_1 and Q/I_2 enjoy considerable cohomological vanishing over Q . Thus, it addresses both of the following questions: what conditions guarantee that R admits a nontrivial semidualizing module, and what are the ramifications of the existence of such a module?

²⁰⁰⁰ Mathematics Subject Classification. 13C05, 13D07, 13H10.

Key words and phrases. Gorenstein rings, semidualizing modules, self-orthogonal modules, Tor-independence, Tate Tor, Tate Ext.

D. Jorgensen and S. Sather-Wagstaff were partly supported by NSA grants. G. Leuschke was partly supported by NSF grant DMS 0556181.

Theorem 1.1. *Let* R *be a local Cohen–Macaulay ring with a dualizing module. Then* R *admits a semidualizing module that is neither dualizing nor free if and only if there exist a Gorenstein local ring* Q *and ideals* $I_1, I_2 \subset Q$ *satisfying the following conditions:*

- (1) *There is a ring isomorphism* $R \cong Q/(I_1 + I_2)$;
- (2) *For* $j = 1, 2$ *the quotient ring* Q/I_j *is Cohen–Macaulay and not Gorenstein;*
- (3) For all $i \in \mathbb{Z}$, we have the following vanishing of Tate cohomology modules: $\widehat{\text{Tor}}_i^Q(Q/I_1, Q/I_2) = 0 = \widehat{\text{Ext}}_Q^i(Q/I_1, Q/I_2);$
- (4) *There exists an integer c such that* $\text{Ext}^c_Q(Q/I_1, Q/I_2)$ *is not cyclic; and*
- (5) For all $i \geq 1$, we have $\text{Tor}_i^Q(Q/I_1, Q/I_2) = 0$; in particular, there is an *equality* $I_1 \cap I_2 = I_1 I_2$.

A prototypical example of a ring admitting non-trivial semidualizing modules is the following.

Example 1.2. Let k be a field and set $Q = k[[X, Y, S, T]]$. The ring

$$
R = Q/(X^2, XY, Y^2, S^2, ST, T^2) = Q/[(X^2, XY, Y^2) + (S^2, ST, T^2)]
$$

is local with maximal ideal $(X, Y, S, T)R$. It is artinian of socle dimension 4, hence Cohen–Macaulay and non-Gorenstein. With $R_1 = Q/(X^2, XY, Y^2)$ it follows that the R-module $\text{Ext}_{R_1}^2(R, R_1)$ is semidualizing and neither dualizing nor free; see [\[22,](#page-15-3) p. 92, Example].

Proposition [4.1](#page-13-0) shows how Theorem [1.1](#page-2-1) can be used to construct numerous rings admitting non-trivial semidualizing modules. To complement this, the following example shows that rings that do not admit non-trivial semidualizing modules are easy to come by.

Example 1.3. Let k be a field. The ring $R = k[X, Y]/(X^2, XY, Y^2)$ is local with maximal ideal $\mathfrak{m} = (X, Y)R$. It is artinian of socle dimension 2, hence Cohen– Macaulay and non-Gorenstein. From the equality $\mathfrak{m}^2 = 0$, it is straightforward to deduce that the only semidualizing R -modules, up to isomorphism, are the ring itself and the dualizing module; see [\[22,](#page-15-3) Prop. (4.9)].

2. Background on Semidualizing Modules

We begin with relevant definitions. The following notions were introduced independently (with different terminology) by Foxby [\[10\]](#page-15-0), Golod [\[12\]](#page-15-4), Grothendieck [\[13,](#page-15-5) [14\]](#page-15-6), Vasconcelos [\[22\]](#page-15-3) and Wakamatsu [\[23\]](#page-15-7).

Definition 2.1. Let C be an R-module. The *homothety homomorphism* is the map χ_C^R : $R \to \text{Hom}_R(C, C)$ given by $\chi_C^R(r)(c) = rc$.

The R-module C is *semidualizing* if it satisfies the following conditions:

- (1) The R -module C is finitely generated;
- (2) The homothety map $\chi_C^R: R \to \text{Hom}_R(C, C)$, is an isomorphism; and
- (3) For all $i \geqslant 1$, we have $\mathrm{Ext}^i_R(C,C) = 0$.

An R-module D is *dualizing* if it is semidualizing and has finite injective dimension.

Note that the R-module R is semidualizing, so that every local ring admits a semidualizing module.

Fact 2.2. Let C be a semidualizing R -module. It is straightforward to show that a sequence $\mathbf{x} = x_1, \dots, x_n \in \mathfrak{m}$ is C-regular if and only if it is R-regular. In particular, we have depth $_R(C) = \text{depth}(R)$; see, e.g., [\[18,](#page-15-8) (1.4)]. Thus, when R is Cohen–Macaulay, every semidualizing R-module is a maximal Cohen–Macaulay module. On the other hand, if R admits a dualizing module, then R is Cohen– Macaulay by $[20, (8.9)]$. As R is local, if it admits a dualizing module, then its dualizing module is unique up to isomorphism; see, e.g. $[5, (3.3.4(b))]$.

The following definition and fact justify the term "dualizing".

Definition 2.3. Let C and B be R-modules. The natural *biduality homomor*phism δ_C^B : $C \to \text{Hom}_R(\text{Hom}_R(C, B), B)$ is given by $\delta_C^B(c)(\phi) = \phi(c)$. When D is a dualizing R-module, we set $C^{\dagger} = \text{Hom}_{R}(C, D)$.

Fact 2.4. Assume that R is Cohen–Macaulay with dualizing module D. Let C be a semidualizing R-module. Fact [2.2](#page-3-0) says that C is a maximal Cohen–Macaulay R-module. From standard duality theory, for all $i \neq 0$ we have

$$
\mathrm{Ext}^i_R(C,D)=0=\mathrm{Ext}^i_R(C^\dagger,D)
$$

and the natural biduality homomorphism $\delta_C^D: C \to \text{Hom}_R(C^{\dagger}, D)$ is an isomor-phism; see, e.g., [\[5,](#page-15-10) (3.3.10)]. The R-module C^{\dagger} is semidualizing by [\[7,](#page-15-11) (2.12)]. Also, the evaluation map $C \otimes_R C^{\dagger} \to D$ given by $c \otimes \phi \mapsto \phi(c)$ is an isomorphism, and one has $\text{Tor}_{i}^{R}(C, C^{\dagger}) = 0$ for all $i \geq 1$ by [\[11,](#page-15-12) (3.1)].

The following construction is also known as the "idealization" of M . It was popularized by Nagata, but goes back at least to Hochschild [\[15\]](#page-15-13), and the idea behind the construction appears in work of Dorroh [\[8\]](#page-15-14). It is the key idea for the proof of the converse of Sharp's result [\[21\]](#page-15-2) given by Foxby [\[10\]](#page-15-0) and Reiten [\[17\]](#page-15-1).

Definition 2.5. Let M be an R-module. The *trivial extension* of R by M is the ring $R \ltimes M$, described as follows. As an additive abelian group, we have $R \ltimes M = R \oplus M$. The multiplication in $R \ltimes M$ is given by the formula

$$
(r, m)(r', m') = (rr', rm' + r'm).
$$

The multiplicative identity on $R \times M$ is (1,0). We let $\epsilon_M : R \to R \times M$ and $\tau_M : R \times M \to R$ denote the natural injection and surjection, respectively.

The next assertions are straightforward to verify.

Fact 2.6. Let M be an R-module. The trivial extension $R \times M$ is a commutative ring with identity. The maps ϵ_M and τ_M are ring homomorphisms, and $\text{Ker}(\tau_M)$ = $0 \oplus M$. We have $(0 \oplus M)^2 = 0$, and so $Spec(R \ltimes M)$ is in order-preserving bijection with $Spec(R)$. It follows that $R \ltimes M$ is quasilocal and $dim(R \ltimes M) = dim(R)$. If M is finitely generated, then $R \ltimes M$ is also noetherian and

$$
\mathrm{depth}(R\ltimes M)=\mathrm{depth}_R(R\ltimes M)=\min\{\mathrm{depth}(R),\mathrm{depth}_R(M)\}.
$$

In particular, if R is Cohen–Macaulay and M is a maximal Cohen–Macaulay R module, then $R \ltimes M$ is Cohen–Macaulay as well.

Next, we discuss the correspondence between dualizing modules and Gorenstein presentations given by the results of Foxby, Reiten and Sharp.

Fact 2.7. Sharp [\[21,](#page-15-2) (3.1)] showed that if R is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring Q, then R admits a dualizing module. The proof proceeds as follows. If $g = \text{depth}(Q) - \text{depth}(R) = \dim(Q) - \dim(R)$, then $\text{Ext}^i_Q(R,Q) = 0$ for $i \neq g$ and the module $\text{Ext}^g_Q(R,Q)$ is dualizing for R.

The same idea gives the following. Let A be a local Cohen–Macaulay ring with a dualizing module D , and assume that R is Cohen–Macaulay and a module-finite A-algebra. If $h = \text{depth}(A) - \text{depth}(R) = \dim(A) - \dim(R)$, then $\text{Ext}_{A}^{i}(R, D) = 0$ for $i \neq h$ and the module $\text{Ext}_{A}^{h}(R, D)$ is dualizing for R.

Fact 2.8. Independently, Foxby $[10, (4.1)]$ and Reiten $[17, (3)]$ proved the converse of Sharp's result from Fact [2.7.](#page-4-0) Namely, they showed that if R admits a dualizing module, then it is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring Q. We sketch the proof here, as the main idea forms the basis of our proof of Theorem [1.1.](#page-2-1) See also, e.g., [\[5,](#page-15-10) (3.3.6)].

Let D be a dualizing R-module. It follows from [\[20,](#page-15-9) (8.9)] that R is Cohen– Macaulay. Set $Q = R \times D$, which is Gorenstein with $\dim(Q) = \dim(R)$. The natural surjection $\tau_D : Q \to R$ yields an presentation of R as a homomorphic image of the local Gorenstein ring Q.

The next notion we need is Auslander and Bridger's G-dimension [\[1,](#page-15-15) [2\]](#page-15-16). See also Christensen [\[6\]](#page-15-17).

Definition 2.9. A complex of R-modules

$$
X = \cdots \xrightarrow{\partial_{i+1}^X} X_i \xrightarrow{\partial_i^X} X_{i-1} \xrightarrow{\partial_{i-1}^X} \cdots
$$

is *totally acyclic* if it satisfies the following conditions:

- (1) Each R -module X_i is finitely generated and free; and
- (2) The complexes X and $\text{Hom}_R(X, R)$ are exact.

An R-module G is *totally reflexive* if there exists a totally acyclic complex of Rmodules such that $G \cong \text{Coker}(\partial_1^X)$; in this event, the complex X is a *complete resolution* of G.

Fact 2.10. An R-module G is totally reflexive if and only if it satisfies the following:

- (1) The R -module G is finitely generated;
- (2) The biduality map δ_G^R : $G \to \text{Hom}_R(\text{Hom}_R(G, R), R)$, is an isomorphism; and
- (3) For all $i \geq 1$, we have $\text{Ext}^i_R(G, R) = 0 = \text{Ext}^i_R(\text{Hom}_R(G, R), R)$.

See, e.g., [\[6,](#page-15-17) (4.1.4)].

Definition 2.11. Let M be a finitely generated R-module. Then M has *finite G-dimension* if it has a finite resolution by totally reflexive R-modules, that is, if there is an exact sequence

$$
0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0
$$

such that each G_i is a totally reflexive R-module. The G -dimension of M, when it is finite, is the length of the shortest finite resolution by totally reflexive R -modules:

$$
\text{G-dim}_R(M) = \inf \left\{ n \geqslant 0 \, \middle| \, \begin{array}{c} \text{there is an exact sequence of } R \text{-modules} \\ 0 \to G_n \to \cdots \to G_0 \to M \to 0 \\ \text{such that each } G_i \text{ is totally reflexive} \end{array} \right\}.
$$

Fact 2.12. The ring R is Gorenstein if and only if every finitely generated Rmodule has finite G-dimension; see $[6, (1.4.9)]$. Also, the AB formula $[6, (1.4.8)]$ says that if M is a finitely generated R -module of finite G-dimension, then

$$
\mathrm{G\text{-}dim}_R(M) = \mathrm{depth}(R) - \mathrm{depth}_R(M).
$$

Fact 2.13. Let S be a Cohen–Macaulay local ring equipped with a module-finite local ring homomorphism $\tau: S \to R$ such that R is Cohen–Macaulay. Then $\mathrm{G\text{-}dim}_S(R)<\infty$ if and only if there exists an integer $g\geqslant 0$ such that $\mathrm{Ext}^i_S(R,S)$ = 0 for all $i \neq g$ and $\text{Ext}_{S}^{g}(R, S)$ is a semidualizing R-module; when these conditions hold, one has $g = G\text{-dim}_S(R)$. See [\[7,](#page-15-11) (6.1)].

Assume that S has a dualizing module D. If $G\text{-dim}_S(R) < \infty$, then $R \otimes_S D$ is a semidualizing R-module and $\text{Tor}_i^S(R, D) = 0$ for all $i \geq 1$; see [\[7,](#page-15-11) (4.7),(5.1)].

Our final background topic is Avramov and Martsinkovsky's notion of Tate cohomology [\[4\]](#page-15-18).

Definition 2.14. Let M be a finitely generated R -module. Considering M as a complex concentrated in degree zero, a *Tate resolution* of M is a diagram of degree zero chain maps of R-complexes $T \xrightarrow{\alpha} P \xrightarrow{\beta} M$ satisfying the following conditions:

- (1) The complex T is totally acyclic, and the map α_i is an isomorphism for $i \gg 0$;
- (2) The complex P is a resolution of M by finitely generated free R -modules,
	- and β is the augmentation map

Remark 2.15. In [\[4\]](#page-15-18), Tate resolutions are called "complete resolutions". We call them Tate resolutions in order to avoid confusion with the terminology from Definition [2.9.](#page-4-1) This is consistent with [\[19\]](#page-15-19).

Fact 2.16. By [\[4,](#page-15-18) (3.1)], a finitely generated R-module M has finite G-dimension if and only if it admits a Tate resolution.

Definition 2.17. Let M be a finitely generated R -module of finite G-dimension, and let $T \stackrel{\alpha}{\rightarrow} P \stackrel{\beta}{\rightarrow} M$ be a Tate resolution of M. For each integer i and each R-module N, the ith *Tate homology* and *Tate cohomology* modules are

$$
\widehat{\text{Tor}}_i^R(M, N) = \text{H}_i(T \otimes_R N) \qquad \widehat{\text{Ext}}_R^i(M, N) = \text{H}_{-i}(\text{Hom}_R(T, N)).
$$

Fact 2.18. Let M be a finitely generated R-module of finite G-dimension. For each integer i and each R-module N, the modules $\widehat{\text{Tor}}_i^R(M, N)$ and $\widehat{\text{Ext}}_R^i(M, N)$ are independent of the choice of Tate resolution of M , and they are appropriately functorial in each variable by $[4, (5.1)]$. If M has finite projective dimension, then we have $\widehat{\text{Tor}}_i^R(M, -) = 0 = \widehat{\text{Ext}}_R^i(M, -)$ and $\widehat{\text{Tor}}_i^R(-, M) = 0 = \widehat{\text{Ext}}_R^i(-, M)$ for each integer *i*; see [\[4,](#page-15-18) (5.9) and (7.4)].

3. Proof of Theorem [1.1](#page-2-1)

We divide the proof of Theorem [1.1](#page-2-1) into two pieces. The first piece is the following result which covers one implication. Note that, if $pd_O(Q/I₁)$ or $pd_O(Q/I₂)$ is finite, then condition [\(3\)](#page-6-0) holds automatically by Fact [2.18.](#page-5-1)

Theorem 3.1 (Sufficiency of conditions [\(1\)](#page-2-2)–[\(5\)](#page-2-3) of Theorem [1.1\)](#page-2-1). *Let* R *be a local Cohen–Macaulay ring with dualizing module. Assume that there exist a Gorenstein local ring* Q *and ideals* $I_1, I_2 \subset Q$ *satisfying the following conditions:*

- (1) *There is a ring isomorphism* $R \cong Q/(I_1 + I_2)$;
- (2) For $j = 1, 2$ the quotient ring Q/I_j is Cohen–Macaulay, and Q/I_2 is not *Gorenstein;*
- (3) For all $i \in \mathbb{Z}$, we have $\widehat{\text{Tor}}_i^Q(Q/I_1, Q/I_2) = 0 = \widehat{\text{Ext}}_Q^i(Q/I_1, Q/I_2)$;
- (4) *There exists an integer c such that* $\text{Ext}^c_Q(Q/I_1, Q/I_2)$ *is not cyclic; and*
- (5) For all $i \geq 1$, we have $\text{Tor}_i^Q(Q/I_1, Q/I_2) = 0$; in particular, there is an *equality* $I_1 \cap I_2 = I_1 I_2$.

Then R *admits a semidualizing module that is neither dualizing nor free.*

Proof. For $j = 1, 2$ set $R_j = Q/I_j$. Since Q is Gorenstein, we have $G\text{-dim}_Q(R_1)$ < ∞ by Fact [2.12,](#page-5-2) so R_1 admits a Tate resolution $T \stackrel{\alpha}{\rightarrow} P \stackrel{\beta}{\rightarrow} R_1$ over Q ; see Fact [2.16.](#page-5-3)

We claim that the induced diagram $T \otimes_Q R_2 \xrightarrow{\alpha \otimes_Q R_2} P \otimes_Q R_2 \xrightarrow{\beta \otimes_Q R_2} R_1 \otimes_Q R_2$ is a Tate resolution of $R_1 \otimes_Q R_2 \cong R$ over R_2 . The condition [\(5\)](#page-6-1) implies that $P \otimes_Q R_2$ is a free resolution of $R_1 \otimes_Q R_2 \cong R$ over R_2 , and it follows that $\beta \otimes_Q R_2$ is a quasiisormorphism. Of course, the complex $T \otimes_Q R_2$ consists of finitely generated free R_2 -modules, and the map $\alpha^i \otimes_Q R_2$ is an isomorphism for $i \gg 0$. The condition $\widehat{\text{Tor}}_i^Q(R_1, R_2) = 0$ from [\(3\)](#page-6-0) implies that the complex $T \otimes_Q R_2$ is exact. Hence, to prove the claim, it remains to show that the first complex in the following sequence of isomorphisms is exact:

$$
\operatorname{Hom}_{R_2}(T \otimes_Q R_2, R_2) \cong \operatorname{Hom}_Q(T, \operatorname{Hom}_{R_2}(R_2, R_2)) \cong \operatorname{Hom}_Q(T, R_2).
$$

The isomorphisms here are given by Hom-tensor adjointness and Hom cancellation. This explains the first step in the next sequence of isomorphisms:

$$
\mathrm{H}_i(\mathrm{Hom}_{R_2}(T\otimes_Q R_2,R_2))\cong \mathrm{H}_i(\mathrm{Hom}_Q(T,R_2))\cong \widehat{\mathrm{Ext}}_Q^{-i}(R_1,R_2)=0.
$$

The second step is by definition, and the third step is by assumption [\(3\)](#page-6-0). This establishes the claim.

From the claim, we conclude that $g = G\text{-dim}_{R_2}(R)$ is finite; see Fact [2.16.](#page-5-3) It follows from Fact [2.13](#page-5-4) that $\text{Ext}_{R_2}^g(R, R_2) \neq 0$, and that the R-module $C =$ $\text{Ext}_{R_2}^g(R, R_2)$ is semidualizing.

To complete the proof, we need only show that C is not free and not dualizing. By assumption [\(4\)](#page-6-2), the fact that $\text{Ext}_{R_2}^i(R, R_2) = 0$ for all $i \neq g$ implies that $C = \text{Ext}_{R_2}^g(R, R_2)$ is not cyclic, so $C \not\cong R$.

There is an equality of Bass series $I_{R_2}^{R_2}(t) = t^e I_R^C(t)$ for some integer e. (For instance, the vanishing $\text{Ext}_{R_2}^i(R, R_2) = 0$ for all $i \neq g$ implies that there is an isomorphism $C \simeq \Sigma^g \mathbf{R} \text{Hom}_{R_2}(R, R_2)$ in $\mathsf{D}(R)$, so we can apply, e.g., [\[7,](#page-15-11) (1.7.8)].) By assumption [\(2\)](#page-6-3), the ring R_2 is not Gorenstein. Hence, the Bass series $I_{R_2}^{R_2}(t)$ = $t^e I_R^C(t)$ is not a monomial. It follows that the Bass series $I_R^C(t)$ is not a monomial, so C is not dualizing for R .

The remainder of this section is devoted to the proof of the following.

Theorem 3.2 (Necessity of conditions [\(1\)](#page-2-2)–[\(5\)](#page-2-3) of Theorem [1.1\)](#page-2-1). *Let* R *be a local Cohen–Macaulay ring with dualizing module* D*. Assume that* R *admits a semidualizing module* C *that is neither dualizing nor free. Then there exist a Gorenstein local ring* Q *and ideals* $I_1, I_2 \subset Q$ *satisfying the following conditions:*

(1) *There is a ring isomorphism* $R \cong Q/(I_1 + I_2)$;

- (2) For $j = 1, 2$ the quotient ring Q/I_i is Cohen–Macaulay with a dualizing *module* D^j *and is not Gorenstein;*
- (3) For all $i \in \mathbb{Z}$, we have $\widehat{\text{Tor}}_i^Q(Q/I_1, Q/I_2) = 0 = \widehat{\text{Ext}}_Q^i(Q/I_1, Q/I_2)$ and $\widehat{\text{Tor}}_i^Q(Q/I_2, Q/I_1) = 0 = \widehat{\text{Ext}}_Q^i(Q/I_2, Q/I_1);$
- (4) *The modules* $\text{Hom}_Q(Q/I_1, Q/I_2)$ *and* $\text{Hom}_Q(Q/I_2, Q/I_1)$ *are not cyclic;*
- (5) For all $i \geq 1$, we have $\text{Ext}^i_Q(Q/I_1, Q/I_2) = 0 = \text{Ext}^i_Q(Q/I_2, Q/I_1)$ and $\operatorname{Tor}^Q_i(Q/I_1, Q/I_2) = 0$; in particular, there is an equality $I_1 \cap I_2 = I_1I_2$;
- (6) For $j = 1, 2$ we have G-dim_{Q/I_j}(R) < ∞ *;* and
- (7) *There exists an R-module isomorphism* $D_1 \otimes_Q D_2 \cong D$, and for all $i \geq 1$ we *have* $\text{Tor}_{i}^{Q}(D_1, D_2) = 0.$

Proof. For the sake of readability, we include the following roadmap of the proof.

Outline 3.3. The ring Q is constructed as an iterated trivial extension of R . As an R-module, it has the form $Q = R \oplus C \oplus C^{\dagger} \oplus D$ where $C^{\dagger} = \text{Hom}_{R}(C, D)$. The ideals I_j are then given as $I_1 = 0 \oplus 0 \oplus C^{\dagger} \oplus D$ and $I_2 = 0 \oplus C \oplus 0 \oplus D$. The details for these constructions are contained in Steps [3.4](#page-7-0) and [3.5.](#page-8-0) Conditions (1) , (2) and (6) are then verified in Lemmas [3.6–](#page-8-1)[3.8.](#page-9-0) The verification of conditions [\(4\)](#page-7-3) and [\(5\)](#page-7-4) requires more work; it is proved in Lemma [3.12,](#page-11-0) with the help of Lemmas [3.9–](#page-9-1)[3.11.](#page-10-0) Lemma [3.13](#page-12-0) contains the verification of condition [\(7\)](#page-7-5). The proof concludes with Lemma [3.14](#page-12-1) which contains the verification of condition [\(3\)](#page-7-6).

The following two steps contain notation and facts for use through the rest of the proof.

Step 3.4. Set $R_1 = R \ltimes C$, which is Cohen–Macaulay with $\dim(R_1) = \dim(R)$; see Facts [2.2](#page-3-0) and [2.6.](#page-3-1) The natural injection $\epsilon_C : R \to R_1$ makes R_1 into a module-finite R-algebra, so Fact [2.7](#page-4-0) implies that the module $D_1 = \text{Hom}_R(R_1, D)$ is dualizing for R_1 . There is a sequence of R-module isomorphisms

 $D_1 = \text{Hom}_R(R_1, D) \cong \text{Hom}_R(R \oplus C, D) \cong \text{Hom}_R(C, D) \oplus \text{Hom}_R(R, D) \cong C^{\dagger} \oplus D.$

It is straightforward to show that the resulting R_1 -module structure on $C^{\dagger} \oplus D$ is given by the following formula:

$$
(r,c)(\phi,d) = (r\phi,\phi(c) + rd).
$$

The kernel of the natural epimorphism $\tau_C : R_1 \to R$ is the ideal Ker(τ_C) ≅ 0 ⊕ C.

Fact [2.8](#page-4-2) implies that the ring $Q = R_1 \times D_1$ is local and Gorenstein. The Rmodule isomorphism in the next display is by definition:

$$
Q = R_1 \ltimes D_1 \cong R \oplus C \oplus C^{\dagger} \oplus D.
$$

It is straightforward to show that the resulting ring structure on Q is given by

$$
(r, c, \phi, d)(r', c', \phi', d') = (rr', rc' + r'c, r\phi' + r'\phi, \phi'(c) + \phi(c') + rd' + r'd).
$$

The kernel of the epimorphism $\tau_{D_1}: Q \to R_1$ is the ideal

$$
I_1 = \text{Ker}(\tau_{D_1}) \cong 0 \oplus 0 \oplus C^{\dagger} \oplus D.
$$

As a Q-module, this is isomorphic to the R_1 -dualizing module D_1 . The kernel of the composition $\tau_C \circ \tau_{D_1} \colon Q \to R$ is the ideal $\text{Ker}(\tau_C \tau_{D_1}) \cong 0 \oplus C \oplus C^{\dagger} \oplus D$.

Since Q is Gorenstein and depth $(R_1) = \text{depth}(Q)$, Fact [2.12](#page-5-2) implies that R_1 is totally reflexive as a Q-module. Using the the natural isomorphism $\text{Hom}_Q(R_1, Q) \stackrel{\cong}{\longrightarrow}$ $(0:_{Q} I_{1})$ given by $\psi \mapsto \psi(1)$, one shows that the map $\text{Hom}_{Q}(R_{1}, Q) \to I_{1}$ given by $\psi \mapsto \psi(1)$ is a well-defined Q-module isomorphism. Thus I_1 is totally reflexive over Q, and it follows that $\text{Hom}_Q(I_1, Q) \cong R_1$.

Step 3.5. Set $R_2 = R \ltimes C^{\dagger}$, which is Cohen–Macaulay with $\dim(R_2) = \dim(R)$. The injection $\epsilon_{C^{\dagger}}$: $R \to R_2$ makes R_2 into a module-finite R-algebra, so the module $D_2 = \text{Hom}_R(R_2, D)$ is dualizing for R_2 . There is a sequence of R-module isomorphisms

$$
D_2 = \text{Hom}_R(R_2, D) \cong \text{Hom}_R(R \oplus C^{\dagger}, D) \cong \text{Hom}_R(C^{\dagger}, D) \oplus \text{Hom}_R(R, D) \cong C \oplus D.
$$

The last isomorphism is from Fact [2.4.](#page-3-2) The resulting R_2 -module structure on $C \oplus D$ is given by the following formula:

$$
(r, \phi)(c, d) = (r\phi, \phi(c) + rd).
$$

The kernel of the natural epimorphism $\tau_{C^{\dagger}}: R_2 \to R$ is the ideal $\text{Ker}(\tau_{C^{\dagger}}) \cong 0 \oplus C^{\dagger}$.

The ring $Q' = R_2 \times D_2$ is local and Gorenstein. There is a sequence of R-module isomorphisms

$$
Q' = R_2 \ltimes D_2 \cong R \oplus C \oplus C^{\dagger} \oplus D
$$

and the resulting ring structure on $R \oplus C \oplus C^{\dagger} \oplus D$ is given by

$$
(r, c, \phi, d)(r', c', \phi', d') = (rr', rc' + r'c, r\phi' + r'\phi, \phi'(c) + \phi(c') + rd' + r'd).
$$

That is, we have an isomorphism of rings $Q' \cong Q$. The kernel of the epimorphism $\tau_{D_2}: Q \to R_2$ is the ideal

$$
I_2 = \text{Ker}(\tau_{D_2}) \cong 0 \oplus C \oplus 0 \oplus D.
$$

This is isomorphic, as a Q -module, to the dualizing module D_2 . The kernel of the composition $\tau_{C^{\dagger}} \circ \tau_{D_2} \colon Q \to R$ is the ideal $\text{Ker}(\tau_{C^{\dagger}} \tau_{D_2}) \cong 0 \oplus C \oplus C^{\dagger} \oplus D$.

As in Step [3.4,](#page-7-0) the Q-modules R_2 and $\text{Hom}_Q(R_2, Q) \cong I_2$ are totally reflexive, and $\text{Hom}_Q(I_2, Q) \cong R_2$.

Lemma 3.6 (Verification of condition [\(1\)](#page-6-4) from Theorem [3.2\)](#page-6-5). *With the notation of Steps* [3.4–](#page-7-0)[3.5,](#page-8-0) there is a ring isomorphism $R \cong Q/(I_1 + I_2)$.

Proof. Consider the following sequence of R-module isomorphisms:

$$
Q/(I_1 + I_2) \cong (R \oplus C \oplus C^{\dagger} \oplus D)/((0 \oplus 0 \oplus C^{\dagger} \oplus D) + (0 \oplus C \oplus 0 \oplus D))
$$

\cong
$$
(R \oplus C \oplus C^{\dagger} \oplus D)/(0 \oplus C \oplus C^{\dagger} \oplus D))
$$

\cong
$$
R.
$$

It is straightforward to check that these are ring isomorphisms.

Lemma 3.7 (Verification of condition [\(2\)](#page-7-1) from Theorem [3.2\)](#page-6-5). *With the notation of Steps* [3.4](#page-7-0) and [3.5,](#page-8-0) each ring $R_j \cong Q/I_j$ *is Cohen–Macaulay with a dualizing module* D^j *and is not Gorenstein.*

Proof. It remains only to show that each ring R_j is not Gorenstein, that is, that D_j is not isomorphic to R_j as an R_j -module.

For R_1 , suppose by way of contradiction that there is an R_1 -module isomorphism $D_1 \cong R_1$. It follows that this is an R-module isomorphism via the natural injection $\epsilon_C: R \to R_1$. Thus, we have R-module isomorphisms

$$
C^{\dagger} \oplus D \cong D_1 \cong R_1 \cong R \oplus C.
$$

Computing minimal numbers of generators, we have

$$
\mu_R(C^{\dagger}) + \mu_R(D) = \mu_R(C^{\dagger} \oplus D) = \mu_R(R \oplus C) = \mu_R(R) + \mu_R(C)
$$

= 1 + $\mu_R(C) \le 1 + \mu_R(C)\mu_R(C^{\dagger}) = 1 + \mu_R(D)$.

The last step in this sequence follows from Fact [2.4.](#page-3-2) It follows that $\mu_R(C^{\dagger}) = 1$, that is, that C^{\dagger} is cyclic. From the isomorphism $R \cong \text{Hom}_{R}(C, C)$, one concludes that $\text{Ann}_R(C) = 0$, and hence $C^{\dagger} \cong R / \text{Ann}_R(C^{\dagger}) \cong R$. It follows that

$$
C \cong \text{Hom}_R(C^{\dagger}, D) \cong \text{Hom}_R(R, D) \cong D
$$

contradicting the assumption that C is not dualizing for R . (Note that this uses the uniqueness statement from Fact [2.2.](#page-3-0))

Next, observe that C^{\dagger} is not free and is not dualizing for R; this follows from the isomorphism $C \cong \text{Hom}_{R}(C^{\dagger}, D)$ contained in Fact [2.4,](#page-3-2) using the assumption that C is not free and not dualizing. Hence, the proof that R_2 is not Gorenstein follows as in the previous paragraph. \square

Lemma 3.8 (Verification of condition [\(6\)](#page-7-2) from Theorem [3.2\)](#page-6-5). *With the notation of Steps* [3.4–](#page-7-0)[3.5,](#page-8-0) we have G- $\dim_{R_j}(R) = 0$ for $j = 1, 2$.

Proof. To show that $\text{G-dim}_{R_1}(R) = 0$, it suffices to show that $\text{Ext}_{R_1}^i(R, R_1) = 0$ for all $i \geq 1$ and that $\text{Hom}_{R_1}(R, R_1) \cong C$; see Fact [2.13.](#page-5-4) To this end, we note that there are isomorphisms of R-modules

 $\text{Hom}_R(R_1, C) \cong \text{Hom}_R(R \oplus C, C) \cong \text{Hom}_R(C, C) \oplus \text{Hom}_R(R, C) \cong R \oplus C \cong R_1$

and it is straightforward to check that the composition $\text{Hom}_{R}(R_1, C) \cong R_1$ is an R_1 -module isomorphism. Furthermore, for $i \geq 1$ we have

$$
\mathrm{Ext}^i_R(R_1,C)\cong \mathrm{Ext}^i_R(R\oplus C,C)\cong \mathrm{Ext}^i_R(C,C)\oplus \mathrm{Ext}^i_R(R,C)=0.
$$

Let I be an injective resolution of C as an R -module. The previous two displays imply that $\text{Hom}_R(R_1, I)$ is an injective resolution of R_1 as an R_1 -module. Using the fact that the composition $R \stackrel{\epsilon_C}{\longrightarrow} R_1 \stackrel{\tau_C}{\longrightarrow} R$ is the identity id_R , we conclude that

$$
\operatorname{Hom}_{R_1}(R, \operatorname{Hom}_R(R_1, I)) \cong \operatorname{Hom}_R(R \otimes_{R_1} R_1, I) \cong \operatorname{Hom}_R(R, I) \cong I
$$

and hence

$$
\operatorname{Ext}_{R_1}^i(R,R_1)\cong \operatorname{H}^i(\operatorname{Hom}_{R_1}(R,\operatorname{Hom}_R(R_1,I)))\cong \operatorname{H}^i(I)\cong \begin{cases} 0 &\text{if $i\geqslant 1$}\\ C &\text{if $i=0$}\end{cases}
$$

as desired.[1](#page-9-2)

The proof for R_2 is similar.

The next three results are for the proof of Lemma [3.12.](#page-11-0)

Lemma 3.9. With the notation of Steps [3.4](#page-7-0) and [3.5,](#page-8-0) one has $\text{Tor}_{i}^{R}(R_1, R_2) = 0$ $for \ all \ i \geqslant 1, \ and \ there \ is \ an \ R_1\text{-}algebra \ isomorphism \ R_1\otimes_R R_2 \cong \check{Q}.$

¹Note that the finiteness of G-dim_{R₁}(*R*) can also be deduced from [\[16,](#page-15-20) (2.16)].

Proof. The Tor-vanishing comes from the following sequence of R-module isomorphisms

$$
\operatorname{Tor}_i^R(R_1, R_2) \cong \operatorname{Tor}_i^R(R \oplus C, R \oplus C^{\dagger})
$$

\n
$$
\cong \operatorname{Tor}_i^R(R, R) \oplus \operatorname{Tor}_i^R(C, R) \oplus \operatorname{Tor}_i^R(R, C^{\dagger}) \oplus \operatorname{Tor}_i^R(C, C^{\dagger})
$$

\n
$$
\cong \begin{cases} R \oplus C \oplus C^{\dagger} \oplus D & \text{if } i = 0 \\ 0 & \text{if } i \neq 0. \end{cases}
$$

The first isomorphism is by definition; the second isomorphism is elementary; and the third isomorphism is from Fact [2.4.](#page-3-2)

Moreover, it is straightforward to verify that in the case $i = 0$ the isomorphism $R_1 \otimes_R R_2 \cong Q$ has the form $\alpha \colon R_1 \otimes_R R_2 \xrightarrow{\cong} Q$ given by

$$
(r,c) \otimes (r',\phi') \mapsto (rr',r'c,r\phi',\phi'(c)).
$$

It is routine to check that this is a ring homomorphism, that is, a ring isomorphism. Let $\xi: R_1 \to R_1 \otimes_R R_2$ be given by $(r, c) \mapsto (r, c) \otimes (1, 0)$. Then one has $\alpha \xi =$ $\epsilon_{D_1}: R_1 \to Q$. It follows that $R_1 \otimes_R R_2 \cong Q$ as an R_1 -algebra.

Lemma 3.10. *Continue with the notation of Steps [3.4](#page-7-0) and [3.5.](#page-8-0) In the tensor product* $R \otimes_{R_1} Q$ *we have* $1 \otimes (0, c, 0, d) = 0$ *for all* $c \in C$ *and all* $d \in D$ *.*

Proof. Recall that Fact [2.4](#page-3-2) implies that the evaluation map $C \otimes_R C^{\dagger} \to D$ given by $c' \otimes \phi \mapsto \phi(c')$ is an isomorphism. Hence, there exist $c' \in C$ and $\phi \in C^{\dagger}$ such that $d = \phi(c')$. This explains the first equality in the sequence

(3.10.1)
$$
1 \otimes (0,0,0,d) = 1 \otimes (0,0,0,\phi(c')) = 1 \otimes [(0,c')(0,0,\phi,0)]
$$

$$
= [1(0,c')] \otimes (0,0,\phi,0) = 0 \otimes (0,0,\phi,0) = 0.
$$

The second equality is by definition of the R_1 -module structure on Q ; the third equality is from the fact that we are tensoring over R_1 ; the fourth equality is from the fact that the R_1 -module structure on R comes from the natural surjection $R_1 \to R$, with the fact that $(0, c) \in 0 \oplus C$ which is the kernel of this surjection.

On the other hand, using similar reasoning, we have

(3.10.2)
$$
1 \otimes (0, c, 0, 0) = 1 \otimes [(0, c)(1, 0, 0, 0)] = [1(0, c)] \otimes (1, 0, 0, 0)
$$

$$
= 0 \otimes (1, 0, 0, 0) = 0.
$$

Combining $(3.10.1)$ and $(3.10.2)$ we have

$$
1 \otimes (0, c, 0, d) = [1 \otimes (0, 0, 0, d)] + [1 \otimes (0, c, 0, 0)] = 0
$$

as claimed. $\hfill \square$

Lemma 3.11. *With the notation of Steps* [3.4](#page-7-0) *and* [3.5,](#page-8-0) *one has* $\text{Tor}_{i}^{R_1}(R,Q) = 0$ *for all* $i \geq 1$ *, and there is a Q-module isomorphism* $R \otimes_{R_1} Q \cong R_2$ *.*

Proof. Let P be an R-projective resolution of R_2 . Lemma [3.9](#page-9-1) implies that $R_1 \otimes_R P$ is a projective resolution of $R_1 \otimes_R R_2 \cong Q$ as an R_1 -module. From the following sequence of isomorphisms

$$
R\otimes_{R_1}(R_1\otimes_R P)\cong (R\otimes_{R_1} R_1)\otimes_R P\cong R\otimes_R P\cong P
$$

it follows that, for $i \geqslant 1$, we have

$$
\operatorname{Tor}^{R_1}_i(R,Q) \cong \operatorname{H}_i(R \otimes_{R_1} (R_1 \otimes_R P)) \cong \operatorname{H}_i(P) = 0
$$

where the final vanishing comes from the assumption that P is a resolution of a module and $i \geq 1$.

This reasoning shows that there is an R-module isomorphism β : $R_2 \stackrel{\cong}{\longrightarrow} R \otimes_{R_1} Q$. This isomorphism is equal to the composition

$$
R_2 \xrightarrow{\cong} R \otimes_R R_2 \xrightarrow{\cong} R \otimes_{R_1} (R_1 \otimes_R R_2) \xrightarrow[R \otimes_{R_1} \alpha] R \otimes_{R_1} Q
$$

and is therefore given by

$$
(3.11.1) \t(r,\phi) \mapsto 1 \otimes (r,\phi) \mapsto 1 \otimes [(1,0) \otimes (r,\phi)] \mapsto 1 \otimes (r,0,\phi,0).
$$

We claim that β is a Q-module isomorphism. Recall that the Q-module structure on R_2 is given via the natural surjection $Q \to R_2$, and so is described as

$$
(r, c, \phi, d)(r', \phi') = (r, \phi)(r', \phi') = (rr', r\phi' + r'\phi).
$$

This explains the first equality in the following sequence

$$
\beta((r,c,\phi,d)(r',\phi')) = \beta(r r', r \phi' + r' \phi) = 1 \otimes (r r', 0, r \phi' + r' \phi, 0).
$$

The second equality is by [\(3.11.1\)](#page-11-1). On the other hand, the definition of β explains the first equality in the sequence

$$
(r, c, \phi, d)\beta(r', \phi') = (r, c, \phi, d)[1 \otimes (r', 0, \phi', 0)]
$$

= 1 $\otimes [(r, c, \phi, d)(r', 0, \phi', 0)]$
= 1 $\otimes (rr', r'c, r\phi' + r'\phi, r'd + \phi'(c))$
= [1 $\otimes (rr', 0, r\phi' + r'\phi, 0)] + [1 \otimes (0, r'c, 0, r'd + \phi'(c))]$
= 1 $\otimes (rr', 0, r\phi' + r'\phi, 0).$

The second equality is from the definition of the Q-modules structure on $R \otimes_{R_1} Q$; the third equality is from the definition of the multiplication in Q ; the fourth equality is by bilinearity; and the fifth equality is by Lemma [3.10.](#page-10-3) Combining these two sequences, we conclude that β is a Q-module isomorphism, as claimed. \square

Lemma 3.12 (Verification of conditions [\(4\)](#page-7-3)–[\(5\)](#page-7-4) from Theorem [3.2\)](#page-6-5). *With the notation of Steps* [3.4](#page-7-0) *and* [3.5,](#page-8-0) *the modules* $Hom_Q(R_1, R_2)$ *and* $Hom_Q(R_2, R_1)$ *are not cyclic. Also, one has* $\text{Ext}^i_Q(R_1, R_2) = 0 = \text{Ext}^i_Q(R_2, R_1)$ *and* $\text{Tor}^Q_i(R_1, R_2) = 0$ *for all* $i \geq 1$ *; in particular, there is an equality* $I_1 \cap I_2 = I_1 I_2$ *.*

Proof. Let L be a projective resolution of R over R_1 . Lemma [3.11](#page-10-0) implies that the complex $L \otimes_{R_1} Q$ is a projective resolution of $R \otimes_{R_1} Q \cong R_2$ over Q. We have isomorphisms

$$
(L\otimes_{R_1}Q)\otimes_Q R_1\cong L\otimes_{R_1}(Q\otimes_Q R_1)\cong L\otimes_{R_1} R_1\cong L
$$

and it follows that, for $i \geq 1$, we have

$$
\operatorname{Tor}^Q_i(R_2,R_1)\cong \operatorname{H}_i((L\otimes_{R_1}Q)\otimes_Q R_1)\cong \operatorname{H}_i(L)=0
$$

since L is a projective resolution.

The equality $I_1 \cap I_2 = I_1 I_2$ follows from the direct computation

$$
I_1 \cap I_2 = (0 \oplus 0 \oplus C^{\dagger} \oplus D) \cap (0 \oplus C \oplus 0 \oplus D) = 0 \oplus 0 \oplus 0 \oplus D = I_1 I_2
$$

or from the sequence $(I_1 \cap I_2)/(I_1 I_2) \cong \text{Tor}_1^Q(Q/I_1, Q/I_2) = 0.$

Let P be a projective resolution of R_1 over Q. From the fact that $\text{Tor}_i^Q(R_2, R_1) =$ 0 for all $i \geq 1$ we get that $P \otimes_Q R_2$ is a projective resolution of R over R_2 . Since

the complexes $\text{Hom}_Q(P, R_2)$ and $\text{Hom}_{R_2}(P \otimes_Q R_2, R_2)$ are isomorphic, we therefore have the isomorphisms

$$
\mathrm{Ext}^i_Q(R_1, R_2) \cong \mathrm{Ext}^i_{R_2}(R, R_2)
$$

for all $i \geq 0$. By the fact that $\text{G-dim}_{R_2}(R) = 0$, we conclude that

$$
\operatorname{Ext}^i_Q(R_1,R_2) \cong \begin{cases} C^\dagger & \text{if } i = 0 \\ 0 & \text{if } i \neq 0. \end{cases}
$$

Since C is not dualizing, the module $\text{Hom}_Q(R_1, R_2) \cong \text{Ext}_Q^0(R_1, R_2) \cong C^{\dagger}$ is not cyclic.

The verification for $\text{Hom}_Q(R_2, R_1)$ and $\text{Ext}_Q^i(R_2, R_1)$ is similar.

Lemma 3.13 (Verification of condition [\(7\)](#page-7-5) from Theorem [3.2\)](#page-6-5). *With the notation of Steps* [3.4](#page-7-0) and [3.5,](#page-8-0) there is an R-module isomorphism $D_1 \otimes_Q D_2 \cong D$, and for *all* $i \geq 1$ *we have* $\text{Tor}_i^Q(D_1, D_2) = 0$ *.*

Proof. There is a short exact sequence of Q-module homomorphisms

$$
0 \to D_1 \to Q \xrightarrow{\tau_{D_1}} R_1 \to 0.
$$

For all $i \geq 1$, we have $\text{Tor}_i^Q(Q, R_2) = 0 = \text{Tor}_i^Q(R_1, R_2)$, so the long exact sequence in Tor^Q $(-, R_2)$ associated to the displayed sequence implies that Tor^Q $(D_1, R_2) = 0$ for all $i \geq 1$. Consider the next short exact sequence of Q-module homomorphisms

$$
0 \to D_2 \to Q \xrightarrow{\tau_{D_2}} R_2 \to 0.
$$

The associated long exact sequence in $\text{Tor}_i^Q(D_1, -)$ implies that $\text{Tor}_i^Q(D_1, D_2) = 0$ for all $i \geqslant 1$.

It is straightforward to verify the following sequence of Q-module isomorphisms

$$
R \otimes_{R_1} D_1 \cong \left(\frac{R \ltimes C}{0 \oplus C}\right) \otimes_{R \ltimes C} (C^{\dagger} \oplus D) \cong \frac{C^{\dagger} \oplus D}{(0 \oplus C)(C^{\dagger} \oplus D)} \cong \frac{C^{\dagger} \oplus D}{0 \oplus D} \cong C^{\dagger}
$$

and similarly

$$
R\otimes_{R_2}D_2\cong C.
$$

These combine to explain the third isomorphism in the following sequence:

$$
D_1 \otimes_Q D_2 \cong R \otimes_Q (D_1 \otimes_Q D_2) \cong (R \otimes_Q D_1) \otimes_R (R \otimes_Q D_2) \cong C^{\dagger} \otimes_R C \cong D.
$$

For the first isomorphism, use the fact that D_j is annihilated by $D_j = I_j$ for $j = 1, 2$ to conclude that $D_1 \otimes_Q D_2$ is annihilated by $I_1 + I_2$; it follows that $D_1 \otimes_Q D_2$ is naturally a module over the quotient $Q/(I_1 + I_2) \cong R$. The second isomorphism is standard, and the fourth one is from Fact [2.4.](#page-3-2)

Lemma 3.14 (Verification of condition [\(3\)](#page-7-6) from Theorem [3.2\)](#page-6-5). *With the notation of Steps* [3.4](#page-7-0)[–3.5,](#page-8-0) we have $\widehat{\text{Tor}}_i^Q(R_1, R_2) = 0 = \widehat{\text{Ext}}_Q^i(R_1, R_2)$ and $\widehat{\text{Tor}}_i^Q(R_2, R_1) =$ $0 = \widehat{\mathrm{Ext}}_{Q}^{i}(R_2, R_1)$ *for all* $i \in \mathbb{Z}$ *.*

Proof. We verify that $\widehat{\text{Tor}}_i^Q(R_1, R_2) = 0 = \widehat{\text{Ext}}_Q^i(R_1, R_2)$. The proof of the other vanishing is similar.

Recall from Step [3.4](#page-7-0) that R_1 is totally reflexive as a Q -module. We construct a complete resolution of R_1 over Q by splicing a minimal Q-free resolution P of R_1 with its dual $P^* = \text{Hom}_Q(P,Q)$. Using the fact that R_1^* is isomorphic to I_1 ,

the first syzygy of R_1 in P, we conclude that $X^* \cong X$. This explains the second isomorphism in the next sequence wherein i is an arbitrary integer:

(3.14.1)
$$
\widehat{\text{Tor}}_i^Q(R_1, R_2) \cong \text{H}_i(X \otimes_Q R_2) \cong \text{H}_i(X^* \otimes_Q R_2)
$$

$$
\cong \text{H}_i(\text{Hom}_Q(X, R_2)) \cong \widehat{\text{Ext}}_Q^{-i}(R_1, R_2).
$$

The third isomorphism is standard, since each Q -module X_i is finitely generated and free, and the other isomorphisms are by definition.

For $i \geq 1$, the complex X provides the second steps in the next displays:

$$
\widehat{\text{Ext}}_Q^{-i}(R_1, R_2) \cong \widehat{\text{Tor}}_i^Q(R_1, R_2) \cong \text{Tor}_i^Q(R_1, R_2) = 0
$$

$$
\widehat{\text{Tor}}_{-i}^Q(R_1, R_2) \cong \widehat{\text{Ext}}_Q^i(R_1, R_2) \cong \text{Ext}_Q^i(R_1, R_2) = 0.
$$

The first steps are from [\(3.14.1\)](#page-13-1), and the third steps are from Lemma [3.12.](#page-11-0)

To complete the proof it suffices by $(3.14.1)$ to show that $\widehat{\text{Ext}}_{Q}^{0}(R_1, R_2) = 0$. For this, we recall the exact sequence

$$
0 \to \text{Hom}_{Q}(R_1, Q) \otimes_{Q} R_2 \xrightarrow{\nu} \text{Hom}_{Q}(R_1, R_2) \to \widehat{\text{Ext}}_{Q}^{0}(R_1, R_2) \to 0
$$

from [\[4,](#page-15-18) $(5.8(3))$]. Note that this uses the fact that R_1 is totally reflexive as a Q-module, with the condition $\widehat{\text{Ext}}_{Q}^{-1}(R_1, R_2) = 0$ which we have already verified. Also, the map ν is given by the formula $\nu(\psi \otimes r_2) = \psi_{r_2} \colon R_1 \to R_2$ where $\psi_{r_2}(r_1) = \psi(r_1)r_2$. Thus, to complete the proof, we need only show that the map ν is surjective.

As with the isomorphism α : Hom $_Q(R_1, Q) \stackrel{\cong}{\longrightarrow} I_1$, it is straightforward to show that the map β : Hom $_Q(R_1, R_2) \to C^{\dagger}$ given by $\phi \mapsto \phi(1)$ is a well-defined Q -module isomorphism. Also, from Lemma [3.12](#page-11-0) we have that $I_1I_2 = 0 \oplus 0 \oplus 0 \oplus D$, considered as a subset of $I_1 = 0 \oplus 0 \oplus C^{\dagger} \oplus D \subset R \oplus C \oplus C^{\dagger} \oplus D = Q$. In particular, the map $\sigma: I_1/I_1I_2 \to C^{\dagger}$ given by $\overline{(0,0,f,d)} \mapsto f$ is a well-defined Q-module isomorphism.

Finally, it is straightforward to show that the following diagram commutes:

$$
\operatorname{Hom}_Q(R_1, Q) \otimes_Q R_2 \xrightarrow{\nu} \operatorname{Hom}_Q(R_1, R_2)
$$
\n
$$
\xrightarrow{\alpha \otimes_Q R_2} \left| \cong \begin{array}{c} \beta \\ \cong \\ I_1 \otimes_Q R_2 \xrightarrow{\qquad \qquad} I_1 \otimes_Q Q/I_2 \xrightarrow{\delta} I_1/I_1 I_2 \xrightarrow{\qquad \qquad \sigma \qquad} C^{\dagger}. \end{array} \right.
$$

From this, it follows that ν is surjective, as desired.

This completes the proof of Theorem [3.2.](#page-6-5)

4. Constructing Rings with Non-trivial Semidualizing Modules

We begin this section with the following application of Theorem [3.1.](#page-5-5)

Proposition 4.1. Let R_1 be a local Cohen–Macaulay ring with dualizing module $D_1 \not\cong R_1$ and $\dim(R_1) \geq 2$. Let $\mathbf{x} = x_1, \ldots, x_n \in R_1$ be an R_1 -regular sequence with $n \geqslant 2$, and fix an integer $t \geqslant 2$. Then the ring $R = R_1/(\mathbf{x})^t$ has a semidualizing *module* C *that is neither dualizing no free.*

$$
f_{\rm{max}}
$$

Proof. We verify the conditions (1) – (5) from Theorem [3.1.](#page-5-5)

[\(1\)](#page-6-6) Set $Q = R_1 \ltimes D_1$ and $I_1 = 0 \oplus D_1 \subset Q$. Consider the elements $y_i = (x_i, 0) \in Q$ for $i = 1, \ldots, n$. It is straightforward to show that the sequence $y = y_1, \ldots, y_n$ is Q-regular. With $R_2 = Q/(\mathbf{y})^t$, we have $R \cong R_1 \otimes_Q R_2$. That is, with $I_2 = (\mathbf{y})^t$, condition [\(1\)](#page-6-6) from Theorem [3.1](#page-5-5) is satisfied.

[\(2\)](#page-6-3) The assumption $D_1 \not\cong R_1$ implies that R_1 is not Gorenstein. It is well-known that type $(R_2) = {t+n-2 \choose n-1} > 1$, so R_2 is not Gorenstein.

[\(3\)](#page-6-0) By Fact [2.18,](#page-5-1) it suffices to show that $\text{pd}_Q(R_2) < \infty$. Since y is a Q-regular sequence, the associated graded ring $\oplus_{i=0}^{\infty}(\mathbf{y})^i/(\mathbf{y})^{i+1}$ is isomorphic as a Q-algebra to the polynomial ring $Q/(\mathbf{y})[Y_1,\ldots,Y_n].$ It follows that the Q -module $R_2 \cong Q/(\mathbf{y})^t$ has a finite filtration $0 = N_r \subset N_{r-1} \subset \cdots \subset N_0 = R_2$ such that $N_{i-1}/N_i \cong$ $Q/(\mathbf{y})$ for $i = 1, \ldots, r$. Since each quotient $N_{i-1}/N_i \cong Q/(\mathbf{y})$ has finite projective dimension over Q , the same is true for R_2 .

[\(4\)](#page-6-2) The following isomorphisms are straightforward to verify:

$$
R_2 = Q/(\mathbf{y})^t \cong [R_1/(\mathbf{x})^t] \ltimes [D_1/(\mathbf{x})^t D_1] \cong R \ltimes [D_1/(\mathbf{x})^t D_1].
$$

Since x is R_1 -regular, it is also D_1 -regular. Using this, one checks readily that

Hom_Q
$$
(R_1, R_2) \cong \{ z \in R_2 | I_1 z = 0 \} = 0 \oplus [D_1/(\mathbf{x})^t D_1].
$$

Since D_1 is not cyclic and **x** is contained in the maximal ideal of R_1 , we conclude that $\text{Hom}_Q(R_1, R_2) \cong D_1/(\mathbf{x})^t D_1$ is not cyclic.

[\(5\)](#page-6-1) The Q-module R_1 is totally reflexive; see Facts [2.12–](#page-5-2)[2.13.](#page-5-4) It follows from [\[6,](#page-15-17) $(2.4.2(b))$ that $\text{Tor}_i^Q(R_1, N) = 0$ for all $i \geq 1$ and for all Q-modules N of finite flat dimension; see also [\[2,](#page-15-16) (4.13)]. Thus, we have $\text{Tor}_i^Q(R_1, R_2) = 0$ for all $i \geq 1$. \Box

Remark 4.2. One can use the results of [\[3\]](#page-15-21) directly to show that the ring R in Proposition [4.1](#page-13-0) has a non-trivial semidualizing module. (Specifically, the relative dualizing module of the natural surjection $R_1 \rightarrow R$ works.) However, our proof illustrates the concrete criteria of Theorem [3.1.](#page-5-5)

We conclude by showing that there exists a Cohen–Macaulay local ring R that does not admit a dualizing module and does admit a semidualizing module C such that $C \not\cong R$. The construction is essentially from [\[22,](#page-15-3) p. 92, Example].

Example 4.3. Let A be a local Cohen–Macaulay ring that does not admit a dualizing module. (Such rings are known to exist by a result of Ferrand and Raynaud [\[9\]](#page-15-22).) Set $R = A[X, Y]/(X, Y)^2 \cong A \ltimes A^2$ and consider the R-module $C = \text{Hom}_A(R, A)$. Since R is finitely generated and free as an A -module, Fact [2.13](#page-5-4) shows that C is a semidualizing R-module. The composition of the natural inclusion $A \to R$ and the natural surjection $R \to A$ is the identity on A.

If R admitted a dualizing module D, then the module $\text{Hom}_R(A, D)$ would be a dualizing A-module by Fact [2.7,](#page-4-0) contradicting our assumption on A. (Alternately, since A is not a homomorphic image of a Gorenstein ring, we conclude from the surjection $R \to A$ that R is not a homomorphic image of a Gorenstein ring.)

We show that $C \not\cong R$. It suffices to show that $\text{Hom}_R(A, C) \not\cong \text{Hom}_R(A, R)$. We compute:

$$
\text{Hom}_{R}(A, C) \cong \text{Hom}_{R}(A, \text{Hom}_{A}(R, A)) \cong \text{Hom}_{A}(R \otimes_{R} A, A) \cong \text{Hom}_{A}(A, A) \cong A
$$

$$
\text{Hom}_{R}(A, R) \cong \{r \in R \mid (0 \oplus A^{2})r = 0\} = 0 \oplus A^{2} \cong A^{2}
$$

which gives the desired conclusion.

ACKNOWLEDGMENTS

We are grateful to Lars W. Christensen for helpful comments about this work.

REFERENCES

- 1. M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, vol. 1966/67, Secrétariat mathématique, Paris, 1967. MR 37 #1435
- 2. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 42 #4580
- 3. L. L. Avramov and H.-B. Foxby, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3) 75 (1997), no. 2, 241–270. MR 98d:13014
- 4. L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002), 393–440. MR 2003g:16009
- 5. W. Bruns and J. Herzog, Cohen-Macaulay rings, revised ed., Studies in Advanced Mathematics, vol. 39, University Press, Cambridge, 1998. MR 1251956 (95h:13020)
- 6. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000. MR 2002e:13032
- 7. Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839–1883. MR 2002a:13017
- 8. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85–88. MR 1562332
- 9. D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295-311. MR 0272779 (42 #7660)
- 10. H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284 (1973). MR 48 #6094
- 11. A. A. Gerko, On the structure of the set of semidualizing complexes, Illinois J. Math. 48 (2004), no. 3, 965–976. MR 2114263
- 12. E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62–66, Algebraic geometry and its applications. MR 85m:13011
- 13. A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Vol. 4, Soc. Math. France, Paris, 1995, pp. Exp. No. 149, 169–193. MR 1610898
- 14. R. Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin, 1967. MR 0224620 (37 #219)
- 15. G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58–67. MR 0011076 (6,114f)
- 16. H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423–445. MR 2203625
- 17. I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 0296067 (45 #5128)
- 18. S. Sather-Wagstaff, Bass numbers and semidualizing complexes, Fez Conference Proceedings, to appear, arXiv:math.AC/0801.4743.
- 19. S. Sather-Wagstaff, T. Sharif, and D. White, Tate cohomology with respect to semidualizing modules, preprint (2009), arXiv:math.AC/0907.4969v1.
- 20. R. Y. Sharp, Gorenstein modules, Math. Z. 115 (1970), 117–139. MR 0263801 (41 #8401)
- 21. , On Gorenstein modules over a complete Cohen-Macaulay local ring, Quart. J. Math. Oxford Ser. (2) 22 (1971), 425–434. MR 0289504 (44 #6693)
- 22. W. V. Vasconcelos, Divisor theory in module categories, North-Holland Publishing Co., Amsterdam, 1974, North-Holland Mathematics Studies, No. 14, Notas de Matemática No. 53. [Notes on Mathematics, No. 53]. MR 0498530 (58 #16637)
- 23. T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106–114. MR 931903 (89b:16020)

David A. Jorgensen, Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 USA

 $\it E\mbox{-}mail\;address:$ djorgens@uta.edu $URL: \texttt{http://dreadnought.uta.edu/~dave/}$

Graham J. Leuschke, Mathematics Department, 215 Carnegie Hall, Syracuse University, Syracuse, NY 13244 USA

E-mail address: gjleusch@math.syr.edu URL: http://www.leuschke.org/

SEAN SATHER-WAGSTAFF, DEPARTMENT OF MATHEMATICS, NDSU DEPT # 2750, PO BOX 6050, Fargo, ND 58108-6050 USA

E-mail address: Sean.Sather-Wagstaff@ndsu.edu URL: http://www.ndsu.edu/pubweb/~ssatherw/