Simplifications to "A New Approach to the Covering Radius..."

H. F. Mattson Jr

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

Recommended Citation
https://surface.syr.edu/eecs_techreports/52

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
Simplifications to "A New Approach to the Covering Radius..."

H. F. Mattson, Jr.

May 1990
Simplifications to “A New Approach to the Covering Radius...”

H. F. Mattson, Jr.

School of Computer and Information Science
Center for Science and Technology 4-116
jen@SUVM.acs.syr.edu / jen@SUVM.bitnet
Syracuse University
Syracuse NY 13244
Simplifications to “A New Approach to the Covering Radius...”
by H. F. Mattson, Jr.

Abstract. We simplify the proofs of four results in [3], restating two of them for greater clarity.

The main purpose of this note is to give a brief transparent proof of Theorem 7 of [3], the main upper bound of that paper. The secondary purpose is to give a more direct statement and proof of the integer programming determination of covering radius of [3].

Theorem 7 of [3] follows from a simple result in [2], which we state with the notation (for the linear code A)

$g(A)$: = a generator matrix of A,
$t(A)$: = the covering radius of A.

THEOREM 1 [2]. If A is a code with generator matrix

$$g(A) = \begin{pmatrix} g(A_1) & * \\ 0 & g(A_0) \\ X & \bar{X} \end{pmatrix}$$

then $t(A) \leq t(A_0) + t(A_1)$.

To describe the codes A_0 and A_1: Pick any subset X of coordinate-places of A. A_1 is the projection of A on X; we get A_0 from the subcode D of A which vanishes on X by projecting D on \bar{X}. ($A_0 [A_1]$ is sometimes called a shortened [punctured] code of A.)

Before stating Theorem 2, let us agree that all codes B, C are binary, linear, and have no coordinates identically 0. (The last need not be true of C_0.) We also need the following notation:
(2.1) \[S_k := [2^k - 1, k] \text{ simplex code.} \]

(2.2) \(B \) denotes an \([n, k]\) code having in \(g(B) \) exactly \(m_i \geq 0 \) copies of column \(i \) of \(g(S_k) \) for \(i = 1, \ldots, 2^k - 1 \). Thus \(n = \sum m_i \).

(2.3) We often identify a vector in \(\mathbb{Z}_2^n \) with its support. In this note the support is a subset of the set of columns of \(S_k \), or a multisubset thereof. In that identification we may denote the weight of the vector \(x \) by \(|x| \), the cardinality of the support of \(x \). The columns of \(g(B) \) form a multisubset of the set of columns of \(g(S_k) \). The vector \((m_1, \ldots, m_{2^k - 1})\) of multiplicities of the columns is called the \textit{signature} of \(B \).

(3) The normalized covering radius \([3]\) of \(B \) is defined as
\[
\rho(B) := \rho(m_1, \ldots, m_{2^k - 1}) := t(B) - \sum_i \left\lfloor \frac{m_i}{2} \right\rfloor.
\]

The \textit{projective core} of \(B \) is the code \(C \) for which \(g(C) \) consists of the columns of \(g(B) \) without any repetitions. I.e., in the signature \((\ldots, \nu_i, \ldots)\) of \(C \), \(\nu_i = 1 \) if \(m_i > 0 \) and \(\nu_i = 0 \) if \(m_i = 0 \).

For any column \(Q \) of \(g(B) \) we define \(\eta := \eta_Q \) to be the total number of vectors \(\{P, Q, R\} \) of weight 3 in \(C^\perp \) for which \(m_P \) and \(m_R \) are odd. The vectors are denoted as in (2.3).

Before going on, we comment on (3). Recall from [1, II D] the definition of a concatenation \(A \) of the \([n_1, k_1]\) code \(A_1 \) and the \([n_2, k_2]\) code \(A_2 \), with \(k_1 \leq k_2 \). It has generator matrix
\[
g(A) = \begin{bmatrix} g(A_1) & | & g(A_2) \\ 0 & | & 0 \end{bmatrix},
\]
and its covering radius satisfies \(t(A) \geq t(A_1) + t(A_2) \) [1, II D]. We take \(A_2 \), say, to be the "even" part of the code \(B \). That is, write \(m_i = 2\mu_i + \epsilon_i \), where \(\epsilon_i = 0 \) or \(1 \), and take \(A_1 \) and \(A_2 \) to have signatures \((\ldots, \epsilon_i, \ldots)\) and \((\ldots, 2\mu_i, \ldots)\), respectively. Then \(B \) is a
catenation of A_1 and A_2, and $t(B) \geq t(A_1) + t(A_2)$. From \cite{2, (11)} we get an immediate proof of Thm. 6 of \cite{3}: $t(A_2) = \sum \mu_i$, since the “double” of any code of length ℓ has covering radius ℓ. Therefore, $t(B) \geq t(A_1) + \sum \mu_i$ and $\rho(B) \geq t(A_1)$. (This is Thm. 5 of \cite{3}.)

To state the result, choose any column Q of $g(B)$. After row-operations (which do not change B even though they permute the m_i's) column Q becomes simply $(10 \cdots 0)^\top$, and

\begin{equation}
\begin{array}{c|*{2}{c|c}}
\multicolumn{4}{c}{m_Q} \\
\hline
 11 \cdots 1 & & \\
0 & & g(B_0) \\
\end{array}
\end{equation}

where B_0 has signature $(m'_1, m'_2, \ldots, m'_{2^k-1-1})$.

THEOREM 2 (\cite{3}). The normalized covering radius of B satisfies

$$\rho(B) \leq \eta_Q + \rho(m'_1, \ldots, m'_{2^k-1-1}).$$

Proof. Since B_1 in \eqref{eq:4} is an $[m_Q, 1, m_Q]$ repetition code, $t(B_1) = \lfloor m_Q/2 \rfloor$. Thus, from Theorem 1,

\begin{equation}
t(B) \leq \lfloor m_Q/2 \rfloor + t(B_0).
\end{equation}

To express \eqref{eq:5} in terms of normalized covering radii, we subtract $\sum_i \lfloor m_i/2 \rfloor$ from both sides. We get

\begin{equation}
\rho(B) := t(B) - \sum_i \lfloor m_i/2 \rfloor \leq t(B_0) - \sum_{i \neq Q} \lfloor m_i/2 \rfloor.
\end{equation}

Each pair of columns P and R of $g(B)$ which agree except on their top coordinate have sum Q. That is, for some vector N, $P = (0, N)^\top$ and $R = (1, N)^\top$. Thus $m_P + m_R = m'_N$, and $\{P, Q, R\}$ is (the support of) a vector of weight 3 in C^\perp. We note that
unless \(m_P \) and \(m_R \) are odd, in which case the right-hand side of (7) must be decreased by 1. Thus (6) becomes

\[
\rho(B) \leq t(B_0) - \sum_j \left\lfloor \frac{m_j}{2} \right\rfloor + \eta. \quad \Box
\]

Remark. Theorem 1 allowed us to avoid the notion of "height" used in [3]. We have also restated the result by defining \(\eta \) not with finite geometry, as in [3], but in terms of the code. Except for this change of language the proof after (5) is similar to that of [3].

Finally, we simplify the integer programming determination [3, Thm. 1] of \(\rho(B) \) by eliminating "height" from the statement and proof.

In terms of (2), it is simple to see [1] that \(x \) is a coset leader of a code \(A \) iff

\[
\forall a \in A \quad 2|x \cap a| \leq |a|.
\]

Letting the \([n, k]\) code \(B \) have signature \((\cdots, m_i, \cdots)\), define [3,(5)] for any \(x \in \mathbb{Z}_2^n \),

\[
x := (x^{(1)}, \ldots, x^{(n)}),
\]

where \(x^{(i)} \) is the "sub" vector of the coordinates of \(x \) at the \(m_i \) places where column \(i \) appears in \(g(B) \). Define

\[
(9)
\]

\[
w_i(x) := wt(x^{(i)}).
\]

It follows that \(0 \leq w_i(x) \leq m_i \) for all \(i \) and \(x \), and that \(wt(x) = \sum_i w_i(x) \).

We also project \(B \) onto the projective core \(C \) by the rule

\[
b = (\ldots, b^{(i)}, \ldots) \rightarrow (\ldots, c_i, \ldots) = c,
\]

where \(c_i = 1 \) iff \(b^{(i)} \neq 0 \). It follows that \(|b| = \sum_i c_i m_i \), where \(c_i \) is regarded as real 0 or 1.
Using (2.3) we calculate for any \(b \in B \) and any \(x \in \mathbb{Z}_2^n \)

\[
x \cap b = \bigcup_{i} x^{(i)} \cap b^{(i)} = \bigcup_{c_i=1} x^{(i)}.
\]

Hence

\[
|x \cap b| = \sum_{i} c_i w_i(x).
\]

Thus we see from (8) that \(x \) is a coset leader for \(B \) iff for all \(c = (\ldots, c_i, \ldots) \) in \(C \),

\[
\sum_{i} c_i w_i(x) \leq \frac{1}{2} \sum_{i} c_i m_i.
\]

Since the covering radius of \(B \) is the weight of a coset leader of maximum weight we have proved (cf. [3, Thm. 1])

THEOREM 3. The covering radius of \(B \) is the solution to the following integer programming problem:

Maximize \(W := w_1 + \cdots + w_{2^s-1} \) subject to the constraints

\[
w_i \in \mathbb{Z}, 0 \leq w_i \leq m_i
\]

and \(\sum_{i} c_i w_i \leq \frac{1}{2} \sum_{i} c_i m_i \) for all \(c = (c_i) \in C \).

COROLLARY. \(\rho(B) = \max W - \sum_{i} \left\lfloor \frac{m_i}{2} \right\rfloor \).

References

