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Abstract 

In this paper, we propose an estimation and testing framework for parameter instability in 

cointegrated panel regressions with common and idiosyncratic trends. We develop tests 

for structural change for the slope parameters under the null hypothesis of no structural 

break against the alternative hypothesis of (at least) one common change point, which is 

possibly unknown. The limiting distributions of the proposed test statistics are derived. 
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1 Introduction

Estimation and testing for structural changes is an important research topic in time series econometrics. A

recent annals volume of the Journal of Econometrics published in 2005 entitled \Modelling structural breaks,

long memory and stock market volatility" (edited by Anindya Banerjee and Giovanni Urga, 2005) and Perron

(2006) o�er the most recent comprehensive reviews on the topic. In contrast, scarce is the literature on the

issues (estimation and testing) of structural changes in panel models, e.g., Han and Park (1989), Joseph

and Wolfson (1992, 1993), Joseph et al. (1997), Hansen (1999), Chiang et al. (2002), Emerson and Kao

(2001, 2002), Wachter and Tzavalis (2004) and Bai (2006). The estimation and testing for structure change

in panels have many applications in economics, For example, �scal/monetary policies may a�ect every unit

in the economy (�rms/regions), stock market crashes in the US may also cause the chain reaction in other

stock markets in the world.

Despite the potential usefulness in economics, the econometric theory of the testing and estimation of

structural changes in panels is still underdeveloped. This paper �lls the gap in the literature by proposing an

estimation and testing framework for parameter instability in cointegrated panel regression. We derive tests

for structural change for the slope parameters in panel cointegration models with cross-sectional dependence

that is captured by the common stochastic trends. The tests are for the null hypothesis of no structural

break against the alternative hypothesis of (at least) one common change point which is possibly unknown.

The framework we propose is based on a linear cointegrated panel data model where the number of cross-

sectional units n and the number of time observations T are both large. The cointegrating equation we study

contains unit-speci�c variables (idiosyncratic shocks) and a set of possibly unobservable variables that are

common across all units (common shocks).

This paper makes two contributions to the existing literature. First, we develop an asymptotic theory

for the estimates of the parameters in the model. We consider both the case of observed and unobserved

common shocks. Ordinary large panels asymptotic theory (Phillips and Moon, 1999; Kao, 1999) cannot be

applied in our framework due to the strong cross-sectional dependence introduced by the common shocks.

We note that the limiting distributions of the common shocks coe�cients are mixed normal, in contrast with

asymptotic normality found in the literature. Second, along similar lines as Andrews (1993), we derive the

limiting distribution of a Wald-type test for the null hypothesis of no structural change at an unknown point

in cointegrated panels where units are cross dependent. The tests we derive are based on functionals of the

Wald-type statistic.

The organization of the paper is as follows. Section 2 introduces the model. Section 3 discusses asymp-

totics. The limiting distribution of the OLS under the null of no structural change is established. Section 4

de�nes the test statistic. The limiting distributions of the proposed test are also derived. Section 5 discusses

the local power. In Section 6 we report the �nite sample properties, i.e., size and power, of our proposed
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tests. Section 7 provides concluding remarks. Some useful lemmas are given in Appendix A. In Appendix B

we report the proofs of the main results in the paper.

We write the integral
R 1
0
W (s)ds as

R
W when there is no ambiguity over limits. We de�ne 
1=2 to be any

matrix such that 
 =
�

1=2

� �

1=2

�0
: We use k�k to denote the Euclidean norm of a vector,

d�! to denote

convergence in distribution,
p�! to denote convergence in probability, [x] to denote the largest integer � x,

I(0) and I(1) to signify a time-series that is integrated of order zero and one, respectively, B = BM (
) to

denote Brownian motion with the covariance matrix 
, and �B = B �
R
B to denote the demeaned version

of B: We let M <1 be a generic positive number which does not depend on n or T .

2 Model and Assumptions

Consider the following panel model with common and idiosyncratic shocks

yit = �i + �
0Ft + 

0xit + uit (1)

i = 1; :::; n and t = 1; :::; T; where �i is the individual e�ect. The parameters � and  are R � 1 and p� 1,

respectively, Ft = (F1t; :::; FRt)
0
is a R� 1 vector of common stochastic trends

Ft = Ft�1 + "t (2)

xit is a p� 1 vector of observable I(1) individual-speci�c regressors,

xit = xit�1 + �it (3)

and
�
uit; "

0

t; �
0

it

�0
are error terms. When common shocks Ft are not observable in (1), we then assume that

Ft can be estimated by a set of observable exogenous variables, zit, such that

zit = �
0
iFt + eit (4)

where �i is a vector of factor loadings and eit is the error term.
1

It is important to point out that our model in (1) is a standard common slope coe�cients panel model

not a factor-loading model as in Bai (2004), for example. Similar to this paper but not the same is Stock and

Watson (1999, 2002, 2005). In Stock and Watson's setup, yit in (1) (with n = 1) is the time series variable

to be forecasted and zi = (zi1; zi2; :::; ziT )
0
is a n-dimensional multiple time series of candidate predictors.

The main aim of this paper is to develop test statistics to test the constancy over time for � =
�
�0; 0

�0
with unknown change points. Considering the alternative hypothesis that there is only one change point k,

three possible sets of alternative hypotheses can be considered as opposed to the null of no structural change

1Kao, Trapani and Urga (2006) provide a comprehensive asymptotic theory of the OLS estimator �̂ of � when (1) does not
contain idiosyncratic regressors xit.
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in �: (1) only the common shocks coe�cients � may change, (2) only the idiosyncratic shocks coe�cients 

may change or (3) both � and  may be a�ected by the break.

Denote �t =
�
�0t; 

0
t

�0
: Given the null hypothesis

H0 : �t = � for all t;

the alternative could be de�ned as

Ha : �t =

�
�1 for t = 1; :::; k
�2 for t = k + 1; :::; T

with �1 6= �2.2

Note that testing for the constancy of � for the common factor, Ft, may have a di�erent interpretation

than the usual constancy of the slope parameter.3 This is the case especially when Ft is not observed and

has to be estimated e.g. using the principal component estimator (see Bai, 2003, 2004; Bai and Ng, 2002,

2004). In this case, the estimated factor matrix, F̂ , is given by T times the eigenvectors corresponding to the

R largest eigenvalues of the matrix ZZ 0, where Z = (z1; z2; :::; zn)
0
is T �n with zi = (zi1; zi2; :::; ziT )0. Since

there is no guarantee that the R largest eigenvalues will have the same order for each t, the corresponding

eigenvectors will have di�erent meanings over time. For example, in the term structure literature (see e.g.

Litterman and Scheinkman, 1991; Audrino et al. 2005), one usually uses a three-factor speci�cation (level,

slope and curvature) to explain the yield curves. The largest eigenvalue (and the corresponding eigenvector)

for period t may not the be the same one in period s. This will make the parameter � non constant. Thus,

� being non constant may indicate instability in the factor structure and not merely lack of constancy of a

slope parameter. Recently, Perignon and Villa (2006) provide some discussion on the stability of the latent

factor structure of interest rates over time.

We need the following assumptions.

Assumption M1: Let !it = (uit; "
0
t; �

0
it; eit)

0
. We assume that

(a) !it is iid over t and the invariance principle holds for the partial sums of !it, so that for a given i,

1p
T

bT �cX
t=1

!it
d�! B! (�) =

2664
Bu (�)
B" (�)
B� (�)
Be (�)

3775
2The formulation of the alternative hypothesis encompasses three possible cases:

Ha
1 : �t=

�
(�01; 

0) for t = 1; :::; k
(�02; 

0) for t = k + 1; :::; T

Hb
1: �t=

� �
�0; 01

�
for t = 1; :::; k�

�0; 02
�

for t = k + 1; :::; T

Hc
1: �t=

� �
�01; 

0
1

�
for t = 1; :::; k�

�02; 
0
2

�
for t = k + 1; :::; T

where �1 6= �2 and 1 6= 2.
3We thank Zongwu Cai for pointing this to us.
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where B! (�) represents a multivariate Brownian motion, whose elements have covariance matrices �2u,


", 
� and 
e respectively.

(b) For a given t, fuitg, f"t; �itg ; and feitg are mutually independent across i.

(c) fxit; Ftg are not cointegrated and 
" and 
� are non singular.

(d) The eigenvalues of 
" and the random matrix
R
B"B

0
" are distinct with probability 1.

Assumption M2: k�ik �M and 1
n

Pn
i=1 �i�

0
i ! �� as n!1, where �� is non singular.

Assumption M3: We assume the following limits hold as in Phillips and Moon (1999):

1

nT 2

nX
i=1

TX
t=1

exitex0it p�! 1

6

� (5)

and

1p
nT

nX
i=1

TX
t=1

exituit d�! N

�
0;
1

6

��

2
u

�
(6)

as (n; T ) �!1 where ~xit = xit � 1
T

PT
t=1 xit and �

2
u = V ar (uit).

Assumption M1(a) considers a framework of no endogeneity of the regressors, serial dependence or con-

temporaneous correlation other than the one determined by the common shocks Ft are allowed for. Ex-

tensions to allow for endogeneity of the regressors, serial correlation and weak cross-sectional dependence

among the regression errors are straightforward. Assumption M1(a), therefore, is considered merely for the

purpose of simpli�cation. Assumption M1(b) is a standard requirement for factor analysis and it is needed

when Ft are not observable. Note here we allow non-zero covariance between "t and �it: Assumption M1(c)

rules out cointegration among regressors. Assumption M1(d) is a standard requirement in large panel factor

literature. Assumption M2 is also standard. Assumption M3 states that the joint limit theory developed by

Phillips and Moon (1999) holds for (5) and (6).

The following proposition is important for developing the asymptotics in this paper.

Proposition 1 Let Assumption M1 hold. As (n; T )!1

(a) 1p
nT 2

Pn
i=1

PT
t=1 wtex0it = Op (1),

(b) 1p
nT

Pn
i=1

PT
t=1 wtuit

d�! �u

�R
�B" �B

0

"

�1=2
� Z1

where Z1 � N (0; IR) and wt = Ft � 1
T

PT
t=1 Ft.

Proposition 1 states that the asymptotic magnitude of the cross term
Pn
i=1

PT
t=1 wtex0it is Op �pnT 2�,

thereby smaller than
Pn
i=1

PT
t=1 exitex0it in (5) (and Pn

i=1

PT
t=1 wtw

0
t in (7) below). The asymptotic mixed

4



normality result in part (b) is also di�erent from the distribution limit in equation (6) where asymptotic

normality holds. This result is due to the shock wt being common to all units and I(1).

We now turn to estimation of � (under the null of no structural change).

3 Asymptotics of the Parameter Estimates Under the Null

In this section we provide asymptotics for the OLS of model (1) under the null hypothesis of no structural

change. We distinguish the case of Ft observed from that where Ft needs to be estimated.

3.1 Ft is Observable

De�ne Wit = (w
0
t; ~x

0
it)
0
. Let �̂ be the OLS of �: Then we have

�̂ � � =

�
�̂ � �
̂ � 

�

=

"
nX
i=1

TX
t=1

WitW
0
it

#�1 " nX
i=1

TX
t=1

Wituit

#

=

" Pn
i=1

PT
t=1 wtw

0
t

Pn
i=1

PT
t=1 ~xitw

0
tPn

i=1

PT
t=1 wt~x

0
it

Pn
i=1

PT
t=1 ~xit~x

0
it

#�1 " Pn
i=1

PT
t=1 wtuitPn

i=1

PT
t=1 ~xituit

#
: (7)

The following proposition characterizes the limiting distribution of �̂.

Proposition 2 Let Assumptions M1(a)-M1(d) and M3 hold. Then, as (n; T ) �!1 it holds that

p
nT
�
�̂ � �

�
=
p
nT

�
�̂ � �
̂ � 

�
d�! �u

 �R
�B" �B

0
"

��1=2
p
6


�1=2
�

!
� Z (8)

where

Z � N
��

0
0

�
;

�
IR 0
0 Ip

��
:

Proposition 2 states that �̂ � � and ̂ �  are asymtotically independent. This result is a consequence of

Proposition 1, i.e.,

1

nT 2

" Pn
i=1

PT
t=1 wtw

0
t

Pn
i=1

PT
t=1 ~xitw

0
tPn

i=1

PT
t=1 wt~x

0
it

Pn
i=1

PT
t=1 ~xit~x

0
it

#
=

24 Op (1) Op

�
1p
n

�
Op

�
1p
n

�
Op (1)

35 : (9)

Note that results in Proposition 2 have
p
nT convergence, as in Phillips and Moon (1999) and Kao

(1999). However, the limiting distribution of �̂ is di�erent from the panel cointegration literature, where

normality holds. The mixed normality found in our case is due to the shocks wt being nonstationary and

common across units, which implies 1
nT 2

Pn
i=1

PT
t=1 wtw

0
t

d�!
R
�B" �B

0
" being a random matrix rather than a

constant as in the standard panel cointegration as in (6).
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3.2 Ft is Unobservable

In order to estimate � when Ft is unobservable, we consider a two step approach. First, we derive the

estimator of the vector of common shocks, F̂t, using equation (4). We then plug this estimator in equation

(1) to retrieve an estimate for �.

3.2.1 Estimation of Ft

The estimator F̂t, can be estimated by the method of principal components, (see e.g., Bai (2004)).
4 That is,

F̂t can be found by minimizing

VnT (R) =
1

nT

nX
i=1

TX
t=1

�
zit � �0iFt

�2
subject to the normalization 1

T 2

PT
t=1 FtF

0
t = IR, where zit is given in (4). Let F = (F1; :::; FT )

0
and

Z = (z1; z2; :::; zn)
0
a T � n matrix with zi = (zi1; zi2; :::; ziT )0. The estimator F̂ =

�
F̂1; :::; F̂t

�0
is a T � R

matrix which is found by T times the eigenvectors corresponding to the R largest eigenvalues of the T � T

matrix ZZ 0.

It is known that the solution to the above minimization problem is not unique, i.e., �i and Ft are not

directly identi�able since they are identi�able only up to a transformation. Therefore, instead of estimating

the factors Ft (or the loadings �i), what one does by employing the principal component estimator is to

estimate the space spanned by them up to a R � R transformation matrix, say H, thereby �nding HFt

instead of Ft. Therefore, computing the OLS of � for example, would result in estimating H
�1� rather than

�. However, as far as testing is concerned, knowledge of HFt is the same as directly estimating Ft. Hence,

for the purpose of notational simplicity, we assume H being a R�R identity matrix in this paper.

3.2.2 Estimation of �

Let ŵt = F̂t � 1
T

PT
t=1 F̂t and Ŵit = (ŵ

0
t; ~x

0
it)
0
. The OLS estimator of � is computed from

yit = �i + �
0
tF̂t + 

0
txit + vit (10)

where vit = uit + �
0
�
Ft � F̂t

�
. Note

�̂ � � =

�
�̂ � �
̂ � 

�

=

"
nX
i=1

TX
t=1

ŴitŴ
0
it

#�1 " nX
i=1

TX
t=1

Ŵitvit

#

=

" Pn
i=1

PT
t=1 ŵtŵ

0
t

Pn
i=1

PT
t=1 ~xitŵ

0
tPn

i=1

PT
t=1 ŵt~x

0
it

Pn
i=1

PT
t=1 ~xit~x

0
it

#�1 " Pn
i=1

PT
t=1 ŵtvitPn

i=1

PT
t=1 ~xitvit

#
: (11)

4Throughout the paper, we assume that the number of common shocks R is known. If this is not the case, detection of R is
possible using the methods derived by Bai and Ng (2002).
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Let

�2� = �
2
u + �

2
� (12)

where �2u = V ar(uit)

�2� = �
0 ~QB

�
�2e��

�
~Q0B� (13)

�2e = V ar(eit) and the random variable ~QB is de�ned as

1

T 2

TX
t=1

ŵtw
0
t

d�! ~QB :

The following theorem characterizes the limiting distribution of �̂ when Ft are not observable.

Theorem 1 Suppose Assumptions M1-M3 hold, with n=T ! 0 as (n; T )!1: We get

p
nT
�
�̂ � �

�
=
p
nT

�
�̂ � �
̂ � 

�
d�!
 �R

�B" �B
0
"

��1=2
��p

6

�1=2
� �u

!
� Z (14)

where

Z � N
��

0
0

�
;

�
IR 0
0 Ip

��
:

Note that �̂ and ̂ are asymptotically independent due to 1
nT 2

Pn
i=1

PT
t=1 ŴitŴ

0
it being a block diagonal

matrix asymptotically similar to (9). The limiting distributions are essentially the same as those found in

Proposition 2, the only di�erence with respect to (8), being the presence of the extra variance term �� in

the limiting distribution of �̂. This arises from the estimation error of the common shocks, F̂t � Ft.

4 Test Statistics

The asymptotic theory for �̂ derived in the Section 3 is used to derive the limiting distribution for the Wald-

type statistic under the null hypothesis of no structural change. A variety of tests for a break, based on the

Wald statistic have been discussed in the literature, e.g., Andrews (1993), Andrews and Ploberger (1994).

In this section, we consider three statistics: the supremum of the Wald statistic, SupW; the average Wald

statistic, AveW, and the logarithm of the Andrews-Ploberger exponential Wald statistic, ExpW.

Assumption PSE:(Partial Sample Estimation) k
T ! r 2 (0; 1) as T and k !1:

Assumption PSE states that the fraction of T at which the change point occurs, r, is bounded away from

zero and one. Therefore, the structural break will divide the sample into two subsamples each of nontrivial

size. This assumption follows an argument similar to that in Corollary 1 in Andrews (1993, p.838).

Consider the following partial sample OLS

�̂1[Tr] =

0@ nX
i=1

[Tr]X
t=1

ŴitŴ
0

it

1A�1
nX
i=1

[Tr]X
t=1

Ŵityit

7



and

�̂2[Tr] =

0@ nX
i=1

TX
t=[Tr]+1

ŴitŴ
0

it

1A�1
nX
i=1

TX
t=[Tr]+1

Ŵityit:

Let �̂2u and �̂
2
� be consistent estimators for �

2
u and �

2
� respectively under H0. De�ne

�̂
�
j[Tr] =

�
�̂�IR 0
0 �̂uIp

��1
�̂j[Tr]

for j = 1, 2. Then the Wald statistic W([Tr]) is given by

W([Tr]) =
�
�̂
�
1[Tr] � �̂

�
2[Tr]

�0 264
�Pn

i=1

P[Tr]
t=1 ŴitŴ

0

it

��1
+
�Pn

i=1

PT
t=[Tr]+1 ŴitŴ

0

it

��1
375
�1 �

�̂
�
1[Tr] � �̂

�
2[Tr]

�
: (15)

Let S1 (r) = ��1�
R r
0
�B"dB and S2 (r) = ��1�

R 1
r
�B"dB, where B (�) is the standard Brownian motion.

De�ne

s (r) =

�
S1 (r)
S2 (r)

�
M1 (r) =

R r
0
�B" �B

0
", M2 (r) =

R 1
r
�B" �B

0
", and

V �1 (r) =

�
IR 0
0 �IR

� �
M�1
1 (r)

M�1
2 (r)

� �
M�1
1 (r) +M�1

2 (r)
��1 �

M�1
1 (r) M�1

2 (r)
� � IR 0

0 �IR

�
:

The following theorem characterizes the limiting distribution of the Wald test under the null.

Theorem 2 Suppose Assumptions M1{M3 and PSE hold, and that n
T ! 0 as (n; T ) ! 1. Then, under

the null H0 of no structural change

W([T �]) d�! D (�) = QR(�) +Qp(�) (16)

with

QR(r) = s (r)
0
V �1 (r) s (r) ; (17)

Qp(r) =

h
B((1� r)2)�B

�
r2
�i0 h

B((1� r)2)�B
�
r2
�i

r2 + (1� r)2
; (18)

where in this case B (�) is a p-dimensional standard Brownian motion. For a given r, QR(r) and Qp(r) are

independent such that

QR(r) � �2R

and

Qp(r) �
����� (1� r)2 � r2(1� r)2 + r2

������2p:

8



Let

d(r) =

����� (1� r)2 � r2(1� r)2 + r2

����� :
Note that B((1� r)2)�B

�
r2
�
has variance (1� r)2 � r2 if (1� r)2 > r2: Also B((1� r)2)�B

�
r2
�
has

variance r2 � (1� r)2 if r2 > (1� r)2 : Then
B((1� r)2)�B �r2� is a Bessel process of order p, andh

B((1� r)2)�B
�
r2
�i0 h

B((1� r)2)�B
�
r2
�i���(1� r)2 � r2���

is its standardized squares. Let s =
���(1� r)2 � r2���, we can writeh

B((1� r)2)�B
�
r2
�i0 h

B((1� r)2)�B
�
r2
�i

r2 + (1� r)2
=

s

r2 + (1� r)2
BM(s)0BM(s)

s
;

whereBM(s) denotes a p-vector of independent Brownian processes on [0;1]. For a �xed r, [BM(s)0BM(s)] =s

has a chi-squared distribution with p degrees of freedom. However, r cannot be 1=2 since s will be zero when

r = 1=2.

In order to obtain a test statistic that the critical values can be taken from the literature, e.g., Andrews

(1993), Andrews and Ploberger (1994), we consider the following modi�cation to the Wald test:

W�([Tr]) =
�
�̂
��
1[Tr] � �̂

��
2[Tr]

�0 264
�Pn

i=1

P[Tr]
t=1 ŴitŴ

0

it

��1
+
�Pn

i=1

PT
t=[Tr]+1 ŴitŴ

0

it

��1
375
�1 �

�̂
��
1[Tr] � �̂

��
2[Tr]

�

where

�̂
��
j[Tr] =

�
�̂�IR 0

0
p
d(r)� �̂uIp

��1
�̂j[Tr]:

It is clear that

W�([T �]) d�! D� (�) = QR(�) +Q�p(�) (19)

where

Q�p(�) =
1

d (r)
Qp(�):

Note that for a �xed r, QR(r) and Q
�
p(r) are independent and

D� (r) � �2R+p:

Hence we have the following corollary:

Corollary 1 Suppose Assumptions M1{M3 and PSE hold, and that n
T ! 0 as (n; T ) ! 1. Then, under

the null H0 of no structural change

W�([T �]) d�! D� (�)

9



The results in Theorem 2 and the rest of the paper continue to hold if we relax some of the restrictions

contained in Assumption M1. Particularly, assume that a multivariate invariance principle for !it holds,

such that

1p
T

[T �]X
t=1

!it
d�! Bi (
) as T !1 for all i;

where

Bi =

2664
Bui
B"
B�i
Bei

3775 ;
and


 �
1X

j=�1
E
�
!i0!

0

ij

�
= �i(1)� �i(1)

0
= �+ � + �

0

=

2664

u 
u" 
u� 
ue

"u 
" 
"� 
"e

�u 
�" 
� 
�e

eu 
e" 
e� 
e

3775
where � =

P1
j=1E

�
!i0!

0
ij

�
and � = E (!i0!

0
i0) are partitioned conformably with !it. In this case, one can

replace the OLS estimator by the fully modi�ed (FM) estimator or dynamic OLS (DOLS), e.g., Phillips and

Moon (1999) and Kao and Chiang (2000), to take account of the presence of serial correlation and exogeneity.

This can be performed by replacing b�2u by b
u:" in (15) for the Wald test statistic, where b
u:" is a consistent
estimator for


u:b = 
u � 
ub
�1b 
bu

with

b = ("; �)
0
:

Further, the results in Theorem 2 are for testing the stability of �: However, one can construct tests

separately for � and  using QR(r) and Q
�
p(r) since QR(r) and Q

�
p(r) are independent. Theorem 2 states

that if one wants to test only for the constancy of � it holds that

W([T �]) d�! QR(�);

if one is interested in testing merely for the constancy of  it holds that

W([T �]) d�! Q�p(�):

Finally, theorem 2 is valid for any consistent estimators of �2u and �
2
� . To estimate �

2
u, one could compute

�̂2u =
1

nT

nX
i=1

TX
t=1

�
yit � �yi � �̂

0

X̂it

�2
(20)

10



which is consistent under H0. To �nd a consistent estimator, �̂
2
� , of �

2
� , from equation (12) a possible choice

is

�̂2� = �̂
2
u + �̂

2
�:

From equation (13), we have

�̂2� = �̂
0
�̂2��̂;

with

�̂2� =

 
1

T 2

TX
t=1

ŵtŵ
0
t

!"
1

n

nX
i=1

 
1

T

TX
t=1

ê2it

!
�̂i�̂

0
i

# 
1

T 2

TX
t=1

ŵtŵ
0
t

!
; (21)

where �̂i is a consistent estimate of �i and êit can be computed as

êit = zit � �̂
0
iF̂t:

Therefore, we can provide an estimate for �2� as

�̂2� = �̂
2
u + �̂

0
�̂2��̂: (22)

The following proposition characterizes the consistency of �̂2u and �̂
2
� under H0.

Proposition 3 Suppose Assumptions M1-M3 hold and that n
T ! 0 as (n; T )!1. Then, under H0

�̂2u
p�! �2u;

�̂2�
p�! �2� :

The limiting distribution for the Wald test is now used to test for the presence of a structural break.

Following Andrews (1993) and Andrews and Ploberger (1994), we consider three functionals of the Wald

statistic W(�):

SupW(k) = sup
[Tr�]�k�T�[Tr�]

W�(k);

AveW(k) =
1

T

T�[Tr�]X
k=[Tr�]

W�(k);

and

ExpW(k) = log

8<: 1T
T�[Tr�]X
k=[Tr�]

exp

�
1

2
W�(k)

�9=;
where r� represents the fraction of the sample trimmed away from the beginning and the end of the sam-

ple. Therefore, to carry out the test we only use data belonging to the sub-interval of the full sample

f[Tr�] ; [Tr�] + 1; :::; T � [Tr�]� 1; T � [Tr�]g. Using the continuous mapping theorem (CMT) we have the

following result:

11



Corollary 2 Suppose Assumptions M1-M3 and PSE hold; then under H0:

SupW([Tr])
d�! sup

r��r�1�r�
D�(r);

AveW([Tr])
d�!
R 1�r�
r�

D�(r)dr;

ExpW([Tr])
d�! log

nR 1�r�
r�

exp
�
1
2D

�(r)
�
dr
o

as (n; T )!1:

Critical values for SupW; AveW; and ExpW can be taken from Andrews (1993) and Andrews and

Ploberger (1994) since D� (r) is �2R+p for a �xed r. For example, when r
� = 0:15 and R = p = 1; the critical

values of the 5% level for SupW; AveW; and ExpW are 11:79, 4:61, and 3:22 respectively.

5 Local Asymptotic Power

In this section, we evaluate the power of the Wald statistic against local alternatives. We assume the following

sequence of local alternatives:

H(nT )
a : �

(nT )
t = � +

1p
nT
g

�
t

T

�
(23)

where g (�) =
h
g0� (�) ; g0 (�)

i0
is a (R+ p) � 1 arbitrary function de�ned on the unit interval, with the sub-

elements g� (�) and g (�) being R� 1 and p� 1 respectively.

The properties of g
�
t
T

�
are speci�ed in the following assumption.

Assumption LP:(Local Power) The function g
�
t
T

�
belongs to the class of Riemann integrable functions

and as (n; T )!1 and for all k:

(a) 1
T

P[Tr]
t=1 g

�
t
T

�
!
R r
0
g(s)ds;

(b) 1
nT 2

Pn
i=1

P[Tr]
t=1 WitW

0
itg
�
t
T

�
= Op (1),

(c) 1
nT 2

Pn
i=1

P[Tr]
t=1

1p
T
W 0
itg
�
t
T

�
= Op (1),

(d) 1
nT 2

Pn
i=1

P[Tr]
t=1 g

0 � t
T

�
WitW

0
itg
�
t
T

�
= Op (1),

(e) 1
nT

Pn
i=1

P[Tr]
t=1 W

0
itg
�
t
T

�
uit = Op (1).

Possible alternative functional forms for g (�) include: the constant function, i.e. g (�) = c over the whole

sample, which indicates no structural breaks; a single step function, i.e., g (s) = 0 if r < r and g (s) = 4� if

s � r, which represents a one-time change on � at k = [Tr]; multiple steps functions that represent multiple

changes; time trending function g (�) = t=T .

Assumptions LP(b)-(e) are technical requirements needed in order for g (�) to be a non-trivial local

alternative, i.e., in order for g (�) not to vanish too quickly as T !1.

12



In what follows, we derive the asymptotic behavior of the Wald statistic under the sequence of local

alternatives (23). Model (1) can be rewritten as

y
(nT )
it = �i +X

0
it�

(nT )
t + uit:

Similarly, when common shocks are replaced by their estimates X̂it we have

y
(nT )
it = �i + X̂

0
it�

(nT )
t + vit

with vit = uit +
�
Ft � F̂t

�0
�
(nT )
t . Let �̂

(nT )

1k and �̂
(nT )

2k be the OLS estimators under the local alternative

(23), and let ~�2u and ~�
2
� be consistent estimators for �

2
u and �

2
� respectively under the local alternatives

H
(nT )
a . De�ne

�̂
�(nT )
jk =

�
~��IR 0
0 ~�uIp

��1
�̂
(nT )

jk ;

for j = 1; 2, the Wald statistics under the local alternative can be computed as

W (nT )(k) =
h
�̂
�(nT )
1k � �̂

�(nT )
2k

i0 264
�Pn

i=1

Pk
t=1 ŴitŴ

0

it

��1
+
�Pn

i=1

PT
t=k+1 ŴitŴ

0

it

��1
375
�1 h

�̂
�(nT )
1k � �̂

�(nT )
2k

i
: (24)

The local asymptotic power for the Wald statistics is given in the following theorem.

Theorem 3 Suppose Assumptions M1-M3, PSE and LP hold. Then under the local alternative hypotheses

H
(nT )
a de�ned in equation (23),

W (nT )([T �]) d�! D (�) +Op (1)

where D (r) is de�ned in Theorem 2.

The arguments in Theorem 3 also hold for the modi�ed Wald test statistic. Theorem 3 indicates that the

Wald statistics in (24) has nontrivial local power irrespective of the particular type of the structural change.

The theorem holds for any choice of the estimators ~�2u and ~�
2
� which is consistent under H

(nT )
a . A possible

estimator for �2u is

~�2u =
1

nT

nX
i=1

TX
t=1

h
yit � �yi � �̂

(nT )0
t X̂it

i2
:

To estimate �2� we propose

~�2� = ~�
2
u + �̂

(nT )0
�̂2��̂

(nT )
;

where �̂2� is de�ned in equation (21) and �̂
(nT )

is the OLS estimator for � under H
(nT )
a . Then the following

proposition establishes consistency for ~�2u and ~�
2
� under H

(nT )
a .

Proposition 4 Suppose Assumptions M1-M3, PSE and LP hold. Then under the local alternative hypothe-

ses H
(nT )
a de�ned in equation (23), it holds that

~�2u
p�! �2u;

13



~�2�
p�! �2�

as (n; T )!1

6 Monte Carlo Simulations

In this section we present the simulation results that are designed to assess the null rejection probabilities

and the power properties of SupW(k); AveW(k); and ExpW(k) statistics. To compare the performance of

the proposed tests we conduct Monte Carlo experiments based on the following design

yit = �i + �
0
tFt + 

0
txit + uit

Ft = Ft�1 + "t;

xit = xit�1 + �it;

and

zit = �
0
iFt + eit

for i = 1; :::; n; t = 1; :::; T; where the vector [uit; "
0
it; �

0
it; e

0
it] is randomly drawn from a standard multivariate

normal distribution.

For this experiment, we assume a single factor, i.e., R = 1 and �i is generated from i.i.d. N(��; 1). We

set �� = 2. Under the null hypothesis of no structural change, we set the values of the parameters � = 1

and  = 1. Also we choose �i � N(0; 1).

We assess the power of the test considering an alternative hypothesis of structural change in both � and

. We consider break location is assumed to take place at the 40% of the sample. To control for the break

magnitude, we simulate model (1)-(4) assuming that, under Ha

�t =

�
� for t < k
(1 + c) � for t � k

where c is a scalar that de�nes the percentage change in the parameter values. We set c = 0:1. When

generating the DGP, the �rst 1,000 observations are discarded to avoid dependence on the initial conditions.

All our results are based on sample size of n = f20; 40; 60; 120; 240; 480g and T = f20; 40; 60; 120; 240; 480g

with 10,000 iterations. The size and power are evaluated at 5% level. All programs are written by GAUSS.

The the critical values of the 5% level for SupW; AveW; and ExpW are 11:79, 4:61, and 3:22 respectively.

Those critical values were taken from Andrews (1993) and Andrews and Ploberger (1994).

Table 1 contains empirical rejection frequencies of the test statistics, SupW; AveW; and ExpW, under

the null that � and  are stable over time. It is clear from Table 1 that all these three test statistics are

undersized if n and T are small. Overall, all three test statistics show good size when n and T are large.

14



Table 2 gives the power of the test statistics. All tests show very good power properties. The power gain

is substantial as T increases and more moderate for increasing sizes of n. This result is consistent with the
p
nT asymptotics of the three tests, as reported in the paper.

7 Conclusion

In this paper, we derive an asymptotic theory for testing for an unknown common change point in a coin-

tegrated panel regression with common and idiosyncratic shocks. We develop the asymptotic theory for the

cases of observable and unobservable common shocks and we derive the limiting distribution of the supre-

mum, average and exponential Wald-type statistics under the null of no structural change. The derived

limiting distributions are nuisance parameter free, depending only on the number of regressors. Monte Carlo

simulations show that all three tests have good size and power properties, the power gain being substantial

as T increases and more moderate for increasing sizes of n, consistent with the
p
nT asymptotics of the three

tests.
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Appendix

De�ne CnT = min f
p
n; Tg, wt =

�
Ft � �F 0

�
, �F 0 = T�1

PT
t=1 Ft, bwt = ( bFt � �F ), and �F = 1

T

PT
t=1

bFt:
A Lemmas

Lemma A.1 Under Assumptions M1 and M2, as (n; T )!1

(a) 1
T

PT
t=1

F̂t � Ft2 = Op �C�2nT �,
(b) 1

T

PT
t=1 kŵt � wtk

2
= Op

�
1

C2
nT

�
,

(c) 1
T

PT
t=1 w

0
t

�
Ft � F̂t

�
= Op

�
1

CnT

�
.

Proof. Part (a) is taken from Lemma 1 in Bai (2004). Consider part (b).

1

T

TX
t=1

kŵt � wtk2 =
1

T

TX
t=1

�F̂t � Ft�+ � �F � �F 0
�2

� 2

T

TX
t=1

�F̂t � Ft2 +  �F � �F 0
2� = I + II:

Now, I = T�1
PT
t=1

F̂t � Ft2 = Op �C�2nT � from part (a).. For II, it holds that

 �F � �F 0
2 =  1T

TX
t=1

�
F̂t � Ft

�
2

�
 
1

T

TX
t=1

F̂t � Ft2! = Op� 1

C2nT

�
;

using the Cauchy-Schwartz inequality. Therefore 1
T

PT
t=1

 �F � �F 0
2 = Op � 1

C2
nT

�
, and consequently

1

T

TX
t=1

kŵt � wtk2 = Op
�

1

C2nT

�
:

This proves (b). Part (c) follows directly from Lemma B.4(i) in Bai (2004).

Lemma A.2 Under Assumptions M1 and M2, as (n; T ) �!1

(a)

1

T 2

TX
t=1

ŵtŵ
0

t =
1

T 2

TX
t=1

wtw
0
t +Op

�
1p
TCnT

�
with

1

T 2

TX
t=1

wtw
0
t = Op (1) ;
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(b)

1p
nT

nX
i=1

TX
t=1

ŵtuit =
1p
nT

nX
i=1

TX
t=1

wtuit +Op

�
1

CnT

�
with

1p
nT

nX
i=1

TX
t=1

wtuit = Op (1) ;

(c)

1p
nT

nX
i=1

TX
t=1

ŵt

�
Ft � F̂t

�
=

1p
nT

nX
i=1

TX
t=1

w0t

�
Ft � F̂t

�
+Op

� p
n

C2nT

�
with

1p
nT

nX
i=1

TX
t=1

w0t

�
Ft � F̂t

�
= Op

� p
n

CnT

�
:

Proof. For part (a), note that

1

T 2

TX
t=1

ŵtŵ
0
t =

1

T 2

TX
t=1

(wt + ŵt � wt) (wt + ŵt � wt)0

=
1

T 2

TX
t=1

wtw
0
t +

1

T 2

TX
t=1

wt (ŵt � wt)0

+
1

T 2

TX
t=1

(ŵt � wt)w0t +
1

T 2

TX
t=1

(ŵt � wt) (ŵt � wt)0

= I + II + III + IV:

Assumption M1 ensures that

I = Op (1) :

As far as terms II and III are concerned, application of the Cauchy-Schwartz inequality and of Lemma

A.1(a) ensures that they are bounded by

II � 1

T 2

 
TX
t=1

kwtk2
!1=2 TX

t=1

kŵt � wtk2
!1=2

=
1

T 2
Op (T )Op

 p
T

CnT

!
= Op

�
1p
TCnT

�
:

Use Lemma A.1(a) we have 1T 2
TX
t=1

(ŵt � wt) (ŵt � wt)0
 � 1

T 2

TX
t=1

kŵt � wtk2 = Op
�

1

TC2nT

�
:

Hence,

1

T 2

TX
t=1

ŵtŵ
0
t =

1

T 2

TX
t=1

wtw
0
t +Op

�
1p
TCnT

�
+Op

�
1

TC2nT

�
:
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For part (b), note that

1p
nT

nX
i=1

TX
t=1

ŵtuit =
1p
nT

nX
i=1

TX
t=1

wtuit +
1p
nT

nX
i=1

TX
t=1

(ŵt � wt)uit = I + II:

From Proposition 1 we have

I = Op (1)

applying Cauchy-Schwartz inequality and Lemma A.1(a) to II leads to

II �
 
1

T

TX
t=1

kŵt � wtk2
!1=20@ 1

T

nX
i=1

 1p
n

nX
i=1

uit


2
1A1=2

= Op

�
1

CnT

�
: (25)

To prove (c) we note that

1

T

TX
t=1

ŵ0t

�
Ft � ~Ft

�
=
1

T

TX
t=1

w0t

�
Ft � ~Ft

�
+
1

T

TX
t=1

(ŵt � wt)0
�
Ft � F̂t

�
= I + II:

Lemma A.1(c) ensures that

I = Op

�
1

CnT

�
:

For II.

II �
 
1

T

TX
t=1

kŵt � wtk2
!1=2 

1

T

TX
t=1

Ft � F̂t2!1=2

= Op

�
1

CnT

�
Op

�
1

CnT

�
= Op

�
1

C2nT

�
:

Hence,

1

T

TX
t=1

ŵt

�
Ft � F̂t

�
= Op

�
1

CnT

�
+Op

�
1

C2nT

�
proving (c).

Let Xit =
�
F

0

t ; x
0

it

�0
; bXit = � bF 0

t ; x
0

it

�0
;Wit = Xit � �Xi; and cWit = bXit � X̂i, with �Xi =

1
T

PT
t=1Xit and

X̂i =
1
T

PT
t=1

bXit: Recall wt = Ft � 1
T

PT
t=1 Ft, ~xit = xit � 1

T

PT
t=1 xit, and Wit = (w

0
t; ~x

0
it)
0
:

Lemma A.3 Under Assumptions M1 and M3, as (n; T ) �!1

(a)
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t=1

WitW
0
it
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0 1
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�
;

(b)
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d�! 1p

6
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where Z1 � N (0; IR) and Z2 � N (0; Ip).
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Proof. To prove (a), note

1

nT 2
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i=1
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WitW
0
it =

"
1
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t=1 wtw

0
t

1
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0
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1
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0
t

1
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0
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=

�
a b
b0 c

�
:

Assumption M1(a) ensures that

a =
1
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TX
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0
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Z
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0
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Equation (5) in Assumption M3 states that

c =
1

nT 2

nX
i=1

TX
t=1

~xit~x
0
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6
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We know from Proposition 1 that
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In order to prove (b), note that
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=
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From equation (6) in Assumption M3 that
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�
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2
u

�
=
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6

1=2� �u � Z2

We also know from Proposition 1
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�B" �B
0
"

�1=2
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This proves part (b).

Lemma A.4 Under Assumptions M1-M3 it holds that, as (n; T ) �!1 and
p
n
T �! 0
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(c)
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i=1

TX
t=1

~xit (wt � ŵt)0 � = op (1) ;

where Z1 � N (0; IR), and

�� = �u + ��;

with

�� = �e

q
�0 ~QB�� ~Q0B�;

and

1

T 2

TX
t=1

ŵtw
0
t

d�! ~QB :

Proof. To prove part (a), note that

1
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i=1
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t=1
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0
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"
1
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0
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1
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1
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:

Then Lemma A.2(a) ensures that

1
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TX
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ŵtŵ
0
t =

1
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TX
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wtw
0
t + op (1) ;

so that

1
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ŵtŵ
0
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0
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From equation (5)
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We have
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ŵt~x
0
it =

1

nT 2

nX
i=1

TX
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1
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= I + II:

We know from Proposition 1 that
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�
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n

�
:

For II, the Cauchy-Schwartz inequality and Lemma A.1(b) lead to
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Therefore, as (n; T ) �!1
1

nT 2

nX
i=1

TX
t=1

ŵt~x
0
it = op (1) :

To prove part (b), note that

1p
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As far as a is concerned, we have
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= I + II;

and according to Lemma A.3(b) we have

I
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For II, we have
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:

Therefore, II = op (1) and
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For b, we know from Bai (2004) that, as (n; T ) �!1 and
p
n
T �! 0 we have

p
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1p
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Therefore we write
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=
1p
nT

nX
i=1

TX
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Hence
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From Theorem 2 in Bai (2004) we know that for a given t

p
n (wt � ŵt) =

 bw0
w

T 2

!
1p
n

nX
i=1

�ieit + op (1)
d�! eQBN (0;�)

as n �!1 where bw0
w

T 2
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and
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n!1

1

n
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E
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It is clear that
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Z
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as T !1 where B� is de�ned as
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T
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d�! B� = ��B

�: (26)

where B� is the standard Brownian motion. It follows that

1
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�B" �B

0

"

�1=2
�� � Z1

Finally, consider the joint distribution of the elements in"
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Any linear combination of these elements takes the form
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h
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)
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for some �1 and �2: Let

&iT =
1

T

TX
t=1

h
�1 bwtuit + �2 bwt�0 (wt � bwt)i :

For a given T , it is also clear that every element of &iT are iid across i conditional on C, the �-algebra

generated by fFtg. Without loss of the generality, we assume R = 1. It is clear that every element of &iT
are iid across i conditional on C which is an invariant �-�eld. Thus
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Notice that E and var are conditional expectation and conditional variance respectively. It follows that

conditional on C,  1n
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with

ut =
1p
n

nX
i=1

uit

since

E
1

T 2

TX
t=1

ut�0 (wt � bwt)2 = op (1)
and

1

T 2

TX
t=1

 bw2t 2 = Op (1) :
Also

1

T 2

TX
t=1

bwt bw0

t�
2
1var (uit)

d�!
Z
�B" �B

0

"�
2
1�

2
u

and

1

T 2

TX
t=1

bwt bw0

t�
2
2var�

0
(wt � bwt) d�!

Z
�B" �B

0

"�
2
2�

2
�:

Let Ii be the � �eld generated by Ft and (&1T ; :::; &iT ). Then f&iT ; Iig is a martingale di�erence sequence

(MDS) with positive variance given by E
�
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0

iT jC
�
satisfying

E
�
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0
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�
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:
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Hence, we can use the MDS CLT to get
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where Z � N (0; IR) and E
�
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0
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�
and Z are independent. Thus, any linear combination of the two

elements in the vector in (27) is asymptotically mixed normal, i.e.,"
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This proves (ii).

Consider (iii). Recall that we have, as (n; T )!1 with
p
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T ! 0
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ŵsw
0
s

!0@ 1p
n

nX
j=1

�jejt

1A350 � + op (1)
=

1p
nT

24 TX
t=1

 
1p
n

nX
i=1

~xit

!0@ 1p
n

nX
j=1

ejt�
0
j

1A35 1

T 2

TX
s=1
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therefore, for (n; T )!1 we have

1p
nT

TX
t=1

 
1p
n

nX
i=1

~xit

!
�0

 
1

T 2

TX
s=1
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This proves the Lemma.

Lemma A.5 Let Assumptions M1-M3 and PSE hold. Then, as (n; T ) ! 1 with
p
n=T ! 0, it holds

that
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35 ;
for all r where Z1 and Z1 are independent standard normals of dimensions R and p respectively.

Proof. The results are taken directly from Lemma A.4 and Chiang et al. (2002).

B PROOFS

B.1 Proof of Proposition 1

Proof. Consider (a). Note
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for any Gt � I(1): This proves (a).

Next we consider (b). Let C be the �-�eld generated by the fwtg and
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martingale di�erence sequence (MDS) because f�ig are iid across i conditional on C and
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Hence, an MDS CLT, e.g., Corollary 3.1 of Hall and Heyde (1980), implies that
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where Z1 � N (0; IR) and E
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Denote (n; T )seq !1 as the sequential limit, i.e., T !1 �rst and n!1 later. Thus, as (n; T )seq !1;
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We now show the limiting distribution continues to hold in the joint limit, i.e., (n; T ) ! 1: Given the

sequential limit results derived above, establishing the joint limit results is done by verifying the conditions

(i) - (iv) in Theorem 3 in Phillips and Moon (1999). Conditions (i), (ii), and (iv) are obviously satis�ed.

We only have to verify uniform integrability in (iii). Put in our context, the uniform integrability condition
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is uniformly integrable. We then apply Theorem 3 in Phillips and Moon (1999) to
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Hence without conditioning C
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This proves the proposition.

B.3 Proof of Theorem 1
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B.4 Proof of Theorem 2

Proof. Theorem 2 states two separate results that need to be proved:
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where Z has an R-dimensional standard normal distribution. Hence we have the following passages
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This also proves that both Qp(r) and QR(r) are nuisance parameters free.
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Ŵit
1p
nT
X̂ 0
itg

�
t

T

�#
;

and likewise, with respect to the partial sample OLS estimator for the second subsample �̂
(nT )

2k

p
nT
h
�̂
(nT )

2k � �
i

=

"
1

nT 2

nX
i=1

TX
t=k+1

ŴitŴ
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Ŵitvit +
1p
nT

nX
i=1

TX
t=k+1
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Combining these two results, we have
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uniformly in r.
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Also, for II and III, it holds that
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Ŵit �Wit

2!1=2 1

nT 2

nX
i=1

kX
t=1

W 0
itg

�
t

T

�2
!1=2

=

 
1

T 2

kX
t=1
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kŵt � wtk2
!1=2

=

�
O

�
1

T

�
Op

�
1

C2nT

��1=2
= op (1) ;

also, by Assumption LP(d)
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After proving the distribution limit for the partial OLS estimates under H
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a , we can now turn to the
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Since both ~�� and ~�u are consistent for �� and �u, the Continuous Mapping Theorem ensures that, as
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uniformly in r.
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As far as III is concerned, it holds that
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and it holds that
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TABLE 1:

Size at the 5% Level

Panel A: Size for SupW
nnT 20 40 60 120 240 480
20 0.0175 0.0375 0.0372 0.0637 0.0587 0.0519
40 0.0145 0.0236 0.0248 0.0462 0.0514 0.0604
60 0.0149 0.0260 0.0340 0.0337 0.0397 0.0550
120 0.0151 0.0287 0.0346 0.0373 0.0470 0.0561
240 0.0172 0.0309 0.0306 0.0360 0.0480 0.0454
480 0.0212 0.0285 0.0351 0.0349 0.0501 0.0560

Panel B: Size for AveW
nnT 20 40 60 120 240 480
20 0.0267 0.0375 0.0350 0.0490 0.0407 0.0350
40 0.0258 0.0267 0.0242 0.0342 0.0349 0.0403
60 0.0220 0.0273 0.0312 0.0299 0.0265 0.0339
120 0.0238 0.0298 0.0315 0.0325 0.0306 0.0354
240 0.0241 0.0333 0.0330 0.0311 0.0367 0.0314
480 0.0312 0.0300 0.0307 0.0298 0.0375 0.0349

Panel C: Size for ExpW
nnT 20 40 60 120 240 480
20 0.0306 0.0472 0.0455 0.0653 0.0537 0.0458
40 0.0272 0.0325 0.0534 0.0475 0.0461 0.0525
60 0.0241 0.0353 0.0392 0.0337 0.0352 0.0455
120 0.0269 0.0388 0.0428 0.0396 0.0411 0.0473
240 0.0289 0.0427 0.0403 0.0362 0.0453 0.0405
480 0.0370 0.0403 0.0415 0.0377 0.0489 0.0460
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TABLE 2:

Power at 5% Level

Panel A. Power for SupW
nnT 20 40 60 120 240 480
20 0.0715 0.2085 0.4723 0.7962 0.9972 1.0000
40 0.0850 0.2332 0.5129 0.9467 1.0000 1.0000
60 0.0932 0.3281 0.6545 0.9837 1.0000 1.0000
120 0.1340 0.5551 0.8512 0.9999 1.0000 1.0000
240 0.2545 0.9640 0.9697 1.0000 1.0000 1.0000
480 0.4195 0.9327 0.9996 1.0000 1.0000 1.0000

Panel B. Power for AveW
nnT 20 40 60 120 240 480
20 0.0859 0.2170 0.4477 0.8364 0.9983 1.0000
40 0.1055 0.2699 0.5523 0.9655 1.0000 1.0000
60 0.1172 0.3693 0.6917 0.9927 1.0000 1.0000
120 0.1686 0.6003 0.8921 1.0000 1.0000 1.0000
240 0.2991 0.8142 0.9877 1.0000 1.0000 1.0000
480 0.4700 0.9637 1.0000 1.0000 1.0000 1.0000

Panel C. Power for ExeW
nnT 20 40 60 120 240 480
20 0.1009 0.2448 0.4993 0.8321 0.9980 1.0000
40 0.1224 0.2838 0.5628 0.9620 1.0000 1.0000
60 0.1329 0.3874 0.7006 0.9910 1.0000 1.0000
120 0.1806 0.6151 0.8899 1.0000 1.0000 1.0000
240 0.3168 0.8131 0.9850 1.0000 1.0000 1.0000
480 0.4894 0.9599 0.9999 1.0000 1.0000 1.0000
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