
Syracuse University Syracuse University 

SURFACE SURFACE 

Dissertations - ALL SURFACE 

May 2014 

Distributed Estimation and Performance Limits in Resource-Distributed Estimation and Performance Limits in Resource-

constrained Wireless Sensor Networks constrained Wireless Sensor Networks 

YUJIAO ZHENG 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
ZHENG, YUJIAO, "Distributed Estimation and Performance Limits in Resource-constrained Wireless 
Sensor Networks" (2014). Dissertations - ALL. 71. 
https://surface.syr.edu/etd/71 

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for 
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/71?utm_source=surface.syr.edu%2Fetd%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract

Distributed inference arising in sensor networks has been an interesting and promising

discipline in recent years. The goal of this dissertation is to investigate several issues related

to distributed inference in sensor networks, emphasizing parameter estimation and target

tracking with resource-constrainted networks.

To reduce the transmissions between sensors and the fusion center thereby saving band-

width and energy consumption in sensor networks, a novel methodology, where each local

sensor performs a censoring procedure based on the normalized innovation square (NIS), is

proposed for the sequential Bayesian estimation problem in this dissertation. In this method-

ology, each sensor sends only the informative measurements and the fusion center fuses both

missing measurements and received ones to yield more accurate inference. The new method-

ology is derived for both linear and nonlinear dynamic systems, and both scalar and vector

measurements. The relationship between the censoring rule based on NIS and the one based

on Kullback-Leibler (KL) divergence is investigated.

A probabilistic transmission model over multiple access channels (MACs) is investigated.

With this model, a relationship between the sensor management and compressive sensing

problems is established, based on which, the sensor management problem becomes a con-

strained optimization problem, where the goal is to determine the optimal values of prob-

abilities that each sensor should transmit with such that the determinant of the Fisher

information matrix (FIM) at any given time step is maximized. The performance of the

proposed compressive sensing based sensor management methodology in terms of accuracy

of inference is investigated.

For the Bayesian parameter estimation problem, a framework is proposed where quantized

observations from local sensors are not directly fused at the fusion center, instead, an additive

noise is injected independently to each quantized observation. The injected noise performs



as a low-pass filter in the characteristic function (CF) domain, and therefore, is capable of

recoverving the original analog data if certain conditions are satisfied. The optimal estimator

based on the new framework is derived, so is the performance bound in terms of Fisher

information. Moreover, a sub-optimal estimator, namely, linear minimum mean square error

estimator (LMMSE) is derived, due to the fact that the proposed framework theoretically

justifies the additive noise modeling of the quantization process. The bit allocation problem

based on the framework is also investigated.

A source localization problem in a large-scale sensor network is explored. The maximum-

likelihood (ML) estimator based on the quantized data from local sensors and its performance

bound in terms of Cramér-Rao lower bound (CRLB) are derived. Since the number of sensors

is large, the law of large numbers (LLN) is utilized to obtain a closed-form version of the

performance bound, which clearly shows the dependence of the bound on the sensor density,

i.e., the Fisher information is a linearly increasing function of the sensor density. Error

incurred by the LLN approximation is also theoretically analyzed. Furthermore, the design

of sub-optimal local sensor quantizers based on the closed-form solution is proposed.

The problem of on-line performance evaluation for state estimation of a moving target

is studied. In particular, a compact and efficient recursive conditional Posterior Cramér-

Rao lower bound (PCRLB) is proposed. This bound provides theoretical justification for a

heuristic one proposed by other researchers in this area. Theoretical complexity analysis is

provided to show the efficiency of the proposed bound, compared to the existing bound.
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Chapter 1

Introduction

1.1 Background

Sensor network technology has developed tremendously over the past decade due to the ad-

vances in wireless communications and digital electronics. Current sensor nodes can be made

tiny in size, low-cost, low-power and consist of sensing, data processing and communication

components [1]. A sensor network is composed of a large number of sensor nodes, which

are either randomly deployed or placed at pre-determined locations in the region of interest

(ROI). Sensor nodes can be as simple as a data collector, and in that case the acquired

raw data are sent to the node responsible for data fusion, i.e., for processing all received

data to yield the global inference. Another option is to have a processor fitted at the sensor

nodes, enabling local data processing capability, and then, instead of raw data, only required

processed data are transmitted to the fusion center, that yields the global inference.

There are many different types of sensors such as seismic, thermal, visual, vibration,

acoustic and radar which can form different kinds of sensor networks, and, therefore, can be

employed for a wide range of applications including the following:

1



• Military applications: Sensor nodes can be deployed in the battlefield to monitor

the activities of both sides, gather battle damage assessment data, and detect attacks.

• Environmental applications: The term Environmental Sensor Networks has evolved

to cover many applications of wireless sensor networks (WSNs) to earth science re-

search. This includes air pollution monitoring: WSNs are deployed to monitor the

concentration of dangerous gases that are harmful for citizens; forest fire detection:

sensor nodes can be installed in a forest to detect onset of a fire event. The nodes

can be equipped with sensors to measure temperature, humidity and gases which are

produced by fire in the trees or vegetation, enabling an early detection of a fire and its

spread; and water quality monitoring: many wireless distributed sensors are deployed

to monitor water properties in dams, rivers, lakes and oceans, as well as underground

water reserves.

• Passive localization and tracking: Sensor nodes can be deployed in a ROI, and

receive passive signals to localize a static target or track a moving target in the region.

In this dissertation, we are interested in distributed inference in a WSN with limited

resources, and focus on two important problems: target localization and tracking. Target

localization involves estimation of the position of a static target whereas target tracking deals

with state estimation of a dynamic target, i.e., position and velocity. For target tracking, the

Kalman filter is the optimal algorithm to infer the state of a linear Gaussian system. When

the system is Gaussian but nonlinear, extended Kalman filter (EKF) provides near-optimal

solutions in many cases. Due to current developments in computation power, particle filtering

(PF) has become a very promising and practical tool for sequential estimation of unknown

states of a general nonlinear non-Gaussian dynamical system.

Due to the small size of battery powered sensor nodes, power consumption is the most
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important constraint on sensor networks. In order to prolong the lifetime of a sensor network,

it is desired to reduce communications. Therefore, current solutions in the field focus on the

trade-off between the performance of inference and the lifetime of the network. Another

important characteristic of the sensor network is the limited bandwidth. Many researchers

have devoted their research effort to solving the problem of optimization of the network

performance under bandwidth constraints. These two issues also give rise to the well known

problem of data selection. In the current literature, data selection is realized by selecting a

subset of sensors (sensor selection problem) or, more generally, by distributing available bits

to sensors (bit allocation problem) [2–7]. In this dissertation, we propose a novel distributed

data selection idea for the sequential Bayesian estimation problem where each local sensor

censors its measurement first and sends it to the fusion center (FC) only if the measurement

is informative enough in a certain sense. The censored measurements are treated as missing

observations at the fusion center. Another novelty of our work is the proposed fusion rule at

the fusion center, which fuses both missing observations and received ones, given that the

censoring rule is known a priori. Since missing information conveyed by the missing data is

exploited, the proposed algorithm yields better performance than the one that completely

ignores the missing information.

An interesting observation for a large WSN is that only a few nodes have significant

and informative observations. Thus, the concatenated measurement vector at the fusion

center can be considered to be sparse and compressible. This interpretation motivates us to

introduce the concept of compressive sensing (CS) [8,9] into the sensor management problem,

and propose a novel compressive sensing based sensor management methodology for a sensor

network monitoring a moving target. Our methodology utilizes a probabilistic transmission

scheme over multiple access channels (MACs).

In addition, a novel idea of fusing quantized data for Bayesian estimation in sensor
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networks is proposed in this dissertation, where the quantized data are not fused directly

by the FC for parameter estimation, but preprocessed by injecting independent controlled

noise. The basic idea was inspired by Widrow’s statistical theory of quantization [10]. The

addition of noise after quantization is equivalent to low pass filtering in the characteristic

function (CF) domain, such that the original analog observation can be recovered. Therefore,

the whole process of quantizing and injecting controlled noise can be theoretically modeled

as an additive disturbance, whose distribution is analytically derived in this dissertation.

This theoretical model facilitates the derivation of the optimal minimum mean squared

error (MMSE) estimator, the posterior Cramér-Rao lower bound (PCRLB), the near-optimal

linear MMSE (LMMSE) estimator, and its corresponding mean squared error (MSE), all

of which are in exact forms. Furthermore, the numerical results show that the LMMSE

estimator can provide comparable performance to that of the optimal MMSE estimator

while saving a lot of computation effort.

Irrespective of the type of estimator proposed, it is always desirable to have a performance

assessment tool available to assess achievable estimation performance. One well known tool

is the Cramér-Rao lower bound (CRLB) [11], which provides a bound on the performance

of estimators of the system state for filtering problems. For a general multi-dimensional

discrete-time nonlinear filtering problem, Tichavsky et al. [12] provided an elegant recursive

approach for calculating the sequential PCRLB. In this dissertation, we propose two bounds.

The first provides a bound on the asymptotic performance of the maximum likelihood (ML)

estimator in a sensor network, where quantized data are sent to the fusion center and sensors

are densely deployed in the ROI, i.e., the number of sensors is large. The other provides online

performance assessment for a sequential Bayesian estimator by exploiting the information

provided by measurements, in contrast to the offline version of sequential PCRLB [12], which

averages out the measurements.
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1.2 Main Contributions

The main contributions of this dissertation are outlined as follows:

• A new framework for sequential Bayesian estimation in a sensor network is proposed,

where both linear and nonlinear systems are considered. The framework consists of

two processes: censoring of measurements at the local sensors and fusion of both

received measurements and missing ones at the FC. In this scheme, each local sensor

maintains a KF for a linear Gaussian system or an EKF for a nonlinear system and

the FC runs a PF to track the system state. Informative measurements are selected for

transmission by a per-sensor censoring process executed at the sensors at each time.

We use an innovation based censoring rule in this work for both linear and nonlinear

systems. Though the less informative measurements are not sent to the FC, their

absence still conveys some information, and the proposed fusion scheme exploits this

information conveyed by the missing messages. Numerical results show that, under

the same bandwidth constraint, the proposed scheme outperforms the one that ignores

missing data information and the one that selects sensors randomly for information

transmission.

• A novel compressive sensing based sensor management methodology for a sensor net-

work tracking a moving target is proposed. In this approach, a probabilistic transmis-

sion strategy over MACs is utilized and the sensor management problem is transformed

to a constrained optimization problem where the goal is to determine the optimal prob-

abilities with which sensors should transmit such that a desired inference performance

is guaranteed. Numerical results are provided to validate the proposed methodology.

• Inspired by Widrow’s statistical theory on quantization, a novel scheme for Bayesian

estimation in a sensor network where the local sensor observations are quantized before
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their transmission to the FC is proposed. At the FC, instead of fusing the quantized

data directly, we propose to fuse the post-processed data obtained by adding an inde-

pendent controlled noise to the received quantized data. The injected noise acts like a

low-pass filter in the characteristic function (CF) domain such that the output is an

approximation of the original raw observation. The optimal minimum mean squared

error (MMSE) estimator and the posterior Cramér-Rao lower bound for this estimation

problem are derived. Based on the Fisher information, the optimal controlled Gaussian

noise and the optimal bit allocation are obtained. In addition, a near-optimal linear

MMSE estimator is derived to significantly reduce the computational complexity.

• For a large and dense sensor network, the impact of sensor density is investigated on

the performance of an ML location estimator using quantized sensor data. The ML

estimator fuses quantized data transmitted from local sensors to estimate the loca-

tion of a source. A general smooth, differentiable, and isotropic signal decay model

is adopted to make the problem tractable. Two special cases are given as examples.

The general model is suitable for situations such as passive sensors monitoring a target

emitting acoustic signals. The exact Cramér-Rao lower bound (CRLB) on the estima-

tion error is derived. In addition, an approximate closed-form CRLB by using the law

of large numbers (LLN) is obtained. The closed-form results indicate that the Fisher

information is a linearly increasing function of the sensor density. Even though the

results are derived assuming a large number of sensors, numerical results show that

the closed-form CRLB is very close to the exact CRLB for even low sensor densities.

Moreover, simulation results show that the closed-form CRLB can be used as a metric

to design suboptimal quantizers which achieve almost the same performance as the

optimal ones designed by the exact CRLB.

6



• The recursive procedure to compute the posterior Cramér-Rao lower bound (PCRLB)

for sequential Bayesian estimators, derived by Tichavsky et al., provides an off-line

performance bound for a general nonlinear filtering problem. Since the corresponding

Fisher information matrix (FIM) is obtained by taking the expectation with respect

to all the random variables, this PCRLB is not well suited for online adaptive resource

management for dynamic systems. For online performance evaluation for a nonlinear

system, the concept of conditional PCRLB was proposed by Zuo et al. in 2011 [13].

In this dissertation, an alternative online conditional PCRLB is proposed. Numerical

examples are provided to show that the accuracy of the proposed online bound is

comparable to the one proposed by Zuo et al. while theoretical computation complexity

analysis is provided to show that it also saves much computation effort.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows.

Some essential results in estimation theory which are frequently used in the dissertation

are provided in Chapter 2.

In Chapter 3, a novel data selection and data fusion scheme for sequential Bayesian

estimation problems in sensor networks is presented. The scheme consists of two procedures

at any given time: firstly, each local sensor censors its measurement and sends it to the FC

only if the measurement is informative enough based on the proposed censoring rule, and then

the FC uses both received measurements and missing ones to infer the state of the target.

A PF is maintained at the FC, and the utilization of the missing information conveyed by

missing data is realized by updating the weights of particles with the full likelihood function.

The advantage of the proposed scheme compared to other schemes, such as random selection
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and ignoring missing data, is illustrated by numerical examples.

In Chapter 4, a novel sensor management approach for target tracking in a sensor network

based on CS is investigated. We employ a multiple access channel (MAC) model with

probabilistic transmissions, based on which, we can obtain an equivalent representation of

our problem as the standard CS problem. With this model, the sensing matrix is completely

determined by each sensor’s probability of transmission, and the design of the sensing matrix

is reduced to finding the optimal probability of transmission for each sensor such that a

desired performance guarantee in tracking is achieved. Furthermore, due to the equivalent

representation, the sensing matrix acts as a sensor management operator. Thus, the sensor

management problem is solved by formulating it as a compressive sensing problem. The

performance of the proposed approach is validated by numerical examples.

In Chapter 5, a novel scheme for fusing quantized data for the Bayesian estimation

problem in sensor networks is discussed, where quantized data are pre-processed at the

FC before fusion, namely, a controlled noise is independently injected into each received

quantized measurement. The injected noise works as a low-pass filter, and therefore, under

a certain condition, the original analog data can be completely recovered. Such a model

also provides a theoretical justification for the additive noise modeling of the quantization

procedure, and hence, facilitates the derivation of LMMSE. A bit allocation problem based on

the proposed scheme is also discussed in this chapter, and illustrative examples are provided

to show its performance.

Bounds on the performance of location estimation in a sensor network are considered in

Chapter 6, where sensors are densely deployed in the ROI. We use a general isotropic signal

attenuation model which is smooth, differentiable, as well as monotonically decreasing. The

statistical model for sensor observations is assumed known. The ML location estimator

based on quantized sensor data and its corresponding exact CRLB are derived. Since the
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number of sensors is large, an approximation based on the law of large numbers (LLN)

is used to derive the closed-form CRLB for the considered signal decay model. Theoretical

analysis of the error introduced by the LLN approximation is provided. Two commonly used

models in wireless communication, namely, the Gaussian-like decay model and the power law

decay model, are investigated respectively as two concrete examples for the general model.

Numerical examples are provided to illustrate the effectiveness of the closed-form solution

that we propose.

In Chapter 7, we propose a new conditional PCRLB, which is based on the representation

of the conditional PCRLB proposed in [13]. We call this bound the alternative conditional

PCRLB (A-CPCRLB), since we discard the auxiliary FIM which is involved in the recursive

update for the conditional PCRLB presented in [13]. Instead, an alternative approximate

recursive update is proposed, which is direct, more compact and efficient than the one

proposed in [13]. Furthermore, when the state dynamic model is linear and Gaussian, we

show that this bound reduces to the modified PCRLB proposed in [14]. Hence, the proposed

A-CPCRLB provides a generalization and theoretical justification for the one used in [14].

Numerical computation such as the sequential Monte Carlo methods is used to compute

the proposed bound. Performance analysis in terms of computational complexity associated

with the computation of the bound is provided. A numerical example is provided to compare

the original CPCRLB [13] with our proposed bound, namely the A-CPCRLB.

Chapter 8 concludes the dissertation along with a discussion on potential directions for

future research.
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Chapter 2

Estimation Theory Fundamentals

2.1 Estimation of A Parameter

In parameter estimation problems, two models for the unknown parameter are employed:

(1). The parameter is not a random variable, i.e., the value of the unknown parameter is

fixed. (2). The parameter is a random variable with known a priori probability density

function (pdf).

A common method to estimate a non-random variable θ is the maximum likelihood

method, which yields the maximum likelihood estimate (MLE) [15]:

θ̂ML(x) = argmax
θ

L(θ|x) (2.1)

where the likelihood L(θ|x) , p(x|θ), the conditional pdf of the observation.

For a random parameter θ with a prior pdf p(θ), the maximum a posterior (MAP)

estimator is used for estimation to incorporate both prior information and information from

data [15]. That is,

θ̂MAP(x) = argmax
x

p(θ|x) = argmax
x

p(x|θ)p(θ)
∫

p(x|θ)p(θ)dx (2.2)
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The estimation error of an estimator θ̂(x) is θ̂(x)− θ, and the mean square error (MSE)

is given by the trace of the covariance matrix, i.e.,

MSE = tr
{

E{(θ̂ − θ)(θ̂ − θ)T}
}

(2.3)

The estimator which minimizes the MSE is called the minimum mean square error

(MMSE) estimator and given by [16]

θ̂MMSE(x) = E{θ|x} (2.4)

2.2 Sequential Bayesian Estimation

The sequential Bayesian estimation problem is to estimate the state of a dynamic system

based on the observations on the system over time. The evolution of the unknown state

sequence xk is assumed to be a first-order Markov process and modeled as

xk+1 = fk(xk,uk) (2.5)

where fk : ℜnx ×ℜnu → ℜnx and uk is the independent identically distributed (i.i.d.) process

noise with dimension nu. The measurement model is given by

zk = hk (xk,vk) , (2.6)

where hk : ℜnx×ℜnv → ℜnz , vk is the i.i.d. measurement noise, nz and nv are the dimensions

of the measurement and measurement noise vectors, respectively. The process and the

measurement noise distributions are denoted by puk
(u) and pvk

(v), respectively, and the two

noises are assumed to be independent of each other.

Denote the states and measurements up to time k as x0:k and z1:k. Then, the joint

probability density function (PDF) of (x0:k, z1:k) can be decomposed as

p(x0:k, z1:k) = p(x0)

k
∏

i=1

p(xi|xi−1)

k
∏

j=1

p(zj |xj) (2.7)
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Based on (2.7), three categories of Bayesian estimation problems can be investigated [16]:

• Prediction: estimate the state at time k + k′ based on the measurements up to and

including time k, where k′ > 0, i.e., it is an estimation of the state at a future time.

• Filtering: estimate the state at the current time k based on the measurements up to

and including time k. This is the problem that this dissertation will focus on.

• Smoothing: estimate the state at some earlier time k′′ based on the measurements

up to time k (k > k′′).

Many algorithms have been developed for the Bayesian filtering problem, among which,

three frequently used filters are Kalman filter, extended Kalman filter (EKF) and particle

filter.

1. Kalman Filter

The Kalman filter performs optimal Bayesian filtering for a system with linear state and

measurement models and additive Gaussian noise for both state and measurement processes

[16] in the MMSE sense. Specifically, the linear Gaussian system is given by

xk+1 = Fkxk + uk (2.8)

zk = Hkxk + vk (2.9)

where uk ∼ N (0, Qk), and vk ∼ N (0, Rk).

Given the distribution of the initial state x0, x0 ∼ N (x̂0|0, P0|0), the Kalman filter recur-

sively estimates the state of the system by two steps:

Prediction step:

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.10)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (2.11)
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Update step:

Sk = HkPk|k−1H
T
k +Rk (2.12)

Kk = Pk|k−1H
T
k S

−1
k (2.13)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k−1|k−1) (2.14)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.15)

where Kk is the Kalman gain, x̂k|k−1 is defined as the estimate of the state xk conditioned

on measurements up to and including time k − 1, and Pk|k−1 is defined as the covariance

matrix of the estimation error. Obviously, x̂k|k−1 and Pk|k−1 are predictions, while x̂k|k and

Pk|k are updated results after incorporating the observation at time k.

Remarks: 1) The recursive computation of the covariance matrix depends only on

the model parameters and time index, which means that once the model is known, one

can compute the covariance matrix at each time without acquiring the observations. 2)

The innovation νk, defined as zk − Hkx̂k−1|k−1, is white and Gaussian with mean zero and

covariance Sk.

2. Extended Kalman Filter

The EKF is an extended version of the Kalman filter to solve the estimation problem

for a nonlinear system by linearizing the nonlinear functions using first-order Taylor series

expansion. The recursive estimation process is given as

x̂k|k−1 = f(x̂k−1|k−1) (2.16)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (2.17)

Sk = HkPk|k−1H
T
k +Rk (2.18)

Kk = Pk|k−1H
T
k S

−1
k (2.19)

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1)) (2.20)
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Pk|k = Pk|k−1 −KkHkPk|k−1 (2.21)

where

Fk−1 =
∂f

∂x

∣

∣

∣

∣

xk−1|k−1

(2.22)

Hk =
∂h

∂x

∣

∣

∣

∣

xk|k−1

(2.23)

Remarks: 1) At time k, the nonlinear function f is directly used to compute the pre-

dicted state. Similarly, h is used directly to compute the predicted measurement. 2) The

nonlinear functions f and h are linearized to get Fk−1 and Hk, which are involved in comput-

ing the covariance matrix. The Jacobian matrices Fk−1 and Hk are evaluated at the estimate

x̂k−1|k−1 and prediction x̂k|k−1 respectively.

3. Particle filter

Even though EKF can deal with nonlinear systems, it performs poorly when the system

is highly nonlinear [17]. One has to resort to other approaches for a general nonlinear non-

Gaussian system.

As stated before, the filtering problem is to compute the distribution p(xk|z1:k), and this

can be done recursively in two steps.

prediction step:

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1) (2.24)

update step:

p(xk|z1:k) ∝ p(zk|xk)p(xk|z1:k−1) (2.25)

where p(xk|z1:k−1) can be treated as the prior, and it is updated to get the posterior after

the measurement zk is available according to Bayes’s rule.

The computation of (2.24) and (2.25) cannot be, in general, carried out analytically,

except for some special cases (e.g., for linear Gaussian system, KF is an analytical solution).
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Therefore, approximate approaches are necessary, and Monte carlo based methods such as

sequential importance sampling (SIS) are basic methods for this purpose.

The basic idea of SIS is to recursively update the weighted samples {xi
0:k, wi

k}Ni=1 used

to approximate the posterior distribution p(x0:k|z1:k). The samples are also called particles.

In fact, SIS is a sequential version of importance sampling. In important sampling, one can

approximate a target distribution p(x) by samples drawn from a proposal distribution q(x). It

is usually applicable to the case when directly drawing a sample from the target distribution

is difficult. Each sample xi is weighted by wi ∝ π(x)/q(x), where π(x) ∝ p(x) and is able

to be evaluated, to compensate for the discrepancy between the target distribution and the

proposal distribution. Applying the idea to the posterior distribution p(x0:k−1|z1:k−1), one

can get

p(x0:k−1|z1:k−1) =
N
∑

i=1

wi
k−1δ(x

i
0:k−1) (2.26)

where δ(xi
0:k−1) is a delta function centered at xi

0:k−1. Then, the SIS will update the sample

set {xi
0:k−1, wi

k−1}Ni=1 to approximate the posterior at the next time step. One can do this

by assuming that the proposal distribution at time k can be factorized as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (2.27)

Then, one can augment each particle xi
0:k−1 with xi drawn from the distribution q(xk|x0:k−1, z1:k)

to obtain the new particle xi
0:k for the state at time k.

The weight wi
k at time k is given by [18]

wi
k ∝

p(x0:k|z1:k)
q(x0:k|z1:k)

∝ wi
k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

0:k−1, z1:k)
(2.28)

If we further assume that q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), i.e., the proposal at time k only

depends on the most recent state and most recent measurement, then we can only store xi
k−1
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and generate xi
k from the proposal q(xi

k|xi
k−1, zk). Thus, the update can be simplified as

xi
k ∼ q(xi

k|xi
k−1, zk) (2.29)

wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

0:k−1, z1:k)
(2.30)

and the weights need to be normalized to represent a distribution.

The SIS algorithm is the most basic particle filtering approach, and there are a number

of variants based on it, among which, the most commonly used one is called sequential

importance resampling (SIR) particle filtering. In SIR, the update procedure is followed by

a resampling procedure at each time step to avoid the degeneracy problem [18], and the

transition distribution p(xk|xk−1) is chosen as the proposal distribution. Thus, in the SIR

particle filtering, the update procedure is given by

xi
k ∼ p(xk|xk−1) (2.31)

wi
k ∝ p(zk|xi

k) (2.32)

Note that, the resampling process yields each sample with the same weight 1/N , and there-

fore, there is no wi
k−1 in the weight update equation. Throughout this dissertation, we will

use SIR particle filtering if a particle filter is used.

2.2.1 Performance Bounds

2.2.1.1 Cramér-Rao Lower Bound

Let x be a nx dimensional unknown deterministic parameter and z be a nz-dimensional

measurements. If an unbiased estimator x̂(z) exists, then a lower bound on the estimation

error of this estimator is given by the Cramér-Rao lower bound (CRLB) [19], i.e.,

E{(x̂(z)− x)(x̂(z)− x)T} ≥ J−1 (2.33)
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where J is the Fisher information matrix (FIM) and given by

J = −E {∆x
x ln p(z|x)}

= E
{

∇x ln p(z|x)∇T
x ln p(z|x)

}

(2.34)

where ∇x , [ ∂
∂x1

· · · ∂
∂xnx

]T , and ∆x
x , ∇x∇T

x .

2.2.1.2 Posterior Cramér-Rao Lower Bound

If the parameter x is a random variable, then the lower bound on the estimation error is

named as posterior Cramér-Rao lower bound (PCRLB), and it is given by [19]

E{(x̂(z)− x)(x̂(z)− x)T} ≥ J−1 (2.35)

where

J = −E {∆x
x ln p(x, z)}

= E
{

∇x ln p(x, z)∇T
x ln p(x, z)

}

(2.36)

An elegant recursive computation of the PCRLB for nonlinear filtering problems has been

presented by Tichavský etc. in [20]. The results are provided here for easy reference.

Given the nonlinear system (2.5) with measurement model (2.6), the sequence of the FIM

Jk for estimating state vectors xk obeys the recursion

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k (2.37)

where

D11
k = E

{

−∆xk
xk

log p(xk+1|xk)
}

D12
k = E

{

−∆xk+1
xk

log p(xk+1|xk)
}

= (D21
k )T

D22
k = E

{

−∆xk+1
xk+1

[log p(xk+1|xk) + log p(zk+1|xk+1)]
}

= D22,a
k +D22,b

k
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These performance bounds, namely CRLB and PCRLB, provide achievable estimation

performance against which performance of estimation algorithms can be assessed.
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Chapter 3

Sequential Bayesian Estimation with

Censored Data

3.1 Motivation

In the literature, the sequential Bayesian estimation problem has been mainly investigated

for three fundamental network architectures: centralized, distributed and decentralized net-

works. In a centralized structure, the local sensor nodes transmit either analog [21] or

quantized measurements [7, 22, 23] to a FC, where the sensor data are fused by a Bayesian

filter to update the system state estimate. If all the analog sensor data are transmitted to

the FC, the FC yields the optimal estimation performance, meaning that no other network

architecture can deliver a better performance than the centralized architecture with analog

sensor data. Further, in a centralized network, optimal information fusion can be performed

in a straightforward manner at the FC. But a centralized network requires a large amount of

communication between the sensors and the FC. Further, the network is vulnerable to the

failure of the FC, which could compromise the whole network.

In a distributed network, each local sensor node runs a local Bayesian state estimator, and
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obtains its own local state estimate based on its local measurements. These local estimates,

or state posterior probability density functions (PDFs), are transmitted to a global FC,

where they are fused to get a more accurate global state estimate. The distributed network

has reduced communication requirements, since instead of transmitting raw sensor data at

the sensor sampling rate, each sensor could transmit state estimates at a much reduced rate.

Furthermore, the distributed network is much more robust, since each local sensor node

maintains its own state estimate. However, one challenging problem for fusion of estimates

is that all the local estimates are dependent since all the local filters are estimating the

same Markov stochastic process [21]. The problem of distributed Kalman filtering has been

investigated in [21,24–29]. For nonlinear filtering in distributed networks, the optimal fusion

scheme was developed in [30,31] which involves the transmission of the local state posterior

PDFs to the FC and high dimensional integrals at the FC.

In a decentralized network, each sensor fuses its own local state estimate with informa-

tion received from its neighboring sensors, and each local sensor communicates only with its

neighbors. Due to its diffusive communication strategy, this architecture does not require

specialized routing, and in general avoids bottleneck in communications. It is scalable and

very robust to single point of failure. However, to carry out the optimal fusion algorithm,

the so-called channel filter [24,32,33], one needs to maintain all the relevant communication

and fusion events history, also known as pedigree information [31], which may become a

prohibitive task over time. Therefore, existing fusion algorithms in decentralized networks

are typically suboptimal approaches. In decentralized networks, estimate consensus among

distributed agents has drawn much attention. For the linear estimation problem in decen-

tralized networks, algorithms have been proposed to reach a consensus among all the nodes,

which include gossip algorithms [34, 35], consensus algorithms [36–39], and combined ap-

proaches [40]. For the distributed nonlinear filtering problem, efforts have been made to
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develop consensus particle filtering approaches [41–45].

The framework we propose in this chapter combines the advantages of both the cen-

tralized and distributed networks to achieve communication efficiency, improved estimation

performance, and robustness. In this framework, each local sensor node runs its local state

estimator, which facilitates censoring of its measurement so that only informative measure-

ments are sent to the FC. Since local state estimation is performed at each local sensor, it is

robust against single point of failure. Compared to the centralized network, it has reduced

communication rate through sensor censoring. However, different from a typical distributed

architecture but similar to a centralized architecture, only informative raw sensor measure-

ments are sent to the FC in our proposed framework. In this chapter, we have developed

a novel data censoring and fusion approach for such a system architecture. The approach

proposed in this chapter could be extended for decentralized networks without a FC and will

be discussed in our future work.

As mentioned earlier, in a sensor network with a FC, the ideal scenario is for all the sensors

to send their observations to the FC for the inference task (e.g., source localization and target

tracking). However, in practice, due to bandwidth constraints or energy limitations in the

network, it is usually desirable to have only a subset of sensors transmit their data at each

time step. This gives rise to two interesting problems: 1) In a centralized sensor management

framework, where local estimates are not obtained at local sensors, and the FC completely

controls the selection of sensors, how to select the subset of sensors which are the most

informative in either myopic (one-step ahead) manner or non-myopic (multiple steps ahead)

manner, based on the accumulated information up to the current time? 2) In a distributed

sensor management system, where each local sensor generates a local estimate based on local

sensor measurements, and decides whether or not to send its measurement/estimate to the

FC by itself, how to select the subset of measurements which are the most informative if the
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current measurements are already in hand? The latter problem is sometimes referred to as

the sensor censoring problem and is addressed in this chapter.

The first problem is a typical sensor management or sensor selection problem and a lot

of effort has been devoted to it by different authors [2, 3, 5, 22, 46–50]. In [2], the sensor

selection problem was formulated as an integer programming problem, which has been re-

laxed and solved through convex optimization. In [46] [5], non-myopic algorithms for sensor

management for target tracking were provided. In [5], a multi-step sensor selection strategy

by reformulating the Kalman filter was proposed, which is able to address different perfor-

mance metrics and constraints on available resources. In the context of field estimation,

the tradeoff between communication cost and estimation performance in multi-step sensor

selection was considered in [47]. The finite horizon sensor scheduling problem that chooses

which sensors should operate at each time-step to minimize a weighted function of the error

covariance of the state estimation was addressed in [48], and algorithms were developed to

solve for the optimal and suboptimal sensor schedule. In [3], a method that chooses sensors

randomly according to a probability distribution such that the upper bound on the expected

steady-state performance is minimized was developed. In [49], sensor selection is based on

an entropy-based information measure, which is computed using the expected posterior dis-

tribution of the state to be estimated. Instead of information based metrics, in [50] [22], the

recursive one-step-ahead posterior Cramér-Rao lower bound (PCRLB) on the mean squared

error (MSE) of estimating the state vector has been explored as the metric to select informa-

tive sensors. More specifically, given the constraint that l sensors are selected at each time,

the collection of l sensors which minimizes the cost function, the bound on the MSE of state

estimate of the target, is the desired solution. Recently, a novel sensor selection approach

was proposed in [51], where the Kalman gain matrix is designed through optimization and

a sparsity-promoting penalty function is added to the objective function. The added term
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penalizes the number of nonzero columns of the Kalman gain matrix, which corresponds to

the number of active sensors. Therefore, only a few sensors send their measurements to the

FC.

If quantizers are used at local sensors, then the bit allocation problem is a natural exten-

sion to the sensor selection problem [52] [7]. In [52], bit allocation among different samples

was studied for a signal detection problem, while in [7], the available bandwidth R is dis-

tributed among the sensors in the sensor network in such a way that the PCRLB on the

MSE is minimized for target tracking.

The second problem results in the so called censoring method in the area of distributed

detection [53–56]. In [53], under a constraint on communication, an optimal censoring struc-

ture is proposed, through which, local sensors censor their likelihood ratios before sending

them to the FC. Only the local likelihood ratios falling in the send region are sent to the FC

for making the global decision. Later in [54], the fusion of decisions from censoring sensors

transmitted over wireless fading channels was investigated, where optimal and suboptimal

fusion rules were designed based on the knowledge of fading channels. Some practical is-

sues regarding the design of censoring sensor networks including joint dependence of sensor

decision rules, randomization of decision strategies, and partially known distributions of ob-

servations were further addressed in [55]. Per-sensor censoring scheme was also employed

in [56], in which an ordering approach follows censoring to reduce the number of trans-

missions in the network, and the sensors with more informative observations transmit first.

Sensor censoring has also been used to solve estimation problems [57]. The authors in [57]

proposed another transmission scheme in which the sensor transmissions are ordered accord-

ing to the magnitude of their measurements, and the sensors with magnitude smaller than

a threshold, do not transmit.

Methods used to solve the above problems can be categorized as data selection methods
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and all of them result in missing data from the viewpoint of the FC. Then, a crucial issue is

whether the fact that variables are missing is related to the underlying values of the variables

in the data set [58], and this categorizes the mechanism leading to missing data into three

types according to [58]: i) missing completely at random (MCAR), i.e., missingness does

not depend on the data values; ii) missing at random (MAR), i.e., missingness depends

only on the observed components, not on the missing ones; iii) not missing at random

(NMAR), i.e., missingness depends on the missing values. Obviously, the missing data issue

due to the data selection methods such as censoring belongs to the third type mentioned

above. In this chapter, we focus on missing data due to the third mechanism, namely,

on NMAR. Since the missing data also convey some information, they can be exploited to

obtain better inference. In fact, the information conveyed by missing data due to NMAR

has been considered implicitly in the distributed detection problem [53]. The parameter

estimation problem that takes into account the NMAR missing data information has been

considered in [59]. Nevertheless, to the best of our knowledge, for the Bayesian sequential

estimation problem in the context of data selection/sensor censoring, such kind of approach

has not yet been explored. A related but different work has been reported in [60] and

references therein, which exploits ‘negative’ sensor evidence (expected but missing sensor

data) for target tracking and data fusion. Though the work in [60] is similar to ours, it

is different from our work in two major aspects: first, the missing measurements in [60]

are due to the failed attempt by a radar system to detect a target, while in our work

certain sensor data are missing because sensors censor their local data in a distributed

manner to conserve communication bandwidth and send more informative sensor data to a

FC; second, the missing information or ‘negative’ information in [60] is exploited in terms

of fictitious measurements given by appropriate sensor models which is designed based on

the background information on the sensor characteristics, while in our work, the missing
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information is exploited in terms of the statistics of the missingness which can be computed

giving the prior knowledge on the censoring rule. Hence, the two novelties of our work are:

censoring measurements at local sensors to select informative measurements in a distributed

manner, and fusing both received measurements and missing ones at the FC to exploit the

information conveyed by the missingness of data.

The main contribution of this chapter is that we propose a scheme which provides better

performance for target tracking in a sensor network when the bandwidth constraint and/or

energy cost at local sensors is important to increase the lifetime of the network. In the

proposed scheme, firstly, the local sensors censor their measurements in a distributed manner,

and then the FC fuses both the received observations and missing ones. The proposed

scheme is shown to be applicable to both linear and nonlinear systems, and both scalar

and vector observations. Furthermore, we investigate the relationship between the censoring

rule based on the innovation and the one based on the Kullback-Leibler (KL) divergence

between the prior state distribution before the measurement is available and the posterior

state distribution after the measurement is obtained. For the convenience of discussion

throughout this thesis, we call the proposed scheme Censoring and Fusion with Missing

Data (CFwMD), since in this scheme, a censoring method is employed at the sensors and

the FC fuses data considering the information of missing data that are NMAR. We call the

scheme which uses the same censoring method at the sensors but ignores the information

about the missing data at the FC as Censoring and Fusion without Missing Data (CFoMD).

The scheme, which does not use censoring at the sensor level but a probabilistic transmission

strategy, which results in missing data that are MCAR, is called random-selection throughout

this chapter. Numerical results demonstrate that CFwMD incurs less performance loss than

CFoMD when compared to the all-send case (all sensors send their measurements to the FC),

while they both outperform the random-selection under the same bandwidth constraint.
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The rest of this chapter is organized as follows. In the next section, we formulate the

problem. Then, we present the proposed CFwMD scheme for linear Gaussian systems when

scalar observations are obtained at local sensors in Section 3.3, followed by the discussion on

the equivalence between the censoring rule based on the innovation and the one based on the

KL divergence in Section 3.4. Section 3.5 discusses the framework when vector observations

are available at local sensors, and Section 3.6 generalizes the framework to nonlinear systems.

We provide simulation results in Section 3.7 and summarize this chapter in Section 3.8.

3.2 Problem Formulation

3.2.1 System Model

Here, we consider a sequential Bayesian estimation problem in a sensor network with N

sensors. Sensors report measurements to the FC for the inference task, i.e., estimation of

the system state, for example, the position and velocity of the target in the target tracking

problem. Throughout this chapter, the channels between local sensors and the FC are

assumed to be perfect.

The state model of the system is given as follows:

xk+1 = Fkxk + uk (3.1)

where Fk is the state transition matrix, xk is the d × 1 state vector and uk is the white

Gaussion process noise with zero-mean and covariance matrix Qk. Sensor i’s measurements

are given by

zik = Hixk + ni
k (i = 1, 2, · · · , N) (3.2)

where Hi is the observation matrix which maps the state space into the observation space

and ni
k is white Gaussian measurement noise with zero-mean and covariance Ri. In this
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chapter, we first discuss the case in which scalar observations are obtained at local sensors,

i.e.,

zik = hiTxk + ni
k (i = 1, 2, · · · , N) (3.3)

where hi is the measurement vector, the superscript T denotes vector/matrix transpose and

ni
k is white Gaussian noise with zero-mean and variance ri.

In our CFwMD scheme, we design a censoring rule which measures the informativeness

of the measurements at the sensor level, i.e., at each time step, the ith sensor first examines

its measurement according to the designed censoring rule. When the measurement falls in

the send region, i.e., it is informative enough, the ith sensor sends it to the FC. Otherwise,

it is censored and not sent. For the Bayesian sequential estimation problem, we design the

following measurement censoring rule based on the normalized innovation squared (NIS) [16]:

νi
k

T
sik

−1
νi
k



















≥ ηk, send

< ηk, not send

(3.4)

where νi
k = zik − hiT x̂i

k|k−1 is the innovation [16] of the ith sensor at time k, sik is the

variance of νi
k, given by sik = ri + hiTPi

k|k−1h
i in the KF update procedure [16] (Pi

k|k−1 is

the covariance of the state prediction at the ith sensor), and ηk is a certain threshold that is

designed based on performance requirements or bandwidth constraints. Hence, the censoring

rule given by (3.4) implicitly requires that the ith (for i = 1, · · · , N) sensor should perform

a KF covariance update at each time, in order to compute the variance of its innovation.

Note that Eq. (3.4) is a reasonable way to select informative measurements. Here is an

intuitive justification: a larger magnitude of νi
k means a larger difference between the true

measurement and the predicted one, which indicates that the prediction based only on the

model (prior information) is not accurate enough and the corresponding measurement is
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needed to improve the estimation performance.

At time k, the complete measurement vector is z1:Nk , (z1k, z
2
k, · · · , zNk ) , (zobsk , zmis

k ),

where zobsk denotes the received measurements at the FC and zmis
k denotes the missing ones.

For the NMAR problem induced by (3.4), we define a missing-data indicator vector mk =

(m1
k, m

2
k, · · · , mN

k ) for z
1:N
k , where mi

k is the indicator variable for the ith sensor, which takes

value 1 if the measurement is sent to the FC and 0 otherwise. That is,

mi
k =



















1, if sensor i sends zik to FC at time k;

0, otherwise.

(3.5)

Under the assumption that the channels between the local sensors and the FC are perfect,

a missing sensor measurement means that it has been censored by the corresponding sensor

node. Hence, Mk, which contains the information on missingness, is available at the FC, and

the actual observed data at the FC consist of (zobsk , mk). In order to exploit the information

conveyed by the missing data, the corresponding likelihood function of the underlying state

of the system, which is denoted as p(zobsk ,mk|xk) should be computed by the FC, and how

to compute it will be considered in Section 3.3.2.

3.2.2 Particle Filter at the FC

In the proposed CFwMD scheme, a PF is employed at the FC. The KF is known to provide

the optimal solution to the Bayesian sequential estimation problem when the system is linear

and Gaussian. An EKF can provide suboptimal estimation by linearizing the nonlinear state

dynamics and/or nonlinear measurement equation locally in nonlinear systems. However,

even for linear and Gaussian systems, when the sensor measurements are quantized, the EKF

does not perform very well [61]. The censoring process defined in (3.4) can be treated as a

special case of measurement quantization, since if the measurement falls in the send region,
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a continuous value is sent; otherwise, no data are sent, which is equivalent to a quantization

of the sensor data to the symbol “0”. Hence, the PF is a reasonable choice at the FC for

Bayesian sequential estimation.

As we know, the main idea of the PF is to represent the posterior distribution p(xk|Z1:k)

by a set of particles {xl
k} with associated weights {wl

k}. Let Np denote the total number of

particles used in the PF. The posterior distribution can be then approximated as [62]

p(xk|Z1:k) ≈
Np
∑

l=1

wl
kδ(xk − xl

k) (3.6)

The missing data information can be exploited by using the full likelihood p(zobsk ,mk|xk)

instead of the simple likelihood p(zobsk |xk) to update the weights of particles at time k. Hence,

in the CFwMD scheme, after the FC has received all the measurements sent by local sensors

at time k, it computes the full likelihood and uses it to update the particle weights.

3.2.3 Censoring Threshold Design

The threshold ηk in (3.4) is designed such that on an average, l sensors send their measure-

ments to the FC at time k. Thus, we have

E

[

N
∑

i=1

mi
k

]

=
N
∑

i=1

E(mi
k) = l

where

E(mi
k) = p(mi

k = 1)

(a)
= p(νi

k
T
sik

−1
νi
k ≥ ηk) (3.7)

where (a) is due to the definition of mi
k in (3.5).

Since νi
k ∼ N (0, sik), we have νi

k
T
sik

−1
νi
k ∼ χ2

n
νi
k

, the chi-square distribution with degree

of freedom nνi
k
, and nνi

k
is the dimension of the innovation νi

k. Since scalar observations are

obtained at local sensors, their innovations have the same dimension nν , which is equal to
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1. Hence,
∑N

i=1E[mi
k] = Np(νi

k
T
sik

−1
νi
k ≥ ηk) = l, which implies p(νi

k
T
sik

−1
νi
k ≥ ηk) = l/N .

Then, we can obtain ηk = χ2
nν
(l/N), where χ2

nν
(l/N) represents the critical value such that

the probability greater than it is equal to l/N . Note that ηk completely depends on the rate

of transmission l/N at time k and the dimension of the innovation nν . Hence, once l is set to

be the same value for each time k, ηk remains constant over the entire duration of tracking,

and it can be computed offline and independently by local sensors and the FC without extra

transmission, i.e.,

η = χ2
nν
(l/N) (3.8)

3.3 Censoring and Fusion with Missing Data

3.3.1 Overview

The proposed CFwMD scheme consists of two major procedures: censoring and fusion, the

former is executed at each local sensor while the latter is executed at the FC. At the initial

step, local sensors and the FC compute η independently according to (3.8). Then, at any

given time k, each local sensor updates the covariance of its innovation Si
k following the

covariance update of the standard KF, and then determines whether its measurement at the

current time is informative enough or not by the proposed innovation based censoring rule

(3.4). Only if the measurement is informative, it is sent to the FC. At the FC, after it gathers

all the informative measurements from the local sensors, it fuses them to infer the target

state. In this paper, it is assumed that the delays in transmitting sensor measurements to

the FC are all less than the sampling interval of the sensors, so that the FC can fuse the

arriving measurements in time. We also assume that the FC knows the censoring rule. Since

the channels in the system have been assumed to be perfect, the only cause of a missing

measurement is that it is not informative enough. Then, based on the two assumptions
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above, the FC can compute the statistics of the missing measurements, which we propose

to incorporate in the fusion procedure for better inference performance. Note that the FC

maintains a particle filter to track the target. In order to fuse both the received measurements

and missing ones, we propose to use the full likelihood function, the details of which will be

given in the following section, to update the particle weights.

To make the CFwMD scheme more clear to the readers, we describe one cycle of the

scheme in the following algorithm:

Algorithm 1 The CFwMD scheme

Initial step: Design η by (3.8)

At time k:

At the ith local sensor, (i = 1, · · · , N):

(A1.1) sik = ri + hiTPi
k|k−1h

i (KF update)

(A1.2) Apply the censoring rule (3.4) to measurement zik

At the FC: (PF with Ns particles, l = 1, · · · , Ns)

(A1.3) xl
k = Fk−1x

l
k−1 + ul

k (Propagating particles)

(A1.4) wl
k ∝ full likelihood function

(A1.5) Normalize weights and estimate the state

by {xl
k, w

l
k}

(A1.6) Resampling to get {xl
k, N

−1
s }

3.3.2 The Full Likelihood Function

One of the critical elements of our CFwMD scheme is the full likelihood function which

includes the missing data information according to the previous section. In this section, we

derive the full likelihood function at time k for two cases, i.e., for a feedback system as well

as for a non-feedback system, depending on whether the state prediction x̂k|k−1 is a global
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one or a local one.

3.3.2.1 Feedback System

The system is called a feedback system when at the beginning of time k, certain global

information, such as prediction of the target state x̂k|k−1, is broadcast to the local sensors

by the FC.

Proposition 3.1. For the linear Gaussian system (3.1) with measurement model (3.3), if

censoring strategy (3.4) is used and the state prediction x̂k|k−1 is fed back from the FC to the

local sensors, then the full likelihood of the system state at time k, which is used to update

the weights of particles at the FC at step (A1.4) in Algorithm 1 of the CFwMD scheme is

given as

p(zobsk ,mk|xk, x̂k|k−1)

=

N
∏

i=1

[

p(zik|xk)
]mi

k
[

Q(ξik,1)−Q(ξik,2)
]1−mi

k (3.9)

where Q(·) is the complementary cumulative distribution function of a normal random vari-

able with zero mean and unit variance, ξik,1 ,
−
√

ηsi
k
−µi

k√
ri

, ξik,2 ,

√
ηsi

k
−µi

k√
ri

, µi
k = hiT (xk −

x̂k|k−1), the conditional mean of ith sensor’s innovation, and mi
k is defined in (3.5).

Proof. At time k, given x̂k|k−1, the full likelihood function is p(zobsk ,mk|xk, x̂k|k−1). Let

Nobs denote the number of received observations, and Nmis denote the number of missing
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observations, then

p(mk, z
obs
k |xk, x̂k|k−1)

=

∫

p(mk, z
obs
k , zmis

k |xk, x̂k|k−1)dz
mis
k

=

∫

p(mk|zobsk , zmis
k ,xk, x̂k|k−1)�

p(zobsk , zmis
k |xk, x̂k|k−1)dz

mis
k

=

∫ N
∏

i=1

[

p(mi
k|zik,xk, x̂k|k−1)p(z

i
k|xk)

]

dzmis
k (3.10)

The last line in (3.10) is due to the fact that local sensor observations are conditionally

independent.

By decomposing the product inside the integral in (3.10) into two parts: one related to

the received observations, and the other related to the missing observations, we can obtain

p(mk, z
obs
k |xk, x̂k|k−1)

=

Nobs
∏

i=1

[

p(mi
k = 1|zik,xk, x̂k|k−1)p(z

i
k|xk)

]

�

∫ Nmis
∏

j=1

p(mj
k, z

j
k|xk, x̂k|k−1)dz

mis
k

=

Nobs
∏

i=1

[

p(mi
k = 1|zik,xk, x̂k|k−1)p(z

i
k|xk)

]

�

Nmis
∏

j=1

p(mj
k = 0|xk, x̂k|k−1) (3.11)

Obviously, p(mi
k = 1|zik,xk, x̂k|k−1) = 1, and

p(mj
k = 0|xk, x̂k|k−1)

= p
(

νj
k

T
sjk

−1
νj
k < η

∣

∣

∣
xk, x̂k|k−1

)

(b)
= p

(

|νj
k| <

√

ηsjk

∣

∣

∣

∣

xk, x̂k|k−1

)

(3.12)
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where (b) is due to the fact that scalar observations are obtained at local sensors. Given xk

and x̂k|k−1, ν
j
k is Gaussian with mean

E
[

νj
k|xk, x̂k|k−1

]

= E
[

hjTxk + nj
k − hjT x̂k|k−1|xk, x̂k|k−1

]

= hjT (xk − x̂k|k−1)

, µj
k (3.13)

and covariance

V ar
[

νj
k|xk, x̂k|k−1

]

= rj

Hence,

p(mj
k = 0|xk, x̂k|k−1)

= Q





−
√

ηsjk − µj
k√

rj



−Q





√

ηsjk − µj
k√

rj



 (3.14)

where η is given by (3.8). Thus, we can obtain (3.9) by plugging (3.14) in (3.11). �

Remark 1: (I) We assume that the FC knows each local sensor’s measurement model and

it maintains a KF covariance update for each local sensor, and, therefore, the full likelihood

given by (3.9) is completely computable at the FC without any extra transmissions from

the local sensors. (II) It is not necessary for each sensor to run a complete KF, including

the state update and the covariance update. But, at each sensor, the KF covariance update

recursion is still needed to calculate its innovation covariance sik, which is required to censor

its measurement. (III) The threshold η is designed by assuming that local state predictions

are employed to calculate the innovations, but in the feedback system, the innovations are

obtained by using the global state prediction x̂k|k−1 fed back by the FC. This implies that the

communication rate constraint specified in (3.7) may not be strictly satisfied in a feedback
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system, which can be understood by checking the definition of innovation and its covariance

right below (3.4). One can see that, in a feedback system, since the innovation is computed

by the global x̂k|k−1 instead of the local estimate x̂i
k|k−1, it is not strictly Gaussian with

covariance sik which is still computed by using localPi
k|k−1. Therefore, (3.7) is not strictly true

which indicates that the communication rate constraint is not strictly satisfied. Nevertheless,

if the FC also feeds back P̂k|k−1 which is an empirical estimate by the PF, then the bandwidth

constraint can be more strictly satisfied with the cost of extra transmission, which gives us

Proposition 3.2.

Proposition 3.2. For the linear Gaussian system (3.1) with measurement model (3.3), if

censoring strategy (3.4) is used and the state prediction x̂k|k−1 and the related covariance

P̂k|k−1 are fed back from the FC to the local sensors, then the full likelihood of the system

state at time k is given as

p(zobsk ,mk|xk, x̂k|k−1, P̂k|k−1)

=

N
∏

i=1

[

p(zik|xk)
]mi

k
[

Q(ξ′ik,1)−Q(ξ′ik,2)
]1−mi

k (3.15)

where ξ′ik,1 ,
−
√

ηs′i
k
−µi

k√
ri

, ξ′ik,2 ,

√
ηs′i

k
−µi

k√
ri

, µi
k = hiT (xk − x̂k|k−1), the conditional mean of ith

sensor’s innovation, and mi
k is defined in (3.5).

Proof. At time k, given x̂k|k−1 and P̂k|k−1, the full likelihood function is p(zobsk ,mk|xk, x̂k|k−1, P̂k|k−1).

Let Nobs denote the number of received observations, and Nmis denote the number of missing
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observations, then

p(mk, z
obs
k |xk, x̂k|k−1, P̂k|k−1)

=

∫

p(mk, z
obs
k , zmis

k |xk, x̂k|k−1, P̂k|k−1)dz
mis
k

=

∫

p(mk|zobsk , zmis
k ,xk, x̂k|k−1, P̂k|k−1)�

p(zobsk , zmis
k |xk, x̂k|k−1, P̂k|k−1)dz

mis
k

=

∫ N
∏

i=1

[

p(mi
k|zik,xk, x̂k|k−1, P̂k|k−1)p(z

i
k|xk)

]

dzmis
k (3.16)

The last line in (3.16) is due to the fact that local sensor observations are conditionally

independent.

By decomposing the product inside the integral in (3.16) into two parts: one related to

the received observations, and the other related to the missing observations, we can obtain

p(mk, z
obs
k |xk, x̂k|k−1, P̂k|k−1)

=

Nobs
∏

i=1

[

p(mi
k = 1|zik,xk, x̂k|k−1, P̂k|k−1)p(z

i
k|xk)

]

�

∫ Nmis
∏

j=1

p(mj
k, z

j
k|xk, x̂k|k−1, P̂k|k−1)dz

mis
k

=

Nobs
∏

i=1

[

p(mi
k = 1|zik,xk, x̂k|k−1, P̂k|k−1)p(z

i
k|xk)

]

�

Nmis
∏

j=1

p(mj
k = 0|xk, x̂k|k−1, P̂k|k−1) (3.17)

Obviously, p(mi
k = 1|zik,xk, x̂k|k−1, P̂k|k−1) = 1, and

p(mj
k = 0|xk, x̂k|k−1, P̂k|k−1)

= p
(

νj
k

T
s′jk

−1
νj
k < η

∣

∣

∣
xk, x̂k|k−1, P̂k|k−1

)

(b)
= p

(

|νj
k| <

√

ηs′jk

∣

∣

∣

∣

xk, x̂k|k−1, P̂k|k−1

)

(3.18)

36



where (b) is due to the fact that scalar observations are obtained at local sensors. Given xk

and x̂k|k−1, ν
j
k is Gaussian with mean

E
[

νj
k|xk, x̂k|k−1

]

= E
[

hjTxk + nj
k − hjT x̂k|k−1|xk, x̂k|k−1

]

= hjT (xk − x̂k|k−1)

, µj
k (3.19)

and covariance

V ar
[

νj
k|xk, x̂k|k−1

]

= rj

Hence,

p(mj
k = 0|xk, x̂k|k−1)

= Q





−
√

ηs′jk − µj
k√

rj



−Q





√

ηs′jk − µj
k√

rj



 (3.20)

where η is given by (3.8). Thus, we can obtain (3.15) by plugging (3.20) in (3.17). �

Remark 2: (I) The superscript ‘′’ in Proposition 3.2 indicates that the global state

prediction covariance P̂k|k−1 instead of the local Pi
k|k−1 is involved in the computation of the

covariance of the innovation. (II) Since the global P̂k|k−1 in the Proposition is an empirical

estimate, Eqs. (3.18) and (3.20) involved in the proof are approximate ones.

One should keep in mind that, for the feedback system, a feedback step should be added

at the beginning of the CFwMD scheme given in Algorithm 1. If only the state prediction is

fed back, the remaining parts remain unchanged; if both the state prediction and related co-

variance are fed back, Pi
k|k−1 at step (A1.1) should be replaced by the global state prediction

covariance P̂k|k−1. We do not repeat the algorithm here for brevity.
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3.3.2.2 Non-feedback System

In a non-feedback system, local sensors censor their measurements according to (3.4) using

the innovations computed by their own system state prediction, which implies that each

local sensor needs to run a KF. The full likelihood in the non-feedback system is derived and

given as follows.

Proposition 3.3. For the linear Gaussian system (3.1) with measurement model (3.3), if

censoring strategy (3.4) is used, then the full likelihood of the target state at time k is given

as

p(mk, z
obs
k |xk) =

∫

p(x̂1:N
k|k−1|xk)�

N
∏

i=1

[

p(zik|xk)
]mi

k

[

Q(ξ̃ik,1)−Q(ξ̃ik,2)
]1−mi

k

dx̂1:N
k|k−1 (3.21)

where ξ̃ik,1 ,
−
√

ηsi
k
−µ̃i

k√
ri

, ξ̃ik,2 ,

√
ηsi

k
−µ̃i

k√
ri

, and µ̃i
k = hiT (xk − x̂i

k|k−1), which is the conditional

mean of ith sensor’s innovation. mi
k is defined in (3.5) and p(x̂1:N

k|k−1|xk) = p(x̂1
k|k−1, · · · , x̂N

k|k−1|xk)

is the joint PDF of the local sensor state predictions given the current true state, which will

be given later in this section.

Proof. Let x̂1:N
k|k−1 , (x̂1

k|k−1, · · · , x̂N
k|k−1) denote the local sensors’ state predictions.

p(mk, z
obs
k |xk)

=

∫ ∫

p(mk, z
obs
k , zmis

k , x̂1:N
k|k−1|xk)dz

mis
k dx̂1:N

k|k−1

=

∫ ∫

p(mk|zobsk , zmis
k , x̂1:N

k|k−1,xk)

� p(zobsk , zmis
k |x̂1:N

k|k−1,xk)p(x̂
1:N
k|k−1|xk)dz

mis
k dx̂1:N

k|k−1

=

∫ ∫ N
∏

i=1

{p(mi
k|zik, x̂i

k|k=1,xk)p(z
i
k|xk)}

� p(x̂1:N
k|k−1|xk)dz

mis
k dx̂1:N

k|k−1 (3.22)
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Similar to the feedback case, we split observed data and missing data in the inner integral,

then,

p(mk, z
obs
k |xk)

=

∫ Nobs
∏

i=1

[

p(zik|xk)p(m
i
k = 1|zik, x̂i

k|k−1,xk)
]

�

∫ Nmis
∏

j=1

[

p(mj
k, z

j
k|x̂j

k|k−1,xk)
]

p(x̂1:N
k|k−1|xk)dz

mis
k dx̂1:N

k|k−1

=

∫ Nobs
∏

i=1

[

p(zik|xk)p(m
i
k = 1|zik, x̂i

k|k−1,xk)
]

�

Nmis
∏

j=1

[

p(mj
k = 0|x̂j

k|k−1,xk)
]

p(x̂1:N
k|k−1|xk)dx̂

1:N
k|k−1 (3.23)

Again, we have p(mi
k = 1|zik, x̂i

k|k−1,xk) = 1 in (3.23). Now, we compute p(mj
k = 0|x̂j

k|k−1,xk)

in (3.23) by following a similar procedure as for the feedback system:

E
[

ν(zjk, x̂
j
k|k−1)|xk, x̂

j
k|k−1

]

= hjT (xk − x̂
j
k|k−1)

, µ̃j
k (3.24)

and

V ar
[

ν(zjk, x̂
j
k|k−1)|xk, x̂

j
k|k−1

]

= rj

Thus,

p(mj
k|x̂j

k|k−1,xk)

= Q





−
√

ηsjk − µ̃j
k√

rj



−Q





√

ηsjk − µ̃j
k√

rj



 (3.25)

Hence, we can obtain (3.21) by using (3.25) in (3.23). �

Note that the joint PDF p(x̂1
k|k−1, · · · , x̂N

k|k−1|xk) is a multivariate normal distribution

with mean πk|k−1 and covariance Σk|k−1, where πk|k−1 = H̃xk, H̃ is given by H̃ = [Id . . . Id]
T

39



with dimension Nd×d, and Id denotes the d×d identity matrix. That is, the mean πk|k−1 is

the concatenation by N true states xk. The N diagonal elements of the covariance Σk|k−1 are

filled with Pi
k|k−1, the covariance of each sensor’s own prediction, and the remaining terms

of Σk|k−1 are filled with P̃
i,j

k|k−1, cross-covariance between the ith sensor’s prediction and the

jth sensor’s prediction. Thus,

Σk|k−1 =





















P1
k|k−1 P̃

1,2

k|k−1 . . . P̃
1,N

k|k−1

P̃
2,1

k|k−1 P2
k|k−1 . . . P̃

2,N

k|k−1

...
...

. . .
...

P̃
N,1

k|k−1 P̃
N,2

k|k−1 . . . PN
k|k−1





















(3.26)

For two arbitrary sensors i, j:

P̃
i,j

k|k−1 = E
[

(xk − x̂i
k|k−1)(xk − x̂

j
k|k−1)

T
]

= E
[

F(xk−1 − x̂i
k−1|k−1)(xk−1 − x̂

j
k−1|k−1)

TFT
]

+ E
[

uk−1u
T
k−1

]

+ E
[

F(xk−1 − x̂i
k−1|k−1)u

T
k−1

]

+ E
[

uk−1(F(xk−1 − x̂
j
k−1|k−1))

T
]

= FP
i,j
k−1|k−1F

T +Qk−1 (3.27)

where according to [21]

P
i,j
k−1|k−1 =

[

I −wi
k−1h

iT
] [

FP
i,j
k−2|k−2F

T +Qk−2

] [

I −w
j
k−1h

jT
]T

(3.28)

and wi
k−1 is the Kalman gain at time k − 1.

Note that Eq. (3.28) is recursive, and once the initialization P
i,j
0|0 = 0 is given, Pi,j

k|k at

any given time step k can be computed recursively, based on which (3.26) can be evaluated.

We should point out that, for the non-feedback system, a KF state update should be

added to step (A1.1) in Algorithm 1, but the remaining steps are kept the same.
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It should be noted that the CFoMD follows the same procedure as the CFwMD, except

that the full likelihood is replaced by the simple likelihood, i.e.,, p(zobsk |xk) in step (A1.4) of

Algorithm 1.

3.4 Censoring Based on an Information Theoretic Met-

ric

In the previous sections, we proposed to use innovations in the censoring rule to select

informative measurements. Though we have given an intuitive motivation for this choice, one

may wonder about its optimality. In this section, we use an information theory based metric

to measure the informativeness of measurements. A good metric which can measure whether

or not a measurement zk is informative enough is the KL divergence between the prior

distribution p(xk|z1:k−1) before the measurement is available and the posterior distribution

p(xk|z1:k) after the measurement is obtained. The censoring rule based on KL divergence

can be expressed as

DKL(p(xk|z1:k−1)||p(xk|z1:k))



















≥ ζk send

< ζk not send

(3.29)

where DKL(·||·) denotes the distance between two distributions in terms of KL divergence,

which is defined as

DKL(p(y)||q(y)) =
∫

p(y) ln
p(y)

q(y)
dy

for distributions p and q of the continuous random variable y.

We show that under certain conditions, the proposed innovation based censoring rule is

equivalent to that based on the KL divergence.
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Theorem 3.4. For the linear Gaussian system (3.1) with scalar measurement model (3.3),

the censoring rule based on the metric DKL(p(xk|z1:k−1)||p(xk|z1:k)) in (3.29) is equivalent

to the one based on the NIS νk
2/sk.

Proof. For a linear Gaussian system, we have p(xk|z1:k−1) = N (x̂k|k−1,Pk|k−1), and p(xk|z1:k) =

N (x̂k|k,Pk|k). Then, according to [63]

DKL(p(xk|z1:k−1)||p(xk|z1:k))

=
1

2

{

tr(P−1
k|kPk|k−1)− ln

|Pk|k−1|
|Pk|k|

− d

}

+
1

2
(x̂k|k − x̂k|k−1)

TP−1
k|k(x̂k|k − x̂k|k−1) (3.30)

Since Pk|k−1 and Pk|k are determined offline for a linear Gaussian system, and d in (3.30)

is the dimension of the state xk, they are all deterministic once the system is determined.

Therefore, (3.29) is equivalent to

(x̂k|k − x̂k|k−1)
TP−1

k|k(x̂k|k − x̂k|k−1)



















≥ γk send

< γk not send

(3.31)

where γk , 2ζk + d + ln
|Pk|k−1|
|Pk|k| − tr(P−1

k|kPk|k−1). Note that the censoring is performed at

each local sensor which maintains a KF. Thus,

x̂k|k = x̂k|k−1 +wk(zk − hT x̂k|k−1)

= x̂k|k−1 +wkνk (3.32)

where wk is the KF gain, which is a column vector if scalar measurements are obtained.

Then,

(x̂k|k − x̂k|k−1) = wkνk (3.33)
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Thus, (3.31) is equivalent to

νT
k w

T
kP

−1
k|kwkνk



















≥ γk send

< γk not send

(3.34)

When scalar measurements are obtained, both wT
kP

−1
k|kwk and sk are scalars. Hence, by

comparing (3.34) to (3.4), we conclude that they are equivalent when appropriate thresholds

are selected. �

Theorem 3.4 indicates that the innovation based censoring rule selects more informative

measurements to send, which is intuitively pleasing. The above result can be easily extended

to symmetric KL divergence.

Corollary 3.5. For the linear Gaussian system (3.1) with scalar measurement model (3.3),

the censoring rule based on the symmetric KL divergence

DKL(p(xk|z1:k−1)||p(xk|z1:k))

+DKL(p(xk|z1:k)||p(xk|z1:k−1)) (3.35)

is equivalent to that based on the NIS νk
2/sk.

Proof. When symmetric KL divergence is used, the metric to select more informative data

in (3.31) is changed to

Λk , (x̂k|k − x̂k|k−1)
T (P−1

k|k + P−1
k|k−1)(x̂k|k − x̂k|k−1) (3.36)

Following the same manipulation on Λk as in the proof of Theorem 3.4, we can obtain

Λk = νT
k w

T
k (P

−1
k|k + P−1

k|k−1)wkνk (3.37)

Again, since scalar measurements are obtained, wT
k (P

−1
k|k +P−1

k|k−1)wk is a scalar, so is sk.

Therefore, we have

wT
k (P

−1
k|k + P−1

k|k−1)wk ∝ s−1
k (3.38)

�
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3.5 The Vector Observation Case

So far, our discussion was limited to the scalar observation case. When vector observations

are obtained at the local sensors, i.e., the measurement model (3.2) is used, we still propose

to use NIS based censoring rule, i.e.,

ν
i
k
T
Si
k

−1
ν
i
k



















≥ η̃k, send

< η̃k, not send

(3.39)

Again, we use mi
k as the indicator variable for the ith sensor, which takes the value 1 if the

vector measurement of sensor i is sent to the FC and 0 otherwise.

As in the scalar measurement case, we design η̃k such that, at time k, there are only l

sensors that are active. Without loss of generality, we assume that local sensors’ innovations

have the same dimension nν . If l is set to be the same value at every time and the dimension

of the innovation nν remains unchanged over time, i.e., the measurement model (3.2) remains

unchanged, then we still have

η̃k = η̃ = χ2
nν

(l/N) (3.40)

According to the discussion above, Algorithm 1 can be straightforwardly applied to the

vector observation case by replacing sik = ri + hiTPi
k|k−1h

i by Si
k = Ri + HiPi

k|k−1H
iT .

Then, the main concern now is to compute the corresponding full likelihood for the vector

observation case which is discussed in the following sub-sections.

3.5.1 Feedback System

Proposition 3.6. For the linear Gaussian system (3.1) with vector measurement (3.2),

when the global state estimate feedback from the FC is available, and the censoring strategy
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(3.39) is used, the full likelihood of the system state at time k is given as

p(zobsk ,mk|xk, x̂k|k−1)

=
N
∏

i=1

[

p(zik|xk)
]mi

k

[

p(qi
T
qi < η̃)

]1−mi
k

(3.41)

where qi ∼ N (Si
k

− 1
2Hi(xk − x̂k|k−1),S

i
k

− 1
2RiSi

k

− 1
2 ).

Proof. Following a similar procedure as in Proposition 3.1, we can obtain

p(mk, z
obs
k |xk, x̂k|k−1)

=

Nobs
∏

i=1

[

p(mi
k = 1|zik,xk, x̂k|k−1)p(z

i
k|xk)

]

�

Nmis
∏

j=1

p(mj
k = 0|xk, x̂k|k−1) (3.42)

where

p(mj
k = 0|xk, x̂k|k−1) = p(νj

k

T
S
j
k

−1
ν
j
k < η̃|xk, x̂k|k−1)

Denoting qj , S
j
k

− 1
2
ν
j
k, we have

E
[

qj|xk, x̂k|k−1

]

= S
j
k

− 1
2E
[

ν
j
k|xk, x̂k|k−1

]

= S
j
k

− 1
2Hj(xk − x̂k|k−1) (3.43)

Cov
[

qj|xk, x̂k|k−1

]

= E
[

qjqj
T |xk, x̂k|k−1

]

− E
[

qj|xk, x̂k|k−1

]

ET
[

qj|xk, x̂k|k−1

]

= E
[

S
j
k

− 1
2
ν
j
kν

j
k

T
S
j
k

− 1
2 |xk, x̂k|k−1

]

− E
[

qj|xk, x̂k|k−1

]

ET
[

qj|xk, x̂k|k−1

]

(3.44)
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Since

E
[

ν
j
kν

j
k

T |xk, x̂k|k−1

]

= Cov[νj
k|xk, x̂k|k−1] + E[νj

k|xk, x̂k|k−1]E
T [νj

k|xk, x̂k|k−1]

= Rj +Hj(xk − x̂k|k−1)(xk − x̂k|k−1)
THjT (3.45)

we can obtain

Cov
[

qj |xk, x̂k|k−1

]

= S
j
k

− 1
2RjS

j
k

− 1
2 (3.46)

Therefore, qj ∼ N (Sj
k

− 1
2Hj(xk − x̂k|k−1),S

j
k

− 1
2RjS

j
k

− 1
2 ). �

Following a similar discussion as that in Remark 1 (III), we provide the following result.

Proposition 3.7. For the linear Gaussian system (3.1) with vector measurements (3.2),

when the global state prediction x̂k|k−1 and its covariance P̂k|k−1 are fed back from the FC to

the sensors, the full likelihood of the system state at time k is given as

p(zobsk ,mk|xk, x̂k|k−1, P̂k|k−1)

=

N
∏

i=1

[

p(zik|xk)
]mi

k

[

p(q′i
T
q′i < η̃)

]1−mi
k

(3.47)

where q′i ∼ N (S′i
k

− 1
2Hi(xk− x̂k|k−1),S

′i
k

− 1
2RiS′i

k

− 1
2 ), and S′i

k is computed using the global state

prediction covariance P̂k|k−1 instead of the local one.

Proof. Following a similar procedure as in Proposition 3.1, we can obtain

p(mk, z
obs
k |xk, x̂k|k−1, P̂k|k−1)

=

Nobs
∏

i=1

[

p(mi
k = 1|zik,xk, x̂k|k−1, P̂k|k−1)p(z

i
k|xk)

]

�

Nmis
∏

j=1

p(mj
k = 0|xk, x̂k|k−1, P̂k|k−1) (3.48)
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where

p(mj
k = 0|xk, x̂k|k−1, P̂k|k−1) = p(νj

k

T
S
′j
k

−1
ν
j
k < η̃|xk, x̂k|k−1, P̂k|k−1)

Denoting q′j , S
′j
k

− 1
2
ν
j
k, we have

E
[

q′j |xk, x̂k|k−1

]

= S
′j
k

− 1
2E
[

ν
j
k|xk, x̂k|k−1, P̂k|k−1

]

= S
′j
k

− 1
2Hj(xk − x̂k|k−1) (3.49)

Cov
[

q′j|xk, x̂k|k−1, P̂k|k−1

]

= E
[

q′jq′j
T |xk, x̂k|k−1, P̂k|k−1

]

−E
[

q′j|xk, x̂k|k−1, P̂k|k−1

]

ET
[

q′j |xk, x̂k|k−1, P̂k|k−1

]

= E
[

S
′j
k

− 1
2
ν
j
kν

j
k

T
S
′j
k

− 1
2 |xk, x̂k|k−1, P̂k|k−1

]

−E
[

q′j|xk, x̂k|k−1, P̂k|k−1

]

ET
[

q′j |xk, x̂k|k−1, P̂k|k−1

]

(3.50)

Since

E
[

ν
j
kν

j
k

T |xk, x̂k|k−1, P̂k|k−1

]

= Cov[νj
k|xk, x̂k|k−1, P̂k|k−1] + E[νj

k|xk, x̂k|k−1, P̂k|k−1]E
T [νj

k|xk, x̂k|k−1, P̂k|k−1]

= Rj +Hj(xk − x̂k|k−1)(xk − x̂k|k−1)
THjT (3.51)

we can obtain

Cov
[

q′j|xk, x̂k|k−1

]

= S
′j
k

− 1
2RjS

′j
k

− 1
2 (3.52)

Therefore, q′j ∼ N (S′j
k

− 1
2Hj(xk − x̂k|k−1),S

′j
k

− 1
2RjS

′j
k

− 1
2 ).

�

3.5.2 Non-feedback System

Proposition 3.8. For the linear Gaussian system (3.1) with vector measurements, when

global estimate feedback from the FC is not available, if censoring strategy (3.39) is used,

then the full likelihood of the system state at time k is given as
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p(mk, z
obs
k |xk) =

∫

p(x̂1:N
k|k−1|xk)

N
∏

i=1

[

p(zik|xk)
]mi

k

[

p(ti
T
ti < η̃k)

]1−mi
k

dx̂1:N
k|k−1 (3.53)

where ti ∼ N (Si
k

− 1
2Hi(xk − x̂i

k|k−1),S
i
k

− 1
2RiSi

k

− 1
2 ).

Proof. Following a similar procedure as in the proof of Proposition 3.3, we have

p(mk, z
obs
k |xk)

=

∫ Nobs
∏

i=1

[

p(zik|xk)p(m
i
k = 1|zik, x̂i

k|k−1,xk)
]

�

Nmis
∏

j=1

[

p(mj
k = 0|x̂j

k|k−1,xk)
]

p(x̂1:N
k|k−1|xk)dx̂

1:N
k|k−1 (3.54)

where p(mi
k = 1|zik, x̂i

k|k−1,xk) = 1 and

p(mj
k = 0|xk, x̂

j
k|k−1) = p(νj

k

T
S
j
k

−1
ν
j
k < η̃|xk, x̂

j
k|k−1)

Denoting tj , S
j
k

− 1
2
ν
j
k, we have

E
[

tj |xk, x̂
j
k|k−1

]

= S
j
k

− 1
2E
[

ν
j
k|xk, x̂

j
k|k−1

]

= S
j
k

− 1
2Hj(xk − x̂

j
k|k−1) (3.55)

Cov
[

tj|xk, x̂
j
k|k−1

]

= E
[

tjtj
T |xk, x̂

j
k|k−1

]

−E
[

tj |xk, x̂
j
k|k−1

]

ET
[

tj |xk, x̂
j
k|k−1

]

= E
[

S
j
k

− 1
2
ν
j
kν

j
k

T
S
j
k

− 1
2 |xk, x̂

j
k|k−1

]

−E
[

tj |xk, x̂
j
k|k−1

]

ET
[

tj |xk, x̂
j
k|k−1

]

(3.56)
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Since

E
[

ν
j
kν

j
k

T |xk, x̂
j
k|k−1

]

= Cov[νj
k|xk, x̂

j
k|k−1] + E[νj

k|xk, x̂
j
k|k−1]E

T [νj
k|xk, x̂

j
k|k−1]

= Rj +Hj(xk − x̂
j
k|k−1)(xk − x̂

j
k|k−1)

THjT (3.57)

we can obtain

Cov
[

tj |xk, x̂
j
k|k−1

]

= S
j
k

− 1
2RjS

j
k

− 1
2 (3.58)

Therefore, tj ∼ N (Sj
k

− 1
2Hj(xk − x̂

j
k|k−1),S

j
k

− 1
2RjS

j
k

− 1
2 ), and

p(mk, z
obs
k |xk) =

∫

p(x̂1:N
k|k−1|xk)

N
∏

i=1

[

p(zik|xk)
]mi

k

[

p(ti
T
ti < η̃k)

]1−mi
k

dx̂1:N
k|k−1

�

3.6 Censoring and Fusion with Missing Data for Non-

linear Systems

In the previous sections, we have discussed the proposed CFwMD scheme for linear Gaussian

systems. To make it more general, we extend the scheme to a general nonlinear system in

this section. Consider the following nonlinear state-space model

xk+1 = f(xk) + uk (3.59)

and measurement model for the ith sensor

zik = hi(xk) + ni
k (3.60)

where uk ∼ N (0,Q) is the state process noise, and ni
k ∼ N (0, ri) is the measurement

noise. We first consider the scalar observation case. Note that, due to the nonlinearity
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of the system, when the CFwMD scheme is used in the considered nonlinear system, each

local sensor maintains an EKF and the FC uses a particle filter to infer the target state.

We should point out that the nonlinearity of the system makes it different from the linear

Gaussian system in several aspects:

1) The innovation ν̌i
k is no longer distributed as Gaussian with zero mean and variance

sik, but we approximate it as N (0, sik).

2) Since sik = gi
kP

i
k|k−1g

i
k
T
+ rik, where gi

k = ∂h
∂x
|x̂i

k|k−1
, Pi

k|k−1 = Fi
k−1P

i
k−1|k−1F

iT
k−1 +Q,

and Fi
k−1 =

∂f
∂x
|x̂i

k−1|k−1
, sik cannot be evaluated offline as in the case of linear systems.

Inspired by the linear Gaussian system we have discussed earlier, we propose that, for

a nonlinear system, the ith sensor again censors its measurement based on the NIS, i.e.,

(ν̌i
k)

T sik
−1
ν̌i
k at time k, where ν̌i

k , zik − ẑik|k−1, and it is approximated as a Gaussian random

variable with zero mean and covariance sik.

The censoring threshold can also be designed by the bandwidth constraint as in linear

Gaussian systems, given the approximation that ν̌i
k ∼ N (0, sik). Following a similar proce-

dure as in Section 3.2.3, we have

η̌ = χ2
nν̌
(l/N) (3.61)

where nν̌ = 1, since scalar observations are obtained.

For the considered nonlinear system, if the global state estimate is fed back from the FC

to the local sensors, the full likelihood function in the CFwMD scheme is provided in the

following proposition.

Proposition 3.9. For a general nonlinear system given by (3.59)-(3.60), if innovation based

censoring strategy is used with threshold given by (3.61) and the global estimate of the state

x̂k−1|k−1 is fed back to the local sensors, then the full likelihood of the system state at time k
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of the CFwMD scheme is given as

p(zobsk ,mk|xk, x̂k−1|k−1)

=

N
∏

i=1

[

p(zik|xk)
]mi

k
[

Q(ξ̌ik,1)−Q(ξ̌ik,2)
]1−mi

k (3.62)

where ξ̌ik,1 ,
−
√

η̌si
k
−µ̌i

k√
ri

, ξ̌ik,2 ,

√
η̌si

k
−µ̌i

k√
ri

, mi
k is defined in (3.5), µ̌i

k = hj(xk)− h(x̂k|k−1), the

conditional mean of ith sensor’s innovation, and x̂k|k−1 = f(x̂k−1|k−1).

Proof. Following a procedure similar to that in Proposition 3.1, we can obtain

p(mk, z
obs
k |xk, x̂k−1|k−1)

=

Nobs
∏

i=1

[

p(zik|xk)
]

�

Nmis
∏

j=1

p(mj
k = 0|xk, x̂k−1|k−1) (3.63)

where

p(mj
k = 0|xk, x̂k−1|k−1)

= p

(

|ν̌j
k| <

√

ηsjk

∣

∣

∣

∣

xk, x̂k−1|k−1

)

(3.64)

Given xk and x̂k−1|k−1, ν̌
i
k is Gaussian distributed with mean

E
[

ν̌j
k|xk, x̂k−1|k−1

]

= E
[

hj(xk) + nj
k − hj(x̂k|k−1)|xk, x̂k−1|k−1

]

= hj(xk)− hj(x̂k|k−1) , µ̌j
k (3.65)

and covariance

var
[

ν̌j
k|xk, x̂k−1|k−1

]

= rj

where x̂k|k−1 = f(x̂k−1|k−1).

Therefore, p(mj
k = 0|xk, x̂k−1|k−1) = Q(ξ̌ik,1) − Q(ξ̌ik,2) with ξ̌ik,1 ,

−
√

η̌si
k
−µ̌i

k√
ri

and ξ̌ik,2 ,
√

η̌si
k
−µ̌i

k√
ri

. �
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Remark 3: (I) As in the linear Gaussian system, we assume that the FC knows each

local sensor’s measurement model and it performs an EKF covariance update for each local

sensor. Note that an EKF is also maintained at each local sensor, and each local sensor

computes the linearized state transition matrix F i
k and measurement matrix (vector) gi

k

using the global state estimate x̂k−1|k−1 fed back from the FC. Also, since the local sensors

use the global feedback x̂k−1|k−1 in its censoring process, and the FC maintains an EKF

covariance update for each local sensor, the FC is able to compute sik involved in ξ̌ik,1 and

ξ̌ik,2 in the proposition above, and therefore, Eq. (3.62) is completely computable by the FC

without requiring extra information from local sensors. (II) In addition to the state estimate

x̂k−1|k−1, the FC can also feed back the covariance P̂k−1|k−1 to local sensors as in the linear

Gaussian system. Note that, due to the nonlinearity, ν̌i
k is approximated as a Gaussian

random variable with a distribution of N (0, sik). Nevertheless, if the FC also feeds back

the global covariance P̂k−1|k−1, and then, ν̌i
k can be approximated as N (0, s′ik) (the global

P̂k−1|k−1 contributes to the computation of s′ik), which is more accurate than the previous

approximation.

Proposition 3.10. For a general nonlinear system given by (3.59)-(3.60), if innovation

based censoring strategy is used with the threshold given by (3.61) and both the global estimate

of the state x̂k−1|k−1 and the related covariance P̂k−1|k−1 are fed back to local sensors, then

the full likelihood of the system state at time k of the CFwMD scheme is given as

p(zobsk ,mk|xk, x̂k−1|k−1, P̂k−1|k−1)

=
N
∏

i=1

[

p(zik|xk)
]mi

k
[

Q(ξ̌′ik,1)−Q(ξ̌′ik,2)
]1−mi

k (3.66)

where ξ̌′ik,1 ,
−
√

η̌s′i
k
−µ̌i

k√
ri

, ξ̌′ik,2 ,

√
η̌s′i

k
−µ̌i

k√
ri

, mi
k is defined in (3.5), µ̌i

k = hj(xk)− h(x̂k|k−1), the

conditional mean of ith sensor’s innovation, and x̂k|k−1 = f(x̂k−1|k−1).
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Proof. Following a procedure similar to that in Proposition 3.9 and the discussion inRemark

3 (II), we can obtain (3.66) in a straightforward manner. �

Remark 4: (I) The global P̂k−1|k−1 contributes to the computation of s′ik . (II) If vector

observations are obtained by local sensors, one can follow a similar procedure as in Section

3.5 to get the corresponding full likelihood for the nonlinear system with feedback (feedback

consists of state estimate with/without covariance), which will be not discussed here. (III)

For the considered nonlinear system without feedback, one may expect to get a similar result

as in Proposition 3.3. But, this is not true. The reason is as follows: consider the joint PDF

p(x̂1:N
k|k−1|xk) in the nonlinear system. Let us approximate it as Gaussian with mean πk|k−1

and covariance Σ̌k|k−1, which has the same structure as (3.26). However, it can be easily

found that the diagonal element Pi
k|k−1 in Σ̌k|k−1 depends on the state estimate x̂i

k−1|k−1, and

the off-diagonal element P̃
i,j

k|k−1 depends on the state estimate x̂i
k−1|k−1 and x̂

j
k−1|k−1, which

prevents us from obtaining a similar result to that in Proposition 3.3.

3.7 Simulation Results

In this section, we show the advantage of the proposed CFwMD scheme for both linear and

nonlinear systems via simulation. For linear systems, we show that, for a certain threshold,

the CFwMD scheme has less performance loss than CFoMD, while saving the same amount of

communication resources compared to the all-send case. We also show that among the three

schemes, i.e., CFwMD, CFoMD and the random-selection method, the proposed CFwMD

scheme performs the best, under the same bandwidth constraint. We explore the perfor-

mance comparison for both feedback and non-feedback scenarios. For nonlinear systems, the

advantage of the proposed CFwMD scheme over CFoMD and the random-selection schemes

is shown by simulation when feedback is included in the system.
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3.7.1 Linear System–the Scalar Observation Case

A one-dimensional target tracking system is considered in this scenario, with state vector

xk = [xk ẋk]
T , state transition matrix

F =







1 D

0 1







and observation matrix hT = [1 0], where D = 1 second, which is the sampling interval.

Without loss of generality, in this example, we use N identical sensors to track the target

which moves only along the x-axis following the white noise acceleration model. The state

process noise covariance is set as

Q = σ2







D4/4 D3/2

D3/2 D2







where σ2 = 4. The measurement noise variance is set as ri = 1 for i = 1, 2. The initial state

of the target x0 is chosen to be [0 10]. We observe the target for 20 seconds, namely, we

track the target over TS = 20 time steps for each Monte-Carlo trial. The number of particles

used in the particle filter at the FC is Ns = 103.

3.7.1.1 Feedback System

In this example, at the beginning of each time step in a trial, the FC broadcasts the global

state prediction to local sensors. We compare the RMSEs, averaged over 5000 Monte-

Carlo trials at each time, for the random-selection, CFwMD, CFoMD and all-send cases. To

perform the comparison under the same bandwidth constraint, we set the censoring threshold

η for the CFwMD and CFoMD schemes at the value such that the average number of active

sensors is l = 1 at any given time, and we let each sensor send its measurement to the FC

with a probability 1/N for the random-selection scheme.

54



In Fig. 3.1, there are N = 2 sensors. Since we set the censoring threshold η to constrain

the average number of active sensors as l = 1 at any given time, both the CFwMD and

CFoMD schemes save 50% transmissions, compared to the all-send case. However, the

CFoMD scheme incurs a larger performance loss compared to the proposed CFwMD schem

according to Fig. 3.1. The reason is that the missing data due to censoring process in the

CFoMD and CFwMD schemes depends on the underlying values of the data, i.e., is NMAR

and non-negligible [58]. Ignoring the data as in the CFoMD scheme will certainly result in

some information loss. For the random-selection scheme, each sensor has probability of 1/2 to

send its observation, and therefore, it also saves 50% transmissions on an average, compared

to the all-send case. But, it performs the worst among the four schemes as expected, since the

per-sensor censoring process in the CFwMD and CFoMD schemes select more informative

data than random selection.

In Fig. 3.2, we compare the RMSEs of two feedback cases with different values of l, i.e.,

l = 1, 1.2, 1.5, 2, 3, when the total number of sensors is increased to N = 4. The CFwMD

curves in the figure correspond to the case when only the global state prediction x̂k|k−1 is

fed back, while the CFwMD2 curves correspond to the case when both the global state

prediction x̂k|k−1 and its covariance P̂k|k−1 are fed back at any given time k. We can observe

that, when l > 1, the CFwMD2 scheme performs better than the CFwMD scheme, due

to the extra feedback from the FC. However, when l = 3, the CFwMD2 scheme does not

provide much performance improvement. This is because l = 3 is already large enough to

give good performance, and therefore, the extra feedback does not contribute much. On

the other hand, it can be observed that the performance of the CFwMD scheme is better

than that of the CFwMD2 scheme when l = 1. The reason is as follows: when l = 1, the

probability that at a particular time none of the sensors sends data, which is (3/4)4 = 0.32,

is much greater than that when l = 2, which is (1/2)4 = 0.06. If at a certain time step, no
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Figure 3.1: RMSE comparison for the feedback system with N = 2. Solid line with circle:

random-selection, solid line with triangle: CFoMD, solid line with square: CFwMD, solid

line with plus: all-send.

data are sent to the FC, it would be more likely that at the next time step no sensor data

are sent to the FC either. This is because if no data are available for the FC to update its

state estimate at time k − 1, both P̂k−1|k−1 and P̂k|k−1 will increase significantly. A larger

P̂k|k−1, which is fed back to local sensors in the CFwMD2 scheme, results in a larger sik

and makes it more difficult for the sensor data to pass the censoring rule defined in (3.4) at

time k, while in the CFwMD scheme, Pi
k|k−1, which completely depends on the local system

model, and is not affected by the global estimation process at all. Hence, the probability

that no data are sent for several consecutive time steps is much larger for the CFwMD2

scheme when l = 1. This has been verified by Monte-Carlo simulations, where we observed

more instances of no sensor data being sent over several consecutive time steps in the case of
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the CFwMD2 scheme than those in the CFwMD scheme when l = 1. Indeed, in Table 3.1,

one can observe that, when l = 1, the experimental average number of transmissions of the

CFwMD2 scheme is smaller than that of the CFwMD scheme. We did not observe similar

phenomena for the cases when the state process noise σ is smaller or when the observation

is a vector consisting of both position and velocity observations, the latter of which will be

given later in the following sections. This is because P̂k|k−1 is smaller in either of these two

cases.

Another observation from Table 3.1 is that, for each l, the average number of transmis-

sions of the CFwMD2 scheme is closer to the theoretical value than that of the CFwMD

scheme, which verifies our expectation that the bandwidth constraint is more strictly satisfied

by the CFwMD2 scheme than the CFwMD scheme.

Table 3.1: Average number of transmissions (scalar observations)

Theoretical l l̄ (CFwMD) l̄ (CFwMD2)

1 1.0625 1.0530

1.2 1.1709 1.2230

1.5 1.3536 1.4992

2 1.7399 2.0002

3 2.7838 3.0095

3.7.1.2 Non-feedback System

For a non-feedback system, again the RMSEs of the four schemes, i.e., random-selection,

CFwMD, CFoMD, and all-send, are compared. In Fig. 3.3, the results for a system with N =
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2 sensors are presented. As in the feedback system, it is obvious that CFoMD outperforms

random-selection, and CFwMD performs the best among the three schemes, i.e., random-

selection, CFoMD and CFwMD. By observing Fig. 3.3, we can also conclude that, though the

random-selection saves 50% transmissions when N = 2, it incurs a large loss of performance

as expected.

3.7.2 Linear system–the Vector Observation Case

In this example, the same one-dimensional moving target is tracked as that in Section 3.7.1.

But, the observation matrix is set as H = I2, an identity matrix with dimension 2×2. Thus,

both the position and the velocity of the target can be observed by local sensors. Again,

N = 2 identical sensors are used, and the measurement covariance is set as Ri = diag[2 4]

for i = 1, 2. As in Section 3.7.1, we design the censoring threshold η̃ such that there is only

one active sensor, i.e., l = 1, at any given time on the average. The target is tracked for 20

seconds for each Monte-Carlo trial and 5000 Monte-Carlo trials are performed. We compare

the RMSEs for the random-selection, CFwMD, CFoMD and all-send cases. In Fig. 3.4, the

results for the feedback system with vector observations are presented. Obviously, similar

conclusion as that in Section 3.7.1 can be drawn here.

In Fig. 3.5, as in the scalar observation case, the position and velocity RMSEs of the

CFwMD scheme with only global state feedback and the CFwMD2 scheme with both the

global state and covariance feedback are compared for different values of l, and the total

number of sensors is again set as N = 4. Obviously, the CFwMD2 scheme outperforms

the CFwMD scheme for each l, which is due to the extra feedback. On the other hand, the

experimental average number of transmissions l̄ of the CFwMD2 scheme for each l, especially

when l > 1, provided in Table 3.2 is closer to the theoretical value than that of the CFwMD

scheme, which again verifies that the bandwidth constraint is more strictly satisfied by the
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CFwMD2 scheme due to the feedback of the global covariance.

Table 3.2: experimental average number of transmissions (vector observations)

Theoretical l l̄ (CFwMD) l̄ (CFwMD2)

1 0.9296 1.0069

2 1.7573 2.0035

3 2.8029 3.0151

The results for the non-feedback system with vector observations are provided in Fig.

3.6. Obviously, we can draw similar conclusions as that in Section 3.7.1.2.

We should point out that a simulation based approach has been used to compute the

probability p(qi
T
qi < η̃k) to get the full likelihood function (3.41) when using the CFwMD

scheme for a feedback system. That is, we first draw Nq samples from the normal distribution

N (S
− 1

2
k H(xk − x̂k|k−1),S

− 1
2

k RS
− 1

2
k ), and then count the number of samples which satisfy the

condition qT q < η̃k, denoted as nq. Then, the probability can be approximated by nq/Nq.

The same approach is also used to compute the probability p(ti
T
ti < η̃k) involved in (3.53)

for a non-feedback system.

3.7.3 Nonlinear System

In this experiment, we assume N = 9 sensors are grid deployed in a b2 = 20m × 20m

surveillance area, and an acoustic or an electromagnetic source is moving in this region, as

shown in Fig. 3.7. Target motion is defined by the white noise acceleration model (3.1) with

state vector x = [x ẋ y ẏ], where the state transition matrix F and the state noise covariance

Q are given as follows
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F =





















1 D 0 0

0 1 0 0

0 0 1 D

0 0 0 1





















,Q = σ2





















D4/4 D3/2 0 0

D3/2 D2 0 0

0 0 D4/4 D3/2

0 0 D3/2 D2





















At time k, the signal power received at the ith sensor is given as zik =
√

P0

1+α(di
k
)n

+ ni
k,

where P0 denotes the signal power of the target, dik is the distance between the target and

the ith sensor at time k, α and n are model parameters, and ni
k is Gaussian noise with

zero mean and variance ri. Without loss of generality, local sensors are set up with the

same measurement noise variance ri = 1 (i = 1, · · · , N) in this example. We set P0 = 103,

α = 1, and n = 2. The target’s initial state x0 is assumed to be Gaussian with mean

µ0 = [−8 2 − 8 2] and covariance Σ0 = diag[9 4 9 4] (i.e., a poor prior on the initial state).

The state process noise parameter σ2 is set as 0.1, indicating that the target trajectory has

relatively large uncertainty. Measurements are assumed to be taken at regular intervals of

D = 0.5 seconds and the tracking length is 10 seconds, namely, we track the target over

TS = 20 time steps for each Monte-Carlo trial. 200 Monte-Carlo trials are performed in this

experiment. The number of particles used in the particle filter at the FC is Ns = 104.

As in linear systems, the RMSEs, averaged over the Monte-Carlo trials at each time,

for the random-selection, CFwMD, CFoMD and all-send cases are compared. The average

number of transmission at any given time in this experiment is constrained as l = 2.

In Fig. 3.8, the RMSE comparison results are shown. Note that only the state estimate

is fed back to obtain the results shown in this figure. It can be observed that the proposed

CFwMD scheme outperforms the CFoMD and random-selection scheme under the same

bandwidth constraint. On the other hand, compared to the all-send case, the CFwMD

scheme does not lose much performance but saves 78% transmissions. One may observe that
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RMSEs increase with time at later time steps in Fig. 3.8. This is because the target is

moving out of the region of interest (ROI) monitored by the sensors, so there is less and less

information available for the estimator.

In Fig. 3.9, the RMSEs of the four schemes, namely, the random-selection, CFoMD,

CFwMD, and all-send schemes, are plotted as a function of the average number of trans-

missions at one time step. One can observe that, when the allowed number of transmissions

is small, the proposed CFwMD scheme has significant advantage over both CFoMD and

random-selection schemes. It incurs a little bit performance loss compared to the all-send

case. As we increase the allowed number of transmissions, the RMSEs of the four schemes

approach each other, especially when l is close to the total number of sensors N = 9 in

the network. This is intuitively reasonable, since when the number of transmissions is large

enough, the received observations can already provide enough information for good inference

performance, and then neither the censoring procedure nor the information conveyed by the

missing data can improve the performance much.

For the nonlinear system, we are also interested in the performance comparison between

the two feedback scenarios: 1) only global state estimate feedback is available; 2) the feedback

consists of both the global state estimate and its covariance, and the results are provided

in Fig. 3.10 for l = 2, 4, 6 (the total number of sensors in the ROI is N = 9). It can be

observed that, as in the linear Gaussian system, the CFwMD2 scheme performs better than

the CFwMD scheme as time goes along for each l, since extra global information is fed back

to local sensors by the FC. Again, the experimental average number of transmissions over

200 Monte-carlo trials provided in Table 3.3 indicates that the bandwidth constraint is more

strictly satisfied by the CFwMD2 than the CFwMD scheme.
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Table 3.3: Experimental average number of transmissions (nonlinear system)

Theoretical l l̄ (CFwMD) l̄ (CFwMD2)

2 1.5978 1.8970

4 3.3480 3.8775

6 5.4835 5.9533

3.7.4 Discussion

It should be noted that the models used in the simulations have relatively low dimension

and the network size is rather small. However, such scenarios are frequently used in the

target tracking literature [16] [21] [7], and have been found to be appropriate to illustrate

the effectiveness of the proposed algorithm. We would like to point out that the proposed

methodology can also be applied to moderately high-dimensional systems without requiring

large computation effort if feedback is available from the fusion center to local sensors.

This is clear if one checks Eqs. (3.9) (3.15) (3.41) and (3.47) for linear systems, and Eqs.

(3.62) and (3.66) for nonlinear systems. For a non-feedback system, if the dimension of the

dynamic system is high and/or the number of sensors is large, the proposed methodology

involves computationally intensive multiple integrals in (3.21) and (3.53). However, if the

fusion center is very powerful, the proposed methodology can still be applicable relying

on efficient numerical integration approaches, such as those that based on Monte Carlo

integration techniques [64]. Note that in this chapter, we have implicitly assumed that

identical dynamical model is observed at each sensor. However, this may not be true in

some realistic scenarios such as very large-scale dynamical systems [65] [66], and this will be

addressed in future work.
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3.8 Summary

In this chapter, we have proposed a new methodology to solve linear Bayesian sequential

estimation problems by combining the censoring procedure at local sensors and the fusion

procedure which fuses both received observations and missing ones, due to the censoring

process, at the FC. Both scalar observation and vector observation cases have been discussed

in this work. In addition, for the scalar observation case, it has been shown that the proposed

innovation based censoring rule is equivalent to that based on the KL divergence between

the prior state PDF and the posterior state PDF. Then, we extended the proposed CFwMD

scheme to a general nonlinear filtering problem when feedback is available. Numerical results

showed that, for both linear and nonlinear filtering problems considered in this chapter, the

CFwMD scheme incurs less performance loss than the CFoMD scheme, while both save the

same amount of transmissions, compared to the all-send case. In addition, under the same

bandwidth constraint, the proposed CFwMD scheme is shown to perform the best among

the three schemes, i.e., CFwMD, CFoMD and random-selection schemes. Future work can

include a theoretical analysis of the performance of the proposed CFwMD scheme. In the

work presented in this chapter, the channels between the local sensors and the FC were

assumed to be perfect. Taking a fading channel into consideration is another interesting

future direction.
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Figure 3.2: RMSEs for the CFwMD with/without covariance feedback for different values

of l.
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Figure 3.3: RMSE comparison for the non-feedback system with N = 2. Solid line with

circle: random-selection, solid line with triangle: CFoMD, solid line with square: CFwMD,

solid line with plus: all-send.
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Figure 3.4: RMSE comparison for the feedback system with N = 2 (vector observations).

Solid line with circle: random-selection, solid line with triangle: CFoMD, solid line with

square: CFwMD, solid line with plus: all-send.
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Figure 3.5: RMSEs for the CFwMD with/without covariance feedback for different values

of l (vector observations).

66



2 4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

R
M

S
E

 o
f P

os
iti

on
 

 

2 4 6 8 10 12 14 16 18 20

0.8

1

1.2

1.4

Time

R
M

S
E

 o
f V

el
oc

ity

Figure 3.6: RMSE comparison for the non-feedback system with N = 2 (vector observation).

Solid line with circle: random-selection, solid line with triangle: CFoMD, solid line with

square: CFwMD, solid line with plus: all-send.
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Figure 3.7: Target trajectory and sensor deployment in the ROI
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Figure 3.8: RMSE comparison for the nonlinear system with feedback.
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Figure 3.9: RMSEs as a function of the average number of transmission at each time.
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Figure 3.10: RMSEs for the the CFwMD scheme with/without covariance feedback for

different values of l in a nonlinear system.

69



Chapter 4

Probabilistic Sensor Management for

Target Tracking via Compressive

Sensing

4.1 Motivation

Sensor management is an important problem in resource constrained wireless sensor networks

(WSNs). Different approaches have been proposed to solve this problem in the literature for

various inference tasks. To name a few, in [2], the sensor selection problem was formulated

as an integer programming problem, which has been relaxed and solved through convex op-

timization. In [5], a multi-step sensor selection strategy by reformulating the Kalman filter

was proposed, which is able to address different performance metrics and constraints on

available resources. In [49], a sensor selection scheme based on an entropy-based information

measure is proposed. Instead of information based metrics, in [50] [22], the recursive one-

step-ahead posterior Cramér-Rao lower bound (PCRLB) on the mean squared error (MSE)
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of estimating the state vector has been explored as the metric to select informative sensors.

For a WSN with a fusion center, due to the fact that only a few nodes have significant

and informative observations, the concatenated measurement vector at the fusion center can

be considered to be sparse and compressible. This interpretation naturally brings the con-

cept of compressive sensing (CS) [8] [9] into sensor management problem. The first attempt

to solve the sensor management problem by CS was reported in [67], in which the sensor

selection decision is considered as a sparse signal, and the sensor selection problem is solved

in terms of recovering the sparse signal by l1 norm minimization.

In this work, we propose a novel CS based sensor management approach. To get com-

pressed measurements at the fusion center, we employ a multiple access channel (MAC)

model with probabilistic transmissions, based on which, we can obtain an equivalent repre-

sentation of our problem as the standard CS problem. After establishing this equivalence,

the sensor management problem can be solved by designing the sensing matrix. Since the

sensing matrix is completely determined by the probability of transmission by each sensor,

design of the sensing matrix is equivalent to finding the optimal probability of transmission

for each sensor such that the compressed measurements can yield the best inference perfor-

mance in a certain sense with limited resources. Numerical results show that the proposed

scheme loses a little performance compared to the case where all sensors measurements are

completely known at the fusion center but saves a lot of energy. On the other hand, under

the same energy constraint, the proposed scheme outperforms the random selection method

significantly.

There are several major differences between the work in [67] and the one presented in

this chapter: 1) In [67], a subset of sensors is selected and selected sensors send their mea-

surements to the fusion center over parallel channels. In this work, a subset of sensors is

probabilistically chosen and different combinations of weighted measurements are sent to the
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fusion center over M MACs. 2) In [67], the sensor selection decision is considered as a sparse

signal and the sensor selection problem is solved by recovering the sparse signal by l1 norm

optimization. However, in this work, the concatenated measurement vector is considered to

be sparse due to non-informative measurements, and the sensing matrix is designed such that

a desired tracking performance is achieved with compressed measurements. Thus, there is

no recovery of signal, but the compressed signal is used directly for state inference; 3) In [67],

the sensing matrix is deterministic or is made semi-random by adding some random distur-

bance, while in this work, the sensing matrix is random, and each of its element is a random

variable whose distribution is related to a certain sensor’s probability of transmitting.

4.2 Problem Formulation

4.2.1 System Model

We focus on a target tracking problem, where a moving target is tracked by a WSN with

N uniformly deployed sensors in the region of interest (ROI). The dynamical model of an

acoustic or electromagnetic target is assumed to be

xk+1 = Fxk +wk (4.1)

where xk ∈ Rd is the state vector of the target at time instant k, F ∈ Rd×d is the state

transition model and wk is the process noise which is assumed to be Gaussian with zero

mean and covariance matrix Q ∈ Rd×d.

At time k, the measurement model at each sensor is

si,k = ai,k + vi,k, i = 1, 2, · · · , N (4.2)

where ai,k =
√

P0

1+dn
i,k

, P0 is the signal power of the source, n is the signal decay pa-

rameter, di,k denotes the distance between the target and the ith sensor at time k, i.e.,
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di,k =
√

(xi − xk)2 + (yi − yk)2, where (xi, yi) is the location of the ith sensor, and vi,k is the

measurement noise, which is assumed to be Gaussian with mean zero and variance r and

mutually independent for different sensors.

4.2.2 Compressive Sensing

CS is a recently developed signal processing technique for acquiring and reconstructing

a sparse signal with a small number of measurements compared to the original signal

dimension. Consider a signal f ∈ RL, that can be expressed in an orthonormal basis

Ψ = [Ψ1 Ψ2 · · · ΨL] as

f =
L
∑

l=1

blΨl or f = Ψb (4.3)

where bl is the coefficient of the signal projected on Ψl and b = [b1, · · · , bL]T . The signal f

is said to be K-sparse, if only K coefficients in b are significant and all others are zeros or

are negligible.

To obtain a compressed signal, the sparse signal f is projected to a lower dimension via

a sensing matrix Φ with dimensions M × L, where M ≪ L, i.e.,

y = Φf = ΦΨb. (4.4)

The standard CS problem is to recover b from only M ≪ L measurements y. The recon-

struction capability is determined by the properties of the sensing matrix Φ in addition to

the sparsity index and the number of compressed measurements [8]. Several such properties

including restricted isometry property (RIP) and mutual coherence of the sensing matrix,

and recovery algorithms are developed in [68–70].
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4.2.3 Sparsity Formulation

For the sensor management problem considered in this chapter, we can convert it to a CS

problem, and hence solve it efficiently with a small number of measurements.

At any given time k, let the measurement vector corresponding to the WSN be sk =

[s1,k, · · · , sN,k]
T at time k, where (·)T denotes the matrix or vector transpose. We consider

a relatively large distributed network. Based on the observation model (4.2), it is seen that

the signal amplitude received at a given node at a given time becomes smaller and eventually

negligible as the distance between that particular node and the true target location increases.

Therefore, at time k, ak = [a1,k, · · · , aN,k]
T can be considered to contain only few significant

values.

To obtain the compressed observation model, we consider the following transmission

scheme as considered in [71]. Let the jth sensor transmit its measurement after multiplying

it by φij,k (to be defined later) via a MAC, so that after M transmissions, the received signal

at the fusion center is given by

zi,k =
N
∑

j=1

φij,ksj,k + ei,k, i = 1, · · · ,M (4.5)

where ei,k is the receiver noise, which is assumed to be white and Gaussian with zero mean

and variance ǫ. Note that (4.5) can be written in a vector form as

zk = Φsk + ek (4.6)

where zk = [z1,k, · · · , zM,k]
T and ek is the receiver noise, which is assumed to be white, zero-

mean and Gaussian with covariance Σe = ǫIM×M , where IM×M is an identity matrix of size

M ×M .

74



We consider each φij,k to be a random variable so that

φij,k =



































1, with probability 1
2
pj,k

0, with probability 1− pj,k i = 1, · · · ,M

−1, with probability 1
2
pj,k j = 1, · · · , N

(4.7)

where pj,k is the probability of transmission from jth sensor at time instant k.

Based on how Φk is constructed, it is obvious that, though the elements in a given column

in Φk are independent and identically distributed (i.i.d.), elements in different columns are

independent but not identically distributed. Therefore, Φk does not follow the RIP as the one

with the same isometry constant which has i.i.d. random elements. Further, it is noted that,

the matrix Φk can be very sparse when only a small number of sensors decide to transmit

with a high probability. With this sensing matrix, we show numerically that compressed

observations in (4.6) provide us with a comparable performance in target tracking to that

with (4.2) with relatively small M .

In the context of sensor management, Φk plays the role of a sensor management entity

that divides the sensors into M sub-sets such that sensors in the same sub-set send their

weighted measurements over the same MAC (there are a total of M MACs) if FDMA is used

or in the same time slot (there are total M time slots) if TDMA is used. Note that, the

weight could be ’0’, which means that the associated sensor does not send its measurement.

For example, if there are N = 5 sensors and M = 3, one realization of Φ3×5 is given by

Φ3×5 =















1 0 −1 0 1

−1 0 −1 0 0

1 0 1 0 −1















.

Then, sensors 1, 3, and 5 will send their measurements over all the 3 MACs but with different

weights, while sensors 2 and 4 do not send their measurements over any MAC. Therefore,
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the problem of managing sensors is equivalent to the design of the sensing matrix Φk or the

probability vector pk = [p1,k, p2,k, · · · , pN,k]
T , such that a certain objective function is

optimized. In the next section, we propose to use the Fisher information matrix (FIM), the

inverse of which is the lower bound of the estimation performance, as the objective function,

and details will be given therein.

4.3 The Sensor Management Problem

We find the probability vector pk such that, the determinant of the FIM of the system

averaged over the sensing matrix Φ is maximized at time k. For the target tracking problem

under consideration, a nice recursive computation of the FIM is proposed in [20], which is

given as follows

Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k (4.8)

where D11
k = E

{

−∆xk
xk

log p(xk+1|xk)
}

D12
k = E

{

−∆xk+1
xk

log p(xk+1|xk)
}

= (D21
k )T

D22
k = E

{

−∆xk+1
xk+1

[log p(xk+1|xk) + log p(zk+1|xk+1)]
}

= D22,a
k +D22,b

k .

For the problem considered in this chapter, we have D11
k = F TQ−1F , D12

k = −F TQ−1,

D22,a
k = Q−1 and

D22,b
k = −E

{

∆xk+1
xk+1

log p(zk+1|xk+1,Φk+1)
}

(4.9)

where the expectation is with respect to zk+1, xk+1 and Φk+1. Hence,

D22,b
k = −Ep(Φk+1)Ep(xk+1){JD} (4.10)
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where

JD = Ep(zk+1|xk+1,Φk+1)

{

∆xk+1
xk+1

log p(zk+1|xk+1,Φk+1)
}

. (4.11)

We can write (4.6) as

zk = Φkak + Φkvk + ek (4.12)

where vk = [v1,k, v2,k, · · · , vN,k]
T , i.e., it is the concatenation of the measurement noises

of N sensors. Since the measurement noises are mutually independent, vk ∼ N (0, rIN×N).

Given xk+1 and Φk+1, based on Eq. (4.12), one can get zk+1 ∼ N (Φak+1, Rk+1), where

Rk+1 = rΦk+1Φ
T
k+1 + Σe. Then

log p(zk+1|xk+1,Φk+1)

= −1

2
(zk+1 − Φk+1ak+1)

TR−1
k+1(zk+1 − Φk+1ak+1). (4.13)

Therefore,

JD = −∇xk+1
(Φk+1ak+1)R

−1
k+1∇T

xk+1
(Φk+1ak+1), (4.14)

D22,b
k

= Exk+1

{

∇xk+1
ak+1EΦ

{

ΦT
k+1R

−1
k+1Φk+1

}

∇T
xk+1

ak+1

}

(4.15)

where

∇xk+1
ak+1 =





















∂a1,k+1

∂xk+1

∂a2,k+1

∂xk+1
· · · ∂aN,k+1

∂xk+1

0 0 · · · 0

∂a1,k+1

∂yk+1

∂a2,k+1

∂yk+1
· · · ∂aN,k+1

∂yk+1

0 0 · · · 0





















d×N

(4.16)

and

∂ai,k+1

∂xk+1
=

P0nd
n−2
i,k+1

2ai,k+1(1 + dni,k+1)
2
(xi − xk+1), (4.17)
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∂ai,k+1

∂yk+1
=

P0nd
n−2
k+1,i

2ai,k+1(1 + dnk+1,i)
2
(yi − yk+1) (4.18)

for i = 1, 2, · · · , N . Note that (xi, yi) is the location of the ith sensor and (xk+1, yk+1)

represents the location of the target at time k + 1.

Up to this point, we have not observed the explicit relationship between the FIM at time

k+ 1 and pk+1, due to the complexity of D22,b
k . The following result can be used to simplify

the mathematical representation.

Let Γk+1 , EΦ

{

ΦT
k+1R

−1
k+1Φk+1

}

. If N is large, then we have the following proposition.

Proposition 4.1. If the number of sensors in the WSN N is large, then, at any given time

k + 1, we may approximate

Γk+1 ≈
M

rΣN
j=1pj,k+1 + ǫ

diag(pk+1) (4.19)

where diag(p) denotes a diagonal matrix, with p on the main diagonal.

Proof. Let Θ , ΦΦT . The time index is omitted in the proof for the sake of simplicity.

Diagonal elements of Θ are given by

Θi,i =

N
∑

j=1

φ2
ij i = 1, 2, · · · , M (4.20)

and off-diagonal elements are

Θi,j =

N
∑

c=1

φicφjc i, j = 1, 2, · · · , M and i 6= j. (4.21)

It is straightforward to get E{φ2
ij} = pj , var{φ2

ij} =
∑

(φ2
ij − pj)

2p(φij) = pj(1 − pj),

E{φicφjc} = 0, and var{φicφjc} = p2c .

Therefore, according to the law of large number (LLN) for independent and non-identical

random variables, we get

Θi,i ≈
N
∑

j=1

E{φ2
ij} =

N
∑

j=1

pj, Θi,j ≈
N
∑

c=1

E{φicφjc} = 0. (4.22)
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Hence, Θ =
(

∑N
j=1 pj

)

IM×M and R = rΘ+ Σe = (r
∑N

j=1 pj + ǫ)IM×M .

Then,

Γ ≈
(

r

N
∑

j=1

pj + ǫ

)−1

EΦ

{

ΦTΦ
}

. (4.23)

Diagonal elements of Γ are given by

Γi,i =

(

r
N
∑

j=1

pj + ǫ

)−1

Mpi (i = 1, 2, · · · , N)

and off-diagonal elements are

Γi,j ≈
(

r

N
∑

j=1

pj + ǫ

)−1

E

{

M
∑

k=1

φkiφkj

}

= 0 (i, j = 1, 2, · · · , N and i 6= j).

Therefore,

Γ ≈ M

r
∑N

j=1 pj + ǫ
diag(p) (4.24)

completing the proof. �

The goal is to solve the resource management problem in a WSN, and the limited re-

source that we focus on here is the energy consumption in the network. For simplicity, we

assume that each transmission from a local sensor to the fusion center consumes unit power.

Finding the optimal values for transmitting power at sensor nodes while achieving a desired

performance is another interesting aspect which will be studied in the future. We aim to

solve the following optimization problem:

max
pk

det(Jk(pk)) (4.25)

s.t. M
N
∑

j=1

pj,k ≤ Ek (4.26)

where Ek is the total energy constraint at time k.

Remark: (1) The fusion center maintains a particle filter to track the target, since the

system model considered here is nonlinear. (2) At time step k, the fusion center first solves
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the optimization problem in (4.25) to get the optimal pk before measurements at this time

are available. Then, it generates the sensing matrix Φk using pk, and, according to which,

sends control messages to local sensors. Based on these control messages, local sensors will

send their measurements over assigned MACs to the fusion center.

4.4 Simulation Results

In this section, we illustrate the performance of the proposed sensor management algorithm

by numerical examples. The MATLAB function ‘fmincon’ is used to solve the constrained

optimization problem (4.25). We compare the mean square error (MSE) of CS based sen-

sor management method to that of the random selection method under the same energy

constraint. Both methods are compared to the all-send case where all sensor measurements

are available at the fusion center via a set of parallel channels. The effect of the number of

MACs, i.e., M of the sensing matrix Φ on the inference performance is also studied.

We consider a WSN, consisting of N = 25 sensors grid deployed in a 20m × 20m

surveillance area. The dynamical model of the target is given by (4.1) with state vector

xk = [xk ẋk yk ẏk]
T . The state transition model F and the covariance of the process noise Q

are given as follows

F =





















1 D 0 0

0 1 0 0

0 0 1 D

0 0 0 1





















, Q = ρ





















D3

3
D2

2
0 0

D2

2
D 0 0

0 0 D3

3
D2

2

0 0 D2

2
D





















where D = 0.5 seconds is the time interval and ρ = 0.1 is the process noise parameter. The

parameters of the observation model (4.2) are set as P0 = 103 and r = 1. The initial state

of the target x0 is assumed to be Gaussian with mean µ0 = [−13 2 − 13 2]T and covariance
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Σ0 = diag([4 1 4 1]). We perform target tracking over Ts = 15 time steps for each Monte-

Carlo trial, and set Ns = 5000 particles for the particle filter. The total energy available in

the WSN at any given time is assumed to be E = 6. The MSE of the estimation at each

time is averaged over MC = 100 Monte-Carlo trials.
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Figure 4.1: MSE comparison for different approaches.

In Figure 4.1, the MSEs of the CS based approach with different values ofM are compared

to that of the random selection method. One can observe that the former one outperforms

the latter under the same energy constraint. The MSEs for M = 1, 3, 6 show that the

proposed approach achieves a better performance as M increases. This reasonable result

can be justified based on the following two reasons: 1) If M is interpreted as the number of

MACs, then more channels definitely yield better performance; 2) In the context of CS, M is

the number of compressed measurements. Then, a larger M should have higher probability

to recover the original signal, and therefore, should yield better performance. Note that,

according to the theory of CS, it is not necessary to choose a large M , if it already attains a

threshold which guarantee the recovery of the original signal with overwhelming probability

81



[9]. In Figure 4.1, we also compare the performance of the CS based method with the all-

send case. Compared to the all-send case where a total of 25 units of energy are consumed

at each time since N = 25 parallel transmissions are necessary, the proposed approach loses

only a little performance, especially when M = 6, but is energy efficient in the sense that

it consumes only E = 6 units of energy on an average at any given time. Note that, the

compressed measurements are used directly for state estimation in the considered target

tracking problem, which is different from the traditional CS problems where the goal is to

recover a sparse signal. As M increases, we expect that the tracking performance of the

proposed scheme will be close to that of the all-send case where there is no compression.

Since the proposed CS based sensor management scheme employs a probabilistic trans-

mission strategy, intuitively, the optimal solution pk to (4.25) should assign significant prob-

abilities to those sensors which can obtain more informative observations. To show this, we

investigate one Monte-Carlo trial of the tracking trajectory and observe the optimal proba-

bility vector pk at any given time step k. In Figure 4.2, the optimal p at time steps k = 4
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Figure 4.2: p at different time steps. Circle: true state; Square: sensor assigned non-

negligible transmission probability.
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and k = 10 are marked. We can observe that, at time step k = 4, two sensors close to the

target are assigned non-negligible probabilities, i.e., one is 0.6840 and the other is 0.3160,

while others are assigned almost zero probability. This is because, the two sensors are close

to the target from two very different locations relative to the target. Similar observations

can be made for time step k = 10.

4.5 Summary

In this chapter, we proposed a novel probabilistic sensor management approach for target

tracking in sensor networks based on compressed observations. With this model, the sensor

management problem becomes a constrained optimization problem, where the goal is to

determine the optimal values of probabilities that each sensor should transmit with such

that the determinant of the FIM at any given time step is maximized. Numerical results

show that the proposed approach saves a lot of energy with a little performance loss compared

to the optimal scenario in which all sensor observations are transmitted to the fusion center

via parallel channels. Under the same energy constraint, it outperforms the random selection

approach significantly. Future work will focus on the theoretical analysis on the RIP of the

sensing matrix constructed in this chapter. Another interesting future work is to take the

channel statistics into consideration.
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Chapter 5

Fusion of Quantized Data for Bayesian

Estimation Aided by Controlled Noise

5.1 Motivation

For a sensor network (SN) with limited resources (bandwidth and/or energy), it is important

to limit the communication within the network. Therefore, transmission of binary or multi-

bit quantized data is a desirable solution. For a centralized sensor network architecture with

quantized data illustrated in Figure 5.1, each sensor node sends its quantized data to a FC,

where all the quantized sensor data are fused to perform parameter estimation (e.g. target

localization). Previous work [72–74] has focused on target localization with quantized sensor

data using static quantizers when no prior on the target’s location is available. In [72, 73],

target localization methods based on quantized sensor data have been developed assuming

perfect communication channels between the sensors and the FC, while in [74], wireless

channel statistics are taken into consideration. In this chapter, instead of estimation of

deterministic target location, we are interested in estimating a random variable (RV) with

known prior based on quantized data collected at the FC, keeping the assumption of perfect
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communication channels.

Sensor 1

Sensor N

.

.

.

Fusion Center 
(Bayesian Estimator)

Parameter

Estimate
Channel

Quantization

Quantization

Figure 5.1: Fusion of quantized data for Bayesian estimation.

The novelty of the idea proposed in this chapter is that the quantized data are not fused

directly by the FC for parameter estimation, but preprocessed by injecting independent con-

trolled noise. The basic idea was inspired by Widrow’s statistical theory of quantization [10].

The addition of noise after quantization is equivalent to low pass filtering in the characteristic

function (CF) domain, such that the original analog observation can be recovered. A similar

idea has been applied to solve a distributed detection problem in [75], where the approach of

adding external noise reduces the computational complexity. Promising results in [75] moti-

vate us to think about the possible application of this approach to the parameter estimation

problem. Therefore, the major contribution of this chapter is the derivation of a computa-

tionally efficient estimator by applying Widrow’s quantization theory, and the elegant result

relies on the fact that the whole process of quantizing and injecting controlled noise can be

theoretically modeled as an additive disturbance, whose distribution is analytically derived.

This theoretical model facilitates the derivation of the near-optimal linear MMSE (LMMSE)

estimator, and its corresponding mean squared error (MSE) in exact forms. The derivation of

the optimal minimum mean squared error (MMSE) estimator and the posterior Cramér-Rao

lower bound (PCRLB) based on the theoretical model are also provided for performance

comparison. Numerical results show that the LMMSE estimator can provide comparable
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performance to that of the optimal MMSE estimator while saves a lot of computation ef-

fort. A related but different work is documented in [76] where the problem of estimating a

deterministic parameter in noise using quantized observations has been discussed. However,

in [76], the authors proposed to add the dither noise before quantization at local sensors

which amounts to anti-alias filtering [76], while we propose to add it post quantization,

which is performed by the FC.

Since quantizers are involved in the problem, the issue of bit allocation naturally arises,

which has been formulated as an optimization problem in several publications [77,78]. In this

chapter, we will also address the bit allocation problem. There are two major differences

between our work and that in [78]: 1) In this chapter, the probability density function

(PDF) of the equivalent additive disturbance, which models the whole quantization and

noise injection process, is derived. Based on this, as discussed earlier, exact solutions for

estimators and their performance measures are derived. In [78], a quasi-MMSE estimator

that fuses quantized data directly was proposed in an ad-hoc manner, by simply replacing

the analog data with the quantized ones in the MMSE estimator designed for analog data.

This may incur large estimation error and severe sub-optimality in many cases, as clearly

shown in the numerical examples in [78]. 2) In [78], the bit allocation problem was solved

by minimizing either an upper bound on the MSE of the quasi-MMSE, or an approximated

difference between the Fisher information of the analog data and that of the quantized

data, the latter of which is based on the strong assumption that the quantization interval

approaches to zero. In contrast, in this chapter, the bit allocation problem is solved based

on the exact Fisher information.
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5.2 A Review of Widrow’s Statistical Theory of Quan-

tization

In [10], the uniform quantization of a RV is interpreted as sampling of its PDF, and it was

shown that the PDF of the quantized RV is the convolution of the input RV’s PDF with the

PDF of a uniform distribution followed by conventional sampling. Thus, at the ith sensor,

the PDF of the quantizer output, ui, is

pUi
(u) = [pWi

(u) ∗ pZi
(u)] ·

∑

k∈Z
qiδ
(

u− kqi −
qi
2

)

, (5.1)

where pZi
(z) is the PDF of the input RV zi, pWi

(w) denotes the PDF of a uniform distribution

over [−qi/2, qi/2], and qi is the quantization step-size of the uniform quantizer. Thus,

uniform quantization introduces two types of distortions or errors: (a) the additive noise wi,

and (b) the aliasing error due to sampling. However, if the input PDF is bandlimited so that

its CF φZi
(v) = 0 for |v| > π

qi
, the aliasing error can be avoided and, in principle, the original

PDF can be reconstructed from the knowledge of pUi
. This is Widrow’s first quantization

theorem as proved in [10]:

Theorem 5.1. If the CF of the input variable Zi is bandlimited, i.e.,

φZi
(v) = 0, |v| > π

qi
(5.2)

then the replicas of φUi
(v) do not overlap, and in principle, the original PDF pZi

can be

recovered from pUi
.

5.3 Problem Formulation

Let us consider the estimation of a RV θ in a wireless sensor network, where θ ∼ N (0, σ2
θ).

It is also assumed that N sensors are observing the parameter θ, and each local sensor’s
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observation is corrupted by independent additive Gaussian noise, i.e., observation model for

sensor i is

zi = θ + ni, i = 1, 2, · · · , N (5.3)

where ni ∼ N (0, σ2
ni
).

Each sensor performs uniform quantization before transmission and the step-size of quan-

tizer i is set as qi. Denote the quantized data as ui. In [75], for hypothesis testing problems,

the fusion process is simplified by adding controlled noise to the observations received at the

FC. For the Bayesian estimation problem considered in this chapter, we propose a similar

fusion system as shown in Fig. 5.2. An externally generated noise (di) with a band-limited

CF, is added to the quantized observations from the ith sensor to filter out the repeated and

phase-shifted CF side lobes in the CF of ui. This is analogous to low pass filtering in signal

processing. We, therefore, call the noise di, the LPF-noise.

.

.

.

S1

SN

Q1

QN

z1

zN

u1

uN

d1

dN

y1

yN

Fusion Center

Data Fusion
Estimate θ̂

Figure 5.2: Bayesian estimation aided by controlled noise. S: sensor; Q: quantizer; z: sensor data;

u: quantized data; d: controlled noise; y: data received at fusion center.

Then, the received data at the FC is given as

yi = ui + di (5.4)
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Note that an ideal noise source would be one with a rectangular CF in the pass-band,

− π
qi
≤ v ≤ π

qi
, such that there is no distortion incurred when filtering the signal. However, a

rectangular function in the CF domain corresponds to a PDF whose shape corresponds to

a sinc function, which is obviously an invalid PDF. Therefore, we limit our consideration to

only Gaussian noise in this chapter. That is, di ∼ N (0, σ2
di
), and the variance σ2

di
controls

the bandwidth of the filter.

Note that once (5.2) is satisfied, we have

yi = ui + di = zi + wi + di (5.5)

where wi ∼ U(− qi
2
, qi
2
). One needs to carefully design the PDF of di so that it causes minimal

distortion while transforming the discrete-valued RV, ui, into a continuous variable, yi.

5.4 Controlled Noise Aided MMSE Estimation

In this section, the design of the controlled noise and allocation of bits across the network

will be solved jointly, such that the estimation performance of the system is optimized. Since

the posterior Cramér Rao lower bound (PCRLB) is the lower bound on the MSE, it is used

as the metric in the chapter for optimization.

5.4.1 Bayesian Estimators and Fisher Information

Let us denote the received data vector at the FC as y = [y1, · · · , yN ]T . Since zi and di are

Gaussian RV respectively, we have p(zi+di)|θ = N (θ, σ2
ni

+ σ2
di
). Then, using (5.5), we can
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express the likelihood as

p(yi|θ) = p(zi+di)|θ ∗ pwi

= N (θ, σ2
ni
+ σ2

di
) ∗ U [−qi

2
,
qi
2
]

=

∫ ∞

−∞

1
√

2π(σ2
ni
+ σ2

di
)
e
− (τ−θ)2

2(σ2
ni

+σ2
di

) · pwi
(yi − τ)dτ

=
1

qi

∫ yi+qi/2

yi−qi/2

1
√

2π(σ2
ni
+ σ2

di
)
e
− (τ−θ)2

2(σ2
ni

+σ2
di

)
dτ

=
1

qi



Φ





yi − θ + qi/2
√

σ2
ni
+ σ2

di



− Φ





yi − θ − qi/2
√

σ2
ni
+ σ2

di







 (5.6)

where Φ(·) is the cumulative distribution function (CDF) of a Gaussian RV with zero mean

and unit variance. Since sensors’ observations are conditionally independent, we have

p(y|θ) =
N
∏

i=1

p(yi|θ) (5.7)

5.4.1.1 Optimal MMSE Estimator

The optimal MMSE estimator, i.e., the posterior conditional mean is given as follows

θ̂MMSE =

∫

θ
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθdθ (5.8)

For any Bayesian estimator, its MSE is bounded below by the PCRLB, which is the inverse

of the Bayesian Fisher information. The Bayesian Fisher information is derived and provided

in the following theorem.

Theorem 5.2. For a sensor network with N sensors, and the observation model given by

(5.3), if zi and qi, for i = 1, 2, · · · , N , satisfy the condition specified in (5.2), and the

controlled noise di is Gaussian, then the Fisher information is given as

J =

N
∑

i=1

J̃i + σ−2
θ (5.9)
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where

J̃i =

∫

θ

p(θ)

∫

yi

1

qi2π(σ2
ni
+ σ2

di
)
·

[

e−
1
2
ξ2i,1 − e−

1
2
ξ2i,2

]2

[Φ(ξi,1)− Φ(ξi,2)]
dyidθ (5.10)

and ξi,1 =
yi−θ+qi/2
√

(σ2
ni

+σ2
di
)
, ξi,2 =

yi−θ−qi/2
√

(σ2
ni

+σ2
di
)
.

Proof. The Fisher information is given as

J = −E

[

∂2

∂θ2
log p(y|θ)p(θ)

]

=
N
∑

i=1

{

−E

[

∂2

∂θ2
log p(yi|θ)

]}

+ σ−2
θ (5.11)

Let J̃i , −Ep(yi,θ)

[

∂2

∂θ2
log p(yi|θ)

]

, then

J =
N
∑

i=1

J̃i + σ−2
θ

Alternatively,

J̃i = Ep(yi,θ)

[

(
∂

∂θ
log p(yi|θ))2

]

(5.12)

where

∂

∂θ
log p(yi|θ) =

∂
∂θ
p(yi|θ)
p(yi|θ)

=

1

qi
√

(2π(σ2
ni

+σ2
di
))

(

e−
1
2
ξ2i,1 − e−

1
2
ξ2i,2

)

p(yi|θ)
(5.13)

and ξi,1 =
yi−θ+qi/2
√

(σ2
ni

+σ2
di
)
and ξi,2 =

yi−θ−qi/2
√

(σ2
ni

+σ2
di
)
. Thus, (5.10) is obtained.

�

It is clear that both the implementation of the MMSE estimator and the evaluation of

Fisher information involve integrals.
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5.4.1.2 Sub-Optimal LMMSE Estimator

Though (5.8) is optimal, it requires the evaluation of two integrals. We would like to derive

a more computationally efficient estimator. Combining (5.3) and (5.5), we have

yi = θ + gi (5.14)

where gi , ni + wi + di. It can be shown that

E{gi} = E{ni + wi + di} = 0 (5.15)

and the variance is given as

σ2
gi
= σ2

ni
+ σ2

di
+ q2i /12 (5.16)

since noise ni, wi and qi are independent of each other. gi does not follow a Gaussian

distribution. However, due to the linear relationship between yi and θ as in (5.14), it is

natural to use the LMMSE estimator for θ, which is provided as follows.

θ̂LMMSE = µθ +

(

1

σ2
θ

+
N
∑

i=1

1

σ2
gi

)−1 N
∑

i=1

yi − µθ

σ2
gi

(5.17)

where µθ = 0 is the mean of the prior PDF of θ. The corresponding estimation MSE is

E{(θ − θ̂LMMSE)
2} =

(

1

σ2
θ

+
N
∑

i=1

1

σ2
gi

)−1

(5.18)

(5.17) and (5.18) are derived based on the following results [79]:

θLMMSE = E(θ) + CθyC
−1
yy (y − E(y))

MSE(θ̂LMMSE) = Cθθ − CθyC
−1
yyCyθ

where θ is a scalar random parameter to be estimated based on a set of measurements

y = [y1, · · · , yN ]T , Cθθ = E[(θ − E(θ))2], Cθy = E[(θ − E(θ))(y − E(y))T ] = CT
yθ, and

Cyy = E[(y − E(y))(y− E(y))T ].
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Given that E(θ) = µθ, E(gi) = 0, θ is independent of gi, and the relationship between θ

and yi in (5.14), for i = 1, · · · , N , we have

E(y) = µθ1

Cθy = E[(θ − µθ)(θ1 + g− µθ1)
T ]

= E[(θ − µθ)
21T + (θ − µθ)g

T ]

= σ2
θ1

T (5.19)

where 1 is a N × 1 vector of all ones, and g = [g1, · · · , gN ]T .

Cyy = E[(θ1+ g − µθ1)(θ1 + g− µθ1)
T ]

= E[(θ − µθ)
211T + ggT + (θ − µθ)1g

T + (θ − µθ)g1
T ]

= σ2
θ11

T + diag(σ2
gi
) (5.20)

where diag(σ2
gi
) represents a diagonal matrix with the ith diagonal element given by σ2

gi
.

Thus,

CθyC
−1
yy = σ2

θ1
T (σ2

θ11
T + diag(σ2

gi
))−1

(a)
= σ2

θ1
T







diag

(

1

σ2
gi

)

− diag

(

1

σ2
gi

)

1

(

1

σ2
θ

+
N
∑

i=1

1

σ2
gi

)−1

1Tdiag

(

1

σ2
gi

)







= σ2
θ







1Tdiag

(

1

σ2
gi

)

−
N
∑

i=1

1

σ2
gi

(

1

σ2
θ

+
N
∑

i=1

1

σ2
gi

)−1

1Tdiag

(

1

σ2
gi

)







=

(

1

σ2
θ

+
N
∑

i=1

1

σ2
gi

)−1

1Tdiag

(

1

σ2
gi

)

(5.21)

Therefore,

θ̂LMMSE = µθ +

(

1

σ2
θ

+

N
∑

i=1

1

σ2
gi

)−1

1Tdiag

(

1

σ2
gi

)

(y − µθ1)

= µθ +

(

1

σ2
θ

+

N
∑

i=1

1

σ2
gi

)−1 N
∑

i=1

yi − µθ

σ2
gi
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The corresponding MSE is derived as

MSE(θ̂LMMSE) = σ2
θ −

(

1

σ2
θ

+

N
∑

i=1

1

σ2
gi

)−1

1Tdiag

(

1

σ2
gi

)

1σ2
θ

= σ2
θ



1−
∑N

i=1
1
σ2
gi

1
σ2
θ

+
∑N

i=1
1
σ2
gi





=

(

1

σ2
θ

+

N
∑

i=1

1

σ2
gi

)−1

As can be seen, the LMMSE and its MSE have closed-form solutions and are computa-

tionally efficient.

Proposition 5.3. Given qi such that (5.2) holds, the MSE of the LMMSE estimator is a

monotonic increasing function of σdi .

Proof. Given qi such that (5.2) holds, the MSE of the LMMSE estimator is given by (5.18).

Since σ2
gi

= σ2
ni

+ σ2
di
+ q2i /12, obviously, the MSE is a monotonic increasing function of

σdi . �

Remark 1: Due to Proposition 5.3, we conjecture that the Fisher information Ji should

be a monotonic decreasing function of σdi , which will be shown numerically in Section 5.5.

This is intuitively true, because a smaller σdi means larger signal-to-noise ratio (SNR). Thus,

once qi is fixed, σdi can be determined, i.e., the smallest acceptable one. One should note

that σdi cannot be infinitely small. This can be interpreted from the CF domain of ui. Since

the bandwidth of di in the CF domain is inversely proportional to σdi , the largest bandwidth

acceptable is the one that completely covers the central lobe while does not cover the second

side lobe to make sure that no aliasing error is introduced.
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5.4.2 LPF-noise Design and Bit Allocation

We are interested in simultaneously designing the local quantizer parameter qi and controlled

noise di such that the performance is optimized. In fact, quantizer design is equivalent to

the bit allocation problem, since a uniform quantizer is used. Note that sensors considered

in this problem are not identical, in the sense that the variances of the observation noises

are different from each other, i.e., σni
6= σnj

, for i 6= j. If J given in (5.9) is used as the

optimization metric, then the design problem can be formulated as

Optimization Problem:

max
~B,~σd

J( ~B, ~σd) (5.22)

s.t.

N
∑

i=1

bi = R, and

φZi
(v) = 0, |v| > π

qi
, for i = 1, 2, · · · , N (5.23)

where ~B = (b1, b2, · · · , bN ), ~σd = (σd1 , σd2 , · · · , σdN ) , R is the total number of bits, and Zi

is the input variable of the quantizer.

Remark 2: (I) the problem can be solved without exhaustive search over the entire

space of { ~B, ~σd}, due to Remark 1. The optimal solution for this problem can be obtained

as follows: (i) for any possible ~B, determine ~σd first, and then compute its corresponding

Fisher information; (ii) the optimal solution is the combination which provides the maximum

Fisher information in step (i). (II) When N = 2, there are only R+1 different bit allocation

solutions, and one can find the optimal solution by brute force. However, when N is large, the

brute force method is not practical, and suboptimal solutions are more desirable. Algorithms

such as the GBFOS algorithm [80], the convex relaxation [2], and the approximate dynamic

programming method [81] can be used for this purpose.
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5.5 Numerical Results

In this section, we first numerically show that Ji is a monotonically decreasing function of σdi

(Remark 1). Then, when N = 2, the optimal bit allocation scheme in the sense of maximizing

the Fisher information by brute force is obtained. Besides, numerical results show that the

optimal solution obtained by the proposed mechanism indeed yields the minimum MSE,

compared to the method of equally distributing the bits and the method of allocating all the

bits to the better sensor. We also show that the proposed sub-optimal LMMSE estimator

can achieve comparable performance to the optimal one while alleviating the computational

complexity.

5.5.1 Experiment 1

In this experiment, only 1 sensor is considered. We set σn = 1, and q = 0.3, such that

(5.2) holds. The RV θ is Gaussian distributed with zero mean and variance σ2
θ = 4. We can

observe that, from Fig. 5.3, the Fisher information is a monotonically decreasing function

of σd.

5.5.2 Experiment 2

There are a total of N = 2 sensors in the network, and R bits are available to be allocated

between the two sensors. The two sensors are different from each other, with σn1 = 0.6, and

σn2 = 3. Since Gaussian noise is considered in this chapter, and theoretically its bandwidth

in the CF domain is not limited, we will truncate the bandwidth in the experiments in this

section. That is, φx(v) ≈ 0, if |v| ≥ 4σxv
, where x ∼ N (0, σ2

x) and σxv
= 1/σx (which is

because the CF of a Gaussian RV is still in the form of Gaussian, and the variance of the

former is the inverse of that of the latter). To ensure that (5.2) holds, we have π
qi
≥ 4( 1

σni

),
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Figure 5.3: Fisher information as a function of σd

i.e., qi ≤ πσni

4
. According to Remark 1, the smallest standard derivation σdi should satisfy

the condition 4( 1
σdi

) = 2π
qi

− 4( 1
σni

), i.e., σdi = 1
2π
4qi

− 1
σni

. Since a uniform quantizer is used

at each local sensor, the relationship between the quantizer resolution qi and the number of

bits bi for sensor i is given as qi =
Li

2bi
, where Li is the observation data zi’s range for sensor

i, and Li = 8
√

σ2
θ + σ2

ni
.

Table 5.1 shows the Fisher information comparison, when R = 20, for all the feasible

bit allocation solutions. In the table, the combination (a, b) has the following meaning: a

is the number of bits allocated to the first sensor while b is that allocated to the second

one, and a + b = R. Note that non-feasible solutions (solutions violating (5.2)) are not

listed in the table. Note also that, (20, 0) and (0, 20) are considered as feasible solutions,

since 0 means one sensor is not active. We can observe that, the equal allocation (10, 10)

(which is usually used in sensor networks) does not yield the maximum Fisher information.

Another interesting observation from Table 1 is that allocating all bits to the better sensor,

i.e., (20, 0) is not the optimal solution, while the optimal one is (12, 8), which implies that
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Table 5.1: R = 20, Fisher Information Comparison

Bit alloc. J Bit alloc. J

(20, 0) 3.0231 (10, 10) 3.1376

(16, 4) 3.1062 (9, 11) 3.1172

(15, 5) 3.1318 (8, 12) 3.1204

(14, 6) 3.1331 (7, 13) 3.0492

(13, 7) 3.1366 (6, 14) 2.7506

(12, 8) 3.1385 (0, 20) 0.3610

(11, 9) 3.1313 – –

even if sensor 1 is better than sensor 2 in the sense of higher SNR, it is better to assign a

few bits to sensor 2 to achieve the diversity gain. However, the Fisher information begins

to decrease if more bits are assigned to sensor 2. Nevertheless, the difference between the

Fisher information yielded by the optimal bit allocation solution (12, 8) and that yielded by

the equal allocation (10, 10) is very small. This is because 10 is a large number of bits, which

implies very high resolution of the quantizer.

In Table 5.2, R is reduced to 12. As in Table 5.1, the solution (12, 0) does not yield

the optimal performance, neither does the solution (6, 6). And the optimal solution in the

sense of maximizing the Fisher information is (8, 4). Obviously, when the total number of

bits is decreased to a smaller number, the difference between the Fisher information yielded

by the optimal bit allocation solution (8, 4) and that by the equal allocation (6, 6) is much

larger than that in Table 5.1. We would like to justify the optimality of the proposed bit

allocation scheme. Also, we would like to show that the performance of the sub-optimal

LMMSE estimator is comparable to the optimal MMSE estimator. Therefore, in Table
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5.2, we also provide the MSE comparison between different bit allocation solutions and

between different estimators as well as the corresponding PCRLBs. Note that 1000 Monte

Carlo runs are performed to compute the MSEs. Note also that MSE1 is the MSE of

the optimal MMSE estimator, MSE2 is that of the sub-optimal LMMSE estimator and

MSE3 is computed according to (5.18). Obviously, the optimal solution (8, 4) yields the

Table 5.2: R = 12, Fisher information comparison

Bit alloc. J PCRLB MSE1 MSE2 MSE3

(12, 0) 3.0276 0.3303 0.3351 0.3353 0.3303

(8, 4) 3.0883 0.3238 0.3312 0.3310 0.3238

(7, 5) 3.0519 0.3277 0.3374 0.3375 0.3277

(6, 6) 2.7492 0.3637 0.3686 0.3685 0.3637

(0, 12) 0.3610 2.7698 2.7780 2.7756 2.7692

minimum MSE, which justifies the proposed bit allocation scheme. Another observation is

that the MSE2 is comparable to MSE1, which means that the proposed LMMSE estimator

can provide performance that is very close to the optimal estimator while saving a lot of

computation efforts. By comparing MSE2 to MSE3, we can observe that the experimental

MSEs are close to the analytic ones. Note that MSE3 is very close to the PCRLBs obtained by

inverting (5.9), which further justifies that the LMMSE estimator is a very good alternative

to the optimal MMSE estimator.
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5.6 Summary

In this chapter, we have proposed a controlled noise aided Bayesian estimation scheme. The

controlled noise acts like a low-pass filter in the CF domain. Assuming that the controlled

noise is Gaussian, the problems of optimal controlled noise design and bit allocation, in the

sense of maximizing the Fisher information at the FC, were solved jointly. A near-optimal

linear MMSE estimator was also proposed in this chapter, which is computationally efficient.

Numerical results corroborate our theoretical derivation. One interesting future work is to

relax the Gaussian assumption on the controlled noise while designing the optimal realizable

low-pass filter, so that the performance can be further improved.
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Chapter 6

Closed-form Performance bound for

Source Localization with Quantized

Data in Wireless Sensor Networks

6.1 Motivation

With the significant advances in networking, wireless communications, micro-fabrication,

and microprocessors, the wireless sensor network (WSN), once a futuristic technology, has

become much more feasible. Due to their many applications in environmental monitoring,

battlefield surveillance, and structural health management, WSNs have received consider-

able attention in recent years [82–84]. In the envisioned WSNs, there are a large number

of inexpensive sensors which are densely deployed in a region of interest (ROI). This makes

accurate intensity (energy) based object localization possible. Because signal intensity mea-

surements are usually employed for object detection, it is very convenient and economical to

utilize them to localize an object, without the need for more sophisticated and more expen-
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sive sensor functionalities, such as the direction of arrival (DOA) [85] or time-delay of arrival

(TDOA) [86] estimates. Since signal decays as a function of distance, signal intensity data

contain the range information of the signal source. Energy-based localization methods have

been proposed and developed in [87] for WSNs, where analog energy readings from sensors

have been used to localize acoustic sources through the maximum-likelihood (ML) method.

In [72], an ML based object localization algorithm using only quantized signal amplitudes

was developed. Further, source localization based on quantized signals, which experience

Rayleigh fading effect was investigated in [88]. Recently, an energy efficient iterative source

localization scheme has been proposed in [89] where the algorithm begins with a coarse loca-

tion estimate obtained from measurement data from a set of anchor sensors and then a few

non-anchor sensors are activated in each iteration, sending their data to the fusion center

to refine the location estimate. The non-anchor sensors are selected during each iteration

based on some sensor selection criteria. Although sensor management is an important topic

in WSNs ( [90–94]), it is not the focus of this chapter.

The goal here is to determine bounds on the performance of location estimation. Since

localization is an estimation problem, the performance measure in which we are interested

is the mean-squared error (MSE) of the estimate. It is well known that the Cramér-Rao

lower bound (CRLB) [19], a classical result, provides the lower bound on the MSE for any

unbiased estimator. In [72], it has been shown that the ML localization algorithm can achieve

its asymptotic performance bound, the CRLB, even with quantized data from a relatively

small number of sensors. This implies that the theoretical CRLB is a reliable performance

indicator. However, to compute the exact CRLB, the sensor location information must be

available at the fusion center, which may not be practical when the sensor density is large.

Besides, in some cases, one may be only interested in how the performance of the network is

influenced by the sensor density of the system instead of the exact deployment of the sensors.
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The impact of sensor density on the performance of an ML localization algorithm for a dense

sensor network has been investigated in [95], where the fusion center receives analog data

from the local sensors. A compact and closed-form result was derived therein. It was shown

that the Fisher information increases linearly with the sensor density and with the signal-

to-noise ratio (SNR). In this chapter, the impact of the sensor density on the performance

of an ML localization algorithm for a dense sensor network is further investigated, where

the fusion center receives quantized data from the local sensors. The main contributions of

this chapter are: 1) we derive the closed-form CRLB for a general smooth, differentiable,

monotonically decreasing and isotropic signal decay model; 2) we provide theoretical error

analysis for the approximation based on LLN; 3) we use the closed-form CRLB as a metric to

design a suboptimal quantizer, which is shown to achieve performance similar to the optimal

one through numerical results.

6.2 Problem Formulation

As illustrated in Figure 6.1, we assume that a large number of sensors are deployed in the

ROI, with a sensor density of λ sensors per unit area. The locations of sensors, denoted by

(xi, yi) for i = 1, · · · , N , are independent realizations of a uniform distribution within the

ROI, and they are assumed to be known to the fusion center.

We use the following model in which the signal emitted by the target attenuates isotrop-

ically:

ai = g(di) (6.1)

where di =
√

(xi − xt)2 + (yi − yt)2 is the distance between the target and the local sensor i,

(xt, yt) are the coordinates of the target, and ai is the received signal amplitude at sensor i.

The function g(·) describes how signal power decays as the distance from the target increases.
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Figure 6.1: The signal intensity contours of a target located in a sensor field.

In this chapter, g(·) is considered as smooth, differentiable and monotonically decreasing.

The signal received at a specific sensor is corrupted by an additive noise. The noises at

the local sensors are assumed to be identically and independently distributed (i.i.d.) and

follow a Gaussian distribution with zero mean and variance σ2:

si = ai + ni (6.2)

where si is the received signal, ai is the signal amplitude, and

ni ∼ N (0, σ2)

The objective is to perform location estimation based on sensor measurements as we discuss

next.

6.3 ML Location Estimator and Exact CRLB

If analog data are received at the fusion center, denoted as S = {si : i = 1, · · · , N}, and let

θ , [xt yt]
′ denote the target location, then the ML estimator based on analog data is given
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as

max
θ

ln p(S|θ)

The corresponding CRLB is given in the following theorem.

Theorem 6.1. Assuming that the location information of sensors is available at the fusion

center, the CRLB on the covariance matrix of the estimation error of the unbiased estimator

θ(S) based on analog sensor measurements is given by

E

{

[

θ̂(S)− θ
] [

θ̂(S)− θ
]T
}

≥ J−1
A (6.3)

in which JA is the Fisher information matrix (FIM)

JA =

N
∑

i=1

(∂g(di)/∂di)
2

σ2d2i
Gi

where

Gi ,







(xi − xt)
2 (xi − xt)(yi − yt)

(xi − xt)(yi − yt) (yi − yt)
2






(6.4)

Proof. The FIM can be obtained as follows:

JA = −E
[

∇θ∇T
θ ln p(S|θ)

]

Consider the element (1, 1) of JA:

JA(1, 1) = Ep(S|θ)

{

− ∂2

∂x2
t

ln p(S|θ)
}

=

N
∑

i

Ep(si|θ)

{

− ∂2

∂x2
t

ln p(si|θ)
}

=
N
∑

i

Ep(si|θ)

{

∂

∂xt

ln p(si|θ)
}2

(6.5)
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where

∂

∂xt
ln p(si|θ) = − ∂

∂xt

{

(si − ai)
2

2σ2

}

=

(

si − ai
σ2

)

∂ai
∂xt

=

(

si − ai
σ2

)

∂g(di)

∂di

∂di
∂xt

=

(

si − ai
σ2

)

∂g(di)

∂di

xt − xi

di
(6.6)

Then,

Ep(si|θ)

{

∂

∂xt

ln p(si|θ)
}2

=
σ2

σ4

(

∂g(di)

∂di

)2
(xt − xi)

2

d2i

=
(∂g(di)/∂di)

2

σ2d2i
(xi − xt)

2 (6.7)

where the second equation is due to the fact that si|θ ∼ N (ai, σ
2). Therefore,

JA(1, 1) =
N
∑

i

(∂g(di)/∂di)
2

σ2d2i
(xi − xt)

2

Following a similar procedure, one can derive other elements of JA(1, 1). �

To save bandwidth in the network, we assume that each sensor sends quantized multibit

(M-bit) data to the fusion center, which are denoted as D = {Di : i = 1, · · · , N} where

Di can take any discrete value from 0 to 2M − 1. We define L = 2M and the thresholds

for the ith sensor are given by ~ηi = [ηi0, ηi1, · · · , ηiL], where ηi0 = −∞ and ηiL = ∞. The

quantization process for the ith sensor is such that
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Di =







































































0 ∞ < si < ηi1

1 ηi1 ≤ si < ηi2

...
...

L− 2 ηi(L−2) ≤ si < ηi(L−1)

L− 1 ηi(L−1) ≤ si < ∞

Due to the Gaussian noise assumption, we can easily obtain

pil(~ηi, θ) , p(Di = l | ~ηi, θ)

= Q

(

ηil − ai
σ

)

−Q

(

ηi(l+1) − ai
σ

)

(6.8)

where Q(·) is the complementary distribution function of the standard Gaussian distribution

Q(x) =

∫ ∞

x

1√
2π

e−
t2

2 dt (6.9)

Based on the assumptions made in Section 6.2 and the notations above, it is straightforward

to derive the likelihood function at the fusion center node which is given as

p(D | θ) =
N
∏

i=1

L−1
∏

l=0

pil(~ηi, θ)
δDi,l (6.10)

where δk,l is the Kronecker delta function:

δk,l =



















1, k = l

0, k 6= l

Therefore, the log-likelihood function of D is as follows:

ln p(D|θ) =
N
∑

i=1

L−1
∑

l=0

δDi,l ln[pil(~ηi, θ)] (6.11)
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Now, the ML estimation problem is the following optimization problem:

max
θ

ln p(D|θ)

The CRLB on the covariance matrix of the estimation error based on quantized sensors’

observations is derived and provided in the following theorem:

Theorem 6.2. Assuming the existence of an unbiased estimator θ̂(D), and assuming that

the location information of sensors is available at the fusion center, the CRLB is given by

E

{

[

θ̂(D)− θ
] [

θ̂(D)− θ
]T
}

≥ J−1 (6.12)

in which J is the Fisher information matrix (FIM)

J =

N
∑

i=1

βiGi

where Gi is defined in (6.4),

βi =
(∂g(di)/∂di)

2

2πσ2d2i
γi (6.13)

and

γi =
∑

l

1

pil

[

e−
1
2(

ηil−ai
σ )

2

− e
− 1

2

(

ηi(l+1)−ai

σ

)2]2

(6.14)

Proof. The FIM can be obtained as follows:

J = −E
[

∇θ∇T
θ ln p(D|θ)

]
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First, we derive the (1,1) element of J. Taking partial derivative twice of both sides of (6.11)

with respect to xt, we have

∂2 ln p(D|θ)
∂x2

t

=
∑

i

∑

l

δDi,l

pil

∂2pil
∂x2

t

−
∑

i

∑

l

δDi,l

p2il

[

∂pil
∂xt

]2

(6.15)

Since

E [δ(Di − l)] = pil(~η, θ)

we have

E

[

∂2 ln p(D|θ)
∂x2

t

]

= −
∑

i

∑

l

1

pil

[

∂pil
∂xt

]2

(6.16)

where

∂pil
∂xt

=
∂

∂xt

[

Q

(

ηil − ai
σ

)

−Q

(

ηi(l+1) − ai
σ

)]

=
e−

1
2(

ηil−ai
σ )

2

− e
− 1

2

(

ηi(l+1)−ai

σ

)2

√
2πσ

∂ai
∂xt

and

∂ai
∂xt

=
∂g(di)

∂di

∂di
∂xt

=
∂g(di)/∂di

di
(xt − xi)

Therefore, it is straightforward to derive that

J11 = −E

[

∂2 ln p(D|θ)
∂x2

t

]

=
∑

i

βi(xi − xt)
2 (6.17)

where

βi =
(∂g(di)/∂di)

2

2πσ2d2i
γi (6.18)
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and

γi =
∑

l

1

pil

[

e−
1
2(

ηil−ai
σ )

2

− e
− 1

2

(

ηi(l+1)−ai

σ

)2]2

(6.19)

Following a similar procedure, other elements of J can be derived. �

6.4 Closed-Form Expressions for FIM and CRLB

In the previous section, the exact CRLB was derived and given in Theorem 6.2. In this

section, we will derive closed-form expressions for FIM and CRLB, by assuming an isotropic

signal decay model defined in (6.1) which is smooth, differentiable, as well as monotonically

decreasing. As we can see, the FIM provided in Theorem 6.2 is quite complex, since it

depends on the sensors’ relative positions with respect to the target as well as the quantizer

thresholds, which makes a compact solution very difficult to derive. In [95], a very simple

expression for the FIM and CRLB for source localization based on analog data was obtained,

by using the LLN. Here we again assume that the ROI, which is covered densely by uniformly

distributed sensors, is very large. Based on this assumption, it is reasonable to assume that

for a target that is located in the ROI, the received signal is non-negligible only within a

circle surrounding the target, and hence the ROI can be approximately deemed to be without

boundaries. The radius of the circle around the target is denoted as R. We assume that

a received signal is negligible if its power Pi = a2i ≤ ǫP0, where ǫ is a very small number.

Then, R can be derived from (6.1), i.e., R = g−1(
√
ǫP0).

First, we investigate the (1, 1) element of the FIM

J11 =
1

2πσ2
κ11 (6.20)

where

κ11 ,

N
∑

i=1

(∂g(di)/∂di)
2

d2i
(xi − xt)

2γi (6.21)
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Suppose the sensor density is high, and hence the number of sensors around the target that

have non-negligible signal strength is large. In this case, we can apply the LLN [96] to

approximate the summation in (6.21) by an integral. According to the LLN, as N → ∞

1

N
κ11 → E

[

(∂g(di)/∂di)
2

d2i
(xi − xt)

2γi

]

(6.22)

where the expectation is taken with respect to the distribution of the sensor position (xi, yi).

Therefore, we have

κ11 ≈ N × E

[

(∂g(di)/∂di)
2

d2i
(xi − xt)

2γi

]

We assume that the sensors are uniformly distributed within a circle around the target with

a radius R, i.e., the distribution is given as

f(x, y) =











1
πR2 (x− xt)

2 + (y − yt)
2 ≤ R2

0 otherwise

We denote the region inside this circle as R and the region inside another circle with radius

R and centered at (0, 0) as R′.Then,

κ11 ≈ N

πR2

∫ ∫

R
(x− xt)

2

(

∂g(d)/∂d

d

)2

γ′dxdy

=
N

πR2

∫ ∫

R′

x2

(

∂g(d)/∂d

d

)2

γ′′dxdy

= λ

∫ ∫

R′

x2

(

∂g(d)/∂d

d

)2

γ′′dxdy (6.23)

where λ is defined as the sensor density in the area, that is,

λ =
N

πR2

γ′ and γ′′ are similar to γi in (6.14), except that

in γ′,

ai = g(d) = g
(

√

(x− xt)2 + (y − yt)2
)
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while in γ′′,

ai = g(d) = g(
√

x2 + y2)

With the change of variables

x = r cos θ

y = r sin θ

integration in (6.23) can be converted from the cartesian coordinate system to the polar

coordinate system. Then,

κ11 = λ

∫ R

0

∫ 2π

0

(

∂g(r)/∂r

r

)2

r3cos2θγ̃(r)drdθ

= λπ

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr (6.24)

where

γ̃(r) =

L−1
∑

l=0

[

e
− 1

2

(

ηil−a(r)

σ

)2

− e
− 1

2

(

ηi(l+1)−a(r)

σ

)2]2

Q
(

ηil−a(r)
σ

)

−Q
(

ηi(l+1)−a(r)

σ

) (6.25)

and a(r) = g(r). Therefore,

J11 =
λ

2σ2

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr

Following a similar procedure, we can also derive J22, J12 and J21 in the FIM matrix as

J22 = J11 =
λ

2σ2

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr (6.26)

J12 = J21 = 0 (6.27)
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Equation (6.27) can be derived as follows

κ12 ,

N
∑

i=1

(∂g(di)/∂di)
2

d2i
(xi − xt)(yi − yt)γi

≈ N

πR2

∫ ∫

R
(x− xt)(y − yt)

(

∂g(d)/∂d

d

)2

γ′dxdy

= λ

∫ ∫

R′

xy

(

∂g(d)/∂d

d

)2

γ′′dxdy

= λ

∫ R

0

∫ 2π

0

(

∂g(r)/∂r

r

)2

r3cosθsinθγ̃(r)drdθ

= λ

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr

∫ 2π

0

cosθsinθdθ

= 0 (6.28)

Therefore, we have the following theorem:

Theorem 6.3. The Fisher information matrix (FIM) for the location estimation problem

with quantized data considered in this chapter can be approximated as

J =

[

λ

2σ2

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr

]

I2 (6.29)

where I2 is a 2× 2 identity matrix. The corresponding CRLB is the inverse of FIM

C =
2σ2

λ
∫ R

0

(

∂g(r)/∂r
r

)2

r3γ̃(r)dr
I2 (6.30)

Thus, for the quantized data case, we have obtained a result that is very similar to that

for the analog data case in [95], and the result is applicable to any smooth, differentiable

and monotonically decreasing and isotropic signal decay model. Theorem 6.3 indicates that

the Fisher information J is a linearly increasing function of the sensor density λ given the

SNR P0/σ
2. The relationship between the Fisher information and the SNR is not as obvious

as the results obtained for analog data in [95], since the SNR is involved in the Q(·) and

exponential functions in γ̃(r) due to the quantization. Another important point that can be

observed from Theorem 6.3 is that the performance of the sensor network of a given density

can be assessed without requiring the exact location information of sensors.
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6.5 Analysis of FIM Approximation Error

In the previous section, the closed-form expression for FIM was derived by making use of

the LLN. In order to show that the LLN is an acceptable approximation in our work, we will

theoretically analyze the error introduced by the use of LLN in this section.

For the target location estimation problem, the terms (∂g(di)/∂di)
2

d2i
(xi − xt)

2γi in (6.21)

are i.i.d. random variables, since sensors are randomly deployed whose locations follow a

uniform distribution in the ROI. Therefore,

var{J11} = var

{

1

2πσ2
κ11

}

=

(

1

2πσ2

)2

Nσ2
11 (6.31)

where

σ2
11 = var

{

(

∂g(di)/∂di
di

)2

(xi − xt)
2γi

}

= E

[

(

∂g(di)/∂di
di

)2

(xi − xt)
2γi

]2

−E2

[

(

∂g(di)/∂di
di

)2

(xi − xt)
2γi

]

, M2 −M2
1

and M1, M2 are the first and second moments of the random variable
(

∂g(di)/∂di
di

)2

(xi−xt)
2γi

respectively. They can be computed respectively as follows:

M2 =

∫ ∫

R

1

πR2
x4

(

∂g(d)/∂d

d

)4

(γ′′)2dxdy

=
1

πR2

∫

R

r5
(

∂g(r)/∂r

r

)4

γ̃2(r)dr

∫ 2π

0

cos4 θdθ

=
3

4R2

∫

R

r5
(

∂g(r)/∂r

r

)4

γ̃2(r)dr (6.32)
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M1 =

∫ ∫

R

1

πR2
x2

(

∂g(d)/∂d

d

)2

(γ′′)dxdy

=
1

πR2

∫

R

r3
(

∂g(r)/∂r

r

)2

γ̃(r)dr

∫ 2π

0

cos2 θdθ

=
1

R2

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr (6.33)

Similarly, for element J12, we have

var{J12} = var

{

1

2πσ2
κ12

}

=

(

1

2πσ2

)2

Nσ2
12 (6.34)

where

σ2
12 = var

{

(

∂g(di)/∂di
di

)2

(xi − xt)(yi − yt)γi

}

= E

[

(

∂g(di)/∂di
di

)2

(xi − xt)(yi − yt)γi

]2

− E2

[

(

∂g(di)/∂di
di

)2

(xi − xt)(yi − yt)γi

]

=
1

πR2

∫

R

r5
(

∂g(r)/∂r

r

)4

γ̃2(r)dr

·
∫ 2π

0

cos2 θ sin2 θdθ

=
1

4R2

∫

R

r5
(

∂g(r)/∂r

r

)4

γ̃2(r)dr (6.35)

The equation above uses the result that E

[

(

∂g(di)/∂di
di

)2

(xi − xt)(yi − yt)γi

]

= 0. Comparing

(6.35) to (6.32), one can obtain that σ2
12 =

M2

3
.

One may be more interested in the relationship between the normalized variable Jr
11,

which is defined as Jr
11 = J11

E{J11} , and the sensor density or equivalently, the number of

sensors in the ROI. Thus,
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var{Jr
11} =

var{J11}
E2{J11}

=
1

N

M2 −M2
1

M2
1

(6.36)

Jr
22 can be computed in the same manner, and it can be shown that Jr

22 = Jr
11. We define

the normalized diagonal variable as Jr
12 =

J12√
E{J11}E{J22}

, and obviously, Jr
12 = Jr

21. Then,

var

{

J12
√

E{J11}E{J22}

}

=
var{J12}

E{J11}E{J22}

=
var{J12}
E2{J11}

=
1

N

M2

3M2
1

(6.37)

Remark: Equations (6.36) and (6.37) indicate that the variances of Jr
11 and Jr

12 decrease

as the number of sensors increases, i.e., the approximation by the use of LLN to obtain the

closed-form FIM will be more accurate as expected, given the ROI and quantizer thresholds.

Note that in this chapter we assume that all the sensors use identical quantizers.

6.6 Examples

In this section, we study two concrete examples of the signal decay model g(d), both of which

are smooth, differentiable, monotonically and isotropically decreasing.

6.6.1 Example 1: Gaussian-like Decay Model

In this subsection, we investigate the Gaussian-like decay model [73, 95]:

g(d) =
√

P0e
−αd2

2 (6.38)
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where P0 is the signal power emitted by the target at distance zero, and α is a constant.

P0 and α are assumed to be determined through experiments, and are known to the fusion

center.

6.6.1.1 Fisher Information Matrix

Corollary 6.4. Assuming the existence of an unbiased estimator θ̂(D), the CRLB for the

Gaussian-like decay model (6.38) is given by

E

{

[

θ̂(D)− θ
] [

θ̂(D)− θ
]T
}

≥ J−1

in which J is the Fisher information matrix (FIM)

J =

N
∑

i=1

βiGi

where Gi and γi are the same as (6.4) and (6.14) respectively, while

βi =
α2P0e

−αd2i

2πσ2
γi (6.39)

Proof. The result of Corollary 6.4 can be obtained by directly applying the model g(d) =

√
P0e

−αd2i
2 to Theorem 6.2, i.e., by applying

(

∂

∂di

[

√

P0e
−∂αd2i 2

]

)2

=
(

−αdi
√

P0e
−∂αd2i 2

)2

= α2d2iP0e
−αd2i

to (6.13) in Theorem 6.2. �

It can be observed that the result in Corollary 6.4 is consistent with Theorem 1 in [73]

where the derivation is directly conducted on the Gaussian-like signal decay model.
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Corollary 6.5. The FIM for the location estimation problem with quantized data for the

Gaussian-like signal decay model can be approximated as

J =

[

λP0α
2

2σ2

∫ R

0

e−αr2r3γ̃(r)dr

]

I2 (6.40)

where I2 is a 2× 2 identity matrix, and γ̃(r) is defined in (6.25)

Proof. With
[

∂g(di)/∂di
di

]2

= α2P0e
−αd2i ,

J11 =
λ

2σ2

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr

=
λ

2σ2

∫ R

0

P0α
2e−αr2r3γ̃(r)dr

=
λP0α

2

2σ2

∫ R

0

e−αr2r3γ̃(r)dr

Then, Corollary 6.5 can be obtained using the result in Theorem 6.3. �

Again, Corollary 6.5 is consistent with Theorem 2 in [73] where the derivation is directly

conducted on the concrete signal decay model.

6.6.1.2 Error Analysis

For the Gaussian-like model,
[

∂g(di)/∂di
di

]2

= α2P0e
−αd2i , and M2 and M1 can be computed

according to (6.32) and (6.33):

MG
2 =

3

4R2

∫

R

P 2
0α

4e−2αr2r5γ̃2(r)dr

MG
1 =

1

R2

∫

R

P0α
2e−αr2r3γ̃(r)dr

Then, var{JG
11} and var{JrG

11 } can be determined respectively by using (6.36) and (6.37).
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6.6.2 Example 2: Power Law Decay Model

In this subsection, we give another example where we use the popular signal decay model

in wireless communication: g(d) =
√

P0

1+(d/d0)n
, which is called the power law decay model.

Here, we set d0 = 1 for simplicity without loss of generality.

6.6.2.1 Fisher Information Matrix

Corollary 6.6. Assuming the existence of an unbiased estimator θ̂(D), the CRLB for the

power law decay model is given by

E

{

[

θ̂(D)− θ
] [

θ̂(D)− θ
]T
}

≥ J−1

in which J is the Fisher information matrix (FIM)

J =

N
∑

i=1

βiGi

where Gi and γi are the same as (6.4) and (6.14) respectively, while

βi =
n2P0d

2n−4
i

8πσ2(1 + dni )
3
γi (6.41)

Proof. Since ∂g(di)
∂di

=
−
√
P0nd

n−1
i

2(1+dni )
3
2
, applying it to (6.13) in Theorem 6.2 results in the corollary.

�

Corollary 6.7. The FIM for the location estimation problem with quantized data for the

power law signal decay model can be approximated as

J =

[

λP0n
2

8σ2

∫ R

0

r2n−1γ̃(r)

(1 + rn)3
dr

]

I2 (6.42)

where I2 is a 2× 2 identity matrix.

Proof. The corollary can be deduced directly from Theorem 6.3. For the power law signal

decay model, ∂g(r)
∂r

= −
√
P0nrn−1

2(1+rn)
3
2
. Applying it to Theorem 6.3 results in the corollary. �
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6.6.2.2 Error Analysis

Similar to Section 6.6.1.2,

MP
2 =

3

4R2

∫

R

P 2
0 n

4r4n−3

16(1 + rn)6
γ̃2(r)dr

MP
1 =

1

R2

∫

R

P0n
2r2n−1

4(1 + rn)3
γ̃(r)dr

Then, var{JP
11} and var{JrP

11 } can be determined by (6.36) and (6.37) respectively.

6.7 Simulation Results

In this section, we first compare the performance of the optimal quantizer that minimizes the

exact CRLB to that of the uniform quantizer for the two examples we considered in Section

6.6, and then use the optimal quantizer that we find to perform the remainning simulations.

We show that the ML estimator based on quantized data is efficient when the number of

quantization bits is large. The closed-form FIMs provided by Corollary 6.5 and Corollary

6.7 will be compared to the exact FIMs given by Corollary 6.4 and Corollary 6.6 respectively

in various scenarios. Finally, since the convergence of the exact FIM to the closed-form FIM

is guaranteed, a sub-optimal quantizer design based on our closed-form FIM is proposed,

which allows us to design the quantizer without requiring the location information of sensors

while achieves performance similar to the optimal one.

6.7.1 Quantization Thresholds

In this subsection, we provide examples where the performance of the optimal quantizer is

compared to that of the uniform quantizer. We assume that the target is located at (0, 0),

sensors are uniformly deployed in a square with side b, which is large enough so that the

signal amplitude is negligible at the boundary of the square. The parameters are chosen
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as σ = 1, P0 = 10000, α = 1, and n = 4. The SNR = P0/σ
2. Thus, the M bit uniform

quantizer employs thresholds which equally divide the amplitude region [−4σ
√
P0+4σ] into

2M partisians. In order to find the optimal quantizer thresholds, we assume that the fusion

center knows the sensor locations. We first specify the lower bound and upper bound of

the region in which the quantizer thresholds are located. Then, we randomly choose several

starting points with dimension 2i + 1, where i is the number of quantization bits. Starting

from each of those starting points, the function FMINCON in MATLAB helps us find the

local minimum points. Then the minimum of those local minimum points yields the desired

quantization thresholds. The corresponding CRLBs are presented in Figures 6.2 and 6.3.

Given the result in Figure 6.2 for the Gaussian-like decay model, where SNR = 40 dB,

we can observe that, when the number of bits is small, the optimal quantizer has much

better performance in the sense that its CRLB is much smaller than that with the uniform

quantizer. As the number of bits increases, the two quantizer design schemes lead to almost

the same performance. Similar results can be observed from Figure 6.3 for the power law

decay model. In the rest of this section, the optimal quantizer for each model is employed in

the corresponding numerical examples. Note that the SNR P0/σ
2 is defined to be the SNR

at zero distance, and the signal decays rapidly as the distance from the target increases.

Therefore, 40 dB is a relatively modest SNR value.

6.7.2 ML estimator

In this subsection, we show that the ML estimator is efficient, especially when the number

of bits M is large, for both the Gaussian-like decay model and the power law decay model.

We fix sensor density as λ = 2 in the b×b square region, and uniformly deploy the sensors in

this region. In order to find the global maximum in ML estimation, a grid search is first used

to find several coarse maximum points. Then, starting from those points, we use Matlab’s
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Figure 6.2: The CRLBs as a function of number of bits M(Gaussian-like Decay Model).

FMINCON to find the global maximum point.

For the Gaussian-like decay model, Figure 6.4 shows that the gap between the CRLB

based the quantized data computed according to Theorem 6.2 and that based on the analog

data computed according to Theorem 6.1 decreases rapidly as the number of bitsM increases,

and when M is large enough, the former converges to the latter. Furthermore, the root mean

squared error (RMSE) of the MLE based on quantized data quickly converges to its CRLB

when M increases. Similar results can be observed from Figure 6.5 for the power law decay

model.

Hence, the CRLB based on the quantized data given by Theorem 6.2 is a tight bound

for the ML estimator derived in the chapter, especially for a large M .
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Figure 6.3: The CRLBs as a function of number of bits M (Power Law Decay Model)

6.7.3 Closed-Form CRLB

In this experiment, we compare the closed-form FIM and the exact FIM for the Gaussian-like

decay model and the power law decay model respectively. We assume that the ROI is very

large and the target is located at the center of the ROI without loss of generality. At the

boundary of the ROI, which is a square with side b, the signal reduces to 1.8 × 10−35P0 for

the Gaussian-like decay model and 10−7P0 for the power law decay model respectively. A

total of λb2 sensors are randomly deployed in the ROI, whose positions follow i.i.d. uniform

distribution within the ROI. The exact FIM is obtained via one Monte-Carlo run, meaning

that only one realization of the sensor deployment is used.
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Figure 6.4: RMSE and CRLBs as a function of number of bits M (Gaussian-like Decay

Model). SNR = 40dB.

6.7.3.1 Gaussian-like Decay Model

For the Gaussian-like decay model, it can be shown that on the average the number of sensors

whose signal power is greater than ǫP0 is

N = λπR2 =
λ

α
πln(1/ǫ) (6.43)

From the above equation, it is clear that this number N is determined by λ
α
, for a fixed ǫ.

In this experiment, we set α = 1 without loss of generality. Furthermore, to compare the

off-diagonal elements, we define a quantity analogous to the correlation coefficients for the

covariance matrix [96]:

ρ =
J12√
J11J22

(6.44)

which is the off-diagonal element normalized by the square root of the product of the diagonal

elements. This quantity captures the “correlation” between the two diagonal elements.

In Fig. 6.6, the elements of the FIM calculated by the exact and approximate methods
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Figure 6.5: RMSE and CRLBs as a function of number of bits M (Power Law Decay Model).

SNR = 40dB.

for a binary quantizer (M = 1) have been compared. As we can see, the approximate Fisher

information increases linearly as sensor density increases, and the exact FIM oscillates around

that obtained using the approximate expression. One should note that the jumpy curves in

Fig. 6.6 are due to the fact that only one Monte-Carlo realization is employed for the exact

FIM. It can be also observed that, when the sensor density increases, the amplitude of the

oscillation around zero of the correlation defined in (6.44) decreases, which is consistent with

the theoretical result that J12 is approximately zero when the sensor density is large. The

convergence of the exact form to the closed-form is much more obvious in Fig. 6.7, where the

trace of the CRLB matrix is provided as a function of λ. Note that the trace of the CRLB

gives the lower bound on the summation of MSEs of estimating the target’s two coordinates

xt and yt. In Fig. 6.8, the normalized Fisher information Jr
11 and Jr

12 as a function of λ

and their 1σ regions computed based on (6.36) and (6.37) in Section 6.5 are shown. One

can observe that the 1σ region becomes smaller as the sensor density increases, i.e., the

variances of the normalized Fisher information Jr
11 and Jr

12 decrease as the sensor density
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Figure 6.6: Elements of FIM as a function of sensor density λ (Gaussian-like Decay Model).

Solid line + circle: Exact FIM; Dashed line + triangle: Approximate FIM. SNR = 40dB

and M = 1.

increases, which indicates that the closed-form FIM by the use of LLN becomes more and

more accurate as the sensor density increases.

6.7.3.2 Power Law Decay Model

As for the Gaussian-like decay model, the comparison between the exact FIM and the closed-

form one for the power law decay model is provided in Fig. 6.9. Again, one can observe that

the exact FIM oscillates around the closed-form one, due to the fact that only one Monte-

Carlo run is performed. Furthermore, the correlation between the two diagonal elements in

the FIM decreases as the sensor density increases. In Fig. 6.10, the convergence from the

exact CRLB to the closed-form one is obvious. As for the Gaussian-like decay model, it can

be observed that the estimation performance is better for a larger sensor density from Fig.

6.11. Note that, for the power law decay model, M = 4 bit quantizers are used instead of

M = 1 bit quantizers which are used for the Gaussian-like decay model. The purpose is to
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Figure 6.7: Trace of the CRLB matrix as a function of sensor density λ (Gaussian-like

Decay Model). Solid line + circle: Exact CRLB; Dashed line + triangle: Approximate

CRLB. SNR = 40dB, and M = 1.

show results with different parameters.

6.7.4 Suboptimal Quantizer Design Based on the Closed-Form

CRLB

In the previous simulations, the optimal quantizer is designed based on the assumption that

the fusion center knows each sensor’s exact location. This assumption is strong and may

not be practical. Moreover, it requires that the design of the optimal quantizer depend on

the exact deployment of the sensors in the network. Therefore, it is desirable to design a

quantizer which yields performance that is better than the uniform quantizer while relaxing

the strong dependence on the information of the sensor location information. Since we have

shown that the exact CRLB quickly converges to the closed-form CRLB in Section 6.7.3,

we design a suboptimal quantizer based on the closed-form CRLB without acquiring the
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Figure 6.8: Relative FIM as a function of sensor density λ (Gaussian-like Decay Model).

Solid line + circle: Relative FIM; Dashed line: 1σ region of the Relative FIM. SNR = 40dB,

and M = 1.

location information for each sensor, hoping that it can achieve similar performance to the

optimal one. Then, the thresholds of the suboptimal quantizer are given as

η̂ = argmax
η

J (6.45)

where J is given by (6.29). Note that J is an identity matrix scaled by a factor, and therefore,

it is sufficient to maximize the factor in (6.29), namely,

η̂ = argmax
η

[

λ

2σ2

∫ R

0

(

∂g(r)/∂r

r

)2

r3γ̃(r)dr

]

(6.46)

In Figure 6.12 and Figure 6.13, we compare the performance for three different quantizers:

1) the optimal quantizer (we need to know the sensor positions); 2) the uniform quantizer;

3) the proposed suboptimal quantizer designed based on the closed-form FIM. The sensor

density is chosen as λ = 6 for the Gaussian decay model in Figure 6.12 and λ = 4 for the

power law decay model in Figure 6.13 respectively. In both models, we assume SNR = 40dB.
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Figure 6.9: Element of FIM as a function of sensor density λ (Power Law Decay Model).

Solid line + circle: Exact FIM; Dashed line + triangle: Approximate FIM. SNR = 40dB

and M = 4.

The advantage of the suboptimal quantizer is obvious when M = 1, which is a common

case when bandwidth is stringent in sensor networks: it performs much better than the

uniform quantizer. When the number of bits increases, both the uniform quantizer and the

suboptimal quantizer achieve comparable performance to the optimal quantizer. Therefore,

it can be concluded that the closed-form FIM is an acceptable metric for suboptimal quantizer

design.

6.8 Summary

In this chapter, we have explored the source localization problem based on a ML localization

algorithm, which utilizes the received quantized signal amplitudes at local sensors to estimate

the coordinates of the target. Motivated by the goal of investigating the impact of sensor

density on the ML algorithm, we have derived a closed-form and compact approximation to
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SNR = 40dB and M = 4.

the CRLB based on the LLN for any smooth, differentiable and monotonically decreasing

signal decay model. This closed-form result has helped us gain valuable insights into the

relationship between the localization performance and the sensor density and SNR. Namely,

the Fisher information is linear in the sensor density given the SNR. Numerical experiments

have been conducted and the effectiveness of the approximation has been verified. A quan-

tizer design method was also proposed, which determines the thresholds based on the main

result of this chapter, namely the closed-form CRLB. The simulation results have shown

us that the proposed quantizer achieves better performance than the uniform quantizer in

general. Throughout this chapter, we assumed that the noises at the local sensors are i.i.d..

In practice, however, the sensor noises are often correlated, due to interference from common

sources. Hence, our future research will take correlated noises into consideration. Further,

the current work has only explored the problem when only one target exists in the ROI. One

may be more interested in localizing multiple targets in the ROI. Hence, research work will
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be extended to multi-target scenarios.
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Figure 6.12: Performances comparison for different quantizers (Gaussian-like Decay Model).

SNR = 40dB and λ = 6
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Figure 6.13: Performances comparison for different quantizers (Power Law Decay Model).

SNR = 40dB and λ = 4

.
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Chapter 7

An Alternative Approach to Compute

Conditional Posterior Cramér Rao

Lower Bound for Nonlinear Filtering

7.1 Motivaton

The posterior (or Bayesian) Cramér-Rao lower bound (PCRLB, or BCRLB) is defined to be

the inverse of the Fisher information matrix (FIM)1 for a random vector [11] and provides a

bound on the performance of estimators of the system state for filtering problems. In [12],

Tichavsky et al. provided a recursive approach for calculating the sequential PCRLB for

a general multi-dimensional discrete-time nonlinear filtering problem. The predictive and

smoothing Cramér-Rao lower bounds for discrete-time nonlinear dynamic systems and their

relations with filtering CRLB were discussed in [97]. However, the useful measurement

information is averaged out making the unconditional PCRLB [12] [97] an off-line bound

which is independent of the current state trajectory. Therefore, the unconditional PCRLB

1FIM refers to the Bayesian information matrix which is used for random vectors.
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does not reflect the nonlinear filtering performance for a particular system state realization

very faithfully.

There are several modified versions of the PCRLB proposed in the literature, which are

motivated by making the bound adaptive to the realization of the system state, so that it

can be useful for online sensor management. In [98], a renewal strategy was used to restart

the recursive unconditional PCRLB evaluation process, where the initial time is reset to a

more recent past time, such that the prior knowledge of the initial system state is more

useful and relevant to the sensor management problem. Therefore, the resulting PCRLB

is conditioned on the measurements up to the reset time. Based on the PCRLB modified

in this manner, a sensor deployment approach was developed to achieve better tracking

accuracy with the efficient use of limited sensor resources. When a particle filter is used

in the renewal strategy, the posterior probability density function (pdf) of the system state

at the reset initial time is represented nonparametrically by a set of particles, from which

it is difficult to derive the exact FIM. One may use Gaussian approximation as was done

in [98], and then the FIM at the reset time can be taken as the inverse of the empirical

covariance matrix estimated based on the particles. However, this approach may incur large

errors and discrepancy, especially in a highly nonlinear and non-Gaussian system. Another

modified version of the PCRLB, motivated by the problem of adaptive radar waveform

design for target tracking, has been presented in [14]. The authors in [14] consider a linear

Gaussian state dynamic model and a nonlinear measurement model, and propose to retain

the unconditional recursive PCRLB derived in [12] with the exception of one term which

corresponds to the contribution of the future measurements to the Fisher Information. The

term with the future measurement contribution is modified in a heuristic way so that it

includes the measurement history. Although the proposed method was shown to result in

good performance for adaptive waveform design, the authors did not provide any theoretical
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justification for this modification. Most recently, the notion of conditional PCRLB was

introduced in [13], which was shown to be different from the modified PCRLBs proposed

in [98] and [14]. The conditional PCRLB proposed in [13] provides a bound on the conditional

mean squared error (MSE) of the system state estimate, based on the measurements up to

the current time. Furthermore, the authors in [13] proposed a systematic recursive approach

based on a certain approximation to evaluate the conditional PCRLB.

Our contributions in this chapter are as follows. We propose a new conditional PCRLB,

which is based on the representation of the conditional PCRLB proposed in [13]. We call

this bound the alternative conditional PCRLB (A-CPCRLB), since we discard the auxil-

iary FIM which is involved in the recursive update for the conditional PCRLB presented

in [13]. Instead, an alternative approximate recursive update is proposed, which is direct,

more compact and efficient than the one proposed in [13]. Furthermore, when the state

dynamic model is linear and Gaussian, we show that this bound reduces to the modified

PCRLB proposed in [14]. Hence, the proposed A-CPCRLB provides a generalization and

theoretical justification for the one used in [14]. The analytical calculation of our proposed

bound is not tractable except for very restricted cases such as linear Gaussian systems. For

this reason, numerical computation methods such as the sequential Monte Carlo methods,

i.e., particle filters [99] are used. We provide performance analysis in terms of computational

complexities associated with the computation of the bound. A numerical example is provided

to compare the original CPCRLB [13] with our proposed bound, namely the A-CPCRLB.

For this particular example, we observe that the results are quite similar. Here, after pre-

senting derivations of the proposed bounds, we provide a numerical example to compare the

original CPCRLB [13] with our proposed bound, namely the A-CPCRLB. For this particular

example, we observe that the results are quite similar.
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7.2 Conditional Posterior Cramér-Rao Lower Bounds

Consider a nx-dimensional state vector at time k, xk, whose discrete time dynamics is defined

by

xk+1 = fk (xk,uk) (7.1)

where fk : ℜnx ×ℜnu → ℜnx and uk is the independent identically distributed (i.i.d.) process

noise with dimension nu. The measurement model is given by

zk = hk (xk,vk) , (7.2)

where hk : ℜnx × ℜnv → ℜnz , vk is the i.i.d. measurement noise, nz and nv are the di-

mensions of the measurement and measurement noise vectors, respectively. The process and

the measurement noise distributions are denoted by puk
(u) and pvk

(v), respectively. It is

assumed that the estimator has complete information about the state dynamic model (7.1),

the sensor measurement model (7.2) and the process and measurement noise distributions.

The conditional PCRLB sets a bound on the performance of estimating the state vector

up to time k + 1, x0:k+1, when the new measurement zk+1 becomes available given that the

past measurements up to time k, z1:k, are all known, i.e., the measurements up to time k

are taken as realizations rather than random vectors. The sequence of conditional Fisher

information {L(xk+1|z1:k)} for estimating state vector {xk+1} given the measurements up to

time k can be computed as follows [13]:

L(xk+1|z1:k) = B22
k − B21

k [B11
k + LA(xk|z1:k)]−1B12

k (7.3)

where

B11
k = Epc

k+1
{−△xk

xk
ln p(xk+1|xk)} (7.4)

B12
k = Epc

k+1
{−△xk+1

xk
ln p(xk+1|xk)} = (B21

k )T (7.5)
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B22
k = Epc

k+1
{−△xk+1

xk+1
[ln p(xk+1|xk) + ln p(zk+1|xk+1)]} (7.6)

and

LA(xk|z1:k) = A22
k − A21

k (A11
k )−1A12

k (7.7)

pck+1 , p(x0:k+1, zk+1|z1:k) (7.8)

with

A11
k = Ep(x0:k|z1:k)

[

−△x0:k−1
x0:k−1

ln p(x0:k|z1:k)
]

A12
k = Ep(x0:k|z1:k)

[

−△xk
x0:k−1

ln p(x0:k|z1:k)
]

= (A21
k )T

A22
k = Ep(x0:k|z1:k)

[

−△xk
xk

ln p(x0:k|z1:k)
]

An approximate recursion to compute LA(xk|z1:k) is also proposed in [13], which is

LA(xk|z1:k) ≈ S22
k − S21

k [S11
k + LA(xk−1|z1:k−1)]

−1S12
k (7.9)

where

S11
k = Ep(x0:k|z1:k)

[

−△xk−1
xk−1

ln p(xk|xk−1)
]

(7.10)

S12
k = Ep(x0:k|z1:k)

[

−△xk
xk−1

ln p(xk|xk−1)
]

= (S21
k )T (7.11)

S22
k = Ep(x0:k|z1:k)

{

−△xk
xk
[ln p(xk|xk−1) + ln p(zk|xk)]

}

(7.12)

One should note that if (7.9) is used in (7.3), then (7.3) becomes an approximation, instead

of equality.

7.3 Proposed A-CPCRLB

As shown in Section 7.2, an approximated recursive update of an auxiliary FIM is necessary

to recursively compute the conditional Fisher information at each time step, which makes
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the process complex. In this section, an alternative compact way is proposed, such that the

process of computation is simplified and computation time can be saved at the same time.

Proposition 7.1. The sequence of conditional Fisher information L(xk+1|z1:k) for estimat-

ing state vectors xk+1 given measurements up to time k can be computed as follows:

L(xk+1|z1:k) ≈ B22
k − B21

k [B11
k + L(xk|z1:k−1)]

−1B12
k (7.13)

where B11
k , B12

k , B21
k and B22

k are given by (7.4) through (7.6).

Proof. Since pck = p(x0:k, zk|z1:k−1) according to (7.8), the conditional FIM given measure-

ments up to time k − 1 can be decomposed as follows:

I(x0:k, zk|z1:k−1) ,







Ok Pk

P T
k Qk







=







E{−△x0:k−1
x0:k−1 ln p

c
k} E{−△xk

x0:k−1
ln pck}

E{−△x0:k−1
xk

ln pck} E{−△xk
xk

ln pck}






(7.14)

Thus, by applying matrix inversion formula [100], the inverse of the lower-right block of

I−1(x0:k, zk|z1:k−1), i.e., the FIM for estimating xk given the measurements up to k − 1 is

L(xk|z1:k−1) = Qk − P T
k O

−1
k Pk

Now, considering Fisher information given measurements up to time k, we have

I(x0:k+1, zk+1|z1:k)

= E















−1















△x0:k−1
x0:k−1 △xk

x0:k−1 △xk+1
x0:k−1

△x0:k−1
xk

△xk
xk

△xk+1
xk

△x0:k−1
xk+1

△xk
xk+1

△xk+1
xk+1















ln pck+1















(7.15)
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where pck+1 is defined in (7.8), which can be decomposed as follows:

p(x0:k+1, zk+1|z1:k)

= p(xk+1, zk+1|x0:k, zk, z1:k−1)p(x0:k|zk, z1:k−1)

= p(zk+1|xk+1)p(xk+1|xk)
p(x0:k, zk|z1:k−1)

p(zk|z1:k−1)
(7.16)

Therefore,

ln pck+1 = ln p(zk+1|xk+1) + ln p(xk+1|xk)

+ ln p(x0:k, zk|z1:k−1)− ln p(zk|z1:k−1)

= ln p(zk+1|xk+1) + ln p(xk+1|xk) + ln pck

− ln p(zk|z1:k−1)

Hence,

I(x0:k+1, zk+1|z1:k)

=













−Epc

k+1
△x0:k−1

x0:k−1
ln pck −Epc

k+1
△xk

x0:k−1
ln pck 0

−Epc

k+1
△x0:k−1

xk
ln pck −Epc

k+1
△xk

xk
ln pck +B11

k B12
k

0 B21
k B22

k













where Bij
k , i = 1, 2, j = 1, 2 are defined in (7.4) through (7.6). Since the top-left submatrix

is a function of zk, we can approximate it by its expectation with respect to p(zk|z1:k−1).

Then,

− Epc
k+1

∆x0:k−1
x0:k−1

ln pck

≈ −Ep(zk|z1:k−1)Epc
k+1

∆x0:k−1
x0:k−1

ln pck

= −
∫

p(zk|z1:k−1)p
c
k+1∆

x0:k−1
x0:k−1

ln pck dx0:k+1dzk+1dzk (7.17)

(a)
= Ok (7.18)
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Note that (a) follows from plugging (7.16) in (7.17), and using the definition in (7.14).

Similarly,

−Epc
k+1

△xk
x0:k−1

ln pck ≈ Pk

−Epc
k+1

△xk
xk

ln pck ≈ Qk

Hence,

I(x0:k+1, zk+1|z1:k) ≈















Ok Pk 0

P T
k Qk +B11

k B12
k

0 B21
k B22

k















The conditional Fisher information L(xk+1|z1:k) is equal to the inverse of the lower right

submatrix of I−1(x0:k+1, zk+1|z1:k). Therefore, according to the matrix inversion formula,

L(xk+1|z1:k)

≈ B22
k − [ 0 B21

k
]







Ok Pk

P T
k Qk +B11

k







−1 





0

B12
k







= B22
k −B21

k

(

B11
k +

(

Qk − P T
k O

−1
k Pk

))−1
B12

k

= B22
k −B21

k

(

B11
k + L(xk|z1:k−1)

)−1
B12

k

�

Based on Proposition 7.1, it is easy to show that the modified PCRLB in [14] is a special

case of the A-CPCRLB, as stated in the following corollary.

Corollary 7.2. For the particular case of linear state model with additive Gaussian noise ,

i.e., xk+1 = Fkxk + uk, the conditional Fisher information L(xk+1|z1:k) is given by

L(xk+1|z1:k) ≈
(

Qk + Fk(L(xk|z1:k−1))
−1F T

k

)−1
+

Epc
k+1

{

−△xk+1
xk+1

ln p(zk+1|xk+1)
}

(7.19)
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where Fk is the state transition matrix of the state process equation, and Qk is the covariance

matrix of the additive Gaussian noise uk.

Proof. Since we consider a linear state model with additive Gaussian noise,

p(xk+1|xk) =
1

(2π)
nx
2 |Qk|

1
2

exp

{

−1

2
[xk+1 − Fkxk]

TQ−1
k [xk+1 − Fkxk]

}

Taking the logarithm of the probability density function (pdf) above, we can get

− ln p(xk+1|xk) = c0 +
1

2
[xk+1 − Fkxk]

TQ−1
k [xk+1 − Fkxk]

where c0 is a constant. Then, it is straightforward to get

B11
k = F T

k Q
−1
k Fk (7.20)

B12
k = −F T

k Q
−1
k (7.21)

B22
k = Q−1

k + Epc
k+1

{

−△xk+1
xk+1

ln p(zk+1|xk+1)
}

(7.22)

Therefore, using (7.13), we have

L(xk+1|z1:k)

= Q−1
k + Epc

k+1

{

−△xk+1
xk+1

ln p(zk+1|xk+1)
}

−Q−1
k Fk(F

T
k Q

−1
k Fk + L(xk|z1:k−1))

−1F T
k Q

−1
k

=
(

Qk + FkL
−1(xk|z1:k−1)F

T
k

)−1

+ Epc
k+1

{

−△xk+1
xk+1

ln p(zk+1|xk+1)
}

(7.23)

where the last equation is due to the application of Woodbury matrix identity [101]:

(A+ UCV )−1 = A−1 − A−1U(V A−1U + C−1)−1V A−1 (7.24)

where A, U, C, V are matrices with proper dimensions. �
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One should note that the result in Corollary 7.2 is the same as the one used in [14].

Hence, the approximation in [14] is a special case of Proposition 7.1. Moreover, since the

bound proposed in [14] is a heuristic one and not theoretically justified therein, Proposition

7.1 and Corollary 7.2 in this work provide it a theoretical justification.

Obviously, (7.13) is more compact than (7.3), since the conditional PCRLB is directly

updated at each recursion in (7.13) without using the auxiliary FIM LA(xk|z1:k). The com-

putational efficiency of the A-CPCRLB will be analyzed in Section 7.4 in detail.

Another useful insight that can be deduced from Proposition 1 is that in a linear and

Gaussian system, A-CPCRLB is identical to the offline PCRLB.

Corollary 7.3. For the particular case of linear Gaussian dynamic model: xk+1 = Fkxk+uk,

zk = Hkxk + vk, where uk and vk are Gaussian noises with covariance matrices Qk and

Rk respectively, the recursive conditional Fisher information (7.13) in Proposition 7.1 is

the same as the recursive offline Fisher information Jk+1 proposed in [12], i.e., Jk+1 =

L(xk+1|z1:k), given that J0 = L(x0).

Proof. From Corollary 7.2, we already have (7.20), (7.21), and (7.22). Given the linear

Gaussian observation model, we have

p(zk+1|xk+1) =
1

(2π)
nz
2 |Rk+1|

1
2

exp

{

−1

2
[zk+1 −Hk+1xk+1]

TR−1
k+1[zk+1 −Hk+1xk+1]

}

Then,

Epc
k+1

{

−△xk+1
xk+1

ln p(zk+1|xk+1)
}

= Epc
k+1

{HT
k+1R

−1
k+1Hk+1}

= HT
k+1R

−1
k+1Hk+1
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Thus,

B22
k = Q−1

k +HT
k+1R

−1
k+1Hk+1

In [12], it has been shown that Jk+1 = D22
k −D21

k (Jk +D11
k )−1D12

k , where D11
k = F T

k Q
−1
k Fk,

D12
k = −F T

k Q
−1
k = (D21

k )T , and D22
k = Q−1

k +HT
k+1R

−1
k+1Hk+1 when the system is linear and

Gaussian. Hence, Jk+1 = L(xk+1|z1:k), given the same initialization, i.e., J0 = L(x0). �

One should note that we use the same particle filter based method as that given in [13] to

compute the A-CPCRLB. The details are not given here for the sake of brevity. Interested

readers are referred to [13] for more information.

7.4 Computational Complexity

In this section, we analyze the computational complexity of the proposed bounds based on

the total number of floating-point operations (flops).

The exact flops required for the derivative operations in (7.4)-(7.12) depend on the

structures of the pdfs p(xk+1|xk) and p(zk|xk) and there is no universal count. Due to

this dependence, we define new notations to represent the flops for these derivative opera-

tions: ∆s
1 , fl(

∂p(xk+1|xk)

∂xk+1i
), ∆s

2 , fl(
∂2p(xk+1|xk)

∂xk+1i
∂xk+1j

) , ∆s
3 , fl(

∂p(xk+1|xk)

∂xki

), ∆s
4 , fl(

∂2p(xk+1|xk)

∂xki
∂xkj

),

∆s
5 , fl(∂

2p(xk+1|xk)

∂xk+1i
∂xkj

), ∆z
1 , fl(∂p(zk|xk)

∂xki

), ∆z
2 , fl(∂

2p(zk|xk)
∂xki

∂xkj

), 1 ≤ i, j ≤ nx, where fl(·) resp-

resents the number of flops required for a given operation. When defining these notations,

for simplicity, we have made the implicit assumption that the derivatives with respect to

different elements of the state vector require the same number of flops. In the following

calculations, we also assume that each particle has a non-identical weight, i.e., there is no

resampling.

We start with the calculation of flops required for the original CPCRLB in [13]. Note

that the term B22
k has two terms. Let us denote the first and the second terms in (7.6) as
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B22,a
k and B22,b

k , respectively. Then, the flops of the CPCRLB, i.e., (7.3), can be represented

as:

fl(Lk+1) =fl(B22,a
k ) + fl(B22,b

k ) + fl(B12
k ) + fl(B11

k )

+ fl(S11
k ) + fl(S12

k ) + fl(S22
k ) +O(n3

x). (7.25)

where O(n3
x) represents the computational complexity associated with matrix inversions,

multiplications and summations involved in (7.3) and (7.9). For matrix inversion, the exact

flop count depends on the matrix and the specific technique used for inversion. Nevertheless,

the flop count required for matrix inversion can be expressed as O(n3
x) [102], which also

subsumes the flops required for matrix multiplications and summations in (7.3) and (7.9).

From the particle based computation in [13], we can calculate the flops required for the B

terms and S terms as:

fl(B22,a
k ) =

3

2
Mn2

x +Mnx∆
s
1 +

3

2
Mnx + 2M − 1 (7.26)

fl(B12
k ) =

3

2
Mn2

x +Mnx∆
s
3 +

3

2
Mnx + 2M − 1 (7.27)

fl(B12
k ) =

3

2
Mn2

x +
3

2
Mnx + 2M − 1 (7.28)

fl(S11
k ) = (

5

2
+

∆s
4

2
)Mn2

x + (
5

2
+ ∆s

3 +
∆s

4

2
)Mnx + 2M − 1 (7.29)

fl(S12
k ) = (5 + ∆s

5)Mn2
x +∆s

1Mnx +M − 1 (7.30)

fl(S22
k ) = (

5

2
+

∆z
2

2
)Mn2

x + (
5

2
+ ∆z

1 +
∆z

2

2
)Mnx + 2M − 1 (7.31)

By carefully investigating the computations required for the CPCRLB in [13], i.e., expression

in (7.3) and (7.9), and that of the A-CPCRLB, i.e., expression in (7.13), we note that the

extra computation of the CPCRLB at time k comes from the computations of S11
k , S12

k and

S22
k , as well as from a matrix inversion, multiplication and subtraction in equation (7.9).

144



Therefore, the A-CPCRLB saves the following number of flops, compared to the CPCRLB

in [13]:

flsaveA =fl(S22
k ) + fl(S11

k ) + fl(S12
k ) +O(n3

x)

=(10 +
∆s

4

2
+ ∆s

5 +
∆z

2

2
)Mn2

x + 5M +O(n3
x)

+ (5 + ∆s
3 +

∆s
4

2
+ ∆s

1 +∆z
1 +

∆z
2

2
)Mnx (7.32)

From the above expression, it is clear that the savings are significant especially for large M

and/or nx.

7.5 Numerical Results

In this section, we consider the univariate nonstationary growth model (UNGM), which is

a highly nonlinear and bimodal model, and perform a number of numerical experiments to

compare the performance of the following bounds: 1) Offline PCRLB [12], 2) Conditional

PCRLB proposed in [13] , 3) A-CPCRLB, 4) D-CPCRLB proposed in [103], 5) D-CPCRLB

with Gaussian approximation. The UNGM has been widely used in the nonlinear tracking

literature as a benchmark problem [13, 62, 104]. The dynamic state space equations for a

UNGM are given by

xk+1 = αxk + β
xk

1 + x2
k

+ γcos(1.2k) + uk (7.33)

zk = κx2
k + vk (7.34)

where uk and vk are zero mean white Gaussian with variances σ2
u and σ2

v , respectively. The

conditional mean-squared error (MSE) is calculated as follows. At time k, the posterior

pdf is computed by the particle filter given the measurements up to time k. Then, 1000

independent realizations of zk+1 are generated according to (7.34), and the conditional MSE,
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(i.e., MSE(x̂k+1|z1:k)), is obtained based on the 1000 Monte Carlo runs. A single realization

of zk+1 is randomly picked among the 1000 realizations above, and concatenated with the

past measurement history to form z1:k+1. The particles and weights corresponding to this

particular zk+1 are stored and used for the iteration at time (k + 1).

7.5.1 Highly Nonlinear Case

In this experiment, we set the parameters for UNGM as α = 1, β = 15, γ = 8, σ2
u = 4, σ2

v = 1

and κ = 1/20 to make it highly nonlinear. Since it is difficult for conventional methods such

as the Kalman Filter or the extended Kalman Filter to track the state when the system

model is highly nonlinear, a particle filter is applied in the simulation, and its performance

is illustrated in Figure 7.1(a).

In Figure 7.1(b), the conditional PCRLB in [13], A-CPCRLB derived in Section 7.3 and

D-CPCRLB as well as the conditional MSE are plotted as functions of time. We can observe

that all the three CPCRLBs follow the trends of the conditional MSE more faithfully than the

(offline) PCRLB. It can also be observed that the original conditional PCRLB, A-CPCRLB

and D-CPCRLB almost overlap with each other everywhere.

7.5.2 Weakly Nonlinear Case

In order to show that the proposed recursive update procedure is independent of the non-

linearity of the state process model, a weakly nonlinear example is provided in this section.

Here, we set β = 1, resulting in a much smaller nonlinear component in the state process

equation. The variance of the process noise is set as σ2
u = 1, smaller than the highly nonlinear

case. We set the measurement noise variance σ2
v = 0.01, such that the signal-to-noise ratio

(SNR) is high for the observation. Other parameters are kept the same as in Section 7.5.1.

Similar to Figure 7.1(b), Figure 7.2 illustrates that there is almost no difference between the
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original conditional PCRLB and the proposed bounds, and all the three CPCRLBs follow

the trends of the conditional MSE more faithfully than the (offline) PCRLB. We can also

observe that the convergence from the conditional MSE to the conditional PCRLB is better

in Figure 7.2 than that in Figure 7.1(b), due to the weak nonlinearity in the former case.

7.5.3 Discussion

In our particular examples shown in Figure 7.1(b) and Figure 7.2, it can be observed that

the offline PCRLB is more optimistic than the conditional PCRLBs. It should be mentioned

that this is not always the case, since for some specific realizations of the system state, the

conditional PCRLB may result in values that are smaller than the unconditional PCRLB.

This is due to the fact that the online (conditional) bounds depend on a specific realization

of the system state and they provide bounds for that specific conditional MSE. Figure 7.1(b)

and Figure 7.2 each depicts one particular realization, i.e., single Monte Carlo run.

Simulation results show that the conditional bounds proposed in this chapter are almost

the same as the original one proposed in [13]. Since the original CPCRLB in [13] and the

A-CPCRLB both use approximations at each iteration, it is possible that the error due to

approximations accumulates over time. It is difficult to perform an exact error comparison

between the two recursive procedures. Nevertheless, the following intuitive analysis is helpful

to interpret the simulation results. In [13], the approximation is only applied to the top left

block of the auxiliary FIM in (7.7), while in A-PCRLB the approximation is applied to four

blocks of the conditional FIM in (7.15). However, in [13], the approximated block is involved

in three inversions to complete the update at each iteration, which makes the approximation

propagate to all the elements of the conditional PCRLB. Therefore, both approximations

result in almost the same order of errors, which explains why the gap between the two

corresponding lower bounds is negligible as shown by numerical examples.
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7.6 Summary

In this work, an alternative conditional PCRLB has been proposed, namely the A-CPCRLB

for nonlinear sequential Bayesian estimation. It achieves almost the same performance as the

conditional PCRLB proposed in [13] as demonstrated by numerical examples. The proposed

A-CPCRLB is more compact and more efficient than the one in [13]. The computational

complexity of both the A-CPCRLB and the original PCRLB is linear in the number of

particles.
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Figure 7.1: Highly Nonlinear Case
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

This dissertation investigated several distributed inference problems in resource-constrained

sensor networks. Both static parameter estimation and dynamic state estimation have been

considered. Due to the severe resource constraints, namely computation, energy and/or

bandwidth, in sensor networks, we have proposed several methods that can be utilized ei-

ther at the local sensors or at the fusion center or both to improve distributed inference

performance.

We proposed a novel data selection and fusion algorithm for sequential Bayesian estima-

tion which involves the participation of both sensors and the fusion center when the resources

in the sensor networks are limited. To be more specific, this algorithm consists of two stages:

at the first stage, each local sensor censors its observation, and sends it to the fusion center

only if the observation is “informative” enough; at the second stage, the fusion center fuses

both the received observations and the missing ones to infer the system state. We call this

novel algorithm censoring and fusion with missing data (CFwMD), which essentially takes

advantage of the fact that local censoring procedure can pick up more “informative” data
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given limited energy and/or bandwidth constraints and the fusion rule at the fusion can

utilize the missing information conveyed by the missing observations. It has been shown

that the proposed algorithm attains performance that is very close to the benchmark sce-

nario where all the sensors send their observations to the fusion center while saving much

bandwidth. It has also been shown that, under the same bandwidth constraint, the proposed

algorithm outperforms the one where observations are randomly selected and the one where

missing observations are not fused.

In this dissertation, we developed an approach to solve the sensor management problem

based on the theory of compressive sensing (CS). We employed a probabilistic transmis-

sion strategy and MACs, based on which, an equivalent standard CS representation was

obtained. Therefore, the sensor management problem became the problem to determine the

sensing matrix that is completely determined by the probabilities of transmission of sensors

in the network which is obtained by solving a constrained optimization problem. Numerical

results showed that the proposed methodology achieved comparable tracking performance

to the case where all the sensors send their observations to the fusion center via parallel

channels, but saves significant energy. Also, under the same energy constraint, the proposed

methodology outperforms the random selection scheme significantly.

Furthermore, we considered the sensor management problem in terms of bit allocation for

Bayesian parameter estimation. We proposed a methodology where quantized data from local

sensors are not fused directly but independently corrupted with an additive Gaussian noise

which performs as a low-pass filter in the characteristic function domain. The motivation

of injecting independent noises is to recover the original raw analog measurements, inspired

by Widrow’s theory [10]. We derived the performance bound in terms of Fisher information

matrix based on the new framework and proposed to allocate available bits to local sensors

by optimizing the derived bound. We also showed that the new framework theoretically
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justifies the additive noise modeling of quantization process, and therefore, facilitates the

derivation of LMMSE.

The target localization problem with dense sensor deployment was also investigated in

this dissertation. We considered a scenario where the number of sensors in the ROI is large,

and quantized data are collected at the fusion center to locate the target. The relationship

between the sensor density and the performance of the network in terms of Fisher information

was analyzed. By using the LLN, we obtained a closed form solution of the Fisher informa-

tion, which shows that the closed form Fisher information is a linearly increasing function

of the sensor density, indicating that the more sensors the better. Furthermore, theoretical

analysis of the error incurred by the approximation of LLN was carried out. Based on the

closed form solution, we also designed a sub-optimal quantizer for local sensors, which was

shown to attain similar performance as the optimal one.

To evaluate the online performance of target tracking, an alternative conditional PCRLB,

namely, A-PCRLB was proposed in this dissertation. We showed that the proposed A-

PCRLB is capable of utilizing the information of the measurements history, and therefore

providing online performance evaluation for each realization of target tracking. Theoretical

complexity analysis was provided to show that A-PCRLB is more computational efficient,

compared to the original PCRLB proposed before in this field. Moreover, we have shown

that the difference between A-PCRLB and the original PCRLB is negligible when plotted

for any given target trajectory.

8.2 Suggestions for Future Work

Some promising directions for future work are listed in the following:

1. In Chapter 3, we intuitively provided a sensor censoring rule which depends on the
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innovation. Though we have proved that it is equivalent to the KL-divergence criterion

when the sensor measurement is a scalar, an overall optimal censoring rule in the

sense of, say maximizing mutual information between the observation and the state, is

desired. As a future work, one can investigate some information theory related metrics

to derive the optimal per-sensor censoring rule for the WSN system.

2. The work in Chapter 3 was discussed under the assumption that the communication

channels between the local sensors and the FC are perfect. However, this assumption is

strong and ideal. In the future, one can study the effect of the communication channel

statistics on the performance of the system, and develop a channel aware fusion rule

at the FC.

3. In Chapter 3, we have shown that the proposed framework can only be generalized to

a general nonlinear Gaussian system with feedback. For a non-feedback system, the

framework cannot work since local sensors have no information about the state esti-

mates of each other. In this case, a distributed scheme, such as a consensus algorithm,

may be desired. But, how to explore the missing information conveyed by the missing

data due to sensor censoring in the distributed network needs to be addressed, which

is a promising future research direction.

4. Recently, Byzantine attacks on distributed detection in the WSN has become a hot

topic [105] [106]. Simply speaking, Byzantine attack is the result of the existence of

malicious sensors that send false information in the network. Discussions on estimation

in the presence of Byzantine attack can be found in [107]. In our work thus far, sensors

in the WSN are all assumed honest, i.e., no malicious nodes exist in the WSN. However,

the framework proposed in Chapter 3 is naturally attackable. For example, under the

assumption that the communication channel is perfect, when an observation zi from

154



sensor i is not received at the FC, the FC will automatically assume that zi does not

pass the censoring rule. However, if sensor i is malicious, even if zi passes the censoring

rule, it may not send it such that false information is gathered at the FC, and finally

degrades the performance of the system. Therefore, as a future work, one can study the

effect of the existence of malicious sensors on the inference performance, and explore

robust solutions, where game theory can be a good tool.

5. In Chapter 4, we solved the sensor management problem using the theory of compres-

sive sensing (CS). The projection matrix Φ was shown to be very sparse and provided

good inference performance, but whether such a projection matrix can yield good re-

covery of the original signal is still in question. Therefore, one interesting future work is

to analyze the restricted isometry property (RIP) of Φ to assess its recovery capability.

6. The result in Chapter 5 was derived by assuming that the injected noise is Gaussian.

Even though such an assumption can make the derivation tractable, Gaussian noise

incurs distortion when performing like a low-pass filter in the CF domain to filter out

the signal due to its shape. Such distortion is definitely undesired when the filtered

signal is used for inference. A promising research direction is to discard the Gaussian

assumption and design an optimal low-pass filter which will not introduce any distortion

or introduce a bounded distortion but is still a valid probability density function.
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